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Opinnäytetyön aiheena oleva proteiinikompleksi Ada-Two-A-Containing Histone
Acetyltransferase, lyhyemmin ATAC HAT, vaikuttaa solun nukleosomissa DNA-juosteen
transkription aktiivisuuteen. Kompleksi muokkaa juosteen rakennetta ja pakkautumista niin,
että DNA-polymeraasit voivat toimia vapaammin. ATAC HAT kompleksin rakenne ei ole
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myöhempää massaspektrometrista tutkimusta varten.
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Työn tuloksena jokaista proteiinia saatiin alle 0,5 mg, joten saanto on melko alhainen. Pro-
jektin ansiosta saatiin kuitenkin tarvittavat plasmidit ja virukset ATAC HAT kompleksien tuot-
tamiseksi sekä hieman proteiinia tuleviin tutkimuksiin. Lisäksi opinnäytetyö tarjoaa kokonais-
valtaisen protokollan kyseisten proteiinien valmistukseen alusta loppuun.
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ATAC Ada-two-A-containing
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strain identification
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cDNA complementary DNA

Cre Cyclisation recombination protein, also a shortening for causes recom-

bination

ctop10 chemically competent E.coli strain

DPA Day after proliferation arrest

EMBL European Molecular Biology Laboratory

GCN5 General control of amino-acid synthesis 5, one type of acetyltransferases

HAT Histone acetyltransferase

HindIII restriction enzyme from Haemophilus influenzae
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1 Introduction

Proteins are central to all biological processes in the human body. They catalyse essen-

tial reactions in our cells. The nucleus of every cell contains genetic information, DNA.

A key process in the nucleus is transcription, which is the synthesis of a messenger RNA

(mRNA) using DNA as a template. mRNA; on the other hand, sets the template for the

synthesis of an amino acid chain which gives rise to a protein in a process called trans-

lation. In this way, a protein produced is based on the DNA sequence.

A protein itself is characterised by several levels of structural organization: primary

(amino-acid sequence), secondary (a-helices, b-sheets) and tertiary structure (folded

molecule). Several proteins together assemble into multi-unit arrangements: quaternary

structures. The three-dimensional structures of proteins and their amino acid sequence

determine their function in humans and any other eukaryotic organism. For instance, the

DNA polymerase enzyme builds DNA molecules from nucleotides, collagen strengthens

the bones and skin and opsin makes the eye detect light. These are just a few examples

of all the functions proteins are involved in. (Harvey, et al., 2011, 14–23; Learn. Genetics,

2015.).

A further important concept is the nucleosome. It is the structure in the cell nucleus where

the genetic information is stored, the genome. The DNA double-helix, is a very intricate,

fragile structure, and the nucleosomes protect it from physical damage. The genome is

packed into a compact form in the nucleosome and the nucleosomal units consisting of

histone proteins and DNA form chromatin, the basic material of the chromosomes.

Briefly, the genetic information of DNA is packed compactly so that 147 base-pairs (bp)

of the DNA strand is wrapped around a core histone octamer consisting of histone pro-

teins H2A, H2B, H3 and H4, two of each. Every histone protein contains an N-terminal

tail that comprises 15–35 amino acids. The tails are involved in the internucleosomal

interaction. The histone tails are important targets for post-translational modifications

such as acetylation of lysine residues or phosphorylation of serine and threonine resi-

dues. (An, 2007, pp.35–352.)

A great amount of research has been done to clarify the operations of nucleosomes but

with varying results. The way they protect the genome and, at the same time, allow the
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cells use the information of the DNA strands is not completely understood. It has been

presumed that the DNA unfolds partially from around the nucleosome so that the infor-

mation in the DNA can be read.

The modification of the genome activity is mostly caused by the histones. Histones are

not completely like other proteins: they have long tails that reach to the neighboring nu-

cleosomes and bind them strongly together. The nucleus of the cell excretes regulatory

enzymes that modify these tails and weaken their interactions with other parts of the

complex. In this way, some of the genes are more accessible to polymerases and their

information is available for copying. (Goodsell, 2000.)

This bachelor’s thesis was conducted in the Berger group in the European Molecular

Biology Laboratory (EMBL) outstation in Grenoble, France. The project was realised to

gather new information of a few multi-unit protein complexes that effect the transcription

of the genome. The ones of interest were three modifications of Ada-Two-A-containing

complex Histone Acetyltransferase (ATAC HAT). The main goal for the project was to

express and purify these protein complexes for structural characterisation by native

mass-spectrometric analysis. The characterisation will be done later by the laboratory of

Frank Sobbot in the Netherlands. The analysis is used to determine the structure of

ATAC HAT complex, which is not yet well known. The new mass-spectrometric method

for the structural analysis can provide more information about the composure of these

transcriptional activators.
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2 Theoretical background

HATs (histone acetyltransferases) are essential enzymes responsible for acetylation of

histone tails required in the control of the chromatin structure. In histone acetylation (Fig-

ure 1), an acetyl group is added to lysine residues in the N-terminal tail or on the surface

of histone protein’s nucleosomal core. Acetylated or deacetylated histones can relax or

tighten, respectively, the chromatin structure, making the gene more or less available for

transcription. In that way they play a significant role in eukaryotes by controlling chroma-

tin architecture and locus-specific transcription. Hence, ATAC HAT (Ada-Two-A-Contain-

ing Histone Acetyltransferase) belongs to the compounds that make the chromatin more

available for the transcription. (Verdone, et al., 2005; Nagy, et al., 2010.)

 Acetylation of lysine residues at the N-terminus by histone acetyltranferases (HATs).
This reaction removes positive charges and reduces the affinity between DNA and histones,
which makes the promoter region more easily accessible for transcription factors. Histone
deacetylation by histone deacetylases (HDs), on the other hand, decreases transcription on
the area. (Molecular Biology Web Book)
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One of the best-known HATs is GCN5 (general control of amino-acid synthesis 5), a

protein that is conserved from S.cerevisiae to humans. The HAT module of ATAC con-

sists either of GCN5 or PCAF (Human p300/cbp-associated factor, a homology 73 %

identical with GCN5) and ADA3 (Transcriptional adapter 3), ADA2a (Transcriptional

adapter 2a) and SGF29 (SAGA-associated Factor 29). The function of ADA2a and ADA3

is to regulate the HAT activity of GCN5 (Riss, 2012, p.45). The different units of ATAC

complexes are shown in the Table 1.

 ATAC complexes and their components in drosophila and human (Riss, 2012).

ATAC complex

dATAC

Drosophila melanogaster

hATAC

Homo sapiens

HAT module dGCN5 hGCN5/hPCAF

dADA2a hADA2a

dADA3 hADA3

dSGF29 hSGF29

Others dATAC1 hZZZ3

dATAC2 hATAC2

dATAC3 –

HCF –

WDS WDR5

D12 YEATS2

CHRAC14 –

NC2β NC2β

CG10238 MBIP
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2.1 Effects of histone acetyltransferases

The deletion of the SGF29 unit results in decreased levels of histone H3K9, K14 and

K23 acetylation in both yeast and human cells. Yeast and human GCN5 acetylate mainly

histone H3K14 in vitro. However, ATAC from Drosophila acetylates also histone H4. The

activity with histone H4 has been interpreted to be caused by the presence of the second

HAT unit in ATAC complex, ATAC2. (Schram, et al., 2013; Nagy, et al., 2010.)

Both GCN5 and PCAF are transcriptional activators. A verified trace between H3 and H4

acetylation and p300-mediated (E1A binding protein-mediated) transcription has been

established. HATs neutralize the charge of histone tails. When this happens, the tails

and the negatively charged DNA backbone get more separated from each other and the

chromatin is then more available for transcription. Histone acetylation also seems to cre-

ate a signal for the binding of the bromodomain which has been found in GCN5, PCAF

and p300, for example. The bromodomain is often found in the proteins that regulate and

modify the chromatin. (An, 2007, pp.354–357; Riss, 2012, p.44.)

The ADA unit is in form of ADA2a in ATAC (Figure 2). It consists of a zinc finger (ZnF)

and two other domains, SANT (Swi3, Ada2, N-Cor and TFIIIB) and SWIRM (Swi3, RCS8

and MOIRA) (Riss, 2012, p.64). The zinc finger is proteins’ means to form stable and

compact structures. They are particularly useful in small molecules when there are not

enough amino acids to form many hydrogen bonds or charge pairs. When two cysteine

molecules and two histidine molecules are close together, they can grab a zinc ion and

fold tightly around it. With these structures, just 20–30 amino acids are enough to form

a strong structure. Also, the zinc fingers can bind to a DNA strand controlling the tran-

scription. (Goodsell, 2007.)

 Protein sequence for hADA2a (Riss, 2012, p.64)
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2.2 Histone acetyltransferases in humans

ATAC HAT is not the only HAT compound found in humans. Another similar complex is

SAGA HAT (Spt-Ada-Gcn5-acetyltransferase Histone Acetyltransferase) that resembles

ATAC HAT in its structure and function. They are composed of same kind of subunits;

the only difference is that in SAGA ADA2a is replaced with ADA2b and the ATAC2 unit

is missing (Figure 3).

 Origins of complexes SAGA and ATAC (Spedale, et al., 2012).
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The fact that ATAC is present only in multicellular eukaryotes shows that it was devel-

oped later during evolution than SAGA. The function of ATAC in mammalian cells is not

completely clear at present. It is indistinct why the two, almost same-structured com-

plexes exist. Discussion has arisen if the two types of GCN5 containing complexes have

specific functions compared to each other. (Guelman, et al., p.208.) At least one differ-

ence has already been found: Krebs et al. (2011) have showed that ATAC HAT complex

is both a gene enhancer and promoter when SAGA HAT complex only binds to promot-

ers (Figure 4).

 ATAC and SAGA binding to DNA (Krebs, et al. 2011).
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Nagy, et al. (2010) have been able to show that there is another difference between the

function on SAGA and ATAC. Drosophila was exposed to a toxic agent TPA (12-O-tetra-

decanoyl phorbol-13-acetate) which activates the signal canal for PKC kinase (protein

kinase C) and also causes the immediate expression of the genes. It was noted that the

dATAC complex was recruited immediately to the loci actively transcribed. With dSAGA,

this did not happen. Without stimuli the signal of ATAC and SAGA on the chromosomes

was weak. The same experiment was executed with human HeLa cells with according

results.

To summarise the basics of ATAC HAT, acetylation modifies the chromatin fibre and its

physical and chemical properties. That not being the only quality, the process also pro-

vides interaction sites for multitude of binding proteins. Histone acetylation has attracted

interest from a medical research:  drugs inhibiting the histone deacetylases from working

have been shown to be effective against particular types of lymphomas. (Spedale, et al.,

2012.)
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2.3 Baculoviruses

Baculoviridae is a virus family the members of which contain double-stranded, circular

DNA. It is both occlusion derived and a budding virus that infects mainly anthropods,

especially insects (Figure 5). The viruses can usually be hosted by one species only.

One of the most important qualities of the baculoviruses for research is their ability to

produce polyhedra. They are large particles that appear in the nuclei of infected cells at

the end of the infectious cycle, during viral infections.

 Structure of a baculovirus (Kalmakoff, J. Microbiologybytes).

Virus’s ability to produce large amount of polyhedra is one of the factors that made them

vectors for foreign protein production. An advantage for this was that baculoviruses do

not need polyhedrin to replicate in cultured insect cells. One could simply include the

foreign protein-encoding DNA sequence to the viral DNA and harness the recombinant,

baculovirus-infected insect cells for protein production. Infection leads to very abundant

transcription of foreign cDNA (complementary DNA) during the late phase of infection.

The production efficiency is, nevertheless, dependable of the protein that is being pro-

duced.
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Another advantage with baculoviruses is their eukaryotic protein processing capability.

(Jarvis, 2009). Baculovirus-infected insect cells have been proved to be efficient produc-

ers of multiprotein subunit complexes like the ATAC miniHAT of interest. Eukaryotic pro-

tein complexes can contain over ten subunits, each with a total size of several hundred

kDa. Thereby it can be noted that the capacity of Escherichia coli is not sufficient for their

expression. With baculoviruses, large DNA insertions in the double stranded viral ge-

nome can be effectuated. (Berger, et al., 2004.)

Even if E.coli might be able to produce large protein molecules, they are not processed

further properly. For example, the proteins produced in E.coli are not glycosylated, in

other words sugar groups are not attached to them after translation. The proteins are not

folded properly because the bacteria cannot synthesize the disulphide bonds that are

present in eukaryotic proteins. Usually this means that the protein is insoluble and inac-

tive. These post-translational modifications are, however, possible with insect cells.

(Brown, 2010, p.236.)

The developments in the baculoviral research have noted that the viruses can generate

virus-like particles (VLPs) made of multiple virion components that have huge possibili-

ties as vaccine candidates. They do not contain the genetic information of viruses but

only the viral envelope. Previously, multiple protein complexes of polio, papilloma viruses

and hepatitis C, for example, have been produced in baculovirus-infected insect cells.

(Jarvis, 2009.)
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2.4 Insect cell cultures and protein expression

The technique, also called MultiBac, involves baculovirus infected insect cells that start

to produce certain protein after transfection. The DNA sequence encoding this protein is

inserted to the baculoviral genome.

Insect cells can produce bigger complexes than E.coli, and in living creatures proteins

usually work in such units rather than alone. Some proteins are also produced in low

quantities or only for a short amount of time in their native environment which makes

their analysis demanding. With MultiBac system large amounts of protein can be pro-

duced for the R&D (Research and Development) purposes in the fields of structure, med-

ical development and bioengineering, for example.

MultiBac technique needs certain things to work: an acceptor and a donor vector. Every

acceptor has two Tn7 sites as well as one LoxP (Locus of X-over P1) site.

One or more donor vectors can be recombined to an acceptor via their LoxP sites (Graig

and Berger, 2011). The site was first discovered in bacteriophages, it consists of two

perfectly inverted repeats separated by an 8-bp spacer. The loxP site recombination is

catalysed by a single phage-encoded protein, Cre (Causes recombination/cyclisation re-

combination protein). Firstly, the LoxP site is saturated with two Cre molecules. The Cre-

lox complex is then united with a second LoxP site on the same or another molecule and

the strands are exchanged. (Sambrook and Russell, 2001, ch.4.82.) After this, the ac-

ceptor contains all the coding sites of both plasmids combined. The mechanism is pre-

sented in the Figure 6.
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 Types of Cre-Lox recombination (The Jackson Laboratory, 2015).

Via the Tn7 (Transposon 7) sites plasmids can be integrated to the baculoviral genome.

It is a site that can move between the sites that lack homology. The transposases enable

the movement of Tn7, and they are self-encoded by this site. The Tn7 site is composed

of Tn7-Left (Tn7-L) and Tn7-Right (Tn7-R) sites and the sequences coding five different

transposases. Approximately 150 bp sized Tn7-L and 90 bp Tn7-R make sure that the

inserted fragments are oriented preferentially. Transposases TnsA and TnsB recognise

the ends of the transposon. They cut the Tn7 from the donor backbone and join the ends

to the target DNA. Only the 3’ ends are joined and 5’ ends stay flanking. These gaps are

later repaired to form duplicated 5-bp target sites. The process is presented in the Fig-

ure 7. (Peters and Craig, 2001.)

 Tn7 transposition (Peters and Craig, 2001).
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The cells used in the Multibac technique contain all the qualities described before. These

DH10EMBacY cells host the baculoviral genome that is specifically engineered for the

technique. In addition, there is an YFP (yellow fluorescent protein) coding sequence in-

tegrated to the genome that provides a simple factor for detecting the protein production

during cell culturing. The DH10EMBacY cells also contain a helper plasmid for Tn7 trans-

poson enzyme. The virus is both protease and chitinase deficient, the cell viability is

increased and the proteolysis is reduced. The complete genome map is provided in the

Figure 8. (Craig and Berger, 2011.)

 EMBacY baculoviral genome (Craig and Berger, 2011).

Bacmid containing colonies are determined by blue/white screening which is possible

due to the lacZ peptide. The location of Tn7 site is within the lacZ gene. If the plasmid

DNA is inserted to the viral genome, the operation of lacZ stops and the colonies appear

as white. If insertion does not occur, the lacZ continues to produce β-galactosidase,

which hydrolyses Bluo-Gal on the plates and produces a blue compound (Juers, et al.,

2012). Bluo-Gal is an alternative substrate for β-galactosidase that forms darker blue

colour than the traditionally used X-gal (Life Technologies). IPTG (iso-propyl thiogalac-

toside) is an inducer used to trigger the transcription of a lac operon.
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The insect cells used in the Multibac technique are Sf21 cells. They are originally from

the ovaries of the Fall Army worm, Spodoptera frugiperda,  which  is  a  moth  species.

Aseptic work routines are extremely important with insect cell cultures. The cells are

grown in a medium that does not contain antibiotics and the optimal temperature for their

growth is 27 °C. The conditions make the cultures ideal for yeasts, fungi and other bac-

teria as well. All the steps included to the cell culturing are effectuated in a laminar hood

with proper equipment. UV light is used inside the hood before and after every work to

kill any cells, viruses or bacteria that might have got onto the laminar hood surfaces.
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3 Materials and methods

The methods in this thesis project are the ones routinely used in a protein laboratory.

The project methodology can be divided in three sections: plasmid verification, protein

expression in insect cells and purification by immobilized metal affinity chromatography

(IMAC) and size exclusion chromatography (SEC). The essential reagents and recipes

are listed in brackets during the work description.

3.1 Plasmid verification

The ATAC HAT plasmids engineered by Simon via cre-lox recombination (Table 2) ex-

isted from previous experiments. The constructs are presented in the Appendix 1. The

difference between ATAC HAT and ATAC miniHAT of interest is the SGF29 group: in

ATAC miniHAT the unit is not present (Simon Trowitzsch, personal communication).
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 Plasmid cre-loxes used in the experiments

Name and the plasmid

composition

Produced complex Antibiotic resistances within the

plasmid sequence

CL39 [pFL_HT-hGCN5

x pIDC_hADA2a x

pIDK_mADA3 x

pIDS_hSGF29]

ATAC HAT, full-

length protein
Amp/(Gent)/Cam/Kan/Strep

CL40 [pFL_HT-

GCN5481–837 x

pIDC_ADA2a x

pIDK_ADA385–432]

ATAC miniHAT,

truncated GCN5 and

ADA3 units and no

SGF29 unit

Amp/(Gent)/Cam/Kan

CL50 [pFL_HT-

GCN5481–837 x

pIDK_mADA3 x

pIDS_SGF29 x

pIDC_ADA2a]

DN-GCN5 ATAC

HAT, protein derived

from limited proteoly-

sis

Amp/(Gent)/Cam/Kan/Strep

The quality of the plasmids had to be checked before proceeding further. The plasmids

were digested first with restriction enzyme BamHI HF (New England Biolabs) to verify

their size and quality. As a control, all the same reagents, except for the restriction en-

zyme, were pipetted and incubated as the sample. The profile obtained was used again

after the amplification.



17

The quantity of the plasmid DNA was amplified using chemically competent E.coli Top10

cells. Thus, 1 µg of plasmid and 50 µl of E.coli cells were mixed together and then incu-

bated on ice for 15 min. The cells were transformed via heat shock at 42 °C for 45 s, and

the samples were incubated on ice for 2 min. Next, 400 µl of LB (Luria-Bertani medium)

broth was added, and the tubes were incubated at 37 °C for 2 h. After that, 50 µl of the

mixture was plated on agar containing chloramphenicol. The same triangle without flam-

ing was used for streaking of second plates, in case there would be too many colonies

on the first plate. Agar plates were incubated O/N (overnight) at 37 °C.

The following morning, bacterial colonies could be seen. Two clones per construct (A

and B) from the second plates were selected and they were transferred into separate

culture flasks containing 25 ml of LB broth. The flasks were moved to a shaking incubator

at 37 °C to amplify the cells.

The DNA obtained was extracted and purified with Qiagen MiniPrep kit. The accompa-

nying kit protocol was followed (Appendix 3) except that the volumes were doubled for

B1, B2 and N3 and the last elution step was repeated twice for better yield.

After the DNA extraction, a restriction digestion analysis by AGE (agarose gel electro-

phoresis) was run to verify that the amplification was successful. Digested DNA samples

with loading buffer (6X) were loaded on agarose gel containing ethidium bromide (around

100 ng of DNA per lane). 1 kb size marker (New England Biolabs, 1 kb DNA ladder) and

uncut plasmids as controls were applied and the run was performed with 110 V approx-

imately for 2 h.
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3.2 Insect cell culturing and protein expression

To maintain the cell stock, Sf21 insect cells were grown in a serum free medium (Gibco,

Life Technologies, Sf-900 II SFM 1X). The healthy range for the cells is 0.5–

2.0 · 106 cells/ml. The cultures were split every day because of the cell division once

every 24 h.

When it comes to the cell culturing, the EMBL’s EEF protocol (Appendix 2) was followed.

The transfection was performed using the X-tremeGene HP DNA Transfection Reagent

reagent (Roche) and the efficacy of the transfection was monitored with a fluorescence

spectrometer every 24 hours.

The quality of work was checked with SDS-page paired with Coomassie brilliant blue

staining and Western blot with Monoclonal Anti-polyHistidine Phosphatase conjugated

Antibody (Sigma-Aldrich, lot. 014M4787V). After the antibody solution, the membrane

was soaked in BSA (bovine serum albumin)/milk powder blocking solution and then in

the BCIP/NBT (5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium) phospha-

tase photoreaction solution, which makes the colorimetric detection of the proteins pos-

sible.

3.3 Purification

The small-scale production provided sufficient amount of protein to be purified. The func-

tion of the protocol was first tested with the small-scale cell pellets and later with larger

amount of cells.

The components of the buffers (Table 3) are chosen for certain reasons. Imidazole is

added to minimize the unspecific binding of protein. The high salt concentration makes

the protein soluble; in lower salt the protein seems to stay insoluble, according to the

previous experiments. Tris-HCl performs as a buffer to stabilise the pH. All pHs were

adjusted to 7.6 at 4 °C, after the addition of all the chemicals. The protease inhibitors

were added as a cocktail of 100X leupeptin, 100X pepstatin and a protease inhibitor

tablet (cOmplete EDTA-free, Roche).
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 Purification buffers

Name Components

Lysis buffer 50 mM Tris-HCl, 500 mM NaCl, 10 mM imidazole,
10 % (v/v) glycerol, protease inhibitors

Wash buffer 50 mM Tris-HCl, 500 mM NaCl, 20 mM imidazole,
5 % (v/v) glycerol, protease inhibitors

Elution buffer 50 mM Tris-HCl, 500 mM NaCl, 200 mM imidazole,
5 % (v/v) glycerol

Dialysis buffer 25 mM Tris-HCl, 500 mM NaCl, 5 % (v/v) glycerol,
protease inhibitors

Firstly, the cell pellets were taken out of -80 °C freezer and put on ice. Then, 40 ml of

lysis buffer was added, and the cells were thawed. The cells were lysed by sonicator with

a macro tip (60 %, 1 min program, 5 s ON and 10 s OFF) and an SNP (supernatant and

pellet) sample was taken. The cell lysate was centrifuged in a JA 25.50 rotor (Beckman

Coulter) at 20 000 rpm for 45 min at 4 °C, and an SN (supernatant) sample was taken.

As much as 1 ml of the Ni2+-NTA resin was equilibrated with 2 x 30 ml of PBS (phosphate-

buffered saline). The IMAC was performed as batch purification so that the resin was in

a 50 ml falcon tube and the supernatant from the cell lysis was added on it. The tubes

were incubated for 3 hours at 4 °C to bind the his-tagged protein to the resin.
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The tube was centrifuged gently (800 rpm, 5 min) to separate the resin and the superna-

tant, the flow through (FT). A FT sample was taken to see if the protein stayed attached

to the resin or if some of it remained in the supernatant. The flow through fraction was

transferred to a fresh 50 ml falcon tube and stored at 4 °C. It could be passed on the

resin again if a good amount of protein remained in the flow through.

The resin was washed with 50 ml of wash buffer followed by incubation for 20 min at

4 °C. The tube was centrifuged again (800 rpm, 5 min), and a W (wash) sample was

taken from the supernatant. The whole wash fraction was stored at 4 °C in case the

protein eluted with the washing buffer. The resin was suspended with 1 ml of washing

buffer and transferred to a 2 ml eppendorf tube. The buffer was separated from the resin

with 5 min centrifugation at 1000 rpm and the supernatant was discarded.

The protein was eluted six times with 1 ml of elution buffer. First, the elution buffer was

added, followed by a 20-minute incubation at 4 °C. The tubes were then centrifuged with

an eppendorf centrifuge, 5 min at 13 200 rpm. The supernatant was transferred to a fresh

tube and centrifuged again for 10 min at 13 200 rpm to remove small amounts of resin.

Finally, the supernatant was transferred to a fresh tube and stored at 4 °C until SDS-

page analysis. The elution steps were repeated six times as previously.

All the samples were loaded on an 11 % Tris-Tricine gel, and the fractions containing

protein of interest were pooled.

The concentration of the sample was measured, and a PRE (before TEV protease) sam-

ple was taken aside. 1:50 (mass ratio) volume of TEV protease (1 mg/ml) was added to

the pooled fractions, and it was dialysed against dialysis buffer O/N. A POST (after TEV

protease) sample was taken the following morning to note the cleavage of his-tag.

The sample was concentrated using ultrafiltration concentrator (30,000 MW cut-off filter,

Merck Millipore) to a final volume of approximately 550 µl. The ÄKTApurifier 10 (GE

Healthcare) with an automatic fraction collector was used for the SEC analysis. Method

information is presented in the Table 4.



21

 Parameters of the SEC analysis with AKTApurifier Superdex 200 10/300

Time Function

0.00 Base volume

0.00 Flow 0.500 {ml/min}

0.00 Alarm_Pressure Enabled 1.50 {MPa} 0.00 {MPa}

0.00 AutoZeroUV

2.00 InjectionValve Inject

2.00 AutoZeroUV

6.00 InjectionValve Load

6.00 Fractionation_900 0.400 {ml/min}

30.00 Fractionation_Stop_900

38.00 End_Method

Finally, 500 µl of the concentrated sample was injected onto a Superdex 200 10/300

column (GE Healthcare) previously equilibrated with dialysis buffer (table 3) via 1 ml

loop. The column is ideal for separating protein molecules between 10 000 and 60 000

kDa. Rest of the concentrated sample was kept as an IN (input) sample.
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The fractions containing protein were selected based on the spectrum. All the fractions

from the peak volumes were analysed on an 11 % Tris-Tricine gel including the PRE,

POST and IN samples. Again, the protein-containing fractions were pooled and the sam-

ple was concentrated with a 30 MWCO cut-off filter. The product was divided to 50 µl

aliquots, and they were flash frozen in liquid nitrogen.
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4 Results and discussion

4.1 Plasmid verification

Top10 E.coli cells were selected as hosts for the plasmids because of their good trans-

formation efficiency (1 · 109 cfu/µg plasmid DNA) and their stable production of repli-

cates.

The plasmids were checked in case of degradation with agarose gel. The results were

understandable, even though the bands were in a different place and there was a differ-

ent amount of them on the gel than on our reference gel. Some of the bands were higher

in size, but that might tell that some fragments were not digested after all. That could

also explain the missing bands. The same also works in to the other direction: too many

bands mean more restriction sites than expected. To conclude, the plasmid sequence

might be a little different than the one determined by sequencing.

The amplification of clones in LB broth containing chloramphenicol was not successful

with one CL39B clone. The colony selected might have been a contaminant, and this

sample was discarded. The other samples (CL39A, CL40A, CL40B, CL50A and CL50B)

proceeded to DNA extraction. The extraction succeeded well, and the concentrations of

the samples can be found in the Table 5. The concentration values were measured with

a NanoDrop spectrophotometer.
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 Sample concentrations after DNA extraction. The letters A and B describe the DNA

extracted from two clones of the same plasmid-containing bacteria.

Sample Concentration

CL39A 577.6 ng/µl

CL40A 512.0 ng/µl

CL40B 520.0 ng/µl

CL50A 540.2 ng/µl

CL50B 440.0 ng/µl

Another digestion with BamHI HF was performed after this part. The samples were di-

luted and the amount pipetted to a single gel well was approximately 100 ng of DNA.

AGE showed that the plasmid received from another researcher had been successfully

amplified. The bands corresponded very well the ones seen in the previous run. The

results are in the Figure 9.
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 Restriction digestion analysis of plasmids CL39, CL40 and CL50. Old plasmids on the
left and amplified ones on the right. M = 1 kb marker (New England Biolabs), C = uncut control
plasmid
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4.2 Insect cell culturing

4.2.1 Blue-white screening

The blue-white screening was satisfying and the colonies were selected. The biggest

problems at this point were that the plates were quite full of blue colonies but they had

just few white ones amongst them. The picking of white colonies was done very carefully,

not touching the surrounding blue colonies.

After streaking the white colonies and incubation, the genotype confirmation could be

made. Some colonies that were thought to be white were actually blue. Sometimes the

colour cannot be interpreted very certainly on the first blue-white plate because the col-

onies might just have very pale blue tone or they might be blue only from the middle. The

other explanation could be that regardless of all the carefulness, the inoculation loop

might have touched a blue colony at the picking step.

With the construct CL40, not a sufficient number of white colonies could be found. The

transformation was done again, and it was found mandatory that the addition of a plasmid

was done just after taking the DH10EMBacY cells out of -80 °C, without letting the cells

thaw. With this condition much more white colonies appeared. Maybe the colder condi-

tions make the plasmid stick to the cell membrane stronger which provides more efficient

transformation. The rest of the protocol was followed as in the first two paragraphs.

4.2.2 Transfection

The quality of the DNA was checked with AGE before transfection. At the point of trans-

fection, the cells were examined under a microscope. Normal cells appear small, round

and symmetrical and when they are transfected by the baculoviral genome they grow

bigger, a little asymmetrical. This was noticed after 72 h of transfection. Some of the cells

appear sausage-shaped and some just bigger in diameter than the cell control. The

shape and size differences can be noted in the Figure 10.
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Pictures of uninfected cells compared to the infected ones through a 10X objective.
The size difference can be noted and the shape variation can especially be seen in the left
corner of the infected cell picture.

When the 6-well plate cells were harvested, the YFP fluorescence values for the cells

were low. In this thesis project, the concentration of the bacmid was low (around

100 ng/µl) and it is also the reason why the YFP values measured later told the virus

was weak. The virus is used to infect cell culture flasks at the next step of the protocol.

The weak virus makes the transfection less efficient, but all cells get infected eventually.
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By monitoring the YFP values, the highpoint can be noted, and the cells harvested at the

right moment; thus, the virus concentration does not condemn the experiment.

The virus amplification in cell culture flasks was done at the same time on parallel. The

cells in these flasks were count done every day and the values told when the DPA (day

after proliferation arrest) was reached. Under the microscope all the cells looked infected

and bigger than normal cells. After the DPA, the cells were still counted every day to

obtain the same amount of cells for YFP measurement every time.

4.2.3 Spectrometric measurement

The YFP values grew steadily after DPA. The maximum obtained was around 28 000.

The charts for the YFP data are in the Figures 11, 12 and 13 and the full results in more

detail are presented in the Appendix 4.

YFP chart of the CL39 samples. The blue bar represents the duplicate A and the
red the duplicate B.
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YFP chart of the CL40A samples. The CL40A 10 and 11 are duplicates of the same
construct.

YFP chart of the CL50 samples.
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When the plateau phase was reached, the YFP values started to diminish. Sometimes it

could happen that the plateau was reached somewhere in the middle of two cell counts.

That is the case with the results of CL50A where one can notice a significant drop in the

YFP value between DPA+48 and DPA+72 samples. The YFP measurement could also

have been done every 12 h after DPA to make sure not to miss the plateau phase.

It can be interpreted based on the results that the production of YFP protein reached the

maximum 1–3 days after DPA depending on the construct. The result correlates with the

transcription of the baculoviral genome and at some rate the expression of the ATAC

complexes also. Nevertheless, at this part of the experiment it can only be observed if

the YFP protein is produced or not.

The plateau is important so that one knows when to harvest the cells. It must, however,

to be kept in mind that the cells are then no longer in YFP maximum but in a lower

expression state. That means that the amount of the protein in the cell pellet is lower

than it would be at the maximum samples.

4.2.4 Qualitative analysis of expression by SDS-Page and Western blot

The SNP and SN samples correlating to each YFP maximum were analysed on SDS-

page gels. The Coomassie stained gel (Figure 14) shows that the different subunits of

ATAC complexes are produced. For CL39 the units are GCN5 at 100 kDa, ADA2a/ADA3

at 50 kDa and SGF29 at 36 kDa and for CL50 ADA2a/ADA3 at 50 kDa, GCN5481–837 at

36 kDa and SGF29 at 35 kDa. The units ADA2a and ADA3 are similarly sized; thus, they

cannot be separated by the SDS-page gel. The correct bands are marked as an example

of the SDS-page gel figure.
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 Photo of a SDS-page gel with supernatant and pellet (SNP) and supernatant (SN)
samples for CL39A, CL39B, CL50A and CL50B. Samples are from YFP maximums that were
DPA+24 h for CL39A and B duplicates and DPA+48 h for CL50A and B duplicates.

The bands for the units can be seen, except that the SGF29 band around 35–36 kDa is

a little hard to interpret. The interpretation is made easier with the Sf21 cell control that

shows solely the proteins originally present in the insect cells. The lanes are comparable

because the cells were counted with a Neubauer chamber before sampling, so every

sample contains one million cells.

The solubility of the complexes is not very good as the comparison of the SNP and SN

lanes suggest: the bands are stronger on the SNP lanes. The band at 39 kDa corre-

sponds to the VP39, a structural protein present in the baculovirus capsids. The gel could

have been run longer to make the bands after 20 kDa separate although all the units of

interest are above 25 kDa in size.

For clearer visualisation, also all the YFP samples from DPA+24 to DPA+96 of the con-

struct CL40A were run to see the protein expression enhancement during the insect cell

culturing (Figure 15). The bands on the gel represent the subunits of ATAC miniHAT

which are ADA2a (around 52 kDa), ADA385–432 (45 kDa) and GCN5481–837 (40 kDa). The

bands are represented on the right side of the SDS-page gel figure.
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 SDS-page gel of sample CL40A, from DPA+24 to DPA+72.

The band for the truncated ADA385–432 is very thick and visible. The bands of ADA2a and

GCN5481–837 are not similarly clear, but they can be seen especially when compared to

the lysed cells. The intensity of the bands grows along with the maturing culture that is

what we expect.

At DPA+72 the amounts of protein seem to be at their maximum and that was also when

the YFP values were the highest. At approximately 39 kDa, one can see the VP39 protein

band.

Comparing to the constructs CL39 and CL50, the amount of soluble protein is greater

with the construct CL40. The bands on the SN lanes are weaker than the ones on

SNP lanes, but the difference is not as clear as with the other gel. The destaining of the

gel could have been longer.

Western blot analysis (Figure 16) shows the protein of interest in more detail. The pro-

teins are his-tagged so the antibody sticks to them and makes them visible. Because the

his-tag is located at the C-terminal end of the protein, it is attached to the GCN5 unit of

all complexes.
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 Photo of WB membrane: CL39A, CL39B, CL50A and CL50B. The antibody used
was Monoclonal Anti-polyHistidine Phosphatase conjugated Antibody. The WB was per-
formed with the gel from the same run as Figure 14.

From the membrane (samples CL39 and CL50A) one can interpret that the GCN5 unit

in CL39 is clearly seen around 100 kDa. Also some unspecific binding can be seen with

regard to the weaker bands at 75 kDa, 50 kDa and 37 kDa. The 75-kDa band is not a

unit of the ATAC protein, but it is visible on the cell control lane as well; thus, it is origi-

nated from the cells. The membrane might have been in the photoreaction solution for a

little too long, which showed the other bands.

For CL50 (Figure 17) the results are more varying: the band at the level of ADA2a/ADA3

(50 kDa) is clear on the SNP lanes and weaker on the SN lanes. The band for GCN5

should be at 36 kDa that is not convergent with the WB membrane. It was assumed that

the GCN5481–837 unit has not cleaved from the complex and it might migrate slower than

expected.

The solubility of the protein might possess some problems because the bands on the

SNP lanes are stronger than the ones on the SN lanes. According to the previous exper-

iments, the protein was not well soluble in low salt concentration. When the expression

and purification is done in larger scale, all the buffers should contain 500 mM of NaCl.
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When it comes to CL40A, the results are in accord with CL50. Only the band at the level

of the truncated ADA385–432 is seen, more intensively on the SNP than on the SN lanes.

The unit GCN5 is maybe bind to some other unit and migrates at higher size level than

it should.

The gel was cracked at the DPA+96 lanes, which explains the notch in the bands.

 WB analysis for CL40A samples (DPA+24 to DPA+96).

4.2.5 Large scale expression

Following the addition of the second passage of virus (V1), the cells stopped dividing

after 24 h. This is a little too fast because in the ideal case the cells would have multiplied

once and then stopped dividing. This would have given a larger amount of cells and thus

more protein to work with.

On the other hand, 24 h post-infection all the cells looked well infected and the

YFP measurements were started. The values went up quickly, but, also as a downside

of the fast infection, the YFP values diminished rapidly after a plateau. The cells were

harvested 72 h after infection which led some of the cells at YFP value around 15 000
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and the others at 20 000. It was interpreted that the amount of protein would be notice-

able.

SDS-page gels of this section correspond with the previous SDS-page figures and show

the production of the ATAC HAT proteins. The same subunits can be found as in the

small-scale expression. However, the expression does not seem to be as strong on these

gels as on the previous ones; the bands are not so thick. The amount of protein was

surprisingly at its most intense level in the small-scale expression pellets. The V1 used

to infect the 400 ml cell cultures might have lost some of its power during the storage in

4 °C although that should not happen in a few weeks. It might also be that the cells were

not very healthy when they were infected which might have had an effect on the expres-

sion levels. One good option would have been to grow larger volume of the cell cultures

to increase the protein amount.

The CL50 construct cultures were contaminated at some state of the experiment and

due to this fact, it was decided that the pellets of small-scale expression would be purified

instead of the large scale pellets of CL50. There are not as many cells as in large scale,

but at least the protein is correct and well-expressed.

4.3 Purification

4.3.1 Immobilized Metal Affinity Chromatography

The IMAC purification with Ni2+-NTA resin was successful. On the basis of the Coo-

massie-brilliant-blue-stained SDS-page gels (Figures 18, 19 and 20) it can be noted that

the protein eluted well during the first three elution steps. Some of the protein remained

bonded on the resin; thus, the concentration of imidazole could be increased in the elu-

tion buffer. Nevertheless, the adsorption and desorption of the protein is based on an

equilibrium, so the reaction happens all the time. The FT sample shows that some of the

protein does not bind to the resin during the first three-hour incubation. The binding step

could be repeated to see if it affects the binding. Because of the time management rea-

sons this could not be tested during the thesis project.
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All subunits of the complexes are well visible on the SDS-page gels. The elution fractions

containing protein were pooled (E1–E4), and the purification was continued with the total

volume of sample.

 IMAC purification of CL39A. (E=elution, FT=flow through, W=wash and
RS=resin).
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 IMAC purification of CL40A I

IMAC purification of CL50A
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4.3.2 Size Exclusion Chromatography

The size exclusion chromatography (SEC) purification was run quite successfully with all

the samples as well. The amount of protein was not very large, but the elution of the

target protein could be visually noted by SDS-page analysis (Figures 21, 22 and 23).

Some subunits are present in lower quantity than others which may explain the differ-

ences in the band intensities. Alternatively, it is known that the stain which was used to

visualize the bands, Coomassie Brilliant Blue, sometimes stains proteins stronger or

weaker, depending on their lysine and arginine (i.e. positively charged) amino acid con-

tents to which the dye binds. The concentration of protein is very low as well so the bands

are somewhat weak in general.
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SDS-page gels of SEC elution fractions (CL39A).
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SDS-page gels of SEC elution fractions (CL40A 11)
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SDS-page gels of SEC elution fractions (CL50A)
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The ATAC complexes could be stated to elute at the volume of approximately 12 ml. The

fact correlates with the calibration table made for S200 10/300 column by the laboratory

(Appendix 6) and the approximate calculated molecular weight of the complex, which is

216 kDa. The peak profiles remained the same with all the samples, which tells that the

contaminants and the protein remain similar with different complexes. One SEC chro-

matogram is presented as an example (Figure 24) and the rest can be found in the Ap-

pendix 5.

SEC chromatogram of CL39

For CL39 fractions 15–21, CL40A 17–22 and CL50A 10–23 were pooled and concen-

trated. The final amount of protein was around 0.1 mg/ml which is low and needs to be

improved.
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5 Conclusion

All in all, the project of expressing and purifying ATAC HAT complexes was successful

when it comes to expression and purification by IMAC and SEC. The final amount of

pure protein stayed around 0.5 mg per construct; thus, the yield was not overly high. This

can be ameliorated by using larger expression cultures.

The protocol from the previous researcher on the topic provided a profound basis to the

project. A great amount of effort had been devoted to it and and my results indicate that

with some more practice I could reach similar yields and quality of proteins. The work

period of 14 weeks with this topic was rewarding and also very challenging. With the time

limit I could not reach all the goals in their entirety I would have liked to have achieved.

The thesis project provided more information about the purification of ATAC HAT. It also

provides the full expression protocol from the beginning until the extraction of the protein.

Mainly, the project was a project of learning. I have deepened my understanding of pro-

teomics and the techniques used in this field as well as my skills of working as a part of

an international research group. The experiences I got in EMBL are invaluable. As a

result of the project the plasmids, viruses and some protein exist for further use.

The research work could be continued by a next researcher joining the project by im-

proving the SEC purification step. The proteins might have been aggregated because no

clear peak but multiple peaks could be perceived. The complexes elute just at the begin-

ning of the elution; therefore, a column with a better separation on that area could im-

prove the peak separation. A greater volume of cell culture would also improve the puri-

fication because there would be more protein to be purified and the yields would be

higher.

The results of the thesis project will be used to analyse the structure of the ATAC HAT

complexes. More protein will be produced with the virus obtained, and all the purified

proteins, alone and in complex with nucleosomes, will be analysed by an MS spectrom-

eter.
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Appendix 1 Plasmid maps for CL39, CL40 and CL50
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Appendix 2 Eukaryotic Expression Facility brochure
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Appendix 3 QIAGEN miniprep kit manual
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Appendix 4 YFP measurement data

CL39A yfp CL39B yfp
DPA 326 DPA 738
DPA+24 18866 DPA+24 22620
DPA+48 20201 DPA+48 23636
DPA+72 19295 DPA+72 13391
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Appendix 5 SEC chromatograms of ATAC HAT complexes

CL39, the full-length ATAC HAT
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CL40, the miniHAT of ATAC
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CL50, the N-terminal-truncated ATAC
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Appendix 6 AKTA Calibration curve for S200 10/300 column

Calibration performed at 4deg on AKTA K, 09/10/09

Dead volume Vo (mL) 8.11 KAV= (Ve-Vm) / (Vt-Vm)
Total volume Vt (mL) 24

Buffer = 25mM tris pH 8.0, 250mM NaCl, 2mM betaMercap-
toethanol

calibre
MW
(Da)

Elution volume
Ve KAV log (MW)

Dextran Blue 2000000 8.11 0 6.301029996
Beta amylase 200000 12.3 0.263687854 5.301029996
alcohl deshydrogen-
ase 150000 13.2 0.32032725 5.176091259
BSA ( bovine serum
albumin) 66000 14.42 0.397105098 4.819543936
carbonic anhydrase 29000 16.52 0.529263688 4.462397998
cytochroma C 12400 17.83 0.611705475 4.093421685

y=ax+B a= -3.4491 B= 6.2343

Enter the molecular weight of your protein (Da) 216000 it should be eluted at 12.26 mL

Enter the elution volume of your protein (mL) 10
its molecular weight
is 666890.65 Da

y = -3,4491x + 6,2343
R² = 0,9914
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Calibration superdex 200 HR 10/300 with classic
buffer


