

KARELIA UNIVERSITY OF APPLIED SCIENCES
Degree Programme in Applied Computer Sciences

Jonas Lesy
Ruben Vervaeke

APPLYING INTERNET OF THINGS – SMART CITY

Thesis
June 2015

THESIS
June 2015
Degree Programme in Applied Computer
Sciences

 Tikkarinne 9
 80200 JOENSUU

FINLAND
Tel. 358-13-260 600

Author(s)
Jonas Lesy & Ruben Vervaeke

Title
Applying Internet of Things – Smart City

Commissioned by
Karelia University of Applied Sciences

Abstract

This thesis displays the progression and result of the Final Project that was realized by
Ruben Vervaeke and Jonas Lesy, during the second semester of 2014-2015. The
project is comprised of finding a solution for Process Genius, a company that needed an
easy way to collect data from various public service providers. From bus schedules to
the opening/closing times of the city’s bridges, they wanted all kinds of data to be gath-
ered in a central place. The purpose of the project was, therefore, to build a data ware-
house and to create a web service to access the required data.

The first part of this thesis will describe the context of the project and the operation
procedures. It will have a more in-depth description of the purpose and outline of the
project and explain how the project was handled. It also includes what had to be done
first, the planning stage of the project and some preliminary steps that were necessary
to start the development.

This part is followed by the required theory to be able to understand what had to be
done. This part introduces all of the important concepts upon which the system is built.

After that, the implementation is described, which consists of the steps taken to build
the data warehouse and web services and how they interact with each other. The
complete system is explained and the core components are discussed in detail.

This thesis ends with the results and discussion of the project. That part will tell to what
extent the goals of the project were reached, which difficulties where encountered and
what possible future actions might be.

Language
English

Pages 125
Appendices 3
Pages of Appendices 7

Keywords

Internet of Things, Hadoop, Big Data, Data warehouse

CONTENTS

1 INTRODUCTION .. 7
2 ACTION PLAN .. 9

2.1 Project background .. 9
2.1.1 Organization ... 9

2.1.2 Mission and vision .. 9
2.2 Problem description.. 10
2.3 Goals and project outline .. 10
2.4 Project approach .. 11

3 INTERNET OF THINGS ... 14

4 BIG DATA ... 16
5 DATA WAREHOUSES ... 18
6 HADOOP .. 23

6.1 Introduction .. 23

6.2 Components ... 24
6.3 MapReduce .. 25
6.3.1 The basics .. 34

6.3.2 The process of a MapReduce Job run ... 41
6.3.3 Failures in YARN .. 46

6.4 The Hadoop Distributed File System .. 48
6.4.1 Design .. 48

6.4.2 Concepts .. 49
6.4.3 Data flow .. 51
6.5 Hadoop input and output .. 54

6.5.1 Serialization.. 54
7 HBASE ... 57

7.1 Data Model ... 58

7.2 Data operations .. 62

7.3 HBase Schemas .. 64
8 CLOUDERA .. 65

9 DEVELOPING TOOLS ... 68
9.1 Hardware .. 68
9.2 Software ... 68

10 PRACTICAL APPLICATION ... 75

10.1 Network setup .. 75
10.2 Cloudera installation ... 76
10.3 Application .. 81
10.3.1 Data retrieval .. 82
10.3.2 Data storage ... 94

10.3.3 Data providing .. 97
10.3.4 Error handling ... 110

10.3.5 Workflow ... 111
11 REFLECTION ... 114

11.1 Difficulties ... 114
11.2 Future thoughts .. 115
11.3 What did we learn... 115

11.4 Workload balancing .. 116
REFERENCES ... 118

LIST OF IMAGES

Figure 1 - Relational database model example ... 20
Figure 2 - Data warehouse overview .. 21
Figure 3 - MapReduce workflow ... 28
Figure 4 - Reducejob result ... 34
Figure 5 - Possible job scheduling assignments ... 36
Figure 6 - Map outputs to one reduce input workflow 37
Figure 7 - Map outputs to multiple reduce inputs workflow 38
Figure 8 - MapReduce job execution workflow ... 42
Figure 9 - MapReduce status check workflow .. 45
Figure 10 - MapReduce name- and datanodes... 49
Figure 11 - HDFS file read workflow ... 51
Figure 12 - HDFS file write workflow ... 53
Figure 13 - HBase table example (myTable) .. 61
Figure 14 - Cloudera Manager overview ... 66
Figure 15 - Cloudera Health History .. 67
Figure 16 - Cloudera statistics example .. 67
Figure 17 - X2Go gateway connection .. 69
Figure 18 - X2Go connecting to virtual servers ... 69
Figure 19 - X2Go machine overview ... 70
Figure 20 - Trello overview ... 73
Figure 21 - Network setup ... 75
Figure 22 - Cloudera role instances .. 81
Figure 23 - Application architecture overview ... 82
Figure 24 - Data domain class model ... 85
Figure 25 - HBase VehicleDetectionReadings schema 96

LIST OF TABLES

Table 1 - Common Writable implementations ... 56
Table 2 - RDBMS versus HBase key sorting mechanism 58
Table 3 - Cloudera installation paths ... 76
Table 4 - Scheduling types ... 85
Table 5 - Consequences of resource modification .. 87
Table 6 - Consequences of service modification... 88
Table 7 - Consequences of city modification .. 89
Table 8 - REST HTTP requests example .. 104

APPENDICES

APPENDIX 1 TERMINAL OUTPUT OF MAPREDUCE JOB
APPENDIX 2 DATASCHEDULER
APPENDIX 3 DATASCHEDULEDTASK

ABBREVIATIONS

If any abbreviations are mentioned throughout this thesis, the explanation can

be found in this list.

BLL Business Logic Layer, a layer, often implemented in programs that

make connection to a database, which prevents invalid data opera-

tions.

CDH Cloudera Hadoop, Cloudera’s open source distribution which includes

Apache Hadoop.

CRLF Carriage Return Line Feed, a term defined to refer to the end of a line.

It is often used when transmitting messages so that the system knows

the end of the message is reached.

DAO Data Access Object, a layer implemented in applications to make

connection with a database, often used for retrieving data out of a da-

tabase.

DWH Data Warehouse, a complete system built to immediately answer

requests for data without having to overload the original sources of the

data. It is most commonly used for analytical purposes.

ETL Extract, Transformation and Load, the part of a data warehouse which

collects and unites data from source files to make it usable for analy-

sis.

HDFS Hadoop Distributed File System, the file system used by Hadoop to

store its databases and files on.

HTML HyperText Markup Language, the standard language developed to

create web pages.

HTTP HyperText Transfer Protocol, the protocol defined to provide commu-

nication between a web client and a webserver.

IDE Integrated Development Environment, a software application used to

develop different applications.

JAR Java Archive, is a standard data compression and archiving format

used for files written in the Java programming language.

JDK Java Development Kit, a software package needed by developers to

program in the Java language.

JSON JavaScript Object Notation, a standardised format of defining data

objects with their attributes. JSON files are easy to read by humans

and often used to transmit data.

JVM Java Virtual Machine, an environment for executing Java bytecode.

For example, compiled Java code runs on a JVM.

RDBMS Relational Database Management System, a database management

system used to manage relational databases.

RPC Remote Procedure Call, the technology that allows an application to

execute code on another machine without having to know the code

written for that application.

UI User Interface, the interface that makes interaction between the user

and the system possible.

URL Uniform Resource Locator, a structured name that refers to a piece of

data. It can for example be used to locate a website or local storage.

XML Extensible Markup Language, a standard created to create formal and

structured files which store data like for example configuration set-

tings. This presentation is human-readable and machine-readable.

YARN Yet Another Resource Negotiator, the new version of MapReduce in

Hadoop’s framework. It is a programming model for executing jobs.

7

1 INTRODUCTION

This thesis is written by Ruben Vervaeke and Jonas Lesy, two Belgian students,

and is the result of our Final Project carried out during our Erasmus exchange.

This Final Project accounts for 22 credits and is the final step to getting a de-

gree in Applied Computer Sciences.

This document is formatted according to the instructions of the thesis committee

at Karelia University of Applied Sciences. The guidelines by them were followed

during the entire process of this thesis. To make it easier to comprehend the

technical aspects of this thesis, a different font type was used to indicate class

names, attributes, code sample and commands. This report is the result of

about twelve weeks of working on the final project.

The aim of this thesis is to inform the reader on the development and details of

the project. It is written in such a way that everyone with some minor experience

on the subject will be able to understand it completely. If there are any technical

terms, abbreviations or jargon, they will be explained in a way that anyone with

basic IT knowledge will be able to comprehend the text.

To start off, we would like to thank Mr. P. Laitinen for giving us the opportunity

to work on this project and for providing us with the interesting subject we had

to work with. If it was not for him, there would not have been any project and

this document would not have been written. We would also want to thank Mr. J.

Ranta for monitoring our project and taking the time to organize meetings

together with Mr. Laitinen.

Next to that, we would like to thank everyone at Process Genius for letting us

help them to find a solution for their problem. They have always been friendly

and provided us with all of the necessary information to continue with the devel-

opment of this project.

8

At last, we want to thank our family and friends, who have supported us during

the progress of this project. Motivation is one of the keywords necessary to

achieve goals.

9

2 ACTION PLAN

2.1 Project background

2.1.1 Organization

This project was conducted in co-operation with Process Genius, a company

settled in Joensuu. The company started in 2011 and specializes in cutting

edge 3D online services. This means that they provide 3D models especially

made for industrial process plants and the sales organizations that supply them.

These models are very useful because Process Genius can display all of the

necessary and important data on them. For example, when a power plant in a

company is down or malfunctioning, the cause can be seen immediately on the

3D model. This means fixing the problem or investigating malfunctions is more

efficient and quicker. The company provides the complete solution by conduct-

ing research in the customer’s power plants, and then provide the 3D model for

it and all of the important data. User-friendly experience is important for them

and so is productivity.

2.1.2 Mission and vision

The founder’s passion is to combine their know-how on scientific topics with

methods to develop next generation tools. These tools are created to optimize

user experience and to boost sales. They have a wide global partner network

that gives them a good stance in the competitive market. Next to that, they

possess a highly skilled team to develop their tools. They excel in graphical

design, industrial knowledge and web application development. In short, they

have everything they need to deliver high quality products to their customers.

10

2.2 Problem description

The employees at Process Genius develop a complete solution for industrial

and technological companies. They have developed the idea to deploy their

project and technology to help the citizens of Joensuu. At the moment, data

from many different public services is not accessible.

To give an example, there is no easy way to check the bus schedule. The city of

Joensuu does already have a website for this but it is very unclear and ineffi-

cient. We have also tested this website and we can agree with this statement,

the website is not user-friendly and the schedules are hard to read.

Next to the bus data, Process Genius also wants to display other data such as

when the bridges go up and where the snow ploughing machines are. This will

all be presented on their 3D model from the Joensuu city.

The idea is that a user can, for example, just click on a bus stop on the map and

see when a specific bus will pass there. It is supposed to be an all-in-one solu-

tion again, similar to what Process Genius usually delivers.

2.3 Goals and project outline

As Process Genius stated, they want to have access to the data so they can

use it to display information on their 3D model. This is where we, as a project

team, came in. Our task was to provide them with the data, so they can access

it whenever they want. In other words, our task was to set up some sort of a

local storage which can be accessed by them. We chose to set up a data ware-

house for this solution.

11

It can be asked why a usual database was not chosen to store the data. The

answer is rather simple. First, there will be need to save many types of data,

e.g. information on buses and bridges. This makes saving all of that data into

just one database not that easy, especially when the data will be processed and

accessed later on.

The second important reason behind this approach was the fact that a usual

database is not meant to perform data analysis on. Since another project team

will be working on analysing and investigating this data, a data warehouse is a

much better solution for them, too.

Important aspects of this project are co-operation and a future-proof solution.

The latter is mentioned for the following reason. It is impossible to add every

useful feature and data considering the timespan we had for this project. If

someone else continues to develop our project (probably Process Genius, or

maybe other students), they must be able to easily integrate those other new

features. This project is built upon sustainability and we want to be sure that it

can be used and modified easily. All of this means that we had the following

tasks:

 define which data to be used and translate it into DB-models

 setting up Hadoop, Cloudera and our database (HBase)

 write a MapReduce script to transform the data into desirable format

 write all other necessary scripts and programs (Data puller, DAO, BLL,

…)

 write a web service so Process Genius can access the data.

2.4 Project approach

This part of the report describes how we approached the project. It is not a

detailed description, but only includes what was done, how the project started

and which tools were used. It will give an overview of how the project pro-

gressed and what we did in general.

12

To fulfil this project, we first talked with our thesis supervisor, Mr. Laitinen and

he explained us in short what the task was. After that, we had a meeting at

Process Genius. They told us what the project was about and what they want-

ed.

These were the preliminary steps in our project. After this, we could start brain-

storming on how to approach this project. Next to that, we were told to use the

SCRUM-tool Trello, which makes it possible to follow up our project easily. The

active tasks were displayed on the tool’s interface and there was clear a view

on who was doing what.

The next thing we did was investigating Hadoop and Cloudera, which both are

discussed and explained later in this report This took a long time because

Hadoop was completely new for us and we had to perform research on all of its

different components.

We first ran a minimal version of the setup on our own laptops and later on

switched to servers provided by the school. This setup included a running

version of Hadoop with Cloudera on top. At that point, the problem was that we

didn’t have enough memory to run it smoothly and it started lagging right away.

This problem existed until we were able to use the servers on campus.

Later, we installed Cloudera on the servers. Using these powerful servers, we

were no longer hindered by the RAM issue, which made us able to work more

efficiently.

While we were still waiting for some example/test data, we started building a

small testing setup on which a self-made CSV-file could be transformed into the

desired format. This testing setup ran on the servers and used the MapReduce

functionality and the Data Puller.

After we got sample data, we started building every part of our warehouse by

one component at a time. Slowly but steadily, the whole setup came to life and

everything was tested, part by part. During the last weeks, everything was put

13

together and the parts were merged into one big system which represents the

data warehouse. This system now pulls, processes and saves data and makes

it accessible to other users/companies via a web service.

14

3 INTERNET OF THINGS

At home, at work, in your car and even on the road, the Internet is simply eve-

rywhere. It’s practically impossible to remove it out of our everyday life. We get

up and check the latest Facebook updates on our smartphones, read the news

on our tablet while having breakfast, arrive at work and check our e-mails, go

home and search for a recipe to prepare our favourite meal to then end by

going to bed and reading a book bought on an e-book store. The Internet is

used every single day and for every purpose you can possibly imagine.

But next to those daily uses of the Internet by individuals, there are thousands,

if not millions, of Internet-based solutions for all of our problems. But the Inter-

net is not only used by individuals but also for creating business solutions. Many

companies have their own issues, be they small or big, which can be solved by

implementing the use of the Internet.

Now to sum up the meaning of the term the ‘Internet of Things’, it comes down

to the fact that the Internet is used for and by way more objects than

smartphones, laptops and such. It actually means that these types of devices,

which are not always operated by humans, are outnumbered by other ones. In

other terms, different objects become available throughout the Internet, these

objects are also referred to as embedded systems. These objects will be able to

communicate over the Web and even take autonomous decisions. To give a

small example, the Internet of Things could make it possible to start your mi-

crowave by using an interface or application on your smartphone or tablet.

This technical development creates huge opportunities, solutions and innova-

tions. Almost everything you can think of can be connected to each other for

whatever purpose desired. When this development is aimed at businesses, lots

of new technologies can be created and implemented. Sensors can detect

malfunctions and display them in a central interface, water levels can be meas-

15

ured and monitored, everything is possible. All these solutions make the every-

day workflow of a business easier and more efficient.

But with these new and big technologies, it’s inevitable that there are some

disadvantages too. To start, there’s a lot of criticism concerning privacy issues

and environmental pollution. It is obvious that people don’t want everything to

be monitored and stored. What’s important about the ‘Internet of Things’ is that

there has to be a balance between right and wrong, allowed and not allowed, ...

The kind of monitoring and measuring mentioned above is usually done on a

regular basis, if not continuously. This causes the creation of huge amounts of

data, which need to be stored, processed and analysed. This brings us to the

next chapter of this thesis.

16

4 BIG DATA

Wherever you look, there are different kinds of information spread out every-

where. Brands, names, dates, … All these words and numbers are probably

stored somewhere and are also processed. With information being everywhere

and companies wanting to store all kinds of data, the term ‘Big Data’ came up.

The amount of data that is stored grows exponentially. Think for example about

Facebook, storing all of their users’ profiles, pictures, messages and much

more. Next to usual websites, and following the previous chapter, the Internet of

Things also creates big amounts of data.

There are different reasons for the existence of big data and storing those large

amounts of information. Probably the biggest cause is the growing desire for

analysis of this data. Companies want to know everything about their custom-

ers, employees and business associates. They want to follow up on their cus-

tomers’ purchasing behaviour and for example send aimed sales promotions

and such.

This eventually brings up the importance of marketing purposes. Not only can

big data be used for marketing strategies, data is also often sold and bought

between companies.

An important note is that the term ‘Big Data’ can’t be used for every kind of

data. There are three core factors to big data. The American information tech-

nology firm, Gartner, has defined these to describe big data.

The volume of the data:

Off course, the quantity of the data is important when considering big da-

ta.

17

The variety of the data:

It is important that analysts know how to categorize the data. This makes

it possible to use the data in an efficient way.

The velocity of the data:

This term refers to the speed in which the data is generated or in which it

is generated and processed. The velocity must be calculated to find out if

the system meets the requested speed.

When all these conditions are met, the data that is being processed can be

called big data. But next to these, there are three other key components that are

important for processing and analysing big data.

The variability of the data:

The data must all be consistent. Inconsistency can block and slow down

the processing of the data.

The veracity of the data:

Veracity is also very important. The data that is processed must be relia-

ble and originate from a good source. This greatly affects the results of

analysis.

The complexity of the data:

When data comes from different sources and in large volumes, it needs

to be connected and linked in order to make it useable for analysis.

Are regular databases big enough to handle and store these huge amounts of

data? This question is answered and discussed in the next chapter.

18

5 DATA WAREHOUSES

As it is probably clear after reading the previous chapters, there is a lot of data

processed and stored nowadays. In this chapter, we’ll discuss the processing of

the previously mentioned Big Data. If we bring up the term Big Data, then data

warehouses can’t be left out of the conversation.

A data warehouse can be seen as a complete setup that automates the pro-

cessing and storage process of Big Data. It is commonly used for reporting and

data analysis. This means that data warehouses are optimized for these tasks.

What’s also very important is that they do not only store the current data but

also historical data, hence the optimization for analysis. A data warehouse, or

DWH, can be used to track differences in sales, weather conditions, … , almost

everything you can think of.

Another key feature about data warehouses is that they automatically gather

source data. Connection is made between the DWH and source and from then

on, data will be stored into the DWH periodically. This happens through the ETL

part of the warehouse, Extraction Transformation and Load.

Extraction

The data is extracted from different sources (homogeneous1 and heterogene-

ous2). The system will be able to extract from sources from any location.

Transformation

The data is transformed so it is stored into the proper, desired format. This

format is defined in advance and optimized for future analytical purpose.

1
 Homogeneous data: data of the same sort, type and kind. Like a combination of text files.

2
 Heterogeneous data: data of different sorts. Like video clips, spreadsheets, sound fragments,

...

19

Load

The data is finally loaded into some kind of storage. This is actually a database

and can be a data mart, a data warehouse or an operational data store.

What makes this system very performant is that it runs parallel. If there has

already been a small part extracted, let’s say a couple of files, then the system

doesn’t wait. It immediately starts to transform the data. When this has hap-

pened, even if not all extracted files are transformed yet, the system already

starts to load. There’s little to no time waste and if configured well, it is indeed a

very efficient system.

When regarding the load part of ETL, you may notice that it is stated that the

data yet has to be loaded into, for example, a data warehouse. This may be

confusing since the ETL process itself is part of the data warehouse. This

shows the fact that a data warehouse is an all in one solution. It can perform the

complete process of retrieving and storing the data but the data can also be

stored somewhere else. All of this is defined when the warehouse is being set

up. The designer chooses which tasks are performed by the warehouse and in

what way this happens.

“Why use a typical DWH database and not a regular relational database?”, you

may think. To start, we’d like to mention that a DWH actually has a database to

store the data, it’s just not a usual relational one. Now this possible misunder-

standing is out of the way, let’s answer the question. First we’ll explain what a

relational database is and how it works.

A relational database is based on the relational model of data. This means that

there has to be some kind of hierarchy and/or a logic construction in the data-

base. In a relational database, the data is split into one or more different tables,

which then consist of rows and columns. Each row has a unique key, which

makes it possible to link a row in another table by storing this unique key in it.

This copied key is then called a foreign key, but we’ll not go too much into depth

considering database terminology. As it might be clear, a relational database

has a very strict structure and rows/columns can in most cases not always be

20

deleted as desired. The structure must be maintained and all dependencies

must be removed first before being able to delete a key value for example. Let’s

take a look at the example shown in figure 1.

Figure 1 - Relational database model example

We can see two tables, usually there are way more but this is for the sake of

simplicity. Each employee works in a department and each department can

have multiple employees working in it. That’s our relation right there. We can

also see the foreign key, which was described earlier, in the Employee table.

The employee gets the DepartmentId foreign key from the Id out of the

Department table. In other words, an employee is linked to a department by

the use of this foreign key. This in turn, means that a department can’t be

removed as long as there are employees working in it. Let’s say we want to

remove the department Sales out of our database, for any reason whatsoever.

To be able to do this, we have two options. The first one is to remove every

Employee that has the sales DepartmentId as foreign key, which would be

highly inefficient. The other option is to change this DepartmentId foreign key

to another department’s key or leave it null, which can be seen as empty. It’s

actually not empty but as mentioned before, we won’t go too deep into database

theory.

Now that it is clear what’s typical about a relational database, let’s explain why it

shouldn’t be used in our case and what some of the relevant disadvantages and

advantages are. To start off, a relational database is normalized. To explain

this, it means that redundant data is removed and there is a strong hierarchy in

the database. The advantage of this is that it saves up storage space. A rela-

tional database is optimized for write operations, it just is, there’s no way around

it. It is built to add and/or change data. On the other hand, a data warehouse is

21

built for fast reading operations and achieves high performance when executing

analytical queries.

As stated earlier in this thesis, a data warehouse also saves historical data,

hence the optimization for analysis purposes. To save all of this historical data

into a relational database would be pretty much impossible. Actually it would be

feasible but it wouldn’t make any sense. A relational database is not built for

fast, performant analytical queries, so it would be absolutely useless to do this.

Since the data we store will be mostly used to read out and display on an inter-

face, good reading performance is highly recommended. Next to that, analysis

is also an important feature for our setup, because a lot of analytical queries will

be performed. This makes a data warehouse a better choice for our solution.

To make a final statement, relational databases are surely not replaceable. But

a data warehouse came up for other purposes, to execute other tasks. The

importance is to choose the right solution for the right case, either solution has

its own advantages. Figure 2 provides a closer look on how a data warehouse

might look like.

Figure 2 - Data warehouse overview
3

3
 Datawarehouse4u. 2009. Data Warehouse.

22

The figure shows that a data warehouse gathers all kinds of data from different

sources by the use of ETL, as described earlier. It then stores the metadata,

summary data and raw data in its database and provides it for different analyti-

cal purposes. ETL can in fact be seen as part of the DWH because it is opti-

mized for this data warehouse.

23

6 HADOOP

6.1 Introduction

Big data is becoming more and more a hot topic. Having data available and the

resources to process this data can create impressive opportunities in the busi-

ness world, like we discussed before. The amount of publicly available data

grows every year and organizations no longer have to rely on their own data.

But, with this advantage, it becomes harder to pull this data and use it in a

satisfactory manner.

The capacity of hard drives has increased and the price per GB is at its lowest

point in years. So data storage has become more affordable, which is a good

thing. Increasing capacity is something that was relatively simple to obtain, but

unfortunately a mechanical hard drive is still a mechanical hard drive, and

mechanical parts have their limitations. It’s the access speeds of hard drives

that haven’t increased over the years. Although solid state drives are becoming

an interesting option because of their access speeds. The negative part of this

is that they are still very expensive at the rate of 1 euro/GB in the year 2013

(and that’s for consumer grade hardware).

A good solution for this has been around for quite some time now. The configu-

ration of reading/writing from/to multiple hard drives at once, or in parallel.

Unfortunately this approach comes with some possible problems. The first is

hardware failure, adding more and more hard drives to a configuration has an

increased chance of one of these drives to fail. A solution for this problem is to

replicate data so it exists multiple times on the server. This can be a form of

RAID. A disadvantage however of this solution is the presence of redundant

data. A second problem is when using analytical tools to perform analysis on

data. When storing this data in multiple places, it’s challenging to implement a

system that handles analysis on all of this data.

24

Based on these problems and developments the Hadoop framework was creat-

ed. Hadoop is a framework that uses MapReduce algorithms and HDFS file

system, to overcome the problems mentioned above. The Mapping part can be

seen as the transformation component in ETL. The Reducing part overcomes

the specific problem of analysis on big data. In this topic we will explain what

Hadoop is, how it’s designed and what makes it tick.

6.2 Components

Hadoop is a framework, it’s not just an application you can run on a machine.

It’s a collection of components someone can use to satisfy his/her needs. The

two biggest and most important components are MapReduce and the distribut-

ed file system HDFS (Hadoop Distributed File System). But there are other

projects that were created for the Hadoop framework as well. Hadoop is now

part of the Apache Software Foundation and Apache has created several other

tools for the framework. The greatest thing about this framework is that it’s

completely open source. This means that Hadoop and all of its tools, extensions

and components are free to use.

This is a list of the most important components of the Hadoop framework. The

key components for our project are MapReduce, HDFS, HBase and ZooKeeper.

Common

The common part of the framework provides all of the required tools for the

HDFS and general I/O. (serialization, persistent data structures, Java RPC).

Avro

A system for efficient, cross-language RPC and persistent data storage.

MapReduce

A distributed data processing model and execution environment that runs on

large clusters of commodity hardware.

25

HDFS

A distributed file system that runs on commodity hardware in large clusters.

Pig

An execution environment and data flow language for exploring very large

datasets.

Hive

A data manager in HDFS that performs queries on the data using a query

language based on SQL.

HBase

A column-oriented database that uses HDFS for storage. It supports both batch-

style operations using MapReduce and point queries (random reads).

ZooKeeper

Manages connections between nodes and provides a security layer.

Sqoop

A tool for efficient bulk transfer of data between structured data stores (such as

relational databases) and HDFS.

Oozie

A service for running and scheduling workflows of Hadoop jobs.

6.3 MapReduce

MapReduce is a programming model for data processing. It is used by Hadoop

and is one of the two parts that provide Hadoop its strength. These MapReduce

programs can be written in programming languages like Java, Ruby, Python

and C++. Its model is designed to work inherently parallel. All following code

examples will be written in Java, because the authors of this thesis know Java

quite well and the Hadoop framework itself is written in Java.

26

MapReduce contains two words, Map and Reduce. Both enable the processing

of data to happen in parallel execution. Each phase works with key-value pairs

as input and output. These can be of any type of data provided by the pro-

grammer. To be more concrete, the programmer needs to provide two func-

tions: a map function and a reduce function. The map function converts raw

data in usable data. The reduce function processes this usable data in any

manner desired by the developer.

The data

To help understand everything, we will use a practical example. Let’s start with

some raw data we retrieved from the city of Joensuu. We received some excel

files with information about detection sensors on crossroads in the city centre.

Each excel file represents a crossroad and each worksheet within the file repre-

sents a sensor. To simplify this example, we converted one worksheet into a

CSV format. Below, the example can be found.

Hour;2015-03-02;2015-03-03;2015-03-04;2015-03-05;2015-03-

06;2015-03-07;2015-03-08

0-1;25;18;25;37;21;66;49

1-2;20;19;14;18;8;35;40

2-3;7;11;6;12;6;40;46

3-4;19;5;5;19;12;38;53

4-5;14;9;7;21;13;34;44

5-6;49;36;43;38;42;20;15

6-7;160;177;169;173;156;42;41

…

23-24;18;21;28;26;62;81;32

Each row in the file represents one hour of a day. Each column represents a

day in a week and the whole file represents the data of one week. The values

themselves indicate how many times the detection sensor has been triggered.

In our case, vehicles driving over the sensor will trigger these.

Now we need a MapReduce algorithm that we can apply on this data. Let’s say

we want to calculate on what day of the week the amount of vehicles passing by

was the largest.

27

Map and Reduce

So the first step in our MapReduce application is to map this raw data to some

usable data. Remember that all input/output used by the Hadoop MapReduce

functions are defined as key/value pairs, because default mappers and reduc-

ers read data in line by line. So when we read for example the third line of our

file, we need to have a reference to the date that the value corresponds to,

therefore in our Mapper class we keep a static property containing all the dates.

The input key in our Mapper doesn’t really matter, we define it as a LongWrit-

able datatype which corresponds to the size in bytes of the line that the Map-

per reads in. For the input value we define the type Text, because we expect a

series of characters. For example the first 3 lines the Mapper will read in looks

like this:

(0,Hour;2015-03-02;2015-03-03;2015-03-04;2015-03-05;2015-03-

06;2015-03-07;2015-03-08)

(83,0-1;25;18;25;37;21;66;49)

(109,1-2;20;19;14;18;8;35;40)

The input key is 0 for the first line because 0 bytes have been read by the

Mapper, or in other words the first value in the input value will be the 0th byte in

the file. The input key for the second line is 83 because the first line was 83

bytes in size.

Now we need the Mapper to define an output key and value. If we make the

output key an array of the dates, we can define the output value as an array of

sensor readings. This way the reducer can assign a value to the correct date.

So both output key and value are arrays of values. Below, you can see the first

3 outputs of the Mapper.

([2015-03-02,2015-03-03,2015-03-04,2015-03-05,2015-03-06,2015-

03-07,2015-03-08], [25,18,25,37,21,66,49])

([2015-03-02,2015-03-03,2015-03-04,2015-03-05,2015-03-06,2015-

03-07,2015-03-08], [20,19,14,18,8,35,40])

([2015-03-02,2015-03-03,2015-03-04,2015-03-05,2015-03-06,2015-

03-07,2015-03-08], [7,11,6,12,6,40,46])

28

All output of the Mapper is processed by the MapReduce framework before it is

sent to the reduce function. This process consists of sorting and grouping the

key-value pairs by key. After this processing, which is called shuffle, our input

for the reducer will look like this:

([2015-03-02,2015-03-03,2015-03-04,2015-03-05,2015-03-06,2015-

03-07,2015-03-08], [[25,18,25,37,21,66,49],

[20,19,14,18,8,35,40], [7,11,6,12,6,40,46], …])

This looks a bit complex, but basically the framework creates an array of all the

map output values where the key is the same. In our case the key is the equal

for all values. So we will have 1 input for the reducer, containing the array of

dates as the input key and an array of integer arrays that represent the values.

Then the reducer processes the input, in our case it does calculates the sum-

mation of sensor readings for each day and then calculates the maximum value

for a particular day. The output for the reducer is very simple. We define a Text

output key that represents the date and IntWritable output value that repre-

sents the number of times the sensor has been triggered:

(2015-03-06, 4075)

On figure 3, all of the taken steps can be seen. The previously explained output

can be found in the white boxes but what’s most important is to get an overview

of how the whole system works.

Figure 3 - MapReduce workflow

29

In Java code

We took a look on how the process works of a MapReduce algorithm, now we

need to express this process in code. In total we need 3 classes, a mapper, a

reducer and a main class to run the job (import statements are left out in these

examples to safe some space).

The first is the Mapper that we can create by subclassing the Mapper class and

defining four type parameters that specify the datatype of input and output, keys

and values. This class defines an abstract method map() where we can define

our transformation of the data.

public class MaxVehiclesMapper extends Mapper<LongWritable, Text,

 StringArrayWritable, IntegerArrayWritable> {

 private static String[] dates = new String[7];

 @Override

 protected void map(LongWritable key, Text value, Context context)

 throws IOException, InterruptedException {

 String[] values = value.toString().split(";");

 if (values[0].equals("Hour")) {

 configureDates(values);

 return;

 }

 IntWritable[] readings = new IntWritable[7];

 try {

 for (int i = 0; i < readings.length; i++) {

 readings[i] = new IntWritable(Integer.parseInt(

 values[i + 1]));

 }

 } catch (NumberFormatException ex) {

 System.err.println("Exception: " + ex.getMessage());

 }

 context.write(new StringArrayWritable(dates),

 new IntegerArrayWritable(readings));

 }

 private void configureDates(String[] values) {

 for (int i = 0; i < dates.length; i++) {

 dates[i] = values[i + 1];

 }

 }

}

30

We know our csv file has a heading with all the dates of the readings, so we can

write a check to see if we read a line that is the header. If so, we use a private

method configureDates() to write the dates to a static string array called

dates. If we are not on the heading, the method continues and loops over all

the values in the line separated by a semicolon symbol. In the for-loop we parse

the value to an IntWritable (which is the datatype used by Hadoop for

integer values) and store it in an array of IntWritables. When done, we write

our string array to a StringArrayWritable (which is a custom datatype

defined in the project that represents an array of strings) for the key output and

and an IntegerArrayWritable for the value ouput.

The Reducer looks a lot like the Mapper in terms of class and method proto-

types. We can create a Reducer by subclassing Reducer and writing the type

parameters which again define the input key and value, and output key and

value. The Reducer defines an abstract method reduce() that is used to

define a calculation on the input key/value. The result of the calculation is

written to the output key/value. In our case we calculate the maximum value in

an array of Integers.

public class MaxVehiclesReducer extends Reducer<StringArrayWritable,

 IntegerArrayWritable, Text, IntWritable> {

 @Override

 protected void reduce(StringArrayWritable key,

 Iterable<IntegerArrayWritable> values, Context context)

 throws IOException, InterruptedException {

 int[] readingsPerDay = new int[7];

 Iterator it = values.iterator();

 while (it.hasNext()) {

 IntegerArrayWritable iaw =

 (IntegerArrayWritable) it.next();

 for (int i = 0; i < iaw.get().length; i++) {

 readingsPerDay[i] +=

 ((IntWritable) iaw.get()[i]).get();

 }

 }

 int maxValue= Integer.MIN_VALUE;

 String date = "";

 for (int i = 0; i < readingsPerDay.length; i++) {

 if (readingsPerDay[i] > maxValue) {

31

 maxValue = readingsPerDay[i];

 date = ((Text) key.get()[i]).toString();

 }

 }

 context.write(new Text(date), new IntWritable(maxValue));

 }

}

In the first part of the reduce() method we make a summation of all the read-

ings per day. Remember that we receive an input value of a collection of Inte-

gerArrayWritable objects. This is why the first part looks a bit funky. We

iterate over the collection of IntegerArrayWritables which was created by

the Hadoop shuffle algorithm after mapping was completed. Then we iterate

over the IntegerArrayWritable to retrieve all the readings of every

hour/day. We add the reading for every hour to the readingsPerDay array so

we get a summation of all the readings per day.

The next part is to calculate the maximum value in the readingsPerDay array.

This part is pretty straightforward as we keep a maxValue Integer to store the

maximum value in and a string to store the corresponding date in. Once we are

done with our analysis we can write our results to context by providing a new

Text for the key and a new IntWritable for the maximum value.

The third and last piece of code we need is called a Driver class in Hadoop

terms. It defines a Hadoop job that can be run by defining a main method.

Inside the main method we create a new instance of Job. On this Job instance

we can set various properties to define the classes, input and output types

needed for the job. We also set the input path (for the source file) and the

output path (for storing the result), by using the main method’s string parameter.

public class MaxVehicles {

 public static void main(String[] args) throws Exception {

 if (args.length != 2) {

 System.err.println("Usage: MaxVechicles <input path>

 <out-put path>");

 System.exit(-1);

 }

32

 Job job = new Job();

 job.setJarByClass(MaxVehicles.class);

 job.setJobName("Maximum vehicles for day of the week");

 FileInputFormat.setInputPaths(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.setMapperClass(MaxVehiclesMapper.class);

 job.setReducerClass(MaxVehiclesReducer.class);

 job.setOutputKeyClass(StringArrayWritable.class);

 job.setOutputValueClass(IntegerArrayWritable.class);

 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

}

Normally when a job is run on a Hadoop cluster, it is packaged into a JAR file.

This way Hadoop can provide the algorithm to all nodes that execute parts of

the job. We can call the setJarByClass() method to define a class that

Hadoop can search for in JAR files when it wants to execute a job.

We can provide multiple input paths for the job, if we want more than one input

file for the MapReduce algorithm. We can define one output path to indicate

where the result of the algorithm should be written. Note that all these paths are

relative paths to the root directory of the Hadoop HDFS file system. It’s im-

portant to note that the output path mustn’t exist, otherwise the framework will

throw an exception.

The last properties we can set are the Mapper and Reducer classes that the job

should use. Together with the output types for the Mapper, all the necessary

properties are set. Eventually we can call waitForCompletion() method to

execute the job and wait for it to finish.

Running the program

We wrote our MapReduce application, now it’s time to run the application.

Before we do this, we need to make sure Hadoop is running properly on our

system (how to do this is mentioned in chapter 10.2 Cloudera installation). In

our case we are running the application on Ubuntu where Hadoop is configured

in pseudo-distributed mode. There are 3 steps we need to perform to success-

fully execute the program:

33

1. Copy the data file onto the Hadoop distributed file system. We need to

make sure that the resource is available on the HDFS file system. We

can use the shell command -copyFromLocal from the Hadoop fs

component. We need to specify the source path and the destination path.

In our case Hadoop is configured in pseudo-distributed mode, so our

destination path is hdfs://localhost. When using this command, the

copy will be placed on the /user/hadoop path of the HDFS file system.

% hadoop fs -copyFromLocal /tmp/input/data.csv

hdfs://localhost/input/data.csv

2. Next we need to tell Hadoop that it can find the JAR file that we created

when we built the program. We do this by exporting the name of the JAR

file onto the hadoop classpath.

% export HADOOP_CLASSPATH=MaxVehicles-1.0.jar

3. The last step is executing the application via the hadoop command. We

specify the class that Hadoop needs to run by typing its package name,

followed by the class name. We defined the input path as the first string

argument of the main method and the second as the output path. We

wrote our main method so that the program runs only when there are 2

arguments provided. So we define our relative input path where the input

file is located and define a non-existing output path.

% hadoop fi.karelia.maxvehicles.MaxVehicles

/user/hadoop/input/data.csv ouput

When we execute the last command, if everything went well, you should get

some terminal output (shown in Appendix 1) which displays a lot of useful

information about the job. We will talk about this whole workflow in chapter 6.3.2

The process of a MapReduce Job run.

After the job has completed execution, we can check the output directory on the

HDFS file system. There we find a file named part-r-00000.txt, which is

34

the output from our reducer in our program. We have one reducer in this appli-

cation, so there is only one output file. If multiple reducers would be defined we

would get a part-r-xxxxx file per reducer. The content of this file can be

seen on figure 4.

Figure 4 - Reducejob result

This file contains the date on which the highest number of traffic is detected.

6.3.1 The basics

This presentation of how the MapReduce system works is at the highest level

possible. So let’s take a further look at what happens under the hood.

In terms of software components, a MapReduce job is a unit of work, which the

client wants to be carried out. The requirements for this job are input data, the

MapReduce program and configuration settings. Hadoop executes the job by

splitting the job into tasks. There are two types of tasks: map tasks and reduce

tasks.

In terms of hardware components, there are two types of nodes (physical ma-

chines) that control the job execution process. There is one jobtracker and one

or multiple tasktrackers. The jobtracker manages all the jobs on the system via

scheduling tasks to the tasktrackers. Tasktrackers execute the tasks of the job

35

and report back to the jobtracker about the task’s progress, which in turn keeps

track of the overall progress of a job. This proves that the system can work

parallel and very efficient.

Data flow

When input is given to a specific MapReduce job, the framework divides the

input into fixed-size pieces called input splits. Hadoop then creates a map task

for each of the input splits, because of this, if the input splits are on different

machines, the map tasks can be executed in parallel.

When a job has many input splits, it takes less time to process each split than

when the splits are smaller in number. So processing the splits in parallel would

take less time to finish the tasks. It can, however, happen that the input splits

are so small that the overhead of managing the input splits would take a larger

execution impact on the system rather than the task itself. That’s why the Ha-

doop file system has a default value for the block size, which is 128 MB (at the

time of writing this thesis). This value can be set via properties in the hdfs-

default.xml configuration file for the entire cluster or specified when each file

is created.

<property>

 <name>dfs.blocksize</name>

 <value>134217728</value>

</property>

It’s important to note that the jobtracker doesn’t necessarily schedule tasks to

nodes where the input data is already stored on the HDFS file system. It’s of

course highly desired that this would be the case, otherwise this would come at

the cost of sacrificing a lot of network bandwidth. That’s why Hadoop has a

built-in data locality optimization system to overcome this problem. The principle

is simple, the basic rule is to assign tasks to the nodes that cause the least

amount of network traffic. There are three possible scheduling assignments,

either the data block is stored onto the same node the task is scheduled on,

either the data block is stored onto a node in the same rack the task is sched-

uled on, or the data block is stored onto a node in another rack the task is

scheduled on. The different types of assignment can be seen on figure 5.

36

Figure 5 - Possible job scheduling assignments
4

Earlier we saw that the map task has an input and an output. The input is stored

on the HDFS file system. But the output of a map task is not stored onto the

HDFS file system, instead it is placed on the local file system of the node it was

executed on. The reduce task uses the output (stored locally) of the map task

for its input and processes it to a specific output. In other words the map’s

output is intermediate output, it just needs to be stored until the reduce job is

finished and then it’s no longer required. Later on we will talk about the HDFS

file system and what its benefits are compared to a local file system. But one

big feature is replication of data to provide backup in case of hardware failures.

So storing this intermediate data onto the HDFS file system would create a

massive amount of overhead.

Unfortunately reduce tasks can’t benefit of the data localization optimization

feature. Therefore we will take a look at how Hadoop transfers the intermediate

output of the map tasks to the input of the reduce tasks. We have two possible

situations that we will discuss. One is where all the map outputs are transferred

to one reduce input. The other is where all the map outputs are transferred to

multiple reduce inputs. The number of reduce tasks can be set independently

for a given job.

4
 White, T. 2012. Hadoop: The Definitive Guide, Third Edition. O’Reilly press.

37

Map outputs to one reduce input

When the map tasks are finished processing, output is written to the local file

system. The output must be transferred to the node where the reduce task is

running. Once the data is transferred, the data is merged so it can be used as

input for the reduce function. The data flow is illustrated in figure 6. The light

blue boxes represent individual nodes, the thick red arrows show data transfer

across the network.

Figure 6 - Map outputs to one reduce input workflow
5

Map outputs to multiple reduce inputs

The second possibility is that there are multiple reducers defined. We would

want the reducers to receive an equal amount of input, so the workload is well

balanced. Therefore each mapper divides its output into partitions. When we

have two reducers, each mapper will create two partitions containing the output

data. There can be many key-value pairs in each partition, but the records for a

specific key-value are only stored in one partition. This means that the output

data is defined once over two partitions and not copied. The way this partition-

ing is done can be defined through a user-defined partitioning function or the

user can accept the default partitioning system.

In figure 7 we can see that the mappers partition the data through the sort

function. Then each partition is transferred across the network to the reducers.

5
 White, T. 2012. Hadoop: The Definitive Guide, Third Edition. O’Reilly press.

38

Each reducer receives one partition from each mapper. Then the data flow is

the same as with one reducer, the inputs are merged so they can be used by

the reduce function.

Figure 7 - Map outputs to multiple reduce inputs workflow
6

Combiner functions

We already mentioned the data localization optimization that is automatically

applied by Hadoop to minimize data traffic across the network. But there is

another way of minimizing the traffic. The user can specify a combiner function

that runs on a mapper’s output, the output of the combiner function is then used

for the input of the reduce function. One very important note however is that the

user needs to decide whether he/she can use a combiner function for its reduce

tasks. Let’s use an example to make this clear.

Suppose we have some data from the Belgian universities. The data was pro-

cessed by two maps that were written to retrieve the highest student score (in

percent) from each university. Following output was created by the mappers.

mapper output 1

(Vives, 92.3)

(Howest, 94.7)

(VUB, 91.8)

6
 White, T. 2012. Hadoop: The Definitive Guide, Third Edition. O’Reilly press.

39

mapper output 2

(KULeuven, 95.1)

(HoGent, 93.5)

We would now write a reduce function that calculates which university has

assigned the highest score to a student. So after the reducer has merged all the

mappers’ outputs, the reducer’s input would look something like this (it doesn’t

need to look exactly like this, how these key-value pairs are defined is com-

pletely up to the user).

reducer input

([Vives, Howest, VUB, KULeuven, HoGent], [92.3, 94.7, 91.8,

95.1, 93.5])

And after the reducer processed the data, which means calculating what the

highest score was that a school assigned to a student, would be as follows.

reducer output

(KULeuven, 95.1)

Now because the reducer function is looking for a maximum value in a list of

double values, we can use a combiner function on each mapper’s output that

uses the reducer function to reduce the output’s data size. After applying the

combiner function the mappers’ outputs would look like this.

mapper output 1

(Howest, 94.7)

mapper output 2

(KULeuven, 95.1)

There is less data to be transferred across the network to the reducer (think

about the benefits when we would use gigabytes of data). So, in short, the

combiner function will run twice for each mapper’s output, but it will reduce the

amount of data transferred. This provides increased efficiency and a reduction

of network traffic.

40

With the combiner function applied, the reducer’s input now would look like this.

reducer input

([Howest, KULeuven], [94.7, 95.1])

And after processing the data in the reduce function we would get the exact

same result as before:

reducer output

(KULeuven, 95.1)

And this is the important thing to note that you can use a combiner function in

this example, because we are calculating a maximum value. But think about

what would happen if we would calculate the average of these highest scores.

Without a combiner function we would calculate the result based on the values

below.

([avg1, avg2, avg3, avg4, avg5], [92.3, 94.7, 91.8, 95.1, 93.5])

Score average = 93.48

Now if we apply a combiner function to reduce the network traffic, we would

calculate the result based on these values:

([avg1, avg2], [92.9, 94.3])

Score average = 93.6

As can be concluded a different result is calculated depending on using a

combiner function. So the designer of the MapReduce has to think carefully

about using a combiner function. The requirement for using one is that the

output of the reducer would be the same when not using combiner function.

41

6.3.2 The process of a MapReduce Job run

In this part of the MapReduce chapter we will take a look at how the Hadoop

framework processes a job. How does Hadoop distribute the tasks to the

nodes? How do the nodes get the data to be processed? Or even the program

to run? These questions will be answered in this chapter.

Development of the Hadoop framework has been going on for quite a while now

and since version 2.0 there is a new implementation of the MapReduce compo-

nent. It is called YARN and was developed by a group at Yahoo!. This update of

the MapReduce algorithm was necessary because the first version was hitting

scalability bottlenecks for very large clusters.

In the classic MapReduce you have one jobtracker process that has two main

functions: jobscheduling and task progress monitoring. But in YARN this job-

tracker and all its related tasks are split up into separate entities. It defines

these two roles into two independent daemons7: a resource manager and an

application manager. The biggest difference with the classic MapReduce is that

each job has a dedicated application master.

Because YARN is the new standard for the MapReduce component in Hadoop,

and in our practical application we use YARN too, we will discuss YARN and

not the classic MapReduce.

MapReduce on YARN contains 5 components:

 A client node that triggers the job execution, or in other words submits a

job.

 A resource manager, which coordinates allocation of resources on the

cluster.

 Node managers, which launch and monitor compute containers on ma-

chines in the cluster.

7
 Daemon: A program that runs as a background process without user interaction.

42

 A MapReduce application master, which coordinates the tasks running

for the submitted job. Both the application master and the MapReduce

tasks are run inside containers, which are scheduled by the resource

manager and managed by node managers.

 The Hadoop distributed file system, which is used for sharing job files be-

tween machines.

Let’s start discussing the workflow of when a MapReduce job is submitted for

execution. This workflow is shown on figure 8.

Figure 8 - MapReduce job execution workflow
8

8
 White, T. 2012. Hadoop: The Definitive Guide, Third Edition. O’Reilly press.

43

Job submission

The first part in the process involves the submission of a MapReduce job. We

can do this by calling submit() or waitForCompletion() on the Job

object in the client node (1). Submitting the job results in a call to the resource

manager to retrieve a unique application ID (2). The job client then checks the

output specification that is configured on the Job object. With this information it

calculates the number of input splits for the job and copies job resources (job

JAR, configuration and input split information) to the Hadoop distributed file

system (3). The last step in the job submission process is to call sub-

mitApplication() on the resource manager (4).

Job initialization

After the resource manager receives the call to its submitApplication(), it

hands off the request to the scheduler. The scheduler allocates a container and

the resource manager launches the application master’s process under the

node manager (5a, 5b). The application master is a Java application whose

main class is defined as MRAppMaster. This class initializes jobs by creating a

number of bookkeeping objects that are used to track the job’s progress (6).

After this, MRAppMaster retrieves all the job’s input splits that were calculated

in the client and stored on HDFS (7). Using these input splits, it creates a Map

task object for each split and a number of reduce task objects that are defined

by the mapreduce.job.reduces property in the mapred-default.xml

configuration file.

<property>

 <name>mapreduce.job.reduces</name>

 <value>1</value>

</property>

The next step is to determine how to execute the tasks related to the job. The

way in which this is done differs a lot from the classic MapReduce. In classic

MapReduce the tasks are always running on multiple tasktrackers (if there is

more than one tasks), but in MapReduce on YARN, the MRAppMaster deter-

mines whether the job is very small and could possibly run the job in its own

44

JVM9. Sometimes this is done because the overhead of metadata and alloca-

tion of resources on other machines would be greater than running the tasks

sequentially on one single node. When this situation occurs, the job is said to be

run as an uber task.

The last step in the job initialization process is calling the setup() method on

the Job object to create the job’s output directory.

Task assignment

After all these steps the application master can start requesting all the neces-

sary resources for the job’s map and reduce tasks from the resource manager

(8). All these requests provide information about each map task’s data locality,

which is necessary to know where the input split reside on the HDFS file sys-

tem. Using this information the scheduler can make decisions about assigning

tasks to the nodes. It always attempts to place tasks on data-local nodes (which

are the nodes where the input splits reside on), and if this is not possible, the

scheduler will try to assign the task to a rack-local node.

Task execution

When the resource manager’s scheduler has assigned a task, the application

master can start the container by contacting the node manager (9a, 9b). In

preparation of task execution, the node manager localizes the necessary re-

sources for the task, including the job configuration information and JAR file

(10). The task is then executed by a Java application whose main class is

YarnChild (11). The execution of the map and reduce tasks happen in dedi-

cated JVMs, for each task a new JVM is created.

Progress and status updates

The application master keeps track of all the tasks that are running for the job.

The tasks report their status and progress back to the application master every

three seconds. The application master can make a combined progress status of

all the running tasks to give an overview of the complete job progress. The

workflow of these status updates can be seen in figure 9.

9
 JVM, Java Virtual Machine: this is a single work unit that executes Java applications.

45

Figure 9 - MapReduce status check workflow
10

The client node polls the application master every second to receive progress

updates for the job. When running a job from the command line, you can see

the progress in the shell’s output. You can also check the progress of jobs via

the web interfaces for the application master. You can first check the resource

manager’s web UI via connecting to http://hostname:8088 (which is the

default port for the resource manager) and from there you can check all running

jobs and redirect to the application master web UI for the job you want to check

the progress and status for.

Job completion

The client polls the status every second to the application master, but it also

polls every five seconds to check whether the job has completed or not. It does

this by calling the waitForCompletion() method on the Job object.

When the job is complete, the application master and task containers clean up

their working state and the OutputCommiters’ job cleanup() method is

10

 White, T. 2012. Hadoop: The Definitive Guide, Third Edition. O’Reilly press.

http://hostname:8088/

46

called. The job history server then stores all the information about the finished

job.

6.3.3 Failures in YARN

Because of all the different components in the YARN MapReduce, we need to

consider the possibility of failure for each component. In the following section

we will describe which components could fail and what the consequences or

solutions are.

Task failure

This is a failure on the highest level possible. Runtime exceptions and sudden

exits of the JVM are propagated back to the application master, which marks

the task attempt as failed. When the application master registers a hanging task

through the absence of a ping over the open channel, the task attempt is also

marked as failed.

The maximum number of attempts for a task can be set through the property

mapreduce.map.maxattempts in the mapred-default.xml configuration

file. A job will be marked as failed if the maximum percent of map tasks in the

mapreduce.map.failures.maxpercent property is exceeded.

<property>

 <name>mapreduce.map.maxattempts</name>

 <value>4</value>

</property>

<property>

 <name>mapreduce.map.maxattempts</name>

 <value>4</value>

</property>

Application master failure

The failure of a job’s application master is more critical. Just like tasks, the

applications in YARN attempt to execute multiple times in case of failure. By

default the application is marked as failed when it fails once, but this property

can be set through the property yarn.resourcemanager.am.max-retries

in the yarn-default.xml configuration file.

47

<property>

 <name>yarn.resourcemanager.am.max-retries</name>

 <value>1</value>

</property>

The application master sends heartbeats to the resource manager to indicate

that it is still running. In the event of a failure, the resource manager will detect

this absence of heartbeats and will start a new instance of the application

master running in a new container. When this happens the client no longer has

knowledge of the application master because a new instance was created, so it

needs to locate the new instance. It does this during job initialization, by re-

questing the resource manager for its new address.

Node manager failure

If a node manager fails, it will stop sending heartbeats to the resource manager,

which will remove the node from the resource manager’s pool of available

nodes. Any task or application master running on the failed node manager will

be recovered using the mechanisms described in the above two sections.

Resource manager failure

Failing of the resource manager is the biggest failure that could happen on

YARN. Without the resource manager neither jobs nor task containers can be

launched. After a failure, an administrator starts a new resource manager

instance. It can recover its previous state due to the checkpoint mechanism that

saves the resource manager’s state to persistent storage. This storage specifi-

cation can be set via the yarn.resourcemanager.store.class property in

the yarn-default.xml configuration file.

<property>

 <name>yarn.resourcemanager.store.class</name>

 <vaue>org.apache.hadoop.yarn.server.resourcemanager.

 recovery.FileSystemRMStateStore</value>

</property>

48

6.4 The Hadoop Distributed File System

The Hadoop framework uses its own designed distributed file system called

HDFS. In this topic we will discuss how the Hadoop file system is designed and

how it works.

6.4.1 Design

Let’s start with a general statement of the HDFS file system: “HDFS is a file

system designed for storing very large files with streaming data access pat-

terns, running on clusters of commodity hardware”11. The file system is created

for storing large files. The streaming data access pattern means that it’s build

with a write-once, read-many pattern in mind. It’s more important to read the

whole dataset fast, rather than reading the first record fast. Hadoop can be

deployed on any number of machines, and these machines can be of any type,

there is no need for high-end server machines, because HDFS contains a built-

in fault-tolerance mechanism.

Together with advantages, there will almost always be disadvantages as well.

The Hadoop file system is not ideal for low-latency data access or storing small

files. But there are several components of the framework that try to overcome

these disadvantages. In our project for example, we need a database that

provides real-time access. Fortunately the framework provides the HBase

module that enhances the application to use with the HDFS file system.

11

 Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler, MSST2010, May 2010.

49

6.4.2 Concepts

Namenodes and datanodes

In classic MapReduce we had two big components: jobtrackers and tasktrack-

ers. Well, in HDFS we also have two components: namenodes and datanodes.

The namenode always needs to be present, because it’s the master node and

the datanodes are slaves (or workers). The namenode stores a complete file

system tree on its file system. It does this by creating two files: a namespace

image and an edit log. In this tree, the namenode stores all the locations of the

blocks of all datanodes. Figure 10 gives an overview of this.

Figure 10 - MapReduce name- and datanodes
12

The namenode is the most important node, because the storage of the location

of data in the file system tree guarantees the retrieval of data on the datanodes.

Without it, there would be no way of knowing how to reconstruct the blocks on

the datanodes to retrieve usable data. So if the namenode fails, all data is lost.

Fortunately Hadoop has provided a way to overcome this huge risk of data loss.

One is to make backups of the persistent state of the file system’s metadata

and write this to multiple file systems. Another is to add a secondary namenode

to the cluster setup. The main task of the secondary namenode is to periodically

merge the namespace image with the edit log to prevent the edit log from

becoming too large. It stores a copy of the primary namenode, so in the event

that the primary namenode fails, no data is lost.

12

 Greenplum. Hadoop Components. NDM.

50

HDFS Federation

The namenode stores the location of every file and block in the file system tree.

When the namenode is operational, this namespace image is loaded into

memory. So when a client requests some data, the access time is lower be-

cause the location’s metadata is already in the namenode’s memory. Consider-

ing this fact, how much memory is required for the namenode? We could have

millions of files in our cluster. HDFS Federation is a concept introduced in

version 2.x of Hadoop. It allows adding multiple namenodes to an existing

configuration, so that a portion of the file system namespace could be assigned

to each namenode.

This portion that a namenode manages is called a namespace volume and it

contains the metadata for the namespace and a block pool containing the

blocks for the files in the namespace. Because each namenode manages its

own namespace volume, namenodes are completely independent of one an-

other. This means that, when a namenode fails, it does not directly affect other

namenodes.

HDFS high-availability

We just covered what happens in case a namenode fails. Because of the repli-

cation of metadata and using a secondary namenode the recovery of data

location information is guaranteed. But in case of a namenode failure, how long

does it take to recover this information? The namenode is still a single point of

failure. A new primary namenode must be started with one of the file system’s

metadata replicas. This new state of cluster setup means that the namenode is

in safe mode. Then the administrator must configure the datanodes to use the

new namenode. After that, the namenode goes through the process of loading

its namespace image into the memory and replacing its edit log. On large

clusters this process of starting a new namenode can take up to 30 minutes or

more. Version 2.x of Hadoop addresses this problem by adding support for

HDFS high-availability. The basic idea behind this solution is the implementa-

tion of two namenodes in an active-standby configuration. This way, when a

namenode fails, the standby namenodes can take over almost without any

interruption or time loss.

51

6.4.3 Data flow

We already took a look at how map tasks and reduce tasks relate to each other

in the previous chapter. Now we will take a look at how this data between nodes

is transferred in the HDFS file system. We will look at two cases, how a file is

read and how a file is written on the HDFS file system.

Anatomy of reading a file

Executing a client’s request to read a file on the HDFS file system requires

several steps to be performed. Figure 11 shows these steps and under the

image, the steps will be explained.

Figure 11 - HDFS file read workflow
13

The client starts by calling open() on the FileSystem object (1). In our case

it’s the distributed file system HDFS so the method will be executed on the

derived class instance DistributedFileSystem. The Distribut-

edFileSystem in turn calls the namenode to retrieve the locations of the

blocks for the requested file (2). For each block, the namenode returns the

addresses of the datanodes that have a copy of that block. After the Distrib-

utedFileSystem received all addresses it returns a FSDataInputStream

object to the client. The client can then use this object to read the data from.

13

 White, T. 2012. Hadoop: The Definitive Guide, Third Edition. O’Reilly press.

52

The client calls the read() method on the FSDataInputStream object, which

in turn connects to the closest datanode for the first block in the file (3). The

read() method is repeated until the whole block is read and transferred back

to the client, then FSDataInputStream closes the connection with the

datanode (4). After reading a whole block, FSDataInputStream calls the

read() method for the next block of the file (5) (which in this example is on

another datanode). When all the blocks for the file are read, the client closes the

connection by calling close() on the FSDataInputStream object (6).

We can see from this example that it is the client that connects directly to the

datanodes, and not through the namenode. This is an important aspect of the

design of HDFS. Transferring data this way causes the network traffic to be

more spread out, it’s more load-balanced. The only role of the namenode here

is that it provides the block locations on the datanodes, which (as previously

mentioned) are stored in memory, so this happens very fast.

Anatomy of writing a file

In this example we will cover the steps necessary to create a new file, write

some data to it and close the file. In this setup the number of replications is set

to 3 (default). Which means the HDFS file system stores 3 copies of each file to

create a backup in case of failure. You can modify this property in the hdfs-

default.xml configuration file.

<property>

 <name>dfs.replication</name>

 <value>3</value>

</property>

Again, first an image (figure 12) is displayed to give a view on how the writing

works, then every step will be explained.

53

Figure 12 - HDFS file write workflow
14

The client can create a file by calling the create() method on the Distrib-

utedFileSystem object (1). The namenode needs to know the location of the

data on the HDFS file system, so the DistributedFileSystem calls cre-

ate() to create a new file in the file system’s namespace (2). Once the

namenode is done, the DistributedFileSystem returns an object of

FSDataOutputStream to the client for writing to the file.

The client can then call the write() method on the FSDataOutputStream,

which in turn splits the data into packets that are written to an internal queue

(3). This mechanism is called a producer-consumer principle. The queue is

consumed by the DataStreamer, which is responsible for asking the

namenode to allocate new blocks by picking a list of suitable datanodes to store

replicas in. This list of datanodes forms a pipeline for writing. Then the

DataStreamer starts writing the packets to the first datanode in the pipeline

(4). After this, it’s the task of the datanode to write the same packet to the next

datanode in the pipeline. When the last packet is written onto the datanode’s

HDFS filesystem, the datanode sends an ACK (acknowledge) response back to

the previous datanodes (5). When the first datanode is reached, it sends all ACK

responses back to the DFSOutputStream where it checks if the number of

ACK responses are correct.

14

 White, T. 2012. Hadoop: The Definitive Guide, Third Edition. O’Reilly press.

54

When the client is finished writing data, it closes the connection by calling

close() on the FSDataOutputStream object (6). Once all remaining packets

are flushed to the datanode pipeline, the client calls the complete() method to

indicate that the file is written on the datanodes (7).

6.5 Hadoop input and output

6.5.1 Serialization

Because the Hadoop framework is built upon a distributed file system, the

transmission of data between different nodes in a cluster should be as fast and

reliable as possible. For this transmission between nodes, Hadoop uses remote

procedure calls or RPCs. This protocol uses serialization and deserialization to

convert messages into binary streams. Serialization is the process of converting

objects into byte streams. Deserialization is the opposite of serialization.

There are 4 requirements to the design of the Hadoop remote procedure call

serialization format:

 Compact: the messages sent by the RPC should be as small as possible

to reduce network traffic.

 Fast: the whole communication in the distributed file system relies on this

protocol, so it is of vital importance that there is as little performance

overhead as possible.

 Extensible: the protocol should be designed with future updates and

changes in mind. Newer versions of the protocol should be backwards

compatible.

 Interoperable: Hadoop is designed to work on a variety of machines, with

a variety of operating systems. The protocol should be designed in a way

that it supports all types of machines.

55

Hadoop has created its own serialization format that is called Writables. They

apply to the first 3 requirements mentioned above, but because Hadoop is

written in Java, the Writables format lacks the interoperability requirement.

Let’s take a look at how Hadoop implemented this format.

The Writable interface

To define all different datatypes for this format, Hadoop created the Writable

interface that defines an interface for creating Writable classes. It’s these

classes that can be used for input and output values and keys for type parame-

ters of MapReduce methods. It just has two methods for writing its state to a

DataOutput binary stream and for reading its state from a DataInput binary

stream.

public interface Writable {

 void write(DataOutput out) throws IOException;

 void readFields(DataInput in) throws IOException;

}

Let’s take a look at a small example on how the serialization process works.

ShortWritable is an implementation of the Writable interface. It represents

a short value which is normally two bytes in size. First we create a new

ShortWritable.

ShortWritable shortValue = new ShortWritable(7);

Now we can write a helper method to check the serialized form of the

ShortWritable. We wrap a ByteArrayOutputStream in a DataOut-

putStream to retrieve the bytes in serialized stream.

public static byte[] serialize(Writable value) throws IOException {

 ByteArrayOutputStream out = new ByteArrayOutputStream();

 DataOutputStream dataOut = new DataOutputStream(out);

 value.write(dataOut);

 dataOut.close();

 return out.toByteArray();

}

56

Now we can check this byte size with a test method.

byte[] bytes = serialize(shortValue);

System.out.println("Byte size of ShortWritable: " + bytes.length);

This method will print the following result.

Byte size of ShortWritable: 2

Writable classes

Hadoop has created a number of Writable classes that conforms the Writa-

ble interface. The most common Writable implementations are displayed in

table 1.

Table 1 - Common Writable implementations

Java primitive datatype Writable implementation Serialised

Boolean BooleanWritable 1

Byte ByteWritable 1

Short ShortWritable 2

Int IntWritable 4

Float FloatWritable 4

Long LongWritable 8

Double DoubleWritable 8

All these wrapper15 classes provide a get() and set() method for retrieving

and storing the value.

But the Hadoop library provides some more implementations of the Writable

interface. The most important are Text which is a Writable implementation

for the equivalent of the string datatype, BytesWritable which is a wrapper

for an array of binary data and NullWritable which has a zero-length seriali-

zation. The latter can be used in situations where you don’t need a key or value

in a MapReduce function.

15

 A wrapper class is a class that wraps a primitive data type into a custom object. This is used to work
with primitive datatypes in other ways and to provide extra functionality e.g. datatype conversions.

57

7 HBASE

Relational Database Management Systems (RDBMS) are widely used for a

different variety of solutions. But as mentioned before, they do not fit for all

solutions. This is where HBase comes in. Since the setup has to process a big

amount of data, a regular RDBMS is not suited for it. HBase is written in the

Java programming language. This means every workstation that runs HBase

needs to have Java set up.

The biggest differences between HBase and a usual RDBMS can be found in

HBase’s architecture. The RDBMS does not support scaling but the HBase

database does by splitting all rows into regions. These regions are then hosted

by exactly one datanode. This means that the load is divided and adding an

extra node means that an extra region (with its rows) can be added.

HBase does not store data in column-oriented groups like a typical RDBMS

does. It does store data in a column-oriented format on disk but not like the

traditional columnar databases. These traditional ones excel at providing real-

time access to data, HBase provides key-based access to a specific cell of data

or a sequential range of cells.

Another key difference is that HBase does not use usual query solutions like

SQL or NoSQL. Instead, queries are performed in the form of commands.

These can be instructed through the Java API or through the command shell.

Considering scalability, there’s also a big difference between RDBMSs and the

HBase database. When regarding RDBMSs, adding extra storage or performing

table-wide queries is far from efficient. Analytical databases, like the HBase

database, however, can store thousands of terabytes and perform huge queries

that scan lots of records or entire tables.

58

The following chapters will describe what’s typical for the HBase architecture

and how it works.

7.1 Data Model

The data model differs from the one used in a traditional RDBMS. In this chap-

ter, all the core parts of this model will be explained.

Table

A database always consists of tables, these are hierarchy-wise the highest

collection of data. These tables consist of columns and rows.

Rows

A row in HBase is somewhat different from the one in a RDBMS. It consists of a

row key and one or more columns with their values. This represents a key-value

map in which the row key is the key and different values are attached to this

key.

What’s also different is that rows are sorted by row key in alphabetical order

instead of numerical order. Table 2 shows the effect of this difference.

Table 2 - RDBMS versus HBase key sorting mechanism

RDBMS HBase

Row-1 Row-1

Row-2 Row-10

Row-10 Row-2

As can be concluded from this table, the sorting order will have a big impact on

how complete rows will be sorted in a database. This has to be taken into

account when designing the row key. This creates the opportunity for very

useful row key design patterns. One that is used a lot is the use of the website

domain name. If you, for example, store data from Google (com.google.www

and com.google.docs) and Bing (com.bing.www), the data from Google will be

grouped together instead of being sorted by the first letter of the domain name.

59

This row key pattern results in the following sorting order:

 com.google.www

 com.google.docs

 com.bing.www

Instead of:

 docs.google.com

 www.bing.com

 www.google.com

This kind of sorting makes the table optimized for the scans, which will be

explained later. Related rows can be stored near each other which results in

boosted performance and efficiency. What should be taken into account is that

HBase stores rows onto a region based on its row key. When a row key is

poorly designed the hotspotting phenomenon could emerge. Let’s recap that the

Hadoop and HBase system runs on different nodes (distributed) and that the

rows can be saved on different nodes. Hotspotting means that a big amount of

traffic is directed at a specific node (or a few nodes of the same cluster). Due to

this amount of traffic, the machine that is responsible for hosting this region gets

a lot of requests for reads, writes and other operations. This, in turn, causes

performance issues and could even lead to region unavailability.

To prevent this, decent design of row keys is a must. It is logical that rows that

need to be together should be together, in other words, in the same region. But

it is also important to spread data over different regions across the cluster.

When monotonically increasing row key this hotspotting will happen because all

clients will send requests to the same region and then go to the next one and do

the same. So avoiding incremental sequences (1, 2 ,3 …) or timestamps is a

good thing to do.

There is no universal ‘correct’ row key, it depends on the kind of data that is

needed to be stored and if a timestamp is linked to a row key or not.

60

Columns

A column in HBase also looks different, it consists of a column family and a

column qualifier. These are separated by the use of a ‘:’ character (colon).

There can be as many columns as desired in a database, even up to millions.

Columns also don’t have type or length boundaries on their values.

Column family

Columns are grouped into column families. This is done to build semantical

boundaries between the data and makes it possible to perform specific actions

on them like compressing them. All of the columns in a similar column family

are stored in the same file, called an HFile. Opposed to columns, when using

column families, it is advised to keep the number of families as low as possible.

Column qualifier

To provide the index for a specific part of the data, a column qualifier is added

to a column family. These qualifiers may be altered after creation and may be

totally different between rows. An example of a column family and qualifier can

be seen below.

Column family: content

Column qualifier1: content:html

Column qualifier2: content:pdf

Timestamp

Each value in an HBase database gets a timestamp. This timestamp identifies a

specific version of a value. The standard syntax of the timestamp is conform the

time of writing the data on the region server. This timestamp value can be

altered as desired.

Cell

As with a regular RDBMS, a cell is a collection of different parts of the data

model. With HBase, a cell is represented by the combination of a row, a column

family and a column qualifier. As mentioned before, this cell contains a value

with its timestamp.

61

Datatypes

In a traditional RDBMS, datatypes are very important considering the way the

database will process the data. In an HBase database, this is much easier.

Row keys, column qualifiers and values are processed as bytes. It doesn’t

matter what their actual content is, they will always be handled as bytes. It is

possible though to add datatypes but this is pure for the user’s benefit, the

system won’t use or even notice them. This means that whatever the user

wants can be used as row key for example. It can be a combination of numbers,

letters or both. Table names and Column Family names must be human reada-

ble and thus printable characters. The timestamp attached to values is a long

value and represents the time in milliseconds.

Visual representation and example

Figure 13 gives a visual image of how an HBase table may look.

Figure 13 - HBase table example (myTable)

The first thing to notice is that the rows ordered alphabetically, as mentioned

before. Next to that, every value has a corresponding timestamp (here it is not

shown to keep the image simple and clear). Two column families can also be

seen, Personal and Office, each with their own columns. These families are

the same for each row. This makes searching algorithms way more efficient. If

you look for a personal phone number for example, only the Personal column

family will be processed in this process. Considering column qualifiers, Name

and Residencephone are two column qualifiers for the Personal column

family.

Another thing that can be noticed is that there are two different Resi-

dencephone values for Bob (row key 0001). Since a timestamp is added to

62

each value, his old and his new phone number can be found. Every value in the

table above has Timestamp1 as timestamp, except Bob’s second phone

number, this value has Timestamp2 as timestamp. If no timestamp is given in

the searching process, the newest value will be given, being his new phone

number in this case.

Here you can see some possible requests for this example and their results.

0001 = {

 Personal : {

 Name : {Timestamp1 : Bob},

 Residence Phone : {Timestamp2 : 777-5-1234} },

 Office : {

 Phone : {Timestamp1: 777-44-25},

 Address : {Timestamp1: 100 Birdlane} }

 }

0001, Personal = {

 Name : {Timestamp1 : Bob},

 Residence Phone : {Timestamp2: 777-5-1234}

 }

0001, Personal:Residence Phone = {

 { Timestamp1: 777-5-1111 },

 {Timestamp2: 777-111-1234 }

 }

0001, Personal:Residence Phone, Timestamp1 = { 777-5-1111 }

0001, Personal:Residence Phone, Timestamp2 = { 777-5-1234 }

7.2 Data operations

There are four operations which can be performed on HBase’s data model,

Get, Put, Scan and Delete.

Get

A Get performed on a table returns the attributes for a chosen row. This opera-

tion is performed by using the get() method on the Table class that is part of

the HBase core library. The following command will give all of the data of the

first row of the table in figure 13.

% get ‘myTable’, ‘0001’

63

Put

The Put is used either to add a new row to an existing table (thus, with a new

key) or update an existing row (with an existing key). This following command is

an example of this operation.

% put ‘myTable’, ‘0001’, ‘Office:Phone’, ‘777-44-24’

This command will add a new phone number to the Phone qualifier of the

Office column family of first row (0001). This phone number will be added

with the timestamp on the region server when the Put is performed. If an exist-

ing value needs to be updated, then the timestamp of this value is also provided

in the Put command.

Scan

A Scan can be performed to get all of the data in a specific table at once or to

iterate over multiple rows for desired attributes. The following command will give

each row in the myTable table.

% scan ‘myTable’

Delete

To delete a row out of a table the Delete command is used. The following

command will delete the second row, and all of its according values, out of the

myTable table.

% delete ‘myTable’, ‘0002’

These are the four main transactions that can be performed considering data

retrieval and data manipulation. Next to those four, there are some other minor

commands used with the HBase database.

Disable is used to disable a table. If one wants to delete a table or change its

settings, the table needs to be disabled first.

Enable is used to enable a table again.

Drop is used to delete a complete table.

64

7.3 HBase Schemas

A database is built upon a schema which defines the tables, columns, primary

keys and everything else that defines how a database works.

To make changes to a column family, the table must be disabled first according

to the command mentioned above. After disabling the table, the Alter com-

mand can be used to change its name and such. Below, an example can be

seen of adding a new and deleting an existing column family.

Add a Foreign column family to the myTable table:

alter ‘myTable’, {NAME => ‘Foreign’}

Delete this column family again:

alter ‘myTable’, {NAME => ‘Foreign’, METHOD => ‘delete’}

65

8 CLOUDERA

This chapter will explain what Cloudera is, why we used it and some of its basic

functionalities will be discussed.

Cloudera is an American company and creates open source software based on

Apache Hadoop. They deliver software packs that automatically install and

configure Hadoop and all of the desired framework components with their own

Cloudera Manager on top.

There are different solutions available but only the Cloudera Express package

will be described here since that was the one used during this project.

As stated on Cloudera’s website: “Cloudera Express provides robust cluster

management capabilities like automated deployment, centralized administra-

tion, monitoring and diagnostic tools.”16

In other words, it will make it possible to perform all of the necessary tasks to

control and manage a Hadoop cluster. When using this system in a complete

business it should be mentioned that Cloudera Enterprise would be a much

better solution than Cloudera Express.

When Cloudera is installed for the first time, a cluster will be set up (named and

configured) and the data- and namenodes will be selected and added to the

cluster. After that, all of the services are assigned to the different nodes, here

the choice is made which server will be doing what and how the workload will

be divided. This is a very important step and balancing the workload equally is

crucial.

16

 Cloudera. 2015. Cloudera Express.

66

The wizard will take you through every step necessary for installing and config-

uring Cloudera. This set up is easy and every step is well explained. Basic

knowledge on Hadoop is required since specific terms are used by Cloudera.

After going through the full configuration, the services are distributed and ready

to start the work.

A global view on the Cloudera Manager can be seen in figure 14.

Figure 14 - Cloudera Manager overview

As should be clear from the picture, everything can be monitored and config-

ured using this manager interface. As mentioned before in chapter 6, Hadoop is

a framework and consists out of different components, these can be seen on

the left side of the page. If something is wrong with one of the components, the

according circle in this table will turn red. From there, you’ll also be able to start

and stop the different components and see which error messages a component

has created.

As mentioned before, the main benefit of Hadoop is its high scalability which is

reflected in the Cloudera Manager by making it easy to add nodes and clusters.

It’s really straightforward to then configure these nodes and then add them to a

cluster. There is a clear overview of health and configuration issues and even

log files are kept and are visible within the Cloudera Manager. Also considering

history, monitoring is optimized. As shown on figure 15, the system keeps track

of everything that goes wrong or causes problems, with the correct timestamp.

67

Figure 15 - Cloudera Health History

If we now take a closer look at the HDFS component of the Hadoop set up,

every desired statistic and configuration can be seen. These are also very

nicely presented on charts on the right side of the page. Below is an example of

the storage capacity of the file system.

Figure 16 - Cloudera statistics example

If the green and the light-blue bars would nearly reach the darker blue bar, then

extra storage capacity should be added. This again proves how easy it is to

monitor every part of the system and keep an eye on things that could possibly

go wrong.

68

9 DEVELOPING TOOLS

9.1 Hardware

The whole system is running on a blade server located in the Karelia University

of Applied Sciences, Wärtsilä campus. On top of this blade server, three virtual

machines were installed. One of them is the master machine, which divides the

tasks and such and the two others are slaves which perform tasks. The master

is provided with 16GB of RAM memory a 100GB hard drive disk and has 4

cores. The slaves have 12GB of RAM each and also 4 cores.

9.2 Software

In this chapter, all of the used software during the project will be listed and

explained. The biggest parts will be the software we used to connect to the

hardware setup and the software we used to develop.

Node management

Since the network setup was created by two other students, they made the

decisions considering creating a connection with the machines.

To start off, we had to connect to the gateway. The two students, mentioned

previously, provided the systems with open source remote desktop connection

software named X2Go. This makes it possible to connect to the gateway from

wherever you want, it is accessible from any location. What we had to do is

install the client version of the software on our own laptops and run it. After

configuring the gateway on the X2Go Client (entering the correct IP, desired

port, …) we could create a new session. For this, we entered the account

details provided by the two students and clicked ‘Ok’ to connect to the gateway.

The X2Go Client interface can be seen on figure 17.

69

Figure 17 - X2Go gateway connection

After a successful connection with the gateway has been established, the

desktop of the gateway will be opened. From this point, another X2Go Client

has to be launched to create further connection. This step can be seen on figure

18.

Figure 18 - X2Go connecting to virtual servers

This will result in all of the desired virtual machines showing up and being ready

for connection. These connections are established in exactly the same way as

with the gateway. This new X2Go screen can be seen on figure 19.

70

Figure 19 - X2Go machine overview

One can definitely conclude that it is a very simple but yet very secure way to

connect to the desired machines. If one doesn’t have access to the gateway,

then he/she won’t get even close to the machines where the complete ware-

house set up is configured on.

Developing the Data Warehouse

After obtaining access to the machines where the system runs on, the devel-

opment itself started. For this, we had to install and set up some different soft-

ware packages.

The NetBeans program was used to develop all necessary classes for the

warehouse. For our application development we used the NetBeans IDE from

Oracle. This IDE is open source and thus completely free of charge. It’s easy to

use and our team is quite familiar with it. For an easy deployment of our appli-

cation, we decided to install the IDE on our Ubuntu test machines. This way, we

can run a MapReduce application immediately without having to copy the JAR

file every time to the Hadoop machine.

71

Because we need to be able to provide our data to clients, we will need a web

server. In NetBeans you have various web servers to choose from. We choose

the Glassfish server from Oracle, because it can easily integrate with the Jersey

framework which we will use for our REST web service. So it’s important to note

that we are not creating a regular Java application, but rather a web application.

This approach has one important consequence, all MapReduce methods we

write, will have to be called from within our application, and not from the com-

mand shell via the hadoop command. So no JAR file is generated when build-

ing our application, it is simply deployed on our web container.

Our project will need a variety of external Java libraries. The most important one

being the hadoop-core library. To make library management easier in our

project, we used the Maven management and comprehension plugin. This

plugin makes it very easy to manage all your external libraries through the use

of a pom.xml file, where all the dependencies are declared.

<project … >

 <dependencies>

 <dependency>

 <groupId>org.apache.hadoop</groupId>

 <artifactId>hadoop-core</artifactId>

 <version>1.2.1</version>

 </dependency>

 <dependency>

 <groupId>org.apache.hbase</groupId>

 <artifactId>hbase-client</artifactId>

 <version>1.0.0</version>

 </dependency>

 </dependencies>

 ...

</project>

When building our project, Maven will automatically download and configure all

defined dependencies in this pom.xml file. This has one major advantage,

when working in a team via a version control system, other developers only

have to download the pom.xml file, and they will be able to download all the

correct libraries, without having to worry if their dependencies or versions are

the same as the other developers IDE’s.

Next to of all of this, we used GitHub to be able to develop together. GitHub is a

version control system which provides a repository for storing any type of file. It

72

is most commonly used for programming purposes but can be used for any

cooperation means.

GitHub can be managed from within the NetBeans application as it has all of the

necessary features integrated. To start off, an account has to be created on the

GitHub website. This step is followed by creating a repository, which is accessi-

ble through an HTTP link. Only one repository is needed per project as all

developers use this same repository to work together. Then a connection is

made between the NetBeans IDE and the GitHub repository. This is done by

logging in with your credentials in the NetBeans application and providing the

previously mentioned HTTP link. Then an initial push to the repository of the

project has to be done which means that it will be accessible for all of the other

developers. Now GitHub is set up for further development. The only thing they

have to do is initiate a pull-request from within the NetBeans program to get the

initial version of the project.

From then on, changes can be made to this project and, when the changes

need to be pushed to the repository, commits have to be made. A commit is

actually saving the changes on the local file system, this has to be done before

being able to push these changes to the remote repository. Typical commit

messages will accompany the commits, these are brief, but to the point, notes

to tell the other team members what has been changed and done. These mes-

sages are very important because communication is a key part of developing a

project in a team. It’s crucial to immediately be aware of what exactly has

changed in the project since it may affect what you are doing yourself. The

possibility to add commit messages is also integrated in the NetBeans applica-

tion and makes the program have everything needed to use it for version con-

trol.

Project managing

During the development of the project, a project managing tool named Trello

was used. This tool handles management in a SCRUM-like way. SCRUM is a

definition for a development strategy in which different team members work

towards different and equal goals. All of the tasks are defined and divided in the

73

service and it gives a global overview of what has to be done, what has already

been accomplished and who is working on what.

The tool is basically a website which provides an interface optimized for its

purpose. It uses some terminology to define different parts, these words will be

explained by the use of figure 20, which gives an overview of the interface.

Figure 20 - Trello overview

A board is what you basically see on this picture. It holds all of the different

tasks and all of the other data. It can actually be seen as a chalkboard where

different things are jotted down on or a bulletin board where notes are attached

to.

The board is filled with lists, these are actually divisions to keep everything

clear. In our case we used ‘To Do’, ‘In Progress’ and ‘Done’ to keep track of the

progress. This division is mostly used considering SCRUM development and is

universally accepted as useful and efficient.

On these lists, cards can be found. A card represents a task and its title basical-

ly defines what it’s about. Next to that labels can be added to a task, these are

the coloured bars on the picture. The function of a label is to define the purpose

the task serves. In our project we used some self-defined colours for different

tasks.

74

 Blue: general tasks, tasks which are no part of development but are im-

portant though.

 Green: development tasks

 Red: tasks considering the thesis

 Yellow: research tasks

These colour labels are used for organizing everything and to keep the board

clear for everyone. A team member can be added to a task so everyone knows

what he/she has to do. The tasks can easily be dragged from one list to another

and comments and files can be attached to them too. This tool is free to use

and provided us with all of the functionality needed to follow up the project in a

productive manner.

75

10 PRACTICAL APPLICATION

In this chapter everything we have done to actually create our application will be

described.

10.1 Network setup

On figure 21, the setup of the network and hardware we worked with can be

seen.

Figure 21 - Network setup

Let’s start from the white cloud, this is where we were located considering the

development. This cloud represents ‘the Internet’, we worked from the outside

and connected to the gateway on the IP address 195.148.196.80. After we

connected to the gateway with the use of a username and password, we could

connect to our working setup which consists of a master (namenode) and two

slaves (datanodes). The gateway is used to protect our setup from undesired

76

external access. The host n1-c1, is the namenode of the setup and the other

two are datanodes.

This setup was provided to us by two Finnish students (Tiainen Henri and

Janne Puustinen) which have made a thesis on this in which they describe how

they have set this up. We’d like to refer to their thesis for more information on

this network setup, which is not published.

10.2 Cloudera installation

For our Hadoop deployment, we used Cloudera as it will simplify installation and

configuration of Hadoop a lot. The core component of a Cloudera installation is

the Cloudera Manager and to install this, 4 other components are needed and

must be installed correctly on our system.

 Oracle JDK

 Cloudera Manager Server and Agent Packages

 Supporting database software

 CDH and managed service software

Cloudera offers three different installation paths to use for deploying Cloudera

Manager. Each has its advantages and disadvantages. These different installa-

tion paths can be seen in table 3.

Table 3 - Cloudera installation paths

Installation path Description

Automated installation by

Cloudera Manager

This is the easiest and fasted way to deploy

Cloudera on a cluster. Cloudera Manager auto-

mates the process of installing Oracle JDK, em-

bedded PostgreSQL database, Cloudera Manager

Server and Agent Packages, and managed service

software. This path is only recommended for

demonstrations purposes only, it’s not suited for

large scale solutions.

77

Manual installation using

Cloudera Manager Pack-

ages

The user needs to install the Oracle JDK, Cloudera

Manager Server and embedded PostgreSQL

database packages on the Cloudera Manager

Server host. The user has two options in this

install, manual install or automated installation.

This is the preferred method for installing Cloudera

and is suitable for production environments as it is

scalable.

Manual installation using

Cloudera Manager tar-

balls17

This installation path is exactly the same as the

previous, only instead of installing the components

as packages they are installed as tarballs.

In our setup, we used the ‘Manual installation using Cloudera Manager Packag-

es’ path. We needed a scalable, production-ready environment. This is actually

not suitable for testing, but therefore we created multiple test environments as

virtual machines that run on our consumer grade laptops. Note that all installa-

tions will happen on machines running Ubuntu 14.04.

Installation and configuration of databases

Cloudera Manager uses a number of databases and data stores to store infor-

mation about configurations as well as history information about health checks

and task progress. The easiest way is to install the embedded PostgreSQL

database. You can however install a database of your own choice, but to en-

sure optimal configuration we decided to go with the embedded database. You

can specify on what host you want the database to be installed, but because

our cluster setup is so small we will install the database on the master host (the

namenode). To install this PostgreSQL embedded database we can start by

installing the package through the apt-get command in Ubuntu:

% sudo apt-get install cloudera-manager-server-db-2

17

 A tarball is an archive file to collect and compress various files for distribution or backup purposes.

78

After a successful installation we need to start this database using the following

command:

% sudo service cloudera-scm-server-db start

Cloudera Manager Repository Strategy

In this step, we need to define a repository strategy to manage and install all the

necessary components for Cloudera. We do this by defining a repository URL

on the Ubuntu system and updating all installed packages on the system.

First we need to create a new cloudera-manager.list file inside the

/etc/apt/sources.list.d/ directory with the following content.

Packages for Cloudera Manager, Version 5, on Ubuntu 14.04

x86_64

deb [arch=amd64]

http://archive.cloudera.com/cm5/ubuntu/trusty/amd64/cm trusty-

cm5 contrib

deb-src http://archive.cloudera.com/cm5/ubuntu/trusty/amd64/cm

trusty-cm5 contrib

Now we can update all packages on the system, and because we defined this

new repository, we will retrieve all necessary packages for the Cloudera instal-

lation on our system.

Installation of Oracle JDK

Hadoop is developed in the Java programming language. Therefore Java needs

to be correctly installed on all hosts. It is of crucial importance that all the ver-

sions of Java are the same on all machines. Otherwise unexpected behaviour

could arise when executing MapReduce applications. Because of these possi-

ble consequences, developers also need to make sure that, when they create

new MapReduce applications on other test setups, the JDK version has to be

the same as well. We installed version 1.7.0_79 on all hosts and on our virtual

test machines.

Cloudera Manager Server packages

This step involves the actual installation of Cloudera Manager Server on the

master host. We need to make sure that we install these packages on a host

79

that has access to the database we installed earlier. Fortunately we deployed

this database on the master node. For this we need to install two packages via

the apt-get command.

% sudo apt-get install cloudera-manager-daemons cloudera-

manager-server

And actually at this point, all the necessary software for Cloudera is installed.

However we still have two slave nodes that are not installed yet. In Cloudera

terms, the Cloudera Manager Server is the master node (namenode), Cloudera

Manager Agents are the slave nodes (datanodes). But these slave nodes need

another package to be installed.

Cloudera Manager Agent packages

Next step is to install the required software on our slave nodes so they can be

used as datanodes in our Hadoop cluster. In this case we can use the following

apt-get command that we execute on every slave node.

% sudo apt-get install cloudera-manager-agent cloudera-manager-

daemons

At this point, we have all of the Cloudera packages installed on all our hosts.

But how do the slaves know who is their master? We need to configure the

Cloudera Manager Agents to point to the Cloudera Manager Server. We can do

this by setting the IP address and Cloudera port of the master host. This is

configured in the /etc/cloudera-scm-agent/config.ini file on every

slave.

server_host=192.168.72.11

server_port=7182

Starting Cloudera

Now all of the necessary packages are installed onto the machines, we can try

to start up the Cloudera Manager. It’s important to first start the Cloudera Man-

ager Server and then the Cloudera Manager Agents, as the agents will search

for a Server when booting.

80

We start the Cloudera Manager Server (the namenode) via following command.

% sudo service cloudera-scm-server start

Then we can start our 2 Cloudera Manager Agents (the datanodes) via follow-

ing command.

% sudo service cloudera-scm-agent start

Configuring Cloudera

Now the Cloudera Server and Agents are started, we can continue configuration

through the Cloudera web interface. In a browser we can go to the hostname of

our namenode followed by port 7180 which is the default port for the Cloudera

web interface.

http://n1-c1.karelia.fi:7180

After this, the user goes through the setup process of configuring Cloudera,

which is quite straightforward and therefore we will not discuss this in this paper

expect for one aspect of the configuration which is the services in Cloudera.

In the ‘Add Services’ section of the configuration process the user has the

option to select a variety of services to add to the setup:

 Core Hadoop (HDFS, YARN, ZooKeeper, Oozie, Hive, Hue and Sqoop

 Core with HBase

 Core with Impala

 Core with Search

 Core with Spark

 All services

 Custom services

In our case we chose the ‘Core with HBase’ option. Now following on this as-

signment of services, the user needs to define role instances to hosts. Every

service contains a few roles (for example the HDFS services contains the

http://n1-c1.karelia.fi:7180/

81

namenode and datanode roles) and this graphical interface makes it very easy

to assign roles to specific hosts.

After the configuration setup is complete. You can view role instances for every

host separately. On figure 22 an overview of the role instances that are running

on our second datanode is shown.

Figure 22 - Cloudera role instances

As we can see, the HBase RegionServer role is running on this node, as is the

DataNode role instance of the HDFS service. Datanodes and regionservers

should always be one and the same machine. Then we also have a YARN

NodeManager running and a ZooKeeper Server. To run ZooKeeper efficiently

on a cluster, there should be at least 3 nodes with the ZooKeeper role assigned

to. In our cluster we only have three nodes, so every node has this role instance

present.

Now we have a complete Hadoop cluster running with three nodes, ready for

MapReduce applications to executed on.

10.3 Application

On figure 23, the full setup of the warehouse is shown. This gives an impression

off how the whole system looks like and makes it easier to understand how it

works. Below, we’ll describe every part of it and try to point out any difficulties.

82

Figure 23 - Application architecture overview

The setup can be divided into three main parts. First the data is retrieved from

any kind of source. After that, the data is transformed and stored into the data-

base, which is HBase in our case. Finally access to this data is provided

through a web service. As can be seen on the left side, different cities, each

with their services, are presented. This scheme is a global visualisation of the

implementation. As mentioned earlier, the project is built upon sustainability and

can be expanded across different cities. We took this into consideration and

thus implemented it this way. During the next chapters, the different parts will be

described in detail and we’ll explain how the complete system works.

10.3.1 Data retrieval

The first task of the system is actually retrieving the data. To do this, there are

some different parts used in our setup. This chapter will discuss every compo-

nent and explain how they work.

Configuration files

Since all kinds of data will be coming from different sources, we’ll have to pre-

define these sources. This predefinition could for example include a database

URL and login credentials, along with the frequency with which the data has to

be pulled. Something important to mention is that it would be very unwise to

hardcode these configuration details. If, for example, a database’s URL chang-

es, the code of the system would need altering which is highly unpractical.

83

Instead, these details are saved into configuration files that can easily be

adapted to the needs of the user or the system. This is done in the XML lan-

guage that uses tags to separate different configuration details. In our setup,

there are two different kinds of configuration files. There is one main file, in our

case called cities.xml, which holds an overview of every city that uses our

system. To this city, another file is linked (e.g. JoensuuServices.xml) which

holds the actual data necessary to connect to different sources.

This distinction is done to maintain good performance when data is being

pulled. The specific services file for a city is the only file that will be processed.

To give an example, let’s assume that there are two cities, Helsinki and

Joensuu. Now in a particular case, data from a service located in Joensuu

needs to be pulled. When the services of Helsinki would also be processed, a

lot of valuable time would have been lost. Instead, first the city is passed on, in

this case Joensuu and then only the services in the JoensuuServices.xml

file will be checked and not those in the HelsinkiServices.xml file. As

should be clear by now, we handled the following syntax for a services file:

CityServices.xml with City being replaced by the actual city name.

An example of the cities.xml file is shown below.

<?xml version="1.0" encoding="UTF-8”?>

<cities>

 <city>

 <name>Joensuu</name>

 <file>JoensuuServices.xml</file>

 </city>

 <city>

 <name>Helsinki</name>

 <file>HelsinkiServices.xml</file>

 </city>

</cities>

The first tag is an official tag to define the file as an XML file. Then root element

(cities) is used to define all of the different cities. This element is followed by

a repeated city element which defines every different city. This element can

be repeated infinite times and holds the name of the specific city and the file in

which the different services are located for this city.

84

The following file is an example of a services file, here created for a Joensuu

example.

<?xml version="1.0" encoding="UTF-8”?>

<services>

 <service>

 <name>TrafficLights</name>

 <resources>

 <resource>

 <name>Lights</name>

 <datalocation>Lights.xsl</datalocation>

 <scheduling>

 <type>interval</type>

 <interval>604800000</interval>

 </scheduling>

 </resource>

 <resource>

 <name>Sensor</name>

 <datalocation>Sensor.xsl</datalocation>

 <scheduling>

 <type>interval</type>

 <interval>302400000</interval>

 </scheduling>

 </resource>

 </resources>

 </service>

</services>

Since this file is written in the same format as the previous one, there is also a

universal XML tag at the top of the file, followed by a root element (services).

This file will hold all the different services for a specific city, each with their own

name and resources. These resources are in turn repetitive and contain the

location of where the data resides, in this example they are just worksheets

located on the local file system. These data locations would later be database

URL’s and then necessary credentials could be added to obtain access to this

data location. What’s also stored within these resources is their scheduling

system. The scheduling defines how frequently the data should be pulled which

differs for different kinds of data. This scheduling element has a type and an

interval. We defined these types ourselves and table 4 will give a view on the

different possibilities.

85

Table 4 - Scheduling types

Scheduling type Description

Initial
This data only needs to be pulled
once.

Interval
This data needs to be pulled after
every specified timeframe.

First things to notice is that these scheduling types can easily be altered and

expanded to the wish of the user. The second things to mention is that the

interval measures are expressed in milliseconds. So the example of

604800000 in the interval element means that the data needs to be pulled

every week. This value can be a couple of minutes, an hour, a day, a week, a

month or even a year or more. The absolute maximum refreshing rate is the

max value of a Long type in Java which is 263 and represents 292 million years.

Data domain classes

Now that every configuration detail is saved, we need some way to virtually get

this configuration into our system. In our project, this is done by creating classes

that represent the different key parts of this connection system. These classes

are placed in the fi.karelia.publicservices.data.domain package.

On figure 24, the class diagram of these classes can be seen.

Figure 24 - Data domain class model

86

As can be seen on the image, one city has multiple services and a service can

have multiple resources. Next to that, there are different scheduling types which

are defined in an enumeration class.

XML Reader

Now we have the objects representing cities and their services/resources, we

need a way to transform the data from the configuration files into these objects.

This is done by a class called XMLReader. This class was written based on the

java implementation for XML parsing18.

What the XMLReader class basically does is converting the data provided in the

XML files to actual Java objects which are ready to be used. The reader has

two methods up to this point, other necessary methods may be added if the

structure of the configuration changes. This would be easy to do but for now the

system works completely using the following two methods.

The first method is the getAllCities() method that will check the cit-

ies.xml file and return a list of all of the city objects that have services files.

What happens is that the cities.xml file is being read and every city element

is checked for its name element which contains the name of the specific city.

Next to this name element, a file element is attached to define the location of

the services file linked to this city. At this point a new city object is created and

the name and filename are set for this object. Then the second method is called

which is the addServicesToCity() method.

What this second method basically does is configure the list of services, each

with their appropriate resources, for a defined city. So the city object, to which

the correct services will be linked, is given as parameter. What happens here is

that the file, of which the name was attached to the city object in the first meth-

od, will be read out just like with the cities.xml file during the previous

method. The XML file is being parsed and for every service element, a service

object is created and for every resource element, a resource object is created.

During these creations, the correct fields of the objects are configured according

18

 Parsing is the process of converting a string of symbols into the desired objects.

87

to the data in the tags. The resources are linked, through the use of a List

object, to the correct service and the same happens for linking different services

to a city object.

So this actually is a top-down approach, first a city is created and then every-

thing for this city is constructed and configured appropriately. Every time a new

city element in the cities.xml file is processed, a new city object is created

and added to the list which will be returned at the end of the first method. After

this method is completely executed, all of the necessary objects are created

and residing in our application. As stated before, the XMLReader class is the

link between the actual domain objects and how they should be configured

according to the XML configuration files.

Data scheduler

Our data warehouse always needs to have the latest data available. In the

previous section we explained how scheduling intervals can be defined on

resources. Now we’ll discuss the implementation of the class that pulls this data

at periodic intervals.

This class has two important functions, which we need to explain with care. On

the one side, we have the scheduling of resources that require updates defined

by intervals. On the other hand, we need to make sure that when these XML

files change (because of adding new resources for example) the schedule with

the modified resources is updated. Table 5 gives an overview of what should

happen if XML resource files are modified

Table 5 - Consequences of resource modification

Change Action

Resource added

When a new resource is defined in the XML files, we

need to check if there is an interval value defined for

this resource. If there is, we need to schedule this

resource for periodic updates in our DataScheduler.

If there is no interval defined, we need to pull the data

from the resource just once, like an initial pull.

88

Resource modified

When an existing resource is modified, we need to

check all the fields within the resource element. Our

scheduled resource object will need to match its

properties with the new values in the XML file. But on

top of that, we need to modify the existing schedule for

this resource if the interval value changed or the

interval type has changed.

Resource deleted
If a resource element is deleted in the XML files, we

need to remove the resource from the scheduler.

Now these resources are defined at the lowest level in our XML files. One level

higher we have the service element. Table 6 provides an overview of what

happens when a service element is changed.

Table 6 - Consequences of service modification

Change Action

Service added
When a service is added, but no resources as child of

the service, nothing happens.

Service modified

Modifying a service can mean, a service’s name is

modified, or it means resources as children elements

are modified. When the latter applies we need to

perform the actions defined for when a resource is

modified.

Service deleted

When a service is deleted, we need to delete all re-

sources that are defined as children of this service

element. This is the action taken for when a resource

is deleted.

The highest level in our XML configuration files is the cities element. Like men-

tioned in the previous section, these cities are defined in the cities.xml file.

Table 7 gives an overview of what happens in case of modifications in this file.

89

Table 7 - Consequences of city modification

Change Action

City added

When a city is added, new services and resources

defined in the new XML file should be added following

the actions mentioned in service added and resource

added.

City modified

Modifying a city can only mean two things. Either the

city name was changed (the program will register this

as a city deleted and added), or the name/location of

the corresponding city file has changed. In either way,

the old services and resources should be deleted and

the new ones added again.

City deleted

When a city is deleted, all the scheduled resources for

this city should be stopped and deleted following the

action described in deleting a resource.

Now let’s take a look at how this is done in Java code. We first created the

DataScheduler class. And because this class takes care of all scheduling, we

should make this class a singleton19 to ensure no duplicate scheduled re-

sources will be defined. We achieve this by defining one static DataSched-

uler object, creating a private constructor and defining a getInstance()

method to retrieve the single instance of the DataScheduler:

public class DataScheduler {

 private static volatile DataScheduler dataScheduler = null;

 private DataScheduler() { … }

 public static DataScheduler getInstance() {

 if (dataScheduler == null) {

 synchronized (DataScheduler.class) {

 if (dataScheduler == null) {

 dataScheduler = new DataScheduler();

 }

 }

 }

 }

}

19

 A singleton is a class that is defined so that only one instance of it can be created.

90

Now we will always have exactly one instance of our DataScheduler. After

that, two Java schedulers are needed. One is necessary for starting our periodic

check if resources, services our cities have changed. The second scheduler will

serve as a container for all the scheduled resources that will need data updates

at periodic intervals.

private final ScheduledExecutorService executorService =

 Executors.newScheduledThreadPool(1);

private final ScheduledThreadPoolExecutor dataExecutor =

 new ScheduledThreadPoolExecutor(1000);

The first scheduler, our executorService will serve as the scheduler for our

daily check of XML file modifications. The second dataExecutor will hold all

scheduled resources. From now on, to make a distinction between the first

(main) scheduler and the secnd (resource scheduler), they will be called re-

spectively MainScheduler and ResourceScheduler. Now each scheduler con-

tains a collection of Runnable objects. These reflect the tasks that can be

executed at a specific interval. So for our MainScheduler we need one simple

task, which is updating all our resources from the XML files, so they reflect the

correct URL’s and intervals in our ResourceScheduler. We create this new

mainTask in the private constructor of our DataScheduler class.

private DataScheduler() {

 mainTask = new Runnable() {

 @Override

 public void run() {

 XMLReader r = XMLReader.getInstance();

 for (City city: r.getAllCities()) {

 try {

 updateModifiedResources(city);

 } catch (HadoopException ex) {}

 }

 rescheduleModifiedResources();

 }

 };

}

This main task retrieves an instance of our XMLReader. Then we loop through

the collection of all cities, which is called and parsed by the XMLReader. Then

for every city, we call the updateModifiedResources() method. It is this

method that implements the functionality for when resources are added, modi-

fied or deleted. Now when all new resources are added, existing ones modified

91

or deleted, we can call the rescheduleModifiedResources() method that

takes care of updating the intervals at which the modified resources are sched-

uled. The implementation for these methods is too extensive and is therefore

left out in this section. In Appendix 2, a full implementation of this class can be

found.

Now because we need to have control over running tasks and their related

resources, we need a reference to them. But using a ScheduledThread-

PoolExecutor, you can only retrieve a queue of all scheduled tasks. And

these tasks are Runnable objects. So how do we know which Runnable object

corresponds to which resource? For this problem we created a new class called

DataScheduledTask which implements the interface RunnableSched-

uledFuture. This way, we can add a reference to the resource that the task

corresponds to. To illustrate this, here is the code of this class without imple-

mented methods and constructor. In Appendix 3, the full code can be found.

public class DataScheduledTask implements RunnableScheduledFuture {

 private Resource resource;

 private DataPuller puller;

 private boolean running;

 private boolean cancelled;

 private long startTime;

 ...

 public Resource getResource() {

 return resource;

 }

 public void setResource(Resource resource) {

 this.resource = resource;

 }

}

Now we implemented our schedulers and the custom implementation of Run-

nableScheduledFuture to schedule objects on. This application runs on a

web server, but how can we start our MainScheduler with this mainTask?

Nothing triggers this task to be run. The ideal moment to start this task is when

the application has just finished starting up. Then the mainTask may update all

resources in the XML files. This is done by creating an ApplicationEvent-

Listener which is included in a separate package called

92

org.glassfish.jersey.server.monitoring. This is an interface that is

used to define a class where certain events (like on web server startup) are

captured. We won’t go in detail about this now since this part belongs to data

providing in chapter 10.3.3 Data providing. We simply start the main task of the

data scheduling by calling the following method.

DataScheduler.getInstance().initialize();

Data Puller

Now we got the assignment to pull data from the schedulers. The next step in

the data retrieval process, is executing a HTTP GET request to the resource’s

URL. For this functionality we created a new class called DataPuller. The

only task of this class is to create an HTTP request, execute it and call the

correct driver to create a job to map the data from the response body.

Java has a built-in HTTP client and server component library. But it’s a little

difficult to use and we found a much more user-friendly library from Apache,

which is called httpclient from the httpcomponents package. We define

this new library in our pom.xml file, so Maven can automatically download this

dependency for our project.

<dependency>

 <groupId>org.apache.httpcomponents</groupId>

 <artifactId>httpclient</artifactId>

 <version>4.4.1</version>

</dependency>

We must not make our DataPuller class a singleton, because each sched-

uled resource will create a new object of DataPuller, so it can request its

data and not worry about other requests. There will be one request per instance

of DataPuller.

There is one method we define in our DataPuller which is pull(). This

method takes a Resource object as parameter and returns void as its return

value. Executing an HTTP request is an asynchronous task, therefore the

httpclient library provides us with a ResponseHandler class to handle the

93

HTTP response that is sent back from the host. This handler checks whether

the status code that is returned in the response header is valid, meaning the

status code must be between 200 and 300. If the status code is valid, the body

of the response is written to an HttpEntity object that’s part of the Apache

http library. Let’s take a look of how we implemented this ResponseHandler:

responseHandler = new ResponseHandler<String>() {

 @Override

 public String handleResponse(HttpResponse hr) throws

 ClientProtocolException, IOException {

 int status = hr.getStatusLine().getStatusCode();

 if (status >= 200 && status < 300) {

 HttpEntity entity = hr.getEntity();

 if (entity == null) {

 return null;

 }

 return EntityUtils.toString(entity);

 } else {

 throw new ClientProtocolException(

 "Unexpected response for resource pull with URL: "

 + url + ". Got response code: " + status);

 }

 }

}

We now have a way of handling the response we will get from the request. Now

we need the request itself. The key objects for this are CloseableHttpCli-

ent and HttpGet from the Apache http library. CloseableHttpClient

opens a new socket for a HTTP request. HttpGet is used to create a GET

request header. Let’s take a look at the necessary steps to create this HttpGet

object and execute the HttpClient object with this HttpGet object and our

previous ResponseHandler.

public void pull(Resource resource) throws IOException {

 CloseableHttpClient httpClient = HttpClients.createDefault();

 final String url = resource.getUrl();

 try {

 HttpGet httpGet = new HttpGet(url);

 String responseBody = httpClient.execute(httpGet,

 responseHandler);

 } finally {

 try {

 httpClient.close();

 JobClient.runJob(DriverFactory.createMapJob(resource));

 catch (ClassNotFoundException ex) {

 throw new MapperNameException(

94

 "Wrong resource name link to Mapper");

 }

 }

 }

}

10.3.2 Data storage

Mapping

Hadoop works on the principle of providing an input path of a particular re-

source to apply some MapReduce functions on. Our DataPuller can now

request data from a resource URL. We need to store the data that is returned in

the response body, onto the Hadoop distributed file system. In our DataPull-

er class we created a new method to do this.

private void storeOnHDFS(Resource resource, String data)

 throws IOException {

 Configuration conf = new Configuration();

 Filesystem fs = FileSystem.get(conf);

 Path outFile = new Path(resource.getName());

 if (fs.exists(outFile)) {

 fs.delete(outFile, true);

 }

 BufferedWriter br = new BufferedWriter(

 new OutputStreamWriter(fs.create(outFile, true)));

 br.write(data);

 br.close();

}

This method writes the Response in string format to a text file that is located on

the HDFS file system. We need to provide a directory name, and for this we

simply choose the name of our resource. This way when we need to run the

mapper through the Job object, we can easily specify the location of our stored

text file.

In Hadoop terms, a class that configures a Job is called a driver class. We need

to configure a Job object, because we need to run a MapJob on our data, so

we can store it in our HBase database. Depending on the resource, a Job can

be set with various parameters. To make this easier to configure jobs, we

created a DriverFactory class that creates jobs for specific types of data.

95

This class creates a Hadoop Job object and returns it to the caller. In our case

we just need a Map function for our Job, so we’ll create a method that creates a

Job just for this.

public class DriverFactory {

 public static JobConf createMapJob(Resource resource)

 throws IOException, ClassNotFoundException {

 Class mapperType = MapFactory.createMapperType(

 resource.getName());

 JobConf conf = new JobConf();

 conf.setJobName(resource.getName());

 conf.setJarByClass(mapperType);

 conf.setMapperClass(mapperType);

 conf.setInputFormat(resource.getInputFormat().getClass());

 conf.setOutputFormat(DBOutputFormat.class);

 FileInputFormat.setInputPaths(conf,

 new Path(resource.getName()));

 FileOutputFormat.setOutputPath(conf, new Path("output"));

 return conf;

 }

}

This method creates a new JobConfig object that is used to run a Hadoop job.

On this JobConfig instance, we set the Mapper class that the job should use

to transform the data. For this type, we created a MapperFactory class that

converts the resource name to the corresponding Mapper name in our applica-

tion. We also need to set what type of InputFormat will be used for the Map-

per, in our case the type of resource is defined in the Resource object. We

write everything to our HBase database, so we set the OutputFormat value to

DBOutputFormat. Next we specify the location of our resource on the HDFS.

When we stored the file, we took the name of the resource as its directory

name. Now we can provide our resource name as the location of our input path.

Hadoop requires us to set an OutputFormat as well, but since we will write

everything to HBase, only the directory ‘output’ will be created, with nothing

stored in it.

After the DataPuller retrieves a response from the HTTP GET request, it

closes the connection. It’s at this point that it runs the Map job, to transform the

data and load it into the database.

JobClient.runJob(DriverFactory.createMapJob(resource));

96

HBase

While continuing with our example of the vehicle detection (see chapter 6.3

MapReduce), we’ll explain the schema of the VehicleDetectionReading

table, which stores all of the actual sensor values.

Just to point this out, this is obviously not the only table we’ll have in our sys-

tem. There will be a table holding the information about the different sensors

like the brand, how old they are, repair status, etc. There might also be a table

called ‘Crossroad’ which connects all sensors located in the same crossroad.

Without a doubt, there will be even more tables but only the most important one,

the VehicleDetectionReading is discussed here. The schema of this table

is shown on figure 25.

Figure 25 - HBase VehicleDetectionReadings schema

To be able to fully interpret this HBase schema, please make sure you have

read the theoretical chapter on HBase (7 HBASE)

The schema is built up in the following way. First we take the sensor id as row

key (s0001, s0002, …) to distinguish the different sensors. This sensor will be

measuring data on an hourly interval, every single day. To differentiate these

moments, we use the Datetime column which contains Long values repre-

senting the specific timestamp. The lower in the table, under the same row key,

the more recent the data will be. For example the first Datetime,

1425247200000, represents 00.00 AM on the 2nd of March 2015 and at that

moment a value of 25 was registered. If we now take a look at the row beneath

97

that one, the Datetime represents the same date but at 01.00 AM. This goes

all the way until 23.00 PM (the first row on figure 21 which is positioned beneath

the first dots), because after this value 00.00 AM is reached on the next day.

This means that the next value is registered on the 3rd of March 2015 which has

the Long value of 1425333600000 and represents an actual value of 18. The

next Long value will then represent the second hour (01.00 AM until 02.00 AM)

with a value of 19, and so on and so on. What’s good about this way of storing

the dates and according time is that it’s very easy to read them out, to transform

them into Timestamp objects and to sort them.

The last column is filled with the actual values which are integers that represent

the number of cars counted by a specific sensor on a specific moment. Like

mentioned in the theory, a timestamp will be added to each stored value. This is

not shown on the image above, to keep the example clear, but is important and

it represents the moment when the data was put into the database.

This schema is built upon the table format of HBase and is pretty much the

most efficient way to store data considering the goal of our system.

10.3.3 Data providing

This part of the system has as goal to actually provide data to the end user.

This data provision is based upon requests and sends data from the database

to the user through a web service.

Servlet container

For our application, we need to be able to provide an interface to our end-users

so they can access our data stored in HBase. We can achieve this by creating a

web service. One of the developers of this project, was already quite familiar

with web services based on the REST structure, which will be explained later.

Jersey is a framework to create RESTful applications, it makes use of annotat-

ed class definitions to define the REST services. The biggest advantage for our

project of using this framework, is that this framework can be declared as a

98

dependency in our Maven pom.xml file. And on top of that, we can use the

integrated Glassfish server that Jersey runs on top of.

<dependency>

 <groupId>org.glassfish.jersey.core</groupId>

 <artifactId>jersey-server</artifactId>

 <version>2.17</version>

</dependency>

Now requests to a web server normally are requests to resources like HTML

files, which are the most common. But the requests we will receive are those

that request data from our HBase database. So we need our application to call

this requested data from the database. So what the end user is actually re-

questing is an application, and not a resource. Running applications on a web-

server are triggered by a servlet. A servlet is a container that can call various

parts of an application that reside on the webserver.

Jersey provides us with an implementation of their servlet container, it’s this

container that will handle all our REST requests and call the correct part of the

web service. First, we need to make sure our web application knows that it

should use Jersey’s implementation for the servlet container. In Java, we do this

by creating a web.xml file. In this file you can define multiple servlets, but also

listeners for your application (for example an application initialized event listen-

er). We only need to define one servlet, the Jersey servlet container:

<web-app … >

 <servlet>

 <servlet-name>PublicServicesApi</servlet-name>

 <servlet-cass>

 org.glassfish.jersey.servlet.ServletContainer

 </servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>PublicServicesApi</servlet-name>

 <url-pattern>/api/*</url-pattern>

 </servlet-mapping>

</web-app>

Let’s give a summary of the content of this servlet definition. First, we define a

new servlet element, this element always needs to have at least the

servlet-name and servlet-class child elements. The servlet-name is

99

something the developer can decide for his own, in our case we called it Pub-

licServicesApi. The servlet-class element is where you define the

container class, in our case its Jersey’s implementation which is located in the

org.glassfish.jersey.servlet package. Then we added one more

element as child of the servlet element, load-on-startup. This element’s

value indicates whether this servlet should be loaded on startup, in our case this

is set to 1 which means the servlet will be loaded when starting the application.

The second part in the web.xml file is the servlet-mapping element. Here

we define the URL to access the servlet container. We do this by declaring the

servlet-name exactly the same as declared in the servlet element (this is

very important, since this links the servlet to the servlet-mapping). Then

we can specify the URL-pattern that should be used to access our web contain-

er. In our case users will always make a request to the container when the URL

has the following format:

http://hostname/api/*

With all this defined our web container will be accessible for end users.

Servlet resources

Now before getting on with building the actual web service, we need to config-

ure some other features that are vital to the correct operation of our web ser-

vice. But there is even something else we can do at this point. Remember the

section where we explained the initialization of the DataScheduler? We need

to have a trigger, to start the whole process of our DataScheduler. Because

we defined our first servlet container, we can now add some features or tools to

this container. In Jersey language, these are called resources.

What we need is an event listener, specifically an event listener that is triggered

when the application is fully loaded on the webserver and thus is ready to

receive requests. Jersey provides us with an interface you can use to define

listeners on application-level. This interface is called ApplicationEventLis-

http://hostname/api/*

100

tener and is part of the org.glassfish.jersey.server.monitoring

package. It defines two methods.

public void onEvent(ApplicationEvent ae);

public RequestEventListener onRequest(RequestEvent re);

It’s the first method that is of importance to us (we also created an implementa-

tion for the onRequest() method, but this is beyond the scope of this thesis).

We created a new class called PublicServicesEventListener, which

implements this ApplicationEventListener interface.

public class PublicServicesEventListener

 implements ApplicationEventListener {

 @Override

 public void onEvent(ApplicationEvent ae) {

 switch (ae.getType()) {

 case INITIALIZATION_FINISHED:

 DataScheduler.getInstance().initialize();

 break;

 }

 }

 …

}

Let’s now discuss the workflow of this class. Whenever an application event is

thrown, the onEvent() method is called, which has a parameter with the

ApplicationEvent in. Then we check the type of the ApplicationEvent,

because we need to capture the event with the type being INITIALIZA-

TION_FINISHED. If that’s the case, we can call initialize() on our

DataScheduler. This will start the process of scheduling resources.

We defined our new PublicServicesEventListener class, but we didn’t

yet tell our servlet container to use this listener for our application. There are

several options Jersey provides to do this. We choose to do this by defining an

Application class that inherits from ResourceConfig which is part of the

org.glassfish.jersey.server package. In this class we can define all

the resources, modules, features, etc. that our servlet container can use. We

called our class PublicServices which is the name for our entire application.

101

public class PublicServices extends ResourceConfig {

 public PublicServices() {

 register(PublicServicesEventListener.class);

 }

}

We define our new listener by registering the classtype to the ResourceCon-

fig class. Now we need to declare this PublicServices class in our

web.xml file, so our servlet container knows that it should use this class as its

resource pool. We can do this by adding initial parameters to the servlet defini-

tion.

<web-app … >

 <servlet>

 <servlet-name>PublicServicesApi</servlet-name>

 <servlet-cass>

 org.glassfish.jersey.servlet.ServletContainer

 </servlet-class>

 <init-param>

 <param-name>javax.ws.rs.Application</param-name>

 <param-val-ue>

 fi.karelia.publicservices.util.PublicServices

 </param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

 </servlet>

</web-app>

The param-name element’s value, declares that this parameter defines an

Application class for the servlet container. The type of which is defined in

the javax.ws.rs package. The param-value element contains our package

name and classname for our ResourceConfig specialization.

To make development easier for our web service, we can also add a provider

for our resources that can parse Serializable objects in JSON format. This

way, when we need to send HTTP response objects back to the user, we can

parse our data from objects to JSON automatically. For this to work, our servlet

container needs to know that it can use this provider, therefore we need to

register this resource in our ResourceConfig implementation.

register(ObjectMapperProvider.class);

register(JacksonFeature.class);

102

We won’t go into detail about these classes because we only focus on the core

components of our application. JacksonFeature is a class used by Object-

MapperProvider, that’s why we also need to register it in our Application

class.

REST

REST, or Representational State Transfer, is way to build web services. What

this means for us is that, since we’ll use it, it will define how to build our web

service.

REST web services will communicate using the HTTP response codes, media

types and methods.

These methods are:

 GET, which is used to retrieve an object.

 POST, used to add a new object to the database.

 PUT, used to update an existing object to the database.

 DELETE, used to delete an object from the database.

The HTTP response codes are:

 200: OK

 201: Created

 304: Not Modified

 400: Bad Request

 401: Unauthorized

 403: Forbidden

 404: Not Found

 500: Internal Server Error

And the mentioned media types are XML, JSON, HTML, plain text, …

103

Below, you can see an example GET request.

GET /users/1 HTTP/1.1

User-Agent: Chrome

Accept: text/html

[CRLF]

Different parts can be distinguished in this example. First we have the HTTP

method GET which means we request an object. Then the location of the re-

source is provided, here /users/1, which means that the user with id 1 will be

returned in this case. Then the HTTP version and additional request headers

(here the used web browser) are added. The actual request body in which the

desired media type is mentioned follows these optional headers. The request is

ended with a CRLF, which means Carriage Return Line Feed, to mark the end

of the header. This request would be answered by a HTTP response that would

look similar to the one below.

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 200

[CRLF]

<html>

<!—Some HTML page/content with the name of the user with id

1 -->

</html>

The response again starts with the HTTP version and then the response code,

here 200 which means everything went well. This header line is followed by the

content-type and -length fields with another a CRLF tag to define the end of the

header. After the header, the actual response body is shown with the requested

result.

The following example is an HTTP POST example, which simulates the creation

of a new object.

POST /users HTTP/1.1

User-Agent: Firefox

Content-Type: application/json

[CRLF]

{“name”:”John”, “lastName”:”Smith”}

104

This one is quite similar to the previous one but what’s different is the HTTP

method, which is obviously POST in this case, and the request body. In this

case, the request body holds the data to be updated in the database. The web

service will then know that the user with id 1 needs to be updated, because it’s

defined that way. Again, there would be an HTTP response following this re-

quest and it would be similar to the one below.

HTTP/1.1 201 Created

Location: /users/1

[CRLF]

- Some confirmation message

And yet again, this message can be broken up into pieces. First the familiar

HTTP version and response code are given. These are followed by a repetition

of which object had to be updated, here it is indicated by using the folder struc-

ture, which will be explained later. The header is again terminated by a CRLF

followed by a message to the user which can basically say anything.

In table 8 an example is shown of how the location URL’s can be defined com-

bined with the result of performing a request on them.

Table 8 - REST HTTP requests example

Resource
POST
create

GET
read

PUT
update

DELETE
delete

/user
Create a new

user
List users

Update all

users

Delete all

users

/user/1234 Error
Show user

1234

If user exists,

update 1234,

if not, error

Delete 1234

Web service

We made all the necessary preparations for building our web service. Now it’s

time to finally create it. Using the Jersey framework, creating web services has

never been easier. One part of the URL defines an object that the user can

perform a request on. In our application we are working with sensors, therefore

we will create a SensorService class. This class contains a reference to our

105

business logic layer for sensors, this way we can request resources. To make

this class part of our web service, we need to annotate the class with the Path

parameter. All these annotations are part of the javax.ws.rs package.

@Path("/sensor")

public class SensorService {

 private final SensorBLL sBLL;

 public SensorService() {

 sBLL = new SensorBLL();

 }

}

This way, when an end-user requests a resource at

http://hostname/api/sensor, the servlet container will automatically call

this SensorService, because it was declared on this path. But making re-

quests now, won’t work. First, we need to declare some methods that represent

the corresponding HTTP methods. We can do this again by annotating our

methods.

@GET

@Produces(MediaType.APPLICATION_JSON)

public Response getAll() {

 List<Sensor> list = sBLL.getAll();

 return Response.ok(list).build();

}

This simple method returns all sensor information to the end-user by creating a

Response object. There are many ways that we can construct this Response

object, now we can simply call the ok() method providing our body as parame-

ter. Now this looks a bit strange, List is a Java datatype, so how can we add

something like this to the body of an HTTP Response? Well, in the previous

section we added a provider to our servlet container that automatically parses

objects into the desired format. We annotated our method with the Produces

tag that defines the content-type in the HTTP response. So our ObjectMap-

perProvider will automatically parse this list into JSON format and add it to

the body of the Response object.

106

Now let’s say and end-user wants a sensor with a specific id. This would be an

HTTP GET request and the id can be provided in the querystring of the URL that

was requested. For such requests, a method like the following can be created.

@GET

@Path("{id}")

@Produces(MediaType.APPLICATION_JSON)

public Response findById(@PathParam("id") int id) {

 Sensor s = null;

 try {

 s = sBLL.findById(id);

 } catch (ApplicationException ex) {

 return Re-

sponse.status(Status.NOT_FOUND).entity(ex.getMessage()).type(MediaType

.TEXT_PLAIN).build();

 }

 return Reponse.ok(s).build();

}

The Path annotation tells the service that there is a querystring parameter

present. This parameter is (automatically) parsed by our ObjectMapperPro-

vider to an Integer. It’s possible that there is no sensor found for the given

id, in that case an ApplicationException will be thrown stating that the

sensor for that id was not found. But following the rules of REST, we also need

to return the correct status code, which is 404 for when a resource is not found.

In that case our body won’t have to be parsed to JeSON format, therefor we

explicitly tell the Response builder that the used content-type should be plain

text.

In our web service, users should only be able to perform GET requests, data

provision is done via our DataPuller which is called by our scheduled re-

sources. So for now, two GET methods will be enough to provide our users of

some basic data. In the future we can create more methods for specific re-

quests, for example to retrieve the detection sensor on a specific crossroad.

Our web service class is ready, but as you may have guessed, we didn’t de-

clare this class anywhere. We need to tell our servlet container that this class

handles all requests for the http://hostname/api/sensor URL. We need

to define our service in our implementation of ResourceConfig. Because we

will have many different web service classes in the future, we created these

107

classes in the package fi.karelia.publicservices.service. We can

add this whole package as a resource for the container to use.

public class PublicServices extends ResourceConfig {

 public PublicServices() {

 packages("fi.karelia.publicservices.service");

 register(ObjectMapperProvider.class)

 .register(JacksonFeature.class)

 .register(PublicServicesEventListener.class);

 }

}

The web service is now registered on our servlet container and can start ac-

cepting HTTP request to the defined URL for resources. In the next section we

will talk about how we retrieve the requested resource through our business

logic.

BLL

The first layer where the request goes through is the Business Logic Layer. The

goal of this layer is to prevent illogical requests and unauthorized access. All of

the Business Logic classes are placed inside the

fi.karelia.publicservices.bll package. If, for example, data from a

sensor is requested and the specified sensor doesn’t even exist, the BLL class

will check this and return an appropriate message. It is important that these

business rules are considered carefully so that every necessary possibility is

checked. The list of required rules is usually composed by having a thought

about every possible input of the user and what could go wrong when pro-

cessing these requests. We’d also like to point out the importance of this layer.

In our case, there won’t be any manipulations on the data in the database, no

user will alter the data. But, if it would have been possible, then it’s very im-

portant to configure this layer very well. If a user would have bad intentions, or

do bad things unintentionally, the system could break or different data injections

could be possible. The BLL layer is created to secure this system from any

unintended or unforeseen actions. Next to preventing this from happening,

providing the user with clear messages considering the mistake he/she might

have made is also important. All of this defines the importance of this logical

layer.

108

In our project we have an example BLL class for retrieving sensors, called

SensorBLL. This class is the link between the web service, which will take the

request from the user, and the DAO layer, which makes connection with the

database. All of the logical features considering sensors are placed in this class.

For now, there are two example methods in this layer. The first one is the get-

All() method which will retrieve every single sensor out of the database. The

method is displayed in the code snippet below.

public List<Sensor> getAll() {

 sDAO = new SensorDAO();

 return sDAO.getAll();

}

This method takes the request from the web service and passes it on to the

next layer (DAO) which will then get all of the sensors out of the database. In

this method, there is no logical check of any kind but it is advised that it is done

this way for two reasons. The first reason is that it is important to maintain the

layer system and always go through the BLL layer before connecting to the

database. It should always be done this way and maintaining this workflow is

beneficial because it makes the programmer keep using this structure. The

second reason is that if any check should be added later on, it can just be

applied to this method without still having to create it.

The second method, which is the findById() method, makes things more

interesting. Again, the code can be found below.

public Sensor findById(int id) throws ApplicationException {

 sDAO = new SensorDAO();

 Sensor s = sDAO.findById(id);

 if (s == null) {

 throw new ApplicationException(

 "Sensor doesn't exist for id: " + id);

 }

 return s;

}

In this method, a sensor can be found by specifying an id. What happens in this

layer is a check to see if there actually is a sensor with the specified id. If not,

the user will get a message that there is no such sensor. This is actually a good

109

example of what the BLL layer serves for. These checks are created to see if

the user requests correct data and they are very important but yet easy to

implement in this layer. What also could be (and maybe will be) implemented is

a check to see if the specific user should get actual access to this data. If there

is some kind of user account system, the BLL layer can give a response that

access is unauthorized and thus not granted.

DAO

After the requests are taken and checked for reasonability, the next layer is

active. This layer is the DAO, or Data Access Object layer. This is where an

actual connection with the database is set up. This layer gets the forwarded

request of the BLL layer and performs the actions to fulfil the request.

Below, the code of how the DAO layer handles the two example methods from

the BLL layer can be found. The class for this example is called SensorDAO.

public List<Sensor> getAll() {

 return getSensorCollection();

}

public Sensor findById(int id) {

 Sensor resS = null;

 for (Sensor s : getSensorCollection()) {

 if (s.getId() == id) {

 resS = s;

 break;

 }

 }

 return resS;

}

The first method is the getAll() method from before, which returns all of the

Sensor objects found in the database. For now, the result of a getSensor-

Colletion() method is returned which refers to another method which actual-

ly makes connection with the database and gets all of the Sensor objects out

of it.

110

The second method is also familiar and is the findById() method. This

method loops through the full collection of retrieved Sensor object, searching

for the sensor with the desired id. The mentioned collection of sensors is re-

trieved in the same way as with the previous method, by calling the getSen-

sorCollection() method. After performing this method either a Sensor is

returned with the desired id or a null-object is returned, which will then be

checked by the BLL layer.

These are two example methods but what should be obvious is that the DAO

layer makes connection with the database and gets the actual objects. These

objects can be anything, the previous examples used Sensor objects but they

would usually be sensor values stored in the database. Then these objects or

values are filtered by anything desired by the user. There could for example be

a method called getSensorValuesByDate() which takes a Date as param-

eter and then filters all of the values by this date. The system is very agile and

can be adjusted to whatever the end-user may request.

10.3.4 Error handling

To prevent our system from breaking we have written different Java Exception

classes. Exception classes are written either to deal with user errors or to solve

programmer errors. This chapter will explain all of the exceptions written for this

project and in which case they are thrown.

HadoopException

The HadoopException class is our first exception and is written to prevent

Hadoop-specific errors to crash the system. This exception is thrown in the

DataScheduler class, when the resources of a specific city need to be updat-

ed, but the configuration file is not found. We made a HadoopException for

this case because this error is caused from the HDFS structure. If the file is not

residing in the Hadoop Distributed File System, then the update can’t be per-

formed. This exception will then be caught in the run method of the

DataScheduler since that’s where the update method is called and where it

111

would go wrong. In case this exception is thrown and thus something is actually

wrong, the message of the exception and all of the necessary info will be for-

warded into the appropriate log files. This makes it easy for the programmer to

track where the problem was caused.

ApplicationException

The ApplicationException class is an exception designed to prevent the

application from being interrupted or crashing when providing the data. When,

for example, a value is not found in the database, the BLL layer will generate an

ApplicationException with the following message: "Object doesn't exist for

id: X", with X being the requested id. This updates the user of what happened

and prevents the system from doing something with a non-existent object.

DBException

The next exception on this level of the system is the DBException. This ex-

ception handles everything that could go wrong considering the database. This

exception is thrown, for example, when the DAO layer, could not access the

database. So, in other words, what this exception basically does is handle the

exceptions thrown by the HBase component. It handles them and shows the

user what went wrong.

10.3.5 Workflow

We discussed all the transfer paths of data in and from our data warehouse. We

described every part with extensive code samples and explanations. Now we

want to give you an overview of the complete process step by step. We’ll show

how we get data from a source into our warehouse and how to we provide this

data to end-users. To structure the overview, we split it up into the familiar three

steps: data retrieval, data storage and data provision.

112

Data retrieval

Data storage

Request Resource data

The Data Puller creates an HTTP GET request at the resource's URL. It handles the response by storing
the data onto the Hadoop distributed filesystem.

Request update Resource data

The scheduled resources call the DataPuller at their configured update interval, to request and update
of its data.

Update Data Scheduler

At regular intervals, the Data Scheduler updates its scheduled resources by comparing the resource
definitions in the XML configuration files.

Resource definition

New resources are defined in custom XML configuration files. All relevant information about the
resources is stored like its name, URL and update pattern.

Storing

After the data is transformed, it is loaded into HBase database using the DBOutputFormat.

Mapping

After Hadoop distributes tasks over all nodes, the Map task is executed and the raw data is
transformed.

Run Map Job

After loading is complete, the Job is executed by using the JobClient class.

Load Hadoop Map Job

Using the resource name, the DriverFactory class loads and configures the Job for
transforming the raw data.

113

Data provision

Send response

The response is sent back to the end-user who requested the data.

Create response

If no exception is received on the web service level, a Response object is created containing a
status code of 200 and containing the data in the body of the Response.

Return data

The DAO layer return the object back to the BLL, and the BLL in turn back to the web service

Retrieve data

The DAO layer accesses the HBase database and queries the requested data.

Delegate request to DAO

Once the request is authorized by the BLL, it delegates the request to the Data Access Object
Layer.

Delegate request to BLL

The web service calls the correct method on the Business Logic Layer.

Redirect to web service

The servlet container receives the request and processes it by redirecting it to our web
service.

Send request

An end-user makes a HTTP GET request to our web servlet.

114

11 REFLECTION

This final chapter provides a reflection on the project, the difficulties we encoun-

tered and our learning outcomes.

11.1 Difficulties

Delay in development

Since the idea was to keep the setup running after our final project is finished,

we planned to run the configuration on some virtual servers on campus. We

immediately got in contact with the teacher who is in charge of the networking

and server equipment at the university. He told us that there was a problem in

their setup and that it would take some time to fix it. Eventually the problem got

solved but we lost about three weeks because of it. Although useful time was

lost, we still managed to use this time wisely by diving into the theory and

studying Hadoop and its components.

Restricted access to data

Initially we were planning on using data related to snow ploughs and the bus

schedules for our example setup. The difficulty about this was that we couldn’t

access this data. We then had to wait for other sample data. So again we lost

quite an amount of time, but eventually we got some data to work with.

As can be concluded, we lost time due to different issues but we used it wisely

and managed to fulfil the goals set for this project. We have an example setup

running right now and it can easily be expanded by adding other features.

115

11.2 Future thoughts

Since the system is not yet completely finished, we hope the development will

continue in the future. In our point of view, the system has great potential if it

would be developed further. Extra functionalities should be added to fit the

needs of the end-users. For now, the system resides in its basic stadium but

has everything it needs to become a large but solid data warehouse.

11.3 What did we learn

Since the first big part of our project was to familiarize with Hadoop and its

components, research took quite a lot of time. We learned about the various

features and requirements of Hadoop such as hardware requirements and

optimisation, system development and HBase structures. We are very satisfied

with the learning curve we had when studying all this material. There are still

many rocks unturned but we got hold of more than the theoretical basics. All

topics and components were new to us but we managed to study and compre-

hend them very well.

The implementation itself was also very interesting to us. We had never devel-

oped such an extensive application before and learned a lot from it. From

writing configuration files to making access with a database, from using a

scheduler to boot up tasks to writing mapper functions, this whole project was

extremely instructive.

But we did not only learn something new due to the actual tasks of the project.

To give an example, our experience with the Linux operating system also ex-

panded through the progress of this project. So all in all, we learned a lot and

reviewed and updated our existing knowledge and capabilities.

116

11.4 Workload balancing

Overall, this project has been the result of very good teamwork and most of the

times we worked together. We discussed different design, implementations and

possibilities but each of us also developed different parts of the system. In this

part we’ll discuss how the work was divided and which tasks took the longest.

To start off, we’d like to say that there was way more work to do during this

project than one would think at first. Next to the fact that the complete system is

quite huge, other tasks were executed too during the progress of the thesis.

The first part of the final project was getting to know the topic, ‘The Internet of

Things’. To do this, our coordinator proposed to make a small setup with an

Arduino computing unit. The goal was to save sensor readings to the unit and

send them to a web service. Together we created this small test setup. Later on

Ruben created a small web service on another machine to convert these read-

ings into CSV files.

After that, we studied Hadoop and its components to be able to start the devel-

opment. Ruben came up with the basic design for the whole system. We

tweaked it here and there and optimised the complete setup. We also read the

most important chapters of “Hadoop: The Definitive Guide” by Tom White and

“HBase: The Definitive Guide” by Lars George. Meanwhile Ruben created a

small example application to simulate the MapReduce programming model. For

this, we installed a virtual machine with Ubuntu server and Hadoop. In the

meantime, we got in contact with the students that created our networking

setup. Since they had some trouble with it and Jonas is specializing in Network-

ing, he helped them and eventually the complete network setup was finished.

For the application itself, Ruben set up the developing environment, which

means configuring Maven and the web server. Jonas configured the version

control system and Ruben started by creating the web service based on REST

together with configuring the servlet container to handle requests. For data

117

retrieval, Ruben created the complete data scheduling and pulling mechanism.

For data storage he created some basic mappers and drivers to use on our

sample data.

Jonas created the DAO and BLL classes to provide the access to the database,

along with the domain classes which represent the data. Next to that, he also

created the HBase schema for our example. Considering the system, he also

designed the XML files and wrote an XMLReader class to read out these con-

figuration files.

If we now consider this thesis, the work was also well-balanced. Each of us

wrote approximately the same amount of text and we both reread and tweaked

the complete thesis.

118

REFERENCES

Apache HBase Team. 2015. Apache HBase Reference Guide.
http://hbase.apache.org/book.html. 18.05.2015.

Apache. 2010. HBase/Shell. https://wiki.apache.org/hadoop/Hbase/Shell.
18.05.2015.

Cloudera. 2015. http://www.cloudera.com/content/cloudera/en/products-and-
services/cloudera-express.html. 20.05.2015.

Cloudera. 2015a.
http://www.cloudera.com/content/cloudera/en/downloads/cdh/cdh-5-4-
2.html. 25.05.2015.

Cloudera. 2015b.
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/t
opics/cm_ig_install_path_b.html#cmig_topic_6_6. 25.05.2015.

Datawarehouse4u. 2009. Data Warehouse. http://datawarehouse4u.info/.
04.05.2015c.

George, L. 2011. HBase: The Definitive Guide. O’Reilly press.
Greenplum. Hadoop Components. NDM.

http://www.ndm.net/datawarehouse/Greenplum/hadoop-components.
22/04/2015.

Khurana, A. 2012. Introduction to HBase Schema Design.
http://0b4af6cdc2f0c5998459-
c0245c5c937c5dedcca3f1764ecc9b2f.r43.cf2.rackcdn.com/9353-
login1210_khurana.pdf. 18.05.2015.

OpenTSDB. 2015. HBase Schema.
http://opentsdb.net/docs/build/html/user_guide/backends/hbase.html.
18.05.2015.

Steinberg, R. 2015. The Origin of the word Daemon. The Austin Chronicle.
http://ei.cs.vt.edu/~history/Daemon.html. 31.05.2015.

Varley, I. 2012. HBase Schema Design. http://www.slideshare.net/cloudera/5-h-
base-schemahbasecon2012. 18.05.2015.

White, T. 2012. Hadoop: The Definitive Guide, Third Edition. O’Reilly press.
Wikipedia. 2015a. Big data. http://en.wikipedia.org/wiki/Big_data. 22.04.2015.
Wikipedia. 2015b. Comma separated values.

http://en.wikipedia.org/wiki/Comma-separated_values. 04.05.2015.
Wikipedia. 2015c. Data warehouse.

http://en.wikipedia.org/wiki/Data_warehouse. 30.04.2015.
Wikipedia. 2015d. Internet of Things.

http://en.wikipedia.org/wiki/Internet_of_Things. 21.04.2015.
Wood, A. 2015. The internet of things is revolutionising our lives, but standards

are a must. The Guardian. http://www.theguardian.com/media-
network/2015/mar/31/the-internet-of-things-is-revolutionising-our-lives-
but-standards-are-a-must. 21.04.2015.

Appendix 1 1 (2)

1

Appendices

Appendix 1 Terminal output of MapReduce Job

hadoop@localhost:~/NetBeansProjects/MaxVehicles/target$ hadoop

fi.karelia.maxvehicles.MaxVehicles /user/hadoop/input/data.csv

output
15/05/19 13:36:19 INFO client.RMProxy: Connecting to Re-

sourceManager at /0.0.0.0:8032
15/05/19 13:36:20 WARN mapreduce.JobSubmitter: Hadoop command-

line option parsing not performed. Implement the Tool interface

and execute your application with ToolRunner to remedy this.
15/05/19 13:36:20 INFO input.FileInputFormat: Total input paths

to process : 1
15/05/19 13:36:20 INFO mapreduce.JobSubmitter: number of

splits:1
15/05/19 13:36:20 INFO mapreduce.JobSubmitter: Submitting tokens

for job: job_1432031250876_0004
15/05/19 13:36:21 INFO impl.YarnClientImpl: Submitted applica-

tion application_1432031250876_0004
15/05/19 13:36:21 INFO mapreduce.Job: The url to track the job:

http://localhost:8088/proxy/application_1432031250876_0004/
15/05/19 13:36:21 INFO mapreduce.Job: Running job:

job_1432031250876_0004
15/05/19 13:36:34 INFO mapreduce.Job: Job job_1432031250876_0004

running in uber mode : false
15/05/19 13:36:34 INFO mapreduce.Job: map 0% reduce 0%
15/05/19 13:36:48 INFO mapreduce.Job: map 100% reduce 0%
15/05/19 13:36:54 INFO mapreduce.Job: map 100% reduce 100%
15/05/19 13:36:54 INFO mapreduce.Job: Job job_1432031250876_0004

completed successfully
15/05/19 13:36:54 INFO mapreduce.Job: Counters: 49
 File System Counters
 FILE: Number of bytes read=2766
 FILE: Number of bytes written=216059
 FILE: Number of read operations=0
 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=936
 HDFS: Number of bytes written=16
 HDFS: Number of read operations=6
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=2
 Job Counters
 Launched map tasks=1
 Launched reduce tasks=1
 Data-local map tasks=1

Appendix 1 2 (2)

2

 Total time spent by all maps in occupied slots

(ms)=11106
 Total time spent by all reduces in occupied slots

(ms)=4170
 Total time spent by all map tasks (ms)=11106
 Total time spent by all reduce tasks (ms)=4170
 Total vcore-seconds taken by all map tasks=11106
 Total vcore-seconds taken by all reduce tasks=4170
 Total megabyte-seconds taken by all map

tasks=11372544
 Total megabyte-seconds taken by all reduce

tasks=4270080
 Map-Reduce Framework
 Map input records=25
 Map output records=24
 Map output bytes=2712
 Map output materialized bytes=2766
 Input split bytes=108
 Combine input records=0
 Combine output records=0
 Reduce input groups=1
 Reduce shuffle bytes=2766
 Reduce input records=24
 Reduce output records=1
 Spilled Records=48
 Shuffled Maps =1
 Failed Shuffles=0
 Merged Map outputs=1
 GC time elapsed (ms)=378
 CPU time spent (ms)=5910
 Physical memory (bytes) snapshot=446705664
 Virtual memory (bytes) snapshot=1356087296
 Total committed heap usage (bytes)=326107136
 Shuffle Errors
 BAD_ID=0
 CONNECTION=0
 IO_ERROR=0
 WRONG_LENGTH=0
 WRONG_MAP=0
 WRONG_REDUCE=0
 File Input Format Counters
 Bytes Read=828
 File Output Format Counters
 Bytes Written=16

Appendix 2 1 (3)

1

Appendix 2 DataScheduler

package fi.karelia.publicservices.data;

import fi.karelia.publicservices.data.domain.City;

import fi.karelia.publicservices.data.domain.Resource;

import fi.karelia.publicservices.data.domain.Service;

import fi.karelia.publicservices.exception.HadoopException;

import fi.karelia.publicservices.util.XMLReader;

import java.io.File;

import java.util.HashMap;

import java.util.Map;

import java.util.concurrent.Executors;

import java.util.concurrent.ScheduledExecutorService;

import java.util.concurrent.ScheduledThreadPoolExecutor;

import java.util.concurrent.TimeUnit;

import java.util.logging.Level;

import java.util.logging.Logger;

/**

* @author Ruben

*/

public class DataScheduler {

 private static volatile DataScheduler dataScheduler = null;

 private final ScheduledExecutorService executorService =

 Executors.newScheduledThreadPool(1);

 private final ScheduledThreadPoolExecutor dataExecutor =

 new ScheduledThreadPoolExecutor(1000);

 private final Runnable mainTask;

 private final Map<String, Long> modificationTimestamps =

 new HashMap<>();

 private DataScheduler() {

 mainTask = new Runnable() {

 @Override

 public void run() {

 // Fetch XML file data

 XMLReader r = XMLReader.getInstance();

 for (City city : r.getAllCities()) {

 try {

 // Update modified resources

 updateModifiedResources(city);

 } catch (HadoopException ex) {

 Logger.getLogger(

 DataScheduler.class.getName())

 .log(Level.SEVERE, null, ex);

 }

 }

 // Reschedule modified resources

 rescheduleModifiedResources();

 }

 };

Appendix 2 2 (3)

2

 }

 public static DataScheduler getInstance() {

 if (dataScheduler == null) {

 synchronized (DataScheduler.class) {

 if (dataScheduler == null) {

 dataScheduler = new DataScheduler();

 }

 }

 }

 return dataScheduler;

 }

 public void initialize() {

 // Start the main task to pull all metadata from XML files

 executorService.scheduleAtFixedRate(mainTask, 30000,

 86400000, TimeUnit.MILLISECONDS);

 }

 public void updateModifiedResources(City c)

 throws HadoopException {

 // Check if city file has been modified since its last update

 File f = new File(c.getFileName());

 // Check if the file exists

 if (f == null) {

 System.out.println("City filename does not exist: " +

 c.getFileName());

 throw new HadoopException(

 "Error while trying to update city schedule for city "

 + c.getName() + ": File not found: " +

 c.getFileName());

 }

 // Check if our array of lastModified dates contains the

 // city name, if not we know this is a new added city

 System.out.println("Checking modification timestamps");

 if (!modificationTimestamps.containsKey(c.getName())) {

 // Add the new last modified date for this city file

 System.out.println(

 "New value added to modification timestamps for city:"

 + c.getName());

 modificationTimestamps.put(c.getName(), f.lastModified());

 }

 // Check if the lastModified date exceeds the last stored

 // lastModified date

 if (modificationTimestamps.get(c.getName()) >

 f.lastModified()) {

 // If the file wasn't changed since last time,

 // update nothing

 System.out.println("Nothing to update for city: "

 + c.getName());

 return;

 }

 // Loop through all resources to check if they are

 // modified or added

 for (Service s : c.getServices()) {

 for (Resource r : s.getResources()) {

 boolean present = false;

 // Loop through our scheduled resources to check

Appendix 2 3 (3)

3

 // if the current one is running

 for (Runnable task : dataExecutor.getQueue()) {

 DataScheduledTask dpt = (DataScheduledTask) task;

 if (dpt == null) {

 throw new HadoopException(

 "Wrong task type assigned");

 }

 if (dpt.getResource().getId() == r.getId()) {

 // Update resource on the DataScheduledTask

 System.out.println("Resource already running:"

 + dpt.getResource().getName());

 dpt.setResource(r);

 present = true;

 break;

 }

 }

 // Check if the resource is a new resource

 if (!present) {

 // Add new task to the pool

 System.out.println("Added new scheduled resource:"

 + r.getName());

 DataScheduledTask dpt = new DataScheduledTask(r);

 dataExecutor.scheduleAtFixedRate(dpt, 0,

 r.getSchedulingInterval(),

 TimeUnit.MILLISECONDS);

 }

 }

 }

 // Loop through all scheduled resources to check if there

 // are deleted resources

 for (Runnable task : dataExecutor.getQueue()) {

 DataScheduledTask dpt = (DataScheduledTask) task;

 boolean deleted = true;

 for (Service s : c.getServices()) {

 for (Resource r : s.getResources()) {

 if (r.getId() == dpt.getResource().getId()) {

 deleted = false;

 }

 }

 }

 // If the resource is no longer present in the XML

 // config files, cancel the scheduled resource

 if (deleted) {

 System.out.println("Deleted scheduled resource:"

 + dpt.getResource().getName());

 dpt.cancel(true);

 }

 }

 }

 private void rescheduleModifiedResources() {

 // Implementation required

 }

}

Appendix 3 1 (2)

1

Appendix 3 DataScheduledTask

package fi.karelia.publicservices.data;

import fi.karelia.publicservices.data.domain.Resource;

import fi.karelia.publicservices.data.domain.SchedulingType;

import java.io.IOException;

import java.util.concurrent.ExecutionException;

import java.util.concurrent.RunnableScheduledFuture;

import java.util.concurrent.TimeUnit;

import java.util.concurrent.TimeoutException;

import java.util.logging.Level;

import java.util.logging.Logger;

/**

* @author Ruben

*/

public class DataScheduledTask implements RunnableScheduledFuture {

 private Resource resource;

 private DataPuller puller;

 private boolean running;

 private boolean cancelled;

 private long startTime;

 public DataScheduledTask(Resource resource) {

 this.resource = resource;

 cancelled = false;

 running = false;

 }

 @Override

 public boolean isPeriodic() {

 return getResource().getSchedulingType() !=

 SchedulingType.INITIAL;

 }

 @Override

 public void run() {

 try {

 running = true;

 startTime = System.currentTimeMillis();

 System.out.println("Start running task with resource id:"

 + resource.getId());

 puller = new DataPuller();

 puller.pull(getResource());

 puller = null;

 running = false;

 } catch (IOException ex) {

 Logger.getLogger(DataScheduledTask.class.getName())

 .log(Level.SEVERE, null, ex);

 }

 }

 @Override

 public boolean cancel(boolean mayInterruptIfRunning) {

 if (puller.isProcessed()) {

Appendix 3 2 (2)

2

 cancelled = true;

 }

 return cancelled;

 }

 @Override

 public boolean isCancelled() {

 return cancelled;

 }

 @Override

 public boolean isDone() {

 return !running;

 }

 @Override

 public Object get() throws InterruptedException,

 ExecutionException {

 return null;

 }

 @Override

 public Object get(long timeout, TimeUnit unit) throws

 InterruptedException, ExecutionException, TimeoutException {

 return null;

 }

 @Override

 public long getDelay(TimeUnit unit) {

 return 0;

 }

 @Override

 public int compareTo(Object o) {

 return 0;

 }

 public Resource getResource() {

 return resource;

 }

 public void setResource(Resource resource) {

 this.resource = resource;

 }

}

