

Olid Hossain Khan

BLUETOOTH LE (LOW ENERGY) CONNECTION MANAGEMENT

BLUETOOTH LE (LOW ENERGY) CONNECTION MANAGEMENT

 Olid Hossain Khan
 Bachelor’s Thesis
 Spring 2015
 Degree Programme in
 Information Technology
 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology

Author: Olid Hossain Khan
Title: Bluetooth LE (Low Energy) Connection Management
Supervisor: Pertti Heikkilä
Term and year of completion: Spring, 2015 Number of pages: 56 pages

This Bachelor’s thesis describes an Android Bluetooth Low Energy connection
management collects sensor measurement data frequently and continuously
from Bluetooth Low Energy devices to an Android phone. Currently there exists
no such application that can connect with Bluetooth Low Energy devices con-
tinuously in a very short interval of time. Existing applications are also facing
problems to establish a Bluetooth connection with Bluetooth Low Energy devic-
es smoothly.

The target of this research was to develop an Android application which can
connect to the IoLiving Bluetooth Low Energy devices to read different sensor
data like temperature, movement, humidity and Co2.

This study was commissioned by IoLiving which is a manufacturer of Bluetooth
Low Energy devices in Finland. IoLiving Bluetooth Low Energy devices and it-
eration method including testing in every phase and monitoring Bluetooth data
packets were utilized throughout the research.

This report will help a reader to have an overview of the Bluetooth Low Energy
connection overview, Android Bluetooth Low Energy application development
and testing process and problems regarding a connection establishment in de-
tail.

Keywords: Android, Bluetooth Low Energy, Internet of Things, Sensor, Connect,
Database.

4

PREFACE

Ceruus Oy is a company developing various kinds of IOT (Internet of Things)

devices. Matti Verkasalo is the CEO of the company. Ceruus Oy is known as

IoLiving .The aim of the company is to become a major IOT (Internet of Things)

device and Internet service provider. This thesis work was commissioned by

IoLiving. IoLiving is also developing an Android application to communicate with

IOT devices using Android phone’s Bluetooth stack to retrieve data from IOT

devices.

I have been working with IoLiving team since March 2014. In the beginning I

learned to develop Android applications. I developed various kinds of Android

applications. After that I have learned about Android Bluetooth and software

design and finally I started my thesis work.

In this thesis Pertti Heikkilä was my instructor. And Kaija Posio was my Lan-

guage instructor.

Finally I would like to thank Matti Verkasalo(CEO of IoLiving), Pertti Heikkilä my

instructor , Kaija Posio my language instructor and IoLiving team for such a

wonderful support throughout my thesis work.

5

CONTENTS

ABSTRACT 3

PREFACE 4

TABLE OF CONTENT 5

VOCABULARY 7

1 INTRODUCTION 8

1.1 Internet of Things 9

1.2 Bluetooth 10

1.3 Bluetooth SIG 10

1.4 Research and Development method 11

2 KEY TERMS AND CONCEPTS 13

2.1 Eclipse 13

2.2 Android SDK 13

2.3 Android Manifest 13

2.4 Bluetooth Profile 13

2.5 GATT Profile 14

2.6 Services 16

2.7 Characteristics 16

2.8 UUID 16

2.9 HCI Log 16

3 TOOLS USED IN DEVELOPMENT AND TESTING 17

3.1 Name of Tools 17

4 DESIGN OF THE SOFTWARE 18

4.1 Basic design of the software 18

4.2 Life Cycle of the application 22

4.3 Class diagram 23

5 FIRST DEVELOPMENT PHASE 27

5.1 Initialize Bluetooth 27

5.2 Scan for Bluetooth Low Energy device 28

5.3 Separate IoLiving device from other device 30

5.4 Break broadcast data 31

6

5.5 Save Broadcast data 31

5.6 Test 1st Iteration processes 32

6 SECOND DEVELOPMENT PHASEA 33

6.1 Make a priority list for connection 33

6.2 Send connection request 34

6.3 Connect to GATT server 35

6.4 Discover Services 36

6.5 Read measurements from device 36

6.6 Test 2nd Iteration processes 37

7 THIRD DEVELOPMENT PHASEA 38

7.1 Send disconnect request 38

7.2 Disconnect from GATT server 39

7.3 Forcefully disconnect 40

7.4 Display broadcast values in user interface 40

7.5 Test 3rd Iteration processes 42

8 TEST CASES 43

8.1 Test Bluetooth initialization 43

8.2 Test Bluetooth data broadcast 44

8.3 Test broadcast data 44

8.4 Test broadcast data saved or not 45

8.5 Test Bluetooth connection 45

8.6 Test Bluetooth disconnect process 46

8.7 Test unnecessary thread growing or not 47

8.8 Test Watch Dog Functionality 48

8.9 Test application time 48

8.10 Record Bluetooth communication to analyze later 51

9 CHALLENGES TO ESTABLISH CONNECTION 53

9.1 Failed to discover services 53

9.2 Gatt Error 53

9.3 Failed to discover Proprietary service or service is null 54

9.4 Android Bluetooth Stack is choosing wrong connection method 54

9.5 Application does not list any BLE device 55

10 CONCLUSION 56

7

VOCABULARY

 Abbreviations Meaning

 A2DP

 ATT

 BLE

 BR

 EDR

 GAP

 GATT

 HCI

 HDP

 ID

 IDE

 IoT

 LE

 MAC

 RSSI

 SDK

 SIG

 UUID

 Advanced Audio Distribution Profile

 Attribute Profile

 Bluetooth Low Energy

 Basic Rate

 Enhanced Data Rate

 Generic Access Profile

 Generic Attribute Profile

 Host Controller Interface

 Health Device Profile

 Identification

 Integrated Development Environment

 Internet of Things

 Low Energy

 Media Access Control

 Received Signal Strength Indicator

 Software Development Kit

 Special Interest Group

 Universally Unique Identifier

8

1 INTRODUCTION

Internet of thing is an object or device or entity which has a unique identification

number or address and which has an ability to measure various kinds of data,

like e.g. temperature, heart rate, and which can send data over a network with-

out the help of a computer.

Bluetooth is a technology which can exchange data in short distance wirelessly.

Using Bluetooth, phones, computers or IoT(Internet of Things) devices can be

interconnected wirelessly to exchange data between them. Bluetooth LE (Low

Energy) is a version of Bluetooth technology which can communicate or ex-

change data between devices consuming very little energy. (Huang, F 2013,21-

23)

Ceruus Oy known as IoLiving is a company which is producing IoT devices

which can measure temperature, movement, humidity, Co2, etc. Those IoT de-

vices are saving those measurement values inside their own memory. Then an

Android application, which is using Bluetooth LE, is connecting to IoT devices

and retrieving data from IoT devices and storing that data to the local memory

of the phone. After that data is sent to the cloud server to use the data in a IoL-

iving web service for further consumer uses.

This thesis will focus on how to develop an Android application which can detect

IoT devices and how to connect with IoT devices and how to retrieve data from

IoT devices and how to make that data usable for a further use. This thesis will

describe problems to establish a Bluetooth LE connection with IoT devices and

steps to avoid problems.

9

FIGURE 1.IoT device communication with Android phone in brief (Android

Smart phone icon, Date of Retrieval 26.04.2015 , IoLiving Device, Date of Re-

trieval 26.04.2015 , cloud-server, Date of Retrieval 26.04.2015)

1.1 Internet of Things

Internet of Things consists of things which has physical existence and can con-

nect to the internet, e.g. machine, vehicle, building, people, and almost every-

thing is part of things. Internet of things must have a unique identity, so that

each and every entity can be separated easily. Internet of Things must have the

ability to communicate with other object. Internet of Things needs to have sens-

es which will send information about the entity. Internet of Things can be con-

trolled from anywhere. If any object has the above feature, then it can be called

as Internet of Things. (Barrett, J., Internet of Things, Date of Retrieval

21.05.2015)

10

1.2 Bluetooth

In our daily life we are using many devices like computer, mobile phone, televi-

sion. Devices are mainly connected by cables. So it becomes a demand of the

time to use such a technology through which we can connect to different devic-

es without any cables. Bluetooth wireless technology is a new Radio Frequency

transmission standard which can be used to connect to different devices in a

short range. Bluetooth technology opens the door to connect to billion devices.

(Ali M Aljuaied 2001. 19-20)

1.3 Bluetooth SIG

Bluetooth SIG (Special Interest Group) is a non-profit organization founded in

1998. It has more than 20,000 member companies worldwide. (Bluetooth SIG,

Date of Retrieval 21.05.2015)

In 1994 Ericsson Mobile communications started a study to find an alternative of

cables which could link their mobile phones with accessories. This study pre-

ferred to use radio links because it had an advantage of complete directional

transmission. Ericsson realized that this technology is powerful and has a big

potential in it. They realized the necessity of an open and common specification.

From this realization Special Interest Group was found. (Ali M Aljuaied 2001.

19-20)

There are seven promoter level member companies in Bluetooth SIG: Ericsson,

Intel, Lenovo, Microsoft, Motorola Mobility, Nokia and Toshiba. (Bluetooth SIG,

Date of Retrieval 21.05.2015)

11

1.4 Research and Development method

This thesis has followed an iterative method for its research and development

process. The iterative method generally divides the requirements into smaller

pieces and then implements those pieces one after another. So iterative pro-

cesses divide the whole software into smaller pieces and develop one piece at

a time and test it properly. And then it develops a new piece of software and

adds it with the existing one. This process continues until it reaches its destina-

tion.

The iteration process was planned according to the requirements. Some of

those requirements are, to initialize the Bluetooth for an Android application, to

scan for the available device, to separate IoLiving devices from all devices, to

receive broadcast data, to break broadcast data for further use , to save broad-

cast data into a database, to make a connection priority list considering all

available catchers, to send a connection request for the highest priority device,

to connect to the Bluetooth GATT(Generic Attribute Profile) server, to discover

services, to read measurements from the device, to save those measurements

into a phone’s database, to send a disconnect request, to disconnect from a

Bluetooth GATT server(if it is still not disconnected, then forcefully disconnect

from a device) , to display received data in the phone view or display that data

in a web service.

12

The Design of the Iteration model:

FIGURE 2. The iteration flow

Initialize Bluetooth

Scan for available

devices

Separate IoLiving devices

from other devices

Receive broadcast

data

Break broadcast

data for further use

Save broadcast data

into database

Make a connection

priority list

Send Connection

Request

Connect to the Bluetooth

GATT Server

Discover Services

Read Measurements

from device

Save values into

database

Send disconnect

request

Disconnect from GATT

Server

If connection still remains

then forcefully disconnect

Display measure-

ment/broadcast

value in phone

Test the whole

process

Test the whole

process

Test the whole

process

Iteration 1 Iteration 2 Iteration 3

13

2 KEY TERMS AND CONCEPTS

2.1 Eclipse

Eclipse is an IDE (Integrated Development Environment) which allows a devel-

oper to develop Java based applications like an Android application. Eclipse

has an extendable plug-in system which allows a developer to customize the

development environment. Eclipse was used in this thesis to develop the An-

droid application.

2.2 Android SDK

Android SDK (Software Development Kit) is a software development kit which

allows a developer to develop an Android application. Eclipse needs to install

Android SDK to enable the developer to develop an Android application.

2.3 Android Manifest

Android Manifest is an xml file. Every Android application contains this file. This

file describes the requirement of the application. This file also uses a declare

permission in order to use Bluetooth in this application.

2.4 Bluetooth Profile

Bluetooth profile is a specification which specifies the general behaviour of a

Bluetooth enabled device while communicating with other Bluetooth enabled

device. A Bluetooth device must be able to interpret a certain Bluetooth profile

in order to communicate with other Bluetooth enable device. Bluetooth profile

specifies many different kinds of uses and applications which can be used by a

developer to communicate with Bluetooth enable devices

A few Bluetooth profiles are mentioned below:

1. Advanced Audio Distribution Profile (A2DP)

2. Attribute Profile (ATT)

14

3. Generic Access Profile (GAP)

4. Generic Attribute Profile (GATT)

5. Health Device Profile (HDP)

(Bluetooth Profile, Date of Retrieval 21.05.2015)

2.5 GATT Profile

(Bluetooth GATT Profile, Date of Retrieval 21.05.2015)

Generic Attribute Profile which is known as a GATT profile is a Bluetooth Speci-

fication which uses Attribute Protocol (ATT) to define a way to communicate

between Bluetooth LE devices. GATT defines two roles of Server and Client.

GATT profile can be used both for BR (Basic Rate)/EDR (Enhanced Data Rate)

and LE (Low Energy). GATT and ATT profiles are needed to discover services

in the LE device communication. In GATT the Server and Client relationship is

important. An IoT device plays the role of GATT Server and Android phone

plays the role of GATT Client. The Android phone which acts as a Master starts

the communication and the IoT device which acts as a slave gives a response

when there is a request.

GATT Server stores all the data which has been transported using Attribute

Protocol. Attribute Protocol is formatted as services and characteristics where

services contain characteristics and characteristics contain any number of de-

scriptors that describes the characteristic values.

The following picture shows how GATT Client (master) and GATT Server

(slave) exchange data between them.

15

FIGURE 3. The data exchange between Master and Slave in GATT server

(Bluetooth GATT Profile, Date of Retrieval 21.05.2015)

GATT Profile contains mainly two elements service and characteristics. The

service contains characteristics and the characteristics contain its value, de-

scriptor, additional information etc. In general, the profile contains services and

services contain characteristics and each characteristic contains its values and

additional description. The following picture will show the hierarchy of GATT

Profile.

FIGURE 4. Hierarchy of GATT Profile (Bluetooth GATT Profile, Date of Retriev-

al 21.05.2015)

16

2.6 Services

A service is a set of data and related behaviour to perform a particular function

for a device. Every service has its own id called UUID (Universally Unique Iden-

tifier). The UUID can be either 16 bit (official BLE service) or 128 bit (custom

service). There are mainly two kinds of service available primary and second-

ary. The primary service provides a primary functionality of a device and the

secondary service provides an additional service if any primary service refers to

a secondary service. It could be possible to build a nested reference of ser-

vices. The service also contains characteristics. (Bluetooth GATT Profile, Date

of Retrieval 21.05.2015)

2.7 Characteristics

Characteristics actually hold the data. A declaration and a value are the main

attributes of characteristics. A single characteristic is a bundle of declaration,

value and any descriptor attribute. (Townsend, Devidson & Akiba, Chapter4,

Date of Retrieval 21.05.2015)

2.8 UUID

UUID (Universally Unique Identifier) means a universally unique identifier which

is a 128 bit (16 byte) number. Bluetooth and other protocols are using a UUID

number. In Bluetooth specification a 16-bit or a32-bit UUID format are also

available. These shortened UUIDs can only be used if Bluetooth Specification

defines them. (Townsend, Devidson & Akiba, Chapter4, Date of Retrieval

21.05.2015)

2.9 HCI Log

Android provides a feature which can store all communication Log of Bluetooth

in one file HCI (Host Controller Interface) log. To activate this feature Android

Developer Option needs to activate first. To activate Android Developer Option,

first you need to go to settings, you need to click about option of the phone, and

then you need to press the Build number 7 times.

17

3 TOOLS USED IN DEVELOPMENT AND TESTING

3.1 Name of Tools

Several tools were used in this development phase. Eclipse was mainly used in

this application development. Before starting the development, Eclipse needs to

be setup properly. Android SDK needs to be installed in Eclipse in order to ena-

ble the Development environment. An Android phone, which has Bluetooth 4.2

stack in it, is required for the development. For testing purpose Bluetooth com-

munication needs to be monitored. WireShark was used to read HCI Log which

will provide details about Bluetooth Communication. Pixlr was used as a photo

editing software. Command prompt was used to see Android Logs. StarUml and

Dia were used to design the software.

A few tools, which were used in development of the application, are listed be-

low:

1. Eclipse

2. Android phone

3. IoLiving Device

4. Pixlr

5. WireShark

6. Notepad++

7. Es File Explorer

8. Command Prompt

9. StarUml

10. Dia

18

4 DESIGN OF THE SOFTWARE

4.1 Basic design of the software

The design of the software is described in the three pictures below. This design

has been changed a little bit according to the demand of the situation. The

whole application will run in the background and there will be mainly two cycles.

In cycle one the application will run the Bluetooth communication loop and in

cycle two the application will run the server sync loop.

FIGURE 5. Basic Design of Software part 1 (IoLiving documents about Blue-

tooth Low Energy, Date of Retrieval 21.05.2015)

19

There will be one timer called Watch Dog which will check if the application

stucks in any process. If the application stucks in any process, it will stop the

process and start a new cycle.

In the picture one it can be seen that Timer triggered is the starting point of the

application. When the application starts, Watch Dog will also start. The first

thing the application will decide is whether it will run a Bluetooth connection loop

or a server communication loop. Bluetooth needs to initialize before it will be

ready to use, therefore, the server communication task will be the first loop to

start the process. When it will go to the server communication loop it will first

check whether there is any internet available. If there is no Internet that it will

exit and call the next process to the Bluetooth connection loop. If there is an

available Internet, then it will check whether the last server communication hap-

pened in 105 (currently 60 seconds) seconds. If the last server communication

happened in 105 (currently 60 seconds) seconds, then it will call the next task to

the BT connection task. Otherwise, it will do the server communication task. If

the server responses status 200(OK status), it will call the next task to the BT

connection task. Even if the server does not response status 200(OK) it will call

the next task to the BT connection task.

The next loop is the Bluetooth connection loop. In this loop the application will

first scan for available devices. If there is an available device, then it will check

whether it is a IoLiving device or not. If there is no device available or the device

is not a IoLiving device then the process will exit and call the server communi-

cation loop. If there is a IoLiving device available, then it will save the broadcast

value and it will update the list of catcher in every scan. Then, it will make a pri-

ority list where it decides which device will connect first based on the previous

connection time. If one device connected 10 minutes (currently 6 minutes) earli-

er, then that device will get the highest priority to make the next connection. If

there is no device in the priority list the application will exit the process.

In the second picture the next part of the design is described. If there is any de-

vice found which has a priority, it will start the connection process, otherwise it

20

will exit the loop and it will go to the server communication loop. Next, it will

check whether the connection process is successful or not. If the connection is

not successful, then it will exit the loop. But if the connection is successful, it will

start reading or writing from the device.

FIGURE 6. Basic Design of Software part 2 (IoLiving documents about Blue-

tooth Low Energy, Date of Retrieval 21.05.2015)

The rest of the design is described in the third picture. In this stage it will try to

read or write the measurement from the device. If it stucks in the measurement

reading or writing process, then Watch Dog will activate after around 100 sec-

onds and it will forcefully disconnect from the device. If the application reads the

measurements successfully, then it will save the measurement data to the local

database. Then, it will exit the process and it will call the server communication

task. In every exit point the application will wait 5 to10 seconds before starting a

21

new loop. This delay will give the application some time to settle down. The

whole process will repeat again and again.

FIGURE 7. Basic Design of Software part 3 (IoLiving documents about Blue-

tooth Low Energy, Date of Retrieval 21.05.2015)

22

4.2 Life Cycle of the application

The below diagram will show the lifecycle of the application. The application will

take approximately 1 to 3 seconds to start its process. To complete the server

communication, it will take 1to 5 seconds. The application will scan for 20 sec-

onds, then it will connect to a device it will take around 20 seconds to compete

the communication process. After the successful communication is done, it will

disconnect the Bluetooth connection. It will take around 5 to 25 seconds to

complete the disconnection process. If the application stucks in any process

around for 100 to160 seconds, Watch Dog will activate to kill the process and it

will call the next process.

 Figure 4.4: Application Life Cycle

 Start It will take 1-3seconds to start the first

task

1st Server Comms

Task

It will take 1-5second to complete the first sync then it will set

60sec delay to the Server Comms Task and it will set the next task

to BTComms Task after 1sec . So next sync will be done at least

60sec later.

1st BTComms Task

Start

It will take 0-20 seconds to start the

scan

 Scan Scan will take 20 seconds and if no device found 10-

30 seconds time will be taken to go to server sync

task.

 Connect LE Device

 Disconnect and

Set Next task

It will take 0-20 seconds in successful case. If there is 4

catchers then it will take the catcher of oldest timestamp with

at least 6 minutes passed since last connection.

It will set next task to Server Sync

Task after 5-25seconds delay

 Watch Dog Active! Watch Dog will active

within 140-160 seconds

23

4.3 Class diagram

This part describes the classes that were used to make a Bluetooth connection.

Many different classes were used to complete the Bluetooth connection task. In

every class several methods were used to complete the task. Below in the dia-

gram it can be seen how these classes are working.

FIGURE 9.Class diagram part 1 (IoLiving documents about Bluetooth Low En-

ergy, Date of Retrieval 21.05.2015)

The EmdGwService class will start the proceedings by calling the ServerSync-

Task class to do a server sync. When the server sync will be done, it will call the

next task as a Bluetooth connection task. This task will be handled by the

CatcherCommsController class. The CatchreService is helping the Catcher-

CommsController class to complete the Bluetooth connection. The DataHandler

class is saving all kinds of data as it is working as a local database.

24

FIGURE 10.Class diagram part 2 (IoLiving documents about Bluetooth Low En-

ergy, Date of Retrieval 21.05.2015)

Other classes like CatcherBroadcastDataBreaker, CatcherAdvertisingData,

CatcherMeasurementStream, CatcherGattAttribute are helper classes to com-

plete a Bluetooth connection process. The CatcherBroadcastDataBreaker class

will break broadcast data from a byte to a string to display a temperature value

in the application’s user interface. The CatcherAdvertisingData class handes

information that a IoLiving device or other BT device sends as broadcast. The

CatcherMeasurementStream class was used to parse a byte stream sent from

the IoLiving device and this class will also help to persist the measurement for

later use. The CatcherGattAttribute class was used to define a BT-related con-

stant which will later be needed to complete a Bluetooth connection.

25

FIGURE 11.Class diagram part 3 (IoLiving documents about Bluetooth Low En-

ergy, Date of Retrieval 21.05.2015)

This diagram is showing the main functionality of the application. There are

many other methods that were also used in this application but they are not

mentioned in the diagram. Only the important methods are mentioned here.

The Bluetooth connection process was started by doing the Bluetooth scan.

scanLeDevice is the method used in this application to call scan process. The

LeScanCallBack method is returning the scan result. The CheckOwnCatcher

method is checking whether the device is a IoLiving device or not. The Save-

OrUpdateBroadcastValue method is saving the broadcast value to the data-

base. The UpdateCatcherList method is updating the list of available devices

around the Android phone. The CheckCatcherPriorityList method is checking

which device should connect first. This method is deciding the high priority de-

vice. The ConnectLeDevice method was used to prepare the connection pro-

26

cess. The connect method was used to establish a connection. The Blue-

toothGattCallBack method decides whether the device is able to establish a

connection with the GATT server. If the GATT server connects successfully,

onServiceDiscovered is called when services, characteristics and descriptor for

the device have been updated. BTDeviceStateChangedCallBack is a function

which carries the information of the current state to the Bluetooth connection

process and this method helps to decide what to do next according to the cur-

rent state situation. The setCharacteristicsNotification method helps enabling or

disabling the notification for a given characteristic. The WriteDescriptor method

was used to initiate the descriptor writing to Bluetooth. After the writing opera-

tion is complete a separate callback method will be called by the Bluetooth

stack. The WriteCharacteristic method was used to initiate the characteristic

writing into a Bluetooth device. The CheckMeasurementReceived method was

used to check whether there is enough notification in the measurement stream.

The saveMeasurementData method was used to save the measurement read-

ing from the device. The BTDeviceStateChangedCallBack method was used to

notify the application that measurement reading has been ended. The method

disconnect was used to disconnect the device from the application. The

CheckConnectionTime method was used to check whether the application

stucks in the connection state. If the application stucks in the connection state,

then the forcefullyDisconnect method will destroy the CatcherService class to

disconnect the device forcefully.

27

5 FIRST DEVELOPMENT PHASE

The whole development was divided into three phases. In the first phase an

Android application needs to initialize Bluetooth, to scan for available devices,

to separate IoLiving devices from other devices, to receive broadcast data, to

break broadcast data for further use, to save broadcast data into a database

and to test the whole process. The mentioned steps need to be implement one

after another.

5.1 Initialize Bluetooth

In order to perform any Bluetooth communication first it needs to put permission

to the application. The permission needs to declare in the Android Mainfest file

of the application as below:

<uses-permission android:name="android.permission.BLUETOOTH"/>
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/>

The target of this application is to use BLE only. Another permission needs to

add in the Android Mainfest in order to make it BLE capable only.

<uses-feature android:name="android.hardware.bluetooth_le" android:required="true"/>

The next thing is that the application should check whether the device supports

BLE or not. If BLE is not supported by the device then this application will not

work. If BLE is supported by the device, then the application needs to check

whether the Bluetooth is enabled or not. If Bluetooth is not enabled in the

phone, this application should turn the Bluetooth on.

To enable Bluetooth for the application, first a Bluetooth adapter is required.

Without a Bluetooth adapter no Bluetooth related activity is possible. The follow-

ing code is necessary to initialize the Bluetooth adapter.

28

/ Initializes Bluetooth adapter.
final BluetoothManager bluetoothManager =
 (BluetoothManager) getSystemService(Context.BLUETOOTH_SERVICE);
mBluetoothAdapter = bluetoothManager.getAdapter();

The next important task is to make it sure that Bluetooth is enabled in the

phone. There is a method called isEnabled() to check whether it is enabled in

the phone or not. If this method returns true, it means that Bluetooth is enabled

in the phone but if it returns false it means that Bluetooth is not enabled in the

phone. If Bluetooth is not enabled then, a dialog needs to show to the user re-

questing to enable Bluetooth. The following code will do this work.

private BluetoothAdapter mBluetoothAdapter;
...
// Ensures Bluetooth is available on the device and it is enabled. If not,
// displays a dialog requesting user permission to enable Bluetooth.
if (mBluetoothAdapter == null || !mBluetoothAdapter.isEnabled()) {
 Intent enableBtIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
 startActivityForResult(enableBtIntent, REQUEST_ENABLE_BT);
}

5.2 Scan for a Bluetooth Low Energy device

Bluetooth Initialization has been done now. The next task is to scan for an

available Bluetooth Low Energy device. To make a scan happen, it is necessary

to call a method startLeScan(). This method takes a parameter with it called

BluetoothAdapter.LeScanCallBack. To get a Bluetooth scan result, this callback

is necessary. In the Bluetooth scan it is possible to set the scan period. This

application has now a 20 seconds scan period. This scan period time is variable

so it can be changed at any time according to the need of the application. After

the scan is complete, the stopLeScan() method needs to call to stop the scan

process. The following code was implemented to start and stop the scanning

process.

29

private void scanLeDevice(final boolean enable) {
 Log.v("BtGw", "scanLeDevice in");
 if (enable) {
 // Stops scanning after a pre-defined scan period.
 mHandler.postDelayed(new Runnable() {
 @Override
 public void run() {

 mBluetoothAdapt-
er.stopLeScan(mLeScanCallback);
 conditionallyCon-
nectOldestBTDevice();
 }
 }, 20*1000);

 mBluetoothAdapt-
er.startLeScan(mLeScanCallback);

 } else {
 mBluetoothAdapt-
er.stopLeScan(mLeScanCallback);

 }
 Log.v("BtGw", "scanLeDevice out");

 }

To get the scan result a BluetoothAdapter.LeScanCallback method is required.

This call back method will return the scan result which will include a device Mac

address, an RSSI (Radio signal strength) and a scan record. The scan record is

a byte array of broadcast value. This broadcast value can contain lots of infor-

mation e.g. company ID, temperature. The following piece of code is needed to

implement the callback of scan.

private BluetoothAdapter.LeScanCallback mLeScanCallback = new BluetoothAdapt-
er.LeScanCallback() {

 /**
 * Method that is called when a device is found during BT scan.
 */
 @Override
 public void onLeScan(final BluetoothDevice device, final int rssi,
final byte[] scanRecord) {
 Log.v(TAG, "onLeScan in");

 synchronized (DataHandler.class) {
 mData-
Handler.updateCatcherRSSI(device.getAddress(), rssi);
 mData-
Handler.updateBroadcastData(device.getAddress(),System.currentTimeMillis(), scanRecord);

30

 }
 synchronized (DataHandler.class) {
 for (Pair<BluetoothDevice, Integer>
d : mBTDevicesSeen)
 if
(d.first.getAddress().equals(device.getAddress())) {

 mBTDevicesSeen.remove(d);
 }
 mBTDevic-
esSeen.add(Pair.create(device, rssi));
 }
 }
 };

5.3 Separate a IoLiving device from other device

The next task is to separate a IoLiving device from other devices. The broad-

cast value of IoLiving devices contains 4-digits company ID (Identification)

which will help to identify if the device is IoLiving device or not. The first broad-

cast value needs to break down to get the company ID. The Catcher-

BroadcstDataBreaker class was used to break the broadcast data. After com-

paring the value broadcasted by the device with the company ID, it is easy to

determine whether the device is a IoLiving device or not. The following sample

code shows how to implement this functionality.

String compnayID = "";

if (scanRecord.length > 00) {

compnayID = String.format("%02x ", scanRecord[00])

 + String.format("%02x ", scanRecord[00]);

// Log.e("test", String.valueOf(compnayID));

}

if (deviceAdd != null

31

 && deviceAdd.length() > 0

 && (compnayID.startsWith("00 00")) {

 …………….

 }

5.4 Break broadcast data

The next task is to break broadcast data to be used for various purpose like a

display temperature in the user interface. The CatcherBroadcastDataBreaker

class was used to break the broadcast data. Broadcast data comes as a byte

array. In this byte array a different position holds a different value like a temper-

ature value, a broadcast frame ID, a company ID etc. These values were used

in different places and for different purposes throughout the application. The

following code contains an example of how to get a temperature value from the

broadcast data using one method of the CatcherBroadcstDataBreaker class.

public double getCurrentTemperature() {

 double value = (this.mManufacturerData[4] << 8) |
(this.mManufacturerData[3] & 0xff);
 return value/10.0;
 }

5.5 Save Broadcast data

The last thing to do in iteration 1 is to save the broadcast value. The Android

SQLite (Database name) database was used in this application. A database

declaration, a table structure and all methods that help to store or retrieve data

are in the DataHandler class. The saveOrUpdateBroadcast value is the method

used to save the broadcast data. Three parameters were used in this method.

Parameters are a device ID, a scan record or broadcast value and time of sav-

32

ing the broadcast value. Inside this method a device registration was also

checked. The code below will show how to use a method to save a broadcast

value in the SQLite database.

public boolean saveOrUpdateBroadcastValue(String deviceId, long broadcastTimestamp,
byte[] broadcastValue) {
 boolean retval = false;
 SQLiteDatabase db = getWritableDatabase();
 ContentValues values = new ContentValues();
 values.put("broadcast_timestamp", broadcastTimestamp);
 values.put("broadcast_data ", broadcastValue);
 if(db.update("catcher", values, "catcher_id = ?", new String[] {
deviceId })==1){
 retval=true;
 }
 else{
 Log.d(TAG,"updateBroadcastData failed for un-
regiseterd catcher");
 }
 return retval;

 }

5.6 Test 1st Iteration processes

To start the second iteration process, it needs to test the first iteration process.

A detail of all tests is described in a separate chapter. A long term and short

term tests were run to make sure all processes are working fine in a different

condition. An Android application crashes if there is any fatal exception. There-

fore a long term test was needed to run to see whether the application crashes

in any condition. The initial test showed that the application crashes for “null

point exception”. After getting the exception report from the eclipse, all kind of

exception has been handled. So the application is now ready for the second

iteration development.

33

6 SECOND DEVELOPMENT PHASE

After completing the first development phase, it is now possible to list all availa-

ble Bluetooth Low Energy devices. The target of the second development

phase is to establish a Bluetooth connection successfully. Initial targets of this

iteration are to make a priority list, to send a connection request, to connect to a

GATT server, to discover services, to read measurements from the device, to

save a measurement value and to test the whole process. After this iteration,

the application will be able to read measurements from the device.

6.1 Make a priority list for connection

After scaning all devices are available now. So it is now time to decide which

device will connect first. This priority list is made during the connection time. If

any device did not connect during the last 6 minutes (10 minutes previously)

,then the device has a priority to make a connection. If more than one device

did not connect during the last 6 minutes (10 minutes previously), then the de-

vice which has the oldest timestamp in milliseconds will get the highest priority.

If the device is connecting for the first time, then the priority will be selected

randomly. The following code will show how to sort one device from all devices.

BluetoothDevice deviceWithOldestMeasurement = null;
long oldestMeasurement = Long.MAX_VALUE;
synchronized (DataHandler.class) {

for (Pair<BluetoothDevice, Integer> d : mBTDevicesSeen) {

if (mDataHandler.checkOwnCatcher(d.first.getAddress())) {

long measurementReadTime = mDataHandler.getMeasurementReadTime(d.first.getAddress());
if (oldestMeasurement > measurementReadTime) {

oldestMeasurement = measurementReadTime;

if (measurementReadTime + Config.minConnectionInterval < System.currentTimeMillis()) {

 deviceWithOldestMeasurement = d.first;

}
 } else {

 Log.v(TAG, "Candidate " + d.first.getAddress() + " was more recent than others");

}

34

 } else {
 Log.v(TAG, "Skipping candidate " + d.first.getAddress());

 }
 }

6.2 Send a connection request

A method was used to send the connection request called connectLeDevice.

This method has three parameters a device address, a Boolean parameter and

a context. This same method was used to send a disconnect request, too. This

Boolean parameter will decide whether it will connect or disconnect. This meth-

od will take the device address as a parameter. Then it will create an intent of

the Catcher Service class. Then gattServiceIntent and serviceConnection are

used to bind the service. This method has also stores the connection time.

connectLeDevice(deviceWithOldestMeasurement,true,mOwningService.getBaseContext());

 private void connectLeDevice(final BluetoothDevice device,
 final boolean enable,
 Context context) {

 if (enable) {
 Log.e("BtGw", "connectLeDevice() enable" + de-
vice.getAddress());
 mDeviceAddress = device.getAddress();
 Intent gattServiceIntent = new In-
tent(context,CatcherService.class);
 isBound= con-
text.bindService(gattServiceIntent, mServiceConnection, Context.BIND_AUTO_CREATE);
 mConnected = System.currentTimeMillis();
 } else {
 if (mCatcherService != null) {
 mCatcherService.close();
 }
 if (mOwningService.getBaseContext() != null &&
mServiceConnection != null) {

 if (isBound){
 mOwningS-
ervice.getBaseContext().unbindService(mServiceConnection);
 isBound=false;
 }
 else{

 //do nothing.

35

 }
 }
 mDeviceAddress = null;
 mDevice = null;
 mConnected = -1;
 Log.e("BtGw", "connectLeDevice() out after discon-
nect ");
 }
 }

6.3 Connect to a GATT server

The next task is to connect to the GATT server on the device. A method con-

nect was used to connect to the GATT server. Another method connectGATT

was called from the inside of this method actually used to connect to the GATT

server. This method takes three parameters, a context, a Boolean, which will

decide whether the device will connect automatically or not and a reference to

BluetoothGattCallBack. When the connection request is sent, a BluetooGatt

instance is returned in reply. This is used later on to conduct GATT client opera-

tions. BluetoothGattCallback is used to deliver the results to the client.

mBluetoothGatt = device.connectGatt(this, false, mGattCallback);

private final BluetoothGattCallback mGattCallback = new BluetoothGattCallback() {

 /**
 * Callback method that BT stack calls when GATT server at de-
vice is connected/disconnected
 */
 @Override
 public void onConnectionStateChange(BluetoothGatt gatt, int
status, int newState) {
 if (newState == BluetoothPro-
file.STATE_CONNECTED) {
 CatcherCommsControl-
ler.getInstance().BTDeviceStateChangedCallBack(ACTION_GATT_CONNECTED);

 Log.d(TAG, "Connected to GATT server.");
if (mBluetoothGatt != null) {

 boolean result = mBluetoothGatt.discoverServices();
Log.d(TAG, "mBluetoothGatt.discoverServices() result = " + result);

} else {

36

Log.w(TAG, "onConnectionStateChange() => mBluetoothGatt == null");
 }

} else if (newState == BluetoothProfile.STATE_DISCONNECTED) {

CatcherCommsControl-
ler.getInstance().BTDeviceStateChangedCallBack(ACTION_GATT_DISCONNECTED);

Log.d(TAG, "Disconnected from GATT server.");
 }
 }

6.4 Discover Services

The device is now connected to the application. The callback function Blue-

toothGattCallback.onConnectionStateChange will be called with a new state.

This callback will set the argument to BluetoothProfile.STATE_CONNECTED.

The discover Service can be initiated now. This call will decide whether the ser-

vices are supported by the device. If the services are supported by the device,

then a callback BluetoothGattCallBack.onServicesDiscovered will be received.

The following code is an example of how to discover services.

bluetoothGatt.discoverServices();

for (BluetoothGattDescriptor descriptor : characteristic.getDescriptors()) {
 //find descriptor UUID that matches Client Characteristic Configuration)
 // and then call setValue on that descriptor

 descriptor.setValue(Blue-
toothGattDescriptor.ENABLE_NOTIFICATION_VALUE);
 bluetoothGatt.writeDescriptor(descriptor);
 }

6.5 Read measurements from the device

Everything is now set to read the measurements from device. Now a list of

characteristics from services are available. It is now time to get a descriptor and

enable a notification flag. Each service, characteristics, descriptor has its own

notification. When the device sends measurements, or notifications then a

callback will be received by the application named BluetoothGat-

37

tCallback.onCharacteristicsChanged. The following code will illustrate how to

get notifications.

for (BluetoothGattDescriptor descriptor : characteristic.getDescriptors()) {

//find descriptor UUID that matches Client Characteristic Configuration)

// and then call setValue on that descriptor

 descriptor.setValue(Blue-
toothGattDescriptor.ENABLE_NOTIFICATION_VALUE);
 bluetoothGatt.writeDescriptor(descriptor);
 }

@Override
 public void onCharacteristicChanged(BluetoothGatt gatt, final BluetoothGat-
tCharacteristic characteristic) {
 //read the characteristic data
 byte[] data = characteristic.getValue();

 }

6.6 Test 2nd Iteration processes

In the second iteration it is very important to test whether the device can con-

nect to the application and read measurements correctly. Details of all tests are

described in separate chapter. Testing is very important in this phase of the ap-

plication to make sure that the application can connect properly. Eclipse Log is

a very useful tool to monitor whether the application has connected to the de-

vice properly. HCI snoop log is also very important in this phase of the applica-

tion. All Bluetooth data packets can be found in HCI Log which can play a major

role to determine whether the Bluetooth is connecting as expected or not.

38

7 THIRD DEVELOPMENT PHASE

After the second iteration process, the application can now connect to a IoT de-

vice and read measurements. In this phase the application will disconnect from

the device and will display measurements or a broadcast value to the user inter-

face of the application. So the main task of this phase is to send disconnect re-

quest and disconnect from the GATT server, If the application still remains the

connection, then forcefully disconnect from the device, show measurements or

broadcast value to the user interface.

7.1 Send a disconnect request

To disconnect the application from the device, the same method connect-

LeDevice was used which was previously used to send the connect request.

This time the method was used with different parameters. The parameter is

Boolean. If the parameter is true, then the application will send a connect re-

quest and if the parameter is false, then the application will send a disconnect

request. This time the method will take the parameter false to disconnect the

device.

onnectLeDevice(mDevice,false, // false means disconnect null);

connectLeDevice(deviceWithOldestMeasurement,true,mOwningService.getBaseContext());

 private void connectLeDevice(final BluetoothDevice device,
 final boolean enable,
 Context context) {

 if (enable) {
 Log.e("BtGw", "connectLeDevice() enable" + de-
vice.getAddress());
 mDeviceAddress = device.getAddress();
 Intent gattServiceIntent = new In-
tent(context,CatcherService.class);
 isBound= con-
text.bindService(gattServiceIntent, mServiceConnection, Context.BIND_AUTO_CREATE);
 mConnected = System.currentTimeMillis();
 } else {
 if (mCatcherService != null) {

 mCatcherService.close();

39

 }
 if (mOwningService.getBaseContext() != null &&
mServiceConnection != null) {

 if (isBound){
 mOwningS-
ervice.getBaseContext().unbindService(mServiceConnection);
 isBound=false;
 }
 else{

 //do nothing.
 }
 }
 mDeviceAddress = null;
 mDevice = null;
 mConnected = -1;
 Log.e("BtGw", "connectLeDevice() out after discon-
nect ");
 }
 }

7.2 Disconnect from the GATT server

The disconnect request was sent in the previous state. Now it is time to discon-

nect from the GATT server. There are two methods available to disconnect from

the GATT server. One is a BluetoothGatt.disconnect method and other is a

BluetoothGatt.close method. There are many advantages of the Blue-

toothGatt.close method over the BluetoothGatt.disconnect method. Sometime

the BluetoothGatt.disconnect method cannot disconnect from the GATT server

properly. Therefore, the BluetoothGatt.close method was used in this applica-

tion. The following code shows how to use the BluetoothGatt.close method to

disconnect from the server.

public void close() {
 if (mBluetoothGatt == null) {
 return;
 }

 mBluetoothGatt.close();
 mBluetoothGatt = null;
 }

40

7.3 Forcefully disconnect

Sometimes after sending the disconnect command, the application cannot dis-

connect properly. To make sure that the application disconnects from the GATT

server, a method called forcefullyCloseConnection was used. The same method

which was used to send theconnect or disconnect request was used here with a

different parameter. This method takes three parameters, a device address, a

Boolean value to send the connect or disconnect request and the context. The

device address and context were set null and the Boolean parameter false to

disconnect forcefully. The following code will show how to use the connect-

LeDevice method to disconnect forcefully.

connectLeDevice(null,false, // false means disconnect null);

7.4 Display broadcast values in the user interface

In this stage as the application can receive broadcast data, connect and dis-

connect to the device, data can be saved in the local memory of the phone.

Then next task is to make a user interface where the user can see broadcast or

measurement data. The AfterLoginScreen class was used to display the

broadcast value in the screen. The broadcast value was chosen to be displayed

in the user interface because broadcast data is more available than measure-

ment data. It is possible to get a more recent value in the user interface by us-

ing broadcast data. An Android list view was used in the application to display

the temperature value and RSSI (Received Signal Strength Indicator) in the us-

er interface. Measurements and broadcast values were sent to the server. All

values are also available in the web service of IoLiving.

41

FIGURE 12.IoLiving web shows the temperature and graph

FIGURE 13.IoLiving Android application shows temperature and Radio Signal

Strength

42

7.5 Test 3rd Iteration processes

After the 3rd iteration has been completed, now the application is fully working.

Now the application can connect to the IoT devices and read the measurement

and save value to the local memory of the phone to use it in the user interface

and to disconnect from the device. This phase of the application was tested us-

ing the Eclipse log and HCI snoop log. The log shows that the application can

now disconnect correctly and it can display values in the user interface. Details

of all tests are described in a separate chapter.

43

8 TEST CASES

Many kinds of tests in detail were run to make sure that the application is work-

ing as expected. The Eclipse log and HCI snoop log were used mainly to see

the test result. Inside every method there is an Android log to see whether the

application is going through those methods to complete the task. The Bluetooth

stack is also proving a log of different stages of connection, which is also helpful

to figure out whether the application is working properly or not. The most im-

portant test cases are described here. The most important test cases are listed

below.

Test cases:

1. Does the Bluetooth adapter initialize correctly or not?

2. Does Bluetooth broadcast data or not?

3. Does Bluetooth broadcast correct data or not?

4. Does the application save broadcast data correctly or not?

5. Does Bluetooth make the connection attempt correctly or not?

6. Does Bluetooth close the connection correctly or not?

7. Does the thread grow more than expected or not?

8. Does Watch Dog work correctly or not?

9. Does the application maintain time correctly or not?

10. Record Bluetooth communication to analyze it later.

8.1 Test a Bluetooth initialization

The first thing in this application is to test whether the Bluetooth initialize cor-

rectly or not. To make sure that an Android Bluetooth has initialized properly, a

log message needs to be put in the method where it initializes Bluetooth. If the

Bluetooth does not initialize correctly, then the following log message appears

in the Eclipse Log.

Log.e(TAG, “Could not open BT adapter!”);

44

From above log it can be determined easily that the Bluetooth did not initialize

properly.

8.2 Test a Bluetooth data broadcast

If Bluetooth broadcasts data correctly, then the Eclipse log will show a scan re-

sult provided by the Bluetooth stack and also from the Android log. If there is

the scan result visible in the Eclipse log, then it is clear that there is scanning

going on. If not, then it is necessary to check if there is any device around or

not. If there is a device around, then it is clear that an Android code needs to be

checked to figure out the bug. The following log is an example of the Eclipse log

to determine scanning.

05-18 10:58:23.959: D/BluetoothAdapter(2345): onScanResult() - Device=C8:E8:21:D4:7A:E4

RSSI=-65

05-18 10:58:23.959: V/BtGw-cc(2345): onLeScan in

05-18 10:58:23.959: V/BtGw-cc(2345): C8:E8:21:D4:7A:E4 UUID 43520

05-18 10:58:23.959: V/BtGw-cc(2345): C8:E8:21:D4:7A:E4 UUID 6159

05-18 10:58:23.959: V/BtGw-cc(2345): C8:E8:21:D4:7A:E4 UUID 6154

8.3 Test broadcast data

This test needs to run in a different environment. Put the device far away from

the phone and check if the RSSI value decreases or not. Again put the device

close to the phone and check if the RSSI value increases or not. If the RSSI

value changes according to the device movement, then it indicates that the de-

vice is broadcasting correct data. The device is also broadcasting temperature

data. So it also needs to check whether the temperature data is correct or not.

Put the device in a cold or hot place in known temperature and check whether

the temperature of the place matches with the broadcast temperature. The de-

45

vice is also broadcasting the MAC address of the device. Check if the MAC ad-

dress is correct or not.

8.4 Test if broadcast data is saved or not

There is an Android log in the method which is used to save broadcast data. If

the application saves broadcast data correctly, then the log message should

appear in the Eclipse log. The following log is an example log to determine

whether the application saves the data in a database.

Log.d(“TAG”,”Data saved in the log correctly”);

8.5 Test a Bluetooth connection

The Android Bluetooth stack generates its own log while making a connection

with the device. More logs were put inside the method which is handling the

connection process. By a analyzing that log method it can be easily determined

whether the connection attempt is successful or not. The following log message

generates in a successful connection attempt.

05-18 10:40:51.139: V/BtGw-cc(2345): Skipping candidate EF:D4:25:32:A2:88

05-18 10:40:51.139: V/BtGw-cc(2345): Skipping candidate FE:5A:7D:37:A7:B4

05-18 10:40:51.139: V/BtGw-cc(2345): Skipping candidate E5:CB:E9:7A:57:70

05-18 10:40:51.139: V/BtGw-cc(2345): Skipping candidate C9:2F:BB:3B:A0:60

05-18 10:40:51.139: D/BtGw-cc(2345): Connect to: FD:81:C0:9D:72:02

05-18 10:40:51.179: D/BtGw-cs(2345): CatcherService onCreate()

05-18 10:40:51.179: D/BtGw-cs(2345): CatcherService onBind()

05-18 10:40:51.179: D/BtGw-cc(2345): CatcherCommsController onServiceConnected()

05-18 10:40:51.179: D/BtGw-cs(2345): connect(...)

05-18 10:40:51.179: D/BluetoothGatt(2345): connect() - device: FD:81:C0:9D:72:02, auto: false

46

05-18 10:40:51.179: D/BluetoothGatt(2345): registerApp()

05-18 10:40:51.179: D/BluetoothGatt(2345): registerApp() - UUID=7610e48d-2447-4e61-bd84-

9925592ca97e

05-18 10:40:51.179: D/BluetoothGatt(2345): onClientRegistered() - status=0 clientIf=5

05-18 10:40:51.179: D/BtGw-cs(2345): Trying to create a new connec-

tion.android.bluetooth.BluetoothGatt@22079de0

05-18 10:40:59.999: D/BtGw-s(2345): inside no task.

05-18 10:41:00.009: D/BtGw-s(2345): WatchDog asleep for 30s

05-18 10:41:00.009: D/BtGw-s(2345): WatchDog Sleeping.

05-18 10:41:00.009: D/BtGw-s(2345): Service.OnStartCommand in with action_sync(timer-

handler and on Boot)

05-18 10:41:05.679: D/BluetoothGatt(2345): onClientConnectionState() - status=0 clientIf=5

device=FD:81:C0:9D:72:02

05-18 10:41:05.679: V/BtGw-cc(2345): BTDeviceStateChangedCallBack

com.ceruus.catcher.ACTION_GATT_CONNECTED -1 null

05-18 10:41:05.679: D/BtGw-cs(2345): Connected to GATT server.

05-18 10:41:05.679: D/BluetoothGatt(2345): discoverServices() - device: FD:81:C0:9D:72:02

05-18 10:41:05.679: D/BtGw-cs(2345): mBluetoothGatt.discoverServices() result = true

05-18 10:41:05.689: D/BluetoothGatt(2345): onGetService() - Device=FD:81:C0:9D:72:02

UUID=00001800-0000-1000-8000-00805f9b34fb

8.6 Test a Bluetooth disconnect process

The Eclipse log needs to monitor to determine whether the application discon-

nects correctly. If the application closes correctly then the Bluetooth stack will

generate some message saying Bluetooth GATT close. This message confirms

that the disconnection process was successful. The following log message gen-

erates after a successful disconnection.

47

05-18 11:41:34.229: D/BtGw-cs(2345): measurementStreamRawData.size: 5

05-18 11:41:34.229: D/BtGw-cs(2345): START measurement stream parsing and saving.

05-18 11:41:34.229: V/BtGw-cc(2345): BTDeviceStateChangedCallBack

com.ceruus.catcher.ACTION_MEASUREMENT_STREAM_READ_COUNT 5 null

05-18 11:41:34.259: V/BtGw-d(2345): Saved (true) measurement for device F1:73:C4:2F:82:34

len = 100 using ts 1431938494188

05-18 11:41:34.259: E/BtGw-d(2345): Number of measurements in db for that catcher = 1 ts = 1

05-18 11:41:34.259: D/BtGw-cs(2345): ENDED measurement stream parsing and saving.

05-18 11:41:34.259: D/BtGw-cs(2345): measurementStreamActive: false

05-18 11:41:34.259: V/BtGw-cc(2345): BTDeviceStateChangedCallBack

com.ceruus.catcher.ACTION_MEASUREMENT_STREAM_READ_ENDED -1 null

05-18 11:41:34.259: D/BtGw-cs(2345): gatt server closed

05-18 11:41:34.259: D/BluetoothGatt(2345): close()

05-18 11:41:34.259: D/BluetoothGatt(2345): unregisterApp() - mClientIf=5

05-18 11:41:34.259: D/BluetoothGatt(2345): cancelOpen() - device: F1:73:C4:2F:82:34

05-18 11:41:34.269: D/BtGw-cc(2345): connectLeDevice() out after disconnect

05-18 11:41:34.269: D/BtGw-cs(2345): CatcherService onUnbind()

05-18 11:41:34.269: D/BtGw-cs(2345): CatcherService onDestroy()

8.7 Test if an unnecessary thread is growing or not

This application creates many threads. The test needs to determine whether the

application is producing more thread than expected. There are exit points to go

to the next task when one task is complete. If the exit point puts in a wrong

place, then the application creates more and more thread. From the Eclipse log

it can be easily determined whether the application creates more thread than

expected. For example, there will be two scan or two connection attempt, If

48

there is any unusual behaviour seen in the Eclipse log, then it needs to check

whether all exit points are correct or not.

8.8 Test the Watch Dog Functionality

If watch Dog works correctly, it should show a log message in the Eclipse log in

every 10 seconds. Watch Dog is one kind of timer so the value of second

should increase every time it appears in the log. Below the log message helps

to determine whether Watch Dog is working as expected or not.

05-18 11:58:00.019: D/BtGw-s(2345): WatchDog asleep for 30s

05-18 11:58:00.019: D/BtGw-s(2345): WatchDog Sleeping.

8.9 Test application time

A test was run using five devices to see whether the application is actually

maintaining the expected time or not. The following table shows time taken by

five devices in different phases of the application. This test takes around 30

minutes time to complete. Times shown in the table are only minutes and sec-

onds.

For one particular device:

 One cycle (Scan – Connection - Sync): It will typically take around 1 – 2

minutes. This time will alternate.

 So if it takes around 1 minute to complete the cycle once, then it will take

around 2 minutes next time (If there is more than one device).

 Connection time will be around 6 minutes always.

 Sync time will typically be around 6 minutes (If there is only one device).

So if it takes around 4 minutes (If there is more than one device) to complete

the sync once, then it will take around 7 minutes (if there is more than one de-

vice) next tim

49

Cy-

cle

No.

IoLiving 343E IoLiving 72CE IoLiving 8DA6 IoLiving D2DB IoLiving EF36

 Scan Con-

nect

Syn

c

Sca

n

Con-

nect

Syn

c

Sca

n

Con-

nect

Syn

c

Sca

n

Con-

nect

Syn

c

Sca

n

Con-

nect

Sync

1 11:4

8

 11:4

8

 11:4

8

 11:4

8

 11:48

2 12:05 12:29

3 13:3

0

13:55 14:1

0

4 14:3

0

14:50

5 15:3

1

15:55 15:5

6

 15:5

6

6 16:

31

16:55

7 17:30 17:55 18:3

0

8 18:4

8

19:15

9 20:3

0

19:4

8

20:15

10 20:4

8

21:15

11 23:

04

 22:0

0

22:27 23:04

12 23:20 23:45

13 24:5

7

 24:2

0

24:48 24:5

7

14 25:2

1

25:48

50

15 26:1

6

26:41 26:5

7

 26:5

7

16 27:1

6

27:45

17 28:16 28:41 29:2

3

 29:23

18 29:3

0

30:01

19 32:0

2

30:5

5

31:22 32:0

2

20 32:2

0

32:47

21 34:0

3

 33:2

0

33:47 34:03

22 34:20 34:48

23 36:3

6

 35:3

4

36:01 36:3

6

24 36:5

4

37:21

25 38:1

6

38:41 39:0

0

 39:0

0

26 39:1

6

39:41

27 40:16 40:41 40:5

7

 40:57

28 41:1

6

41:42

29 44:0

0

43:0

5

43:30 44:0

0

FIGURE 14.Table shows the time consumption of different process of the appli-

cation

51

8.10 Record a Bluetooth communication to analyze it later

There is an option in an Android phone to record all Bluetooth communication

as a log. This log is very helpful later on to analyze all Bluetooth communication

done by the application. WireShark was used to analyze Bluetooth communica-

tion. To record all Bluetooth communication, first it needs to enable the Blue-

tooth HCI snoop log. To Enable the Bluetooth HCI snoop log, the following step

needs to be done.

Steps:

1. Go to Setting.

2. Click About Phone.

3. Click Software information.

4. Click Build number 7 times, it will enable a Developer option.

5. Go back to settings and click a developer option.

6. Click Enable a Bluetooth HCI snoop log before starting the application.

7. Target a folder where the HCI log will be downloaded.

8. Select the folder, then press Shift and right click the mouse button.

9. From the menu select “Open Command Window Here”.

10. When a window will open “adb pull/sdcard/btsnoop_hci.log” needs to be

written in the command window.

11. Press Enter.

12. This file can be opened using Wireshark.

The HCI snoop log contains each and every Bluetooth communication. To de-

tect a Bluetooth related problem, this log is very helpful. The picture below

shows an example of the Bluetooth HCI snoop log.

52

FIGURE 15.HCI snoop log data analysis by using Wireshark

53

9 CHALLENGES TO ESTABLISH A CONNECTION

The Current Bluetooth stack available has a limitation. Even in some cases the

any other issue is interrupting the connection process. It can be seen that the

application is facing few problems to make a successful connection. I have

listed a few common problems facing by this application.

Problems face by the application currently:

1. Failed to discover the service.

2. Gatt Error.

3. Failed to discover a proprietary service or the service is null.

4. Android Bluetooth stack is choosing a wrong connection method.

5. Bluetooth does not list any BLE device.

9.1 Failed to discover services

When the application tries to discover services, there is a status to determine

whether the service discovery was successful or not. If the method on-

ServiceDiscoverd returns a status 0, then it indicates that the service was dis-

covered successfully. But in some cases it is returning 129 which is a

GATT_INTERNAL_ERROR 0*0081.

onServicesDiscovered() status = 129 or (0×0081)

According to Google specification, it is GATT_INTERNAL_ERROR:

1. #define GATT_INTERNAL_ERROR 0x0081

9.2 Gatt Error

While the application is in the connection process, the application faces another

error called Gatt Error. This is the most common error faced by the application

while trying to establish a connection.If the method onClientConnectionState

54

returns a status 0, then it indicates that the connection was made successfully.

But in some cases it is returning 133 which is a GATT_INTERNAL_ERROR

0*0085.

onServicesDiscovered() status = 133 or (0×0085)

According to Google specification, it is GATT_INTERNAL_ERROR:

1. #define GATT_INTERNAL_ERROR 0x0085

9.3 Failed to discover a Proprietary service or the service is null

Sometimes there is no service available or Gateway failed to discover a proprie-

tary service. In that case Gateway receives a service status null.

ACTION_GATT_DEVICE_REJECTED - 1 NULL

This problem does not occur very often. Gateway faces this problem rarely.

9.4 Android Bluetooth Stack is choosing a wrong connection method

After the Bluetooth HCI Log study, it can be noticed that the Android Bluetooth

Stack is choosing the wrong Bluetooth connection method for the first few hours

when the application starts for the first time. It is choosing the Classic Bluetooth

connection for the first few hours and then it is deciding itself to try the Bluetooth

LE connection method. When the connection is successful with the Bluetooth

LE connection method, the Bluetooth Stack starts using continuously the Blue-

tooth LE connection method. The picture below shows the HCI log for the Blue-

tooth LE connection.

55

FIGURE 16.HCI snoop log shows Bluetooth LE connection command

9.5 Application does not list any BLE device

In some special case it can be seen that the application does not list any device

while scanning, but there are devices around. This problem does not occur very

often. After restarting, the Bluetooth stack application can list the BLE device

again.

56

10 CONCLUSION

The Bluetooth Low Energy connection is needed to communicate with Bluetooth

Low Energy devices. This thesis described different phases of Bluetooth Low

Energy Communication. Testing the application played a very important role to

figure out problems in the Bluetooth Low Energy connection process. Few prob-

lems have been noticed in the connection process but overall the performance

of Bluetooth communication is very satisfactory. One of those major problems

was the Bluetooth could not list any Bluetooth Low Energy devices after scan-

ning. Restarting the Bluetooth stack can handle the problem efficiently. Another

problem faced by the application was getting an error in the connection process.

In those cases extra connection attempts were helpful to establish a successful

connection.

The current application is scanning for all Bluetooth Low Energy devices around

but a future version of this application will scan for only the selected device. As

a result the scan process will be faster and the application will take less time to

complete the Bluetooth connection process with the Bluetooth Low Energy de-

vices.

Though there are few challenges to establish a Bluetooth connection with IoT

devices, the result shows that this application can now successfully establish a

connection to devices. By all counts, and with proven results, it is no wonder

that the thesis can be considered as a successful one.

57

REFERENCES

Ali M Aljuaied, S. 2001.Bluetooth Technology and Its Implementation in Sensing

Devices. Monterey, California.

Barrett, J., Internet of Things, Date of Retrieval 21.05.2015
https://www.youtube.com/results?search_query=internet+of+things

Bluetooth, Bluetooth GATT Profile, Date of Retrieval 21.05.2015

https://developer.bluetooth.org/TechnologyOverview/Pages/GATT.aspx

https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt

Bluetooth, Bluetooth Profile, Date of Retrieval 21.05.2015

https://developer.bluetooth.org/TechnologyOverview/Pages/Profiles.aspx

Bluetooth, Bluetooth SIG, Date of Retrieval 21.05.2015

https://developer.bluetooth.org/AboutUs/Pages/SIG-Membership.aspx

Bluetooth, 2015, Bluetooth Smart, Date of Retrieval 26.04.2015

http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx

Huang, F. 2013.Web Technologies for the Internet of Things. Espoo.

Iconfinder, Android Smart phone icon, Date of Retrieval 26.04.2015

https://www.iconfinder.com/icons/211118/android_smart_phone_icon

IoLiving, Internal Source, IoLiving documents about Bluetooth Low Energy,

Date of Retrieval 21.05.2015

IoLiving, IoLiving Device, Date of Retrieval 26.04.2015

https://www.ioliving.com/wp-content/themes/ioliving/img/ioliving_m_catcher.png

Pixshark, cloud-server, Date of Retrieval 26.04.2015

http://pixshark.com/cloud-server-png.htm

https://www.youtube.com/results?search_query=internet+of+things
https://developer.bluetooth.org/TechnologyOverview/Pages/GATT.aspx
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt
https://developer.bluetooth.org/TechnologyOverview/Pages/Profiles.aspx
https://developer.bluetooth.org/AboutUs/Pages/SIG-Membership.aspx
http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx
https://www.iconfinder.com/icons/211118/android_smart_phone_icon
https://www.ioliving.com/wp-content/themes/ioliving/img/ioliving_m_catcher.png
http://pixshark.com/cloud-server-png.htm

58

Townsend,K., Devidson,R. & Akiba,Getting Started with Bluetooth Low Energy,

Date of Retrieval 21.05.2015

https://www.safaribooksonline.com/library/view/getting-started-

with/9781491900550/cover.html

https://www.safaribooksonline.com/library/view/getting-started-with/9781491900550/cover.html
https://www.safaribooksonline.com/library/view/getting-started-with/9781491900550/cover.html

