

MODEL BASED ENGINEERING -

ROBOT CAR

Mika Pesu

Master’s thesis

Septemper 2015

Master's Degree Programme

in Information Technology

ABSTRACT

Tampereen ammattikorkeakoulu

Tampere University of Applied Sciences

Master`s Degree Programme in Information Technology

AUTHOR: MIKA PESU

Model based engineering - Robot car

Master's thesis 43 pages

Septemper 2015

Purpose of the project was to research ways of implementing a framework to model

robot using activity and component diagrams. Project is constructed in phases, phase 1

included building a suitable modelling framework and platform that runs created dia-

grams. Future phases will expand support for more robot specific features.

Modelling framework goals are that the actual robot modeller does not need to know

any programming language and does not need to compile created activities to platform

code. Modelling framework only supports activity and component diagrams on first

phase.

Modelled robot goals are that created activity diagrams were able to run on robot hard-

ware. Robot is used on constructed track and robot is able to move through track and

detect distances on constructed walls and based on distances either turn right or left.

Key words: model based engineering, robot car, UML, Robotics

3

CONTENTS

1 INTRODUCTION ... 6

2 ROBOTICS ... 7

2.1 Industrial robots ... 7

2.2 Robots in research .. 8

2.3 Military robots ... 9

2.4 Robots in education ... 10

2.5 Future ... 11

2.6 Theory .. 12

2.7 Model based engineering ... 13

3 MODELLING FRAMEWORK .. 15

3.1 Goals .. 15

3.2 Architecture ... 15

3.3 Desktop application ... 17

3.3.1 Component diagram .. 17

3.3.2 Activity diagram.. 19

3.3.3 Swimlane ... 19

3.3.4 Activity start .. 20

3.3.5 Activity end ... 20

3.3.6 Action .. 21

3.3.7 Datastore ... 21

3.3.8 Decision... 22

3.3.9 Fork and join ... 22

3.4 Platform ... 23

3.5 Model generation ... 24

4 PROJECT .. 27

4.1 Goals .. 27

4.2 Robot .. 27

4.2.1 Chassis and motors .. 27

4.2.2 Motor controller .. 28

4.2.3 Power system .. 28

4.2.4 Raspberry PI .. 28

4.2.5 Servo ... 29

4.2.6 Ultrasonic sensor ... 30

4.2.7 Wiring ... 32

4.3 Software ... 34

4.3.1 Component diagram .. 34

4

4.3.2 Motor controller .. 35

4.3.3 Sensor handling ... 37

4.3.4 Main program .. 38

4.3.5 Deployment ... 39

5 CONCLUSIONS AND FUTURE WORK .. 40

5.1 ROS Support .. 40

5.2 Debugging support ... 40

5.3 Plugin loading .. 40

5.4 Code generation ... 41

5.5 Distance measurement using stereo vision .. 41

REFERENCES .. 42

5

ABBREVIATIONS AND TERMS

ROS Robot operating system

MDE Model-driven engineering

MDA Model-driven architecture

OMG Object management group

UML Unified modelling language

GPIO General purpose I/O

UART Universal Asynchronous Receiver Transmitter

I2C Inter-Integrated Circuit

SPI Serial Peripheral Interface

PWM Pulse-width modulation

UI User Interface

API Application Programming Interface

AI Artifical Intelligency

6

1 INTRODUCTION

The aim of this work is to provide one approach for model based engineering when cre-

ating software for a specific application domain.

Project is constructed in phases, phase 1 goal is to build modelling framework in proof

of concept phase where robot can be modelled and executed in platform. Modelling

framework goal is to have ability to model robot using component and activity dia-

grams. Modelled robot goal is to create activity diagrams to allow movement through

constructed track and by measuring distances know when to turn left or right. This the-

sis is targetted for phase 1 construction.

Phase 2 will introduce ROS (Robot operating system) support and extend component

library by using ROS device drivers. Phase 2 will also introduce debugging and code

generation support.

7

2 ROBOTICS

Robotics is multidisciplinary field containing mechanical engineering, electrical engi-

neering and computer science aspects that deals with the design, construction, operation

and applications. Robotics also contain computer systems for control, sensor feedback

and information processing. (Robotics, Wikipedia, 2015)

Robot is mechanical device that is programmed to perform tasks and interact with its

environment without the aid of human interaction. Science and technology behind the

design, manufacturing and applications of robots is robotics. (Introduction to robotics,

VEX Robotics, 2015)

Robots can perform multiple different tasks, most notable robotics areas are:

 Industrial

 Research

 Military

 Education

2.1 Industrial robots

Industrial robots are defined as controllable, reprogrammable, multipurpose program-

mable manipulator working in three or more axes. Industrial robots are defined in ISO

8373. (Industrial robot, Wikipedia, 2015)

Industrial robots work for example in manufacturing carring out repetive actions, as-

sembly line, welding, painting or as automated packaging in factory. (Industrial robot,

Wikipedia, 2015)

8

Picture 1. Assembly line robot (Assembly robot, Metalworking magazine, 2015)

2.2 Robots in research

Robots in research is used to perform tasks or reach locations that would be impossible

for humans. These robots work on most dangerous and challenging environments there

is, locations that are found beyond the Earth. NASA has used for decades probes,

landers and rovers with robotic characterictics to study outer space and planets in our

solar system. (Introduction to robotics, VEX Robotics, 2015).

Mars rover is one of the robots in research that is able to carry out tasks in Mars to de-

tect if life ever arose on the planet, study climate and geology on Mars. Rover is also

preparation for human exploration of Mars. (Mars rover, Wikipedia, 2015)

9

PICTURE 2. Mars rover Curiosity (Mars rover, Wikipedia, 2015)

2.3 Military robots

Fully autonomous robots in military are still in research phase but there are multiple

task operated and remote controlled robots. Task operated robots are semi-autonomous

robots, they are given an task and robot executes it. Remote controlled robots have op-

erator that controls the robot remotely. Militaries through out the world are increasingly

researching ways to introduce more autonomous robots in warfare. (Military robot,

Wikipedia, 2015)

Examples in military robots are Predator for unmanned aerial vehicle. Predator is re-

motely operated robot that can perform surveillance or engage in combat with air to

surface missiles. (MQ-1 Predator, Wikipedia, 2015)

PICTURE 3. Predator (MQ-1 Predator, Wikipedia, 2015)

10

Task based robots in military applications is for example Phalanx CIWS. Phalanx CIWS

is defense system against anti-ship missiles. Phalanx CIWS is able to destroy incoming

missile using radar and other sensors to calculate missile trajectories and firing ammuni-

tions on high rate to path of the missile to destroy it before missile reaches target. (Phal-

anx CIWS, Wikipedia, 2015)

PICTURE 4. Phalanx CIWS (Phalanx CIWS, Wikipedia, 2015)

2.4 Robots in education

Robotics is rapidly growing industry and robots in education play key role on develop-

ing knowledge on robotics. Universities offering from bachelors to doctoral degrees in

the field of robotics. Vocational schools offering training aimed for career in robotics

(Educational robotics, Wikipedia, 2015)

There are open and closed platforms that can be used for getting first touch on robotics.

For example Robotis DARwin-OP is open platform aimed for University use. (Educa-

tional robotics, Wikipedia, 2015)

DARwin-OP is open platform for humanoid projects, platform consists of multiple ac-

tuators and sensors that allows robot to move and sense its environment.

11

PICTURE 5. DARwin-OP Robot (DARwIn-OP, Wikipedia, 2015)

2.5 Future

Robotics are rapdily growing industry and its forging new ways to work, live and con-

duct business. It is estimated that by 2025 worldwide spending on robotics would reach

$67+ Billions. (Rise of robots infographic, Robobusiness, 2015)

Key figures for unmanned systems containing drones on 2014 had $108 million invest-

ments and its expected to grow giving 100,00+ jobs and having $82 billion economic

impact. Its estimated that in 2030 self-driving car will become $87 billion opportunity.

(Rise of robots infographic, Robobusiness, 2015)

In below table is market breakdown for year 2015 and estimations for year 2025, table

showing industrial robots to be biggest market sector and military application as close

second place.

12

Table 1. Robot market breakdown (Rise of robots infographic, Robobusiness, 2015)

Market 2015 2025

Personal robots $2.5 Billion $9 Billion

Commercial robots $5.9 Billion $17 Billion

Industrial robots $11 Billion $24.4 Billion

Collaborative robots $100 Million $1 Billion

Military robots $7.5 Billion $16.5 Billion

2.6 Theory

Mechanical engineering, electrical engineering and computer sciences are key topics on

robotics. Mechanical engineering forming the base of robot with the ways of construct-

ing the platform and listing forces and motions on the robot. Key topics are dynamics

that describe what forces are affecting the robot and kinematics describing motion ge-

ometries.

Electrical engineering giving the power for the platform to move actuators, sensors to

sense surrounding. Hardware for computer scientics to run software.

Computer science is in the end that gives different degrees of autonomy to robot and

interacting with robots different sensors to sense characterics of the environment. Soft-

ware that commands propulsion mechanics to make robot move.

Depending on the robot, robot can have different software modules that interact to

hardware and mechanics, also giving intelligence to robot. These software modules can

be, on algoritmic level: (Robotics software, European PhD school, 2015)

 Perception

 Planning

 Control

 Learning

 Adaptation

 Reasoning

 Kinematics

 Dynamics

13

 Trajectory generation

Lot of these modules are tied to giving intelligency to robot, AI. AI consisting on learn-

ing to complete task on more successfull manner and adapting to environment changes.

Reasoning out which is correct or best way to complete task, for example after on envi-

ronment change. Planning and keeping the plan up to date on which action or actions

should be executed next. Perception, kinematics and dynamics can be considered as

input data for AI to which data AI should base actions on. Control as output data to exe-

cute actions.

Artifical intelligency is highly technical and specialized field of research. There are dif-

ferent ways of producing smartness to robot, for example through control theory and

cybernetics. (Artiticial intelligence, Wikipedia, 2015)

Autonomous robots should have different models that safe guards and executes the

planned targets. For example kinematics to plan motion ranges to get to the target area.

In order for this to successfully implement it needs input from different sub-modules,

for example dynamics. Dynamics output should either reduce the motions to safely

reach target or its part of input for motion planning to create trajectory that does not

generate too great forces for the robot to handle. (Robotics software, European PhD

school, 2015)

2.7 Model based engineering

Model-driven or model based engineering (MDE) is software development methodolo-

gy where focus is on creating domain models. Domain models are conceptual models of

all the topics related to a specific problem. Models highlight and targets abstract presen-

tation of knowledge and requirements of specific application domain. In traditional en-

gineering focus is on computing (for example algoritmic) concepts.

MDE approach is created to increase productivity by maximizing compatibility between

systems using standardized models and by simplifying the process of design in applica-

tion domain by using standardized models.

14

Better known MDE initiatives are the Object Management Group (OMG) intiative for

model-driven architecture (MDA), which is registered trademark of OMG. Other initia-

tive is eclipse ecosystem of programming and modelling tools, Eclipse Modelling

Framework.

15

3 MODELLING FRAMEWORK

3.1 Goals

Modelling framework goal is to build framework that allows to design UML notated

model and execute it on selected platform. UML modelling supports only component

and activity diagrams on the first phase. Designer framework allows to draw model and

generate binary file that contains only UML diagram data, no code generation from

UML model is supported. Modelling framework only supports few selected hardware

components. These are built-in to framework support.

3.2 Architecture

Architecture selected for program was component based. This allows implementation of

each set of component using standard interface. Every component publishes own fea-

tures through Qt meta object system using properties.

Architecture is split into two parts, first part is used to define UML component diagram

(CModelItem) and second part to define UML activity diagram (CModelActivityItem).

Class hierarcy for UML modelling can be seen from figure 1.

16

FIGURE 1. Architecture for modelling

Each UML component diagram items are based on model item (CModelItem) which

contain mandatory properties and functions that each specialized component has to im-

plement. These are component execution and component activity descriptions. UML

component does not need to be a specialized model item, for example: actuator, system

or sensor item. Component can also be virtual item that describes only part of the spe-

cialized component activity.

Activity diagrams are linked to components model item. Activity diagram is set of de-

scription notations that describes what the UML component should do. Activity dia-

gram contains specialized model activity items (join, fork, action and decision),

CModelActivityItem in figure 1 is only root element that contains mandatory properties

and functions that each specialized model activity items needs to implement.

UML activities fork and join is implemented using threading, this means that when ac-

tivity is forked into more actions lines it creates own background execution and passes

the thread identifiers to join activity. Join acitivity then waits for each separate activity

lines to complete and only starts to process next acitivity in line after that.

17

3.3 Desktop application

Desktop application is built using C++ and utilizing Qt framework for cross-platform

support. User interface is built partly using Qt Q

Widgets for menu and toolbar. Qt QML is used for actual UML area.

QWidget is Qt frameworks old method of building user interfaces, widgets are class

based presentation of user interface. QML is declarative language to describe user inter-

faces. QML is JSON-like syntax with JavaScript support for dynamic binding.

Application is divided to two parts, component and activity diagrams editor.

3.3.1 Component diagram

Component diagram allows to model relations between components. For example GPIO

usage between different components. All supported components are shown in figure 2.

FIGURE 2. Supported components

18

System reprensents an platform where linked activies are run. Actuator represents any

actuator that can be controlled either using duty cycly or angle rotation, for example DC

motor or servo. Sensor represents any component that sense one of the characterics in

its environment that is converted to integer value. For example tempereature or distant

sensor. Tables 1, 2 and 3 represents each component features.

TABLE 2. Sensor features

Function Return value Parameters

value Integer, presenting sensor value. None

TABLE 3. Actuator features

Function Return value Parameters

enabled None Bool, represents value if actuator should be enabled

or disabled. True for enabled value.

direction None Bool, true to rotate clockwise mode. False for

counter-clockwise.

dutycycle None Integer from 0 to 100. Describes how long PWM

signal is on and off in percent. For 100, actuator is

continously on, for 50 actuator is 50% on and off, in

time this is 500ms on and 500ms off.

angle None Integer from 0 to 360. Describes which angle

should actuator be.

TABLE 4. System features

Function Return value Parameters

readPin Integer, GPIO value. GPIO number

writePin None GPIO number and integer value.

Relationships can be modelled by adding port to each component and giving feature

name of the component which port is using. Adding link between ports describes rela-

tion between component data. Example in figure 3.

19

FIGURE 3. Component relationships

3.3.2 Activity diagram

Activity diagram allows model actions inside modelled component in component dia-

gram or inside virtual component that is created during model generation. Activity dia-

gram bases on swimlanes and their activity descriptions, swimlane can represent an

modelled component or virtual component that is generated automatically and acts as

standard function like in normal code development. Example of activity diagram in Fi-

gure 4.

FIGURE 4. Example activity.

3.3.3 Swimlane

Swimlane identifies modelled component in component diagram or virtual component

that will be created during model generation. If swimlane is modelled component and

not virtual component, its action start is automatically called during startup, this allows

concurrency support for components or initialization routines. If swimlane is virtual

20

component action start element is run only when called from action element. Swimlane

can only contain one action start point. Figure 5 shows swimlane rendering.

FIGURE 5. Swimlane

3.3.4 Activity start

Activity start describes where modelling framework should start executing actions.

Swimlane can only contain one activity start description. Activity start description is

modelled in circular UI element with solid fill, Figure 6 shows rendering of activity start

element.

FIGURE 6. Activity start

3.3.5 Activity end

Activity end describes end point of activity and swimlane can contain multiple end

points but at least one if preffered. Activity end is rendered in two circular circles and

solid fill on inner circle, Figure 7 shows rendering of activity end element.

FIGURE 7. Activity end

21

3.3.6 Action

Action element represents some form of action that is needed to be done. Action can be

function execution of component features or builtin function of modelling framework.

To call component action, action name takes the form <component name>.<function>.,

for example System1.writePin(18,1). To call system action, action name takes the form

<function>, for example usleep(100). Figure 8 is example of action element usage.

FIGURE 8. Action element usage.

Table 4 shows supported builtin function from modelling framework.

TABLE 5. Builtin function

Function Description Usage example

usleep(value) Sleeps for given microseconds usleep(100)

msleep(value) Sleeps for given milliseconds msleep(100)

Application.exit Returns boolean value if application termination

was requested.

Application.exit

3.3.7 Datastore

Datastore element visualizes variable in action diagram. Datastore elements live only on

inside modelled swimlane (component) but datastore can be referenced using compo-

nent call notation <component>.<datastore variable>, for example Sensor1.distance.

Datastore element takes variable name and function or contant value directly that will

be placed to variable. Figure 9 shows datastore usage examples.

22

FIGURE 9. Datastore usage.

3.3.8 Decision

Decision element represents if-clause in action. Decision element alone can not be used

and it needs to be linked to output-port. Output takes an if condition and follows the

port link if the condition was met, otherwise other outputs will be processed. Execution

stops if none of output conditions were met. Figure 10 shows example use of decision

element.

Figure 10. Decision usage.

3.3.9 Fork and join

Fork and join elements are used to create simultanous activity execution. When action is

forked it creates own threads for every output line and sends the thread identifiers to

matching join element. Join element will wait for every input line to process and pro-

ceeds to next action after every input is processed. Figure 11 shows example use of fork

and join elements.

23

FIGURE 11. Fork and Join elements usage

Figure 11 indicate that action path is forked after Action 1 and 2 threads are created for

Action 2 and Action 3. Join element underneath these actions will wait until both of the

actions are executed and proceeds to execute Action 4 after threads are joined.

3.4 Platform

Platform shares the same model architecture as desktop application. Class hierarcy is

shown in figure 1. Platform is separated into layers as shown in figure 12.

24

FIGURE 12. Platform separation.

Platform can use hardware directly or through WiringPI which is set of library routines

for easy access for GPIO functionality. API is Arduino like syntax. Activity model itself

does not have access to platform functionality, access to lower level functionality needs

to be go through layer by layer.

3.5 Model generation

Model generation uses same class model as rest of the framework, see Figure 1. Class

hierarcy for modelling framework. Model generation serializes class information into

binary file using directly UML designed data. Figure 13 shows process of model gene-

ration.

25

FIGURE 13. Model generation process.

Model generation collects all swimlanes from drawed activity models and process them

individually. Process takes one swimlane from collection and verifys that swimlane

matches with one of the components in component diagram. If match was found

swimlane activities can be verified against component features. If match was not found

process generates virtual component that can be used as function from other swimlanes.

Next step in model generation is to collect all activites from the swimlane. Process goes

through all activities in collection and verifies that the activity is either using component

feature or system provided action. If action verification was successfull activity and

swimlane is serialized into data stream file.

Serialization generates tree like class structure to binary file. Figure 14 shows serialized

class hierarcy in file.

26

FIGURE 14. Class structure in serialized file.

Serialized file contains unique indentification of serialized class which can used on de-

serialization phase to serialize each class specific information. Below section shows file

structure in plain text.

TABLE 6. Data structure in plain text

Data Description

Model ID Model unique identifier, generated on runtime.

Model item count How many model items (swimlanes) in model.

Model item ID Model item unique identifier, combined from swimlane name

and class name.

Model item activity

count

How many activity items swimlane has.

Model activity ID Activity item unique identifier, class name and unique number.

Activity property Property of activity item, for example datastore name or action

id.

Activity property

value

Property value, for example datastore value where data is re-

trieved or action value, for example sleep(100).

27

4 PROJECT

4.1 Goals

Project goal is to design component and activity diagrams using built modelling frame-

work. Component diagram contains platform Raspberry PI, motor actuators and sensors.

Activity diagram contains activity description for selected components.

UML diagrams that are modelled is built for 4 wheel drive robot car that can run on

constructed track. Track consist of walls that are used for distant measurement using

ultrasonic range finder.

4.2 Robot

Robot consists of following material:

 4WD chassis kit

 4 x DC motors

 L298N IC as motor controller

 UBEC

 7.2v 1.5Ah Li-Po battery

 Raspberry PI B

 HC-SR04 ultrasonic sensor for distance measurement

 Servo

4.2.1 Chassis and motors

Chassis kit was ready made 4 wheel drive kit manufactured by SparkFun that included 4

DC motors with suggested 3V input and 48:1 gearbox. Kit also included 65mm low-

profile wheels. (Multi-Chassis 4WD kit, HoppyTronics, 2015). DC Motors that were

included only had 800gf.cm torque on suggested 3V, this proved to be too low setting.

Kit could run forward and backwards with this torque but there was not enough torque

to make it turn. Increasing the input voltage from 3V to 7.2V increased the torque

enough the gain good speed on straight line and good cornering speeds. Battery holder

from figure 15 was removed to give more space for platform, motor controller and LiPo

battery.

28

PICTURE 6. Chassis (Multi-Chassis 4WD kit, HoppyTronics, 2015)

4.2.2 Motor controller

Motor controller that was selected for this project was L298N IC. L298N is dual chan-

nel motor controller that can run 2A load on each channel, 4A total. L298N provides

standard TTL logic level inputs to control load. Motor controller was operated from

Raspberry PI standard GPIO pins using software PWM output controlling the duty cy-

cle of motor controller. (L298N datasheet, Sparkfun, 2015)

PICTURE 7. L298N

4.2.3 Power system

Power system consists of standard 7.2V 1500mAh LiPo-battery with 25C discharge

rate. Discharge rate means that even if battery is only 1.5 Ah it can discarge it 25 times

the normal 1.5A rate, giving total of 37.5A but this decreases the battery capacity. For a

system that takes 1.5A it could run for on hour and for a 3A system, battery only have

capacity for 30 minutes.

Standard UBEC as voltage regulator was used for power distribution, separating the

Raspberry PI 5V and 7.2V directly from battery. UBEC could handle maximum of 6A,

which is enough to operate Raspberry PI and directly connected sensor power lines.

4.2.4 Raspberry PI

29

Raspberry PI B model was chosen as platform for this project. Raspberry PI was run-

ning debian linux distribution. Raspberry PI B contains features such as

 Broadcom BCM2835 SoC

 700 Mhz ARM1176JZF-s core CPU

 Broadcom VideoCore 4 GPU

 8 GPIO

 UART, I2C and SPI

+3.3V, +5V and ground lines are directly provided from pins. Raspberry PI B does not

support +5V input voltage for GPIO, +5V needs to be converted to +3.3V, for example

using voltage dividers. Raspberry PI B only has one PWM support from hardware but

software could be used to simulate PWM with the cost of CPU resources.

PICTURE 8. Raspberry PI B

4.2.5 Servo

Small servo was used to rotate ultrasonic sensor from left to right to determine distances

on front of the robot. Servo had 180 degree of rotation and weighting 6g. Servo signal

line was directly operated from Raspberry PI PWM pin. This was due to fact that Rasp-

berry PI B could handle sensor data line directly and allowed easier wiring. Recom-

mended current for each Raspberry PI GPIO pin is 3mA and the maximum current is

16mA. Servo signal line will only draw about 0.02mA. Ultrasonic Sensor was connect-

ed to servo using single arm horn.

30

PICTURE 9. Servo

Servos are rotated by variating pulse width of the servo data line input. Certain pulse

width will cause servo to be in specific position, figure 19 explains generic servo con-

trolling procedure.

FIGURE 15. Servo controlling pulses.

4.2.6 Ultrasonic sensor

HC-SR04 ultrasonic range finder was selected for robot distant measurement. Sensor

has 40 kHz ultrasonic frequency with 1 cm resolution. Sensor has +5V voltage data line

and it needed to be converted for Raspberry PI +3.3V supported using voltage divider

resistors. Figure 20 shows voltage divider circuit.

31

FIGURE 16. Voltage divider.

Used ultrasonic sensor had narrow beam width and its performance was not ideal on

edges of the beam. Figure 21 shows beam width

FIGURE 17. Beam width (HC-SR04 datasheet, RobotShop, 2015)

32

Sensor has 4 pins: echo, ping, +5 and GND. Ping pin is used to initiate ultrasonic distant

measurement and ping had to be at least 10µs long. Distant can be measured using time

from when ping was sent and when echo pin went high (+5V). Measuring time between

ping and echo pulses and dividing result by 58 gives distant to object in centimeters.

(HC-SR04 Datasheet, RobotShop, 2015)

PICTURE 10. Ultrasonic range finder. (HC-SR04, RobotShop, 2015)

Internally ultrasonic sensor will send 8 40kHz pulses when 10 µs initiate pulse was sent

to ping pin. Figure 23 shows internal work of sensor

FIGURE 18. Internal sensor activity. (HC-SR04 Datasheet, RobotShop, 2015)

4.2.7 Wiring

Power is wired as shown on figure 24. Direct battery access is only on motor controller

and UBEC. UBEC is used as voltage converter from +7.2V to +5V. UBEC is wired

directly to Raspberry PI and own lines for sonar and servo power lines. Only sonar and

servo signal lines are connected to Raspberry PI.

33

FIGURE 19. Power system wiring

Raspberry PI was wired as shown on figure 25. Servo was connected to the only hard-

ware supported PWM pin. Sonar is using two pins, pin 8 for triggering sonar and pin 7

for reply of the sonar. Motor controller is using 4 pins, pin 22,23,24 and 25. Motor con-

troller pins can be used as software PWM mode but this will consume CPU resources.

FIGURE 20. Raspberry PI wiring.

34

4.3 Software

Software used to create robot is the modelling framework created specially for this ro-

bot. See chapter 2 for description of the modelling framework.

Specialized components used to represent actual physical hardware was created for this,

these were ultrasonic distant sensor, motor controller and system components. WiringPI

was used to interact with hardware under Linux operating system. Hardware code was

embedded into inside each component class but provided also hardware free version of

the components to allow simulating of the component inside desktop application.

Software consist of UML notated diagrams that are described in below chapters.

4.3.1 Component diagram

Component diagram describes the components used in robot system. System consists of

Raspberry PI component for platform. left, right and sensor handling was modelled as

actuators.Ultrasonic sensor was modelled as sensor. Port and port connections represent

the component feature, for system this represent the GPIO connection and for other

components component feature itself. Figure 26 shows modelled component diagram.

FIGURE 21. Modelled system components

35

4.3.2 Motor controller

Motor controller modelling did not use actual component as a swimlane but virtual

swimlanes for each motor operation, to turn left or right and to move forward and

backwards. Below figure 27 and 28 shows turning operations.

FIGURE 22. Left turning.

FIGURE 23. Right turning.

36

Turning was handled by controlling actuator components direction feature and enabling

actuators itself.

Below figures 29 and 30 shows how robot was made to move forward and to go back-

wards.

FIGURE 24. Move forward.

FIGURE 25. Move backwards.

37

Same features was used on forward and backwards moving as was used on turning. Di-

rection was set on each actuator and enabling actuators itself.

4.3.3 Sensor handling

Ultrasonic sensor handling was embedded into distance sensor component. Handling

includes distance handling as well as servo handling. Handling was implemented in a

way that it reads center distance and stores the value and waits for period of 100µs to

fade false sonic ping replys. After this servo was repositioned and distance was read and

stored. Figure 31 shows details of implementation.

FIGURE 26. Distance handling

38

4.3.4 Main program

Main robot implementation was implemented on Raspberry Pi system component. Sys-

tem start would cause all actuators to stop and start handling of the robot movement.

Main program will also query on every loop start for application exit. Logic of the main

progam is that when center distance is less than 20 cm robot would move forward. If

distance is shorter robot will check if there is room to turn left or to turn right. If robot

can not turn it will move backwards. Robot will move for period of 100 µs and will halt

movement and query of distance is reinitiated. Figure 32 shows details of the robot mo-

vement.

FIGURE 27. Robot movement.

39

4.3.5 Deployment

Deployment consist of transferring the generated files to robot and retranslating compo-

nents in component diagram to actual component implementation descriptions. Compo-

nent retranslation is handled over text file. Text file consists of component name and

actual model implementation ID, in format of <component>=<implementation id>, for

example: RaspberryPI = CModelSystemRaspberryPI. Table 6 shows deployment info

used for this robot.

TABLE 7. Deployment file

Model Component ID

RaspberryPI CModelSystemRaspberryPI

LeftActuator CModelL298NActuator

RightActuator CModelL298NActuator

Sensor CModelActuator

DistanceRead CModelDistanceSensorHCSR

40

5 CONCLUSIONS AND FUTURE WORK

Considering the phases how project is implemented and the fact that phase 1 goal was to

introduce UML-like notation to model robot and have the ability to create robot that

moves and detects blocking items, project was success. Next phases will introduce more

features and more importantly ROS integration. Key concept is to extend component

library that modelling framework supports. ROS already has large device driver support

but these device drivers needs to be wrapped into component diagram.

5.1 ROS Support

ROS (Robot operatin system) is set of libraries, hardware abstraction and device drivers

to ease robot building. In addition it includes visualizers, message-passing and many

other features. In core ROS is message-passing library where message has publisher and

subscriber. Message can be for example a command to move forward where system

component is publishing move command and actuator handler is subscriber and handles

the passed message.

For modelling framework this could be achieved by having support for sequence dia-

gram, interaction diagram or by activity diagram by introducing signal - slot activities.

5.2 Debugging support

Modelling framework already has state machine inside, this means that the activity that

is executed is already known. This information needs to be passed to desktop applica-

tion through serial or wlan. Using the same state machine it is easy to add performance

metric information, measuring the times how long each activity action took and passing

the metric information to desktop application.

5.3 Plugin loading

Applications already uses Qt-framework for mainly cross-platform support but Qt usage

could be extended for plugin loading as it already have the feature built-in. Modelling

framework could build component toolbox based on available component plugins.

41

Since the modelling framework has the desktop and platform side, plugins should be

restricted or at least supported so that UI and platform has different plugin implementa-

tion.

5.4 Code generation

Code generation should be supported in case performance is key requirement for robot

system, as it often is. Code generation could be supported by generating activity

(swimlane) c++ code with cross-platform build system. System components that are

open sourced can be included directly to build system but code generation can use

plugin loading support for components where code is not available or restricted due to

licensing.

5.5 Distance measurement using stereo vision

Ultrasonic distance measurement has it drawbacks depending on the environment its

used. Soft materials absord the sonic wave and in worst case sensor can not handle low

sensitivity echos and can not calculate distance at all. Other drawback is that depending

on the angle of the robot and wall or any object which is used for distance measurement,

if the angle is off, reflected wave is not returning to sensor. These can be fixed by using

higher quality sensor which beam width is greater enough and more sensitive echo sen-

sor.

Using stereo vision it should be possible to determine objects distance by using two

separate camera images and creating depth buffer from images. This method needs at

least initial calibration and recalibration when cameras are repositioned in robot.

42

REFERENCES

Robotics, Wikipedia. https://en.wikipedia.org/wiki/Robotics Referenced on 29.8.2015

Introduction to robotics, VEX Robotics.

http://curriculum.vexrobotics.com/curriculum/intro-to-robotics/what-is-robotics Refer-

enced on 29.8.2015

Assembly robot, Metalworking magazine.

http://www.metalworkingworldmagazine.com/growth-forecast-for-robotics-market-to-

2020/ Referenced on 30.8.2015

Mars rover, Wikipedia. https://en.wikipedia.org/wiki/Mars_rover Referenced on

30.8.2015

Military robot, Wikipedia. https://en.wikipedia.org/wiki/Military_robot Referenced on

30.8.2015

MQ-1 Predator, Wikipedia. https://en.wikipedia.org/wiki/General_Atomics_MQ-

1_Predator Referenced on 30.8.2015

Phalanx CIWS, Wikipedia. https://en.wikipedia.org/wiki/Phalanx_CIWS Referenced on

30.8.2015

Educational robotics, Wikipedia. https://en.wikipedia.org/wiki/Educational_robotics

Referenced on 30.8.2015

DARwIn-OP, Wikipedia. https://en.wikipedia.org/wiki/DARwIn-OP Referenced on

30.8.2015

Rise of robots infographic, Robobusiness.

http://www.robobusiness.com/images/uploads/RB15_Rise_of_Robots_Infographic.pdf

Referenced on 30.8.2015

Robotics software, European PhD school.

http://www.phdschoolinrobotics.eu/ContentIntroduction.html Referenced on 6.9.215

Artiticial intelligence, Wikipedia. https://en.wikipedia.org/wiki/Artificial_intelligence

Referenced on 6.9.2015

Multi-Chassis 4WD kit, HoppyTronics. http://www.hobbytronics.co.uk/4wd-chassis-kit

Referenced on 26.7.2015.

L298N datasheet, Sparkfun.

https://www.sparkfun.com/datasheets/Components/General/L298N.pdf Referenced

26.7.2015.

HC-SR04 datasheet, RobotShop. http://www.robotshop.com/media/files/pdf/datasheet-

sen026.pdf Referenced 26.7.2015.

https://en.wikipedia.org/wiki/Robotics
http://curriculum.vexrobotics.com/curriculum/intro-to-robotics/what-is-robotics
http://www.metalworkingworldmagazine.com/growth-forecast-for-robotics-market-to-2020/
http://www.metalworkingworldmagazine.com/growth-forecast-for-robotics-market-to-2020/
https://en.wikipedia.org/wiki/Mars_rover
https://en.wikipedia.org/wiki/Military_robot
https://en.wikipedia.org/wiki/General_Atomics_MQ-1_Predator
https://en.wikipedia.org/wiki/General_Atomics_MQ-1_Predator
https://en.wikipedia.org/wiki/Phalanx_CIWS
https://en.wikipedia.org/wiki/Educational_robotics
https://en.wikipedia.org/wiki/DARwIn-OP
http://www.robobusiness.com/images/uploads/RB15_Rise_of_Robots_Infographic.pdf
http://www.hobbytronics.co.uk/4wd-chassis-kit
https://www.sparkfun.com/datasheets/Components/General/L298N.pdf
http://www.robotshop.com/media/files/pdf/datasheet-sen026.pdf
http://www.robotshop.com/media/files/pdf/datasheet-sen026.pdf

43

HC-SR04, RobotShop. http://www.robotshop.com/en/hc-sr04-ultrasonic-range-

finder.html Referenced 26.7.2015.

http://www.robotshop.com/en/hc-sr04-ultrasonic-range-finder.html
http://www.robotshop.com/en/hc-sr04-ultrasonic-range-finder.html

