

Bachelor's thesis

Degree Programme in Information Technology

Internet Technology

2015

Daria Shevchenko

DEFINITION AND
IMPLEMENTATION OF AN
ARCHITECTURAL CONCEPT
FOR CONFIGURING A CAN
NETWORK

BACHELOR´S THESIS | ABSTRACT
TURKU UNIVERSITY OF APPLIED SCIENCES

Degree Programme in Information Technology | Internet Technology

2015 | 45 pages

Instructors: Andreas Kraus, Stephan Huebner, Tero Virtanen

Daria Shevchenko

DEFINITION AND IMPLEMENTATION OF THE
ARCHITECTURAL CONCEPT FOR CONFIGURING
A CAN NETWORK

This Bachelor’s thesis is a part of the microLabCar test system project developed by Bosch. The
microLabCar test systems are used by different customers, as well as within the company for
testing Engine Control Units. The system contains two parts: the hardware device and the
operating software. The project has been operational for a few years and with every new step
in hardware development, new features on the software level are required. This thesis is related
to the Controller Area Network (CAN), an automotive bus standard, that provides
communication between microcontrollers and devices.

The purpose of this thesis was to implement the loading of a Field Bus Exchange Format
(FIBEX) file for configuring a CAN network. The task included developing a concept of a FIBEX
loader for CAN and integrating it into the test system software. Additional to the implementation
of a FIBEX loader, some architectural and GUI extension needed to be implemented. A FIBEX
interface in a test system software should be reusable for other automotive protocols such as
FlexRay and LIN (Local Interconnect Network). The CAN protocol should be able to work with
CANDBC standard, another standard used for configuring CAN networks, as well as with
FIBEX.

Since this thesis project is a part of the production process, the majority of the coding cannot be
published. Only the publicly available structures can be presented in this work.

KEYWORDS:

FIBEX, CAN, CAN network, OOP, interface, protocol, FlexRay, CANDBC

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS 5

1 INTRODUCTION 6

2 BACKGROUND 7

2.1 FlexRay bus 7

2.2 CAN bus 13

2.3 ASAM MCD2-NET (FIBEX) standard 19

2.4 FIBEX extensions for CAN 23

2.5 FIBEX EXTENSIONS FOR FLEXRAY 25

3 IMPLEMENTATION OF A FIBEX LOADER FOR A CAN 27

3.1 Defining use cases for FIBEX loader for CAN 27

3.2 Defining an architecture for FIBEX Loader for CAN 27

3.3 Multiplexing implementation 34

3.4 Integration of a FIBEX loader into a CAN interface 35

3.5 Testing 37

4 IMPLEMENTATION OF FIBEX SPECIFIC EXTENSIONS 40

4.1 Bit coding 40

5 CONCLUSION 43

SOURCE MATERIAL 44

APPENDICES

Appendix 1. A sequence diagram describing a flow of composing a FIBEX model

PICTURES

Picture 1. MicroLC3 device 6
Picture 2. CANcaseXL device 37
Picture 3. Sending a frame from microLC3. 38
Picture 4. Sending a frame from CANcaseXL. 39
Picture 5. An example of bit encoding type in a FIBEX file. 40
Picture 6. Code implementation of bit mask and bit filter calculations. 41

2.4.1 Controller-Type 24

2.4.2 Identifier-Value-Type 25

2.5.1 Controller-Type 25

2.5.2 Cluster-Type 26

FIGURES

Figure 1. Flexray frame format (National Intruments, 2009, p.5) 11
Figure 2. CAN network (Corrigan, 2008, p.7) .. 14
Figure 3. The CANH and CANL lines during a CAN production (Corrigan, 2008, p.8) . 15
Figure 4. CAN base format (Kvazer, 2014) ... 17
Figure 5. Use case diagram for FIBEX Loader implementation for CAN 27
Figure 6. FIBEX loader classes’ structure. .. 28
Figure 7. FIBEX loader MCD2NETElements classes’ structure. 29
Figure 8. FIBEX loader MCD2NETProcessingInformation class structure. 30
Figure 9. FIBEX loader MCD2NETSignal class structure. ... 31
Figure 10. FIBEX loader MCD2NETPDU class structure. ... 32
Figure 11. FIBEX loader MCD2NETFrame class structure ... 32
Figure 12. FIBEX loader MCD2NETChannel class structure. 33
Figure 13. FIBEX loader MCD2NETECU class structure. ... 33
Figure 14. A FibexSignal class structure ... 35
Figure 15. CAN interface architecture for reading information from FIBEX loader. 36

LIST OF ABBREVIATIONS (OR) SYMBOLS

CAN A Controller Area Network

TDMA A Time Division Multiple Access

FIBEX The Field Bus Exchange Format

SOF Start of Frame

RTR Remote Transmission Request

DLC Data Length Code

CRC Cyclic Redundant Check

ACK Acknowledge

EOF End of Frame

IFS Intermission Frame Space

CANDBC A file standard used for a CAN network

PDU Protocol Data Unit

GUI Graphical User Interface

DLL Dynamic-link Library

LIN Local Interconnect Network

ECU Electronic Control Unit

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

1 INTRODUCTION

The modern automotive industry is a rapidly growing and fast developing field.

The size of the production and constantly growing demand require new

approaches and methods to optimize the manufacturing process. The electronic

systems in automobiles are tightly connected to bus protocols or so-called

automobile bus protocols. Examples of the latter ones are the Control Area

Network (CAN) and FlexRay bus protocols. The protocols are supposed to

ensure safe and reliable data transmission, otherwise a car will not respond as

it is intended to. In order to ensure correct functionality, multiple tests are

performed. For this purpose Bosch uses LabCar produced by ETAS company.

This device simulates technical environment of an Engine Control Unit. It is a

complex system and due to its costs only a few of them are usually available for

the employees. As a solution to this problem, a microLC test system was

developed by Bosch Engineering GmbH. It is a more compact and cheaper test

system used for performing tests of certain sensors of an Engine Control Unit.

The device consists of two parts – the hardware and the operating software for

Windows PC. The MicroLC test system allows for performing tests right at a

work place and is enabled to work with other devices. The connection between

a microLC and a PC is a USB connection. An example of microLC device can

be seen in Picture 1.

Picture 1. MicroLC3 device

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

2 BACKGROUND

In order to obtain a clear idea about the tasks that were implemented in this

thesis work, a reader needs to understand the core terms that were used. The

work was based on the knowledge of FlexRay and CAN protocols as well as the

FIBEX standard, all used for configuring FlexRay and CAN networks. In the

chapters 2.1 -2.5 the reader has the opportunity to become familiar with these

terms in order to understand the scope of work described in the next chapters.

2.1 FlexRay bus

The FlexRay communications bus (National Instruments, 2009, p.1) is a

deterministic, fault-tolerant, and high-speed bus system developed in

collaboration with automobile manufacturers and leading suppliers. The

FlexRay bus was designed as low cost bus system that ensures high

performance even in a rough environment. The FlexRay uses unshielded

twisted pair cabling to connect nodes together. It supports single and dual-

channel configurations consisting of one or two pair of wires. Differential

signaling on each pair of wires is an effective substitute for expensive shielding

that decreases the effect of external noise on the network. Most FlexRay nodes

also have power and ground wires to power transceivers and microprocessors.

Dual-channel configurations offer enhanced fault-tolerance and/or increased

bandwidth, though first-generation FlexRay networks use only one channel to

save costs.

FlexRay buses have a resistor connected between the pair of signal wires that

ensure termination at the ends. A multi-drop bus requires termination only at the

end nodes. Not enough or too much termination can break a FlexRay network.

Therefore, the end nodes are terminated to match typical FlexRay cabling

impedance between 80 and 110 ohms. To avoid frustration when connecting a

FlexRay node to a test setup, modern PC-based FlexRay interfaces have on-

board termination resistors.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

FlexRay supports simple multi-drop passive connections as well as active star

connections for more complex networks. The right selection of network topology

helps to optimize costs, performance, and reliability for a given design. There

are three types of network topology that FlexRay supports (National

Instruments, 2009, p.2):

 The multi-drop bus is a simple topology that features a single network

cable run that connects multiple ECUs together. The network has

termination resistors installed on its ends to solve problems with signal

reflections. Correct termination and network layout are extremely

important for FlexRay networks, since they operate at high frequencies

which might cause signal integrity problems

 The star network consists of individual links that connect to a central

node. This type of network topology allows running FlexRay networks

over long distances or segmenting it in order to ensure network reliability

in case a portion of the network fails. Branches of the FlexRay network

are independent. Star network topology also gives a positive

environmental effect since it reduces the amount of exposed wire

decreasing environmental noise that it causes

 The hybrid network combines the previous two types of network

topology. Future FlexRay networks are likely to consist of hybrid

networks, using the advantages of both

FlexRay protocol

FlexRay is an automotive network communication protocol developed by the

FlexRay Consortium. It is a unique time-triggered protocol that provides options

for both deterministic data, such that arrives in a predictable time frame and

dynamic event-driven data. FlexRay succeeds in combining static and dynamic

frames due to the preset communication cycle that pre-defines space for static

and dynamic data. This space is configured along with the network by a network

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

designer. To ensure communication between nodes in a FlexRay network

designers should know how all pieces of network are configured.

As with any multi-drop, multiple nodes trying to write data cause data corruption

and contention on the bus. In case of FlexRay a Time Division Multiple

Access or TDMA scheme is the one handling multiple nodes. Every node in

FlexRay implements a TDMA scheme that guarantees the determinism of data

delivery in the network.

The FlexRay standard can be adapted easily to different types of network,

giving a great amount of flexibility to network designers. In order to support

maintaining network configurations between nodes, a standard format to store

and transfer the parameters is used. The Field Bus Exchange Format,

or FIBEX file – an XML-based standardized format for configuring the software

of automotive networks (National Instruments, 2009, p.2).

Communication cycle

The FlexRay communication cycle is a basic element of the TDMA scheme.

The duration of a communication cycle takes a fixed time which is set when a

network is designed. A communication cycle consists of a dynamic segment, a

static segment, and two protocol segments called symbol window and network

idle time.

Static segment

A static segment is pre-allocated into slices which are reserved for data that

arrives at a fixed period of time. The duration of slots and their number are

determined by a FlexRay configuration. These settings must match in all

controllers in the network. Each slot is exclusively owned by one FlexRay

communication controller for transmission of a frame on a certain channel. On

other channels in the same slot, either the same or another controller can

transmit a frame. The transmitting controllers in one slot are identified using

configuration parameters of the FlexRay controller. The piece of information

about the transmitter of a frame and its content is local and and it is not

http://en.wikipedia.org/wiki/XML

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

available for the receiving controllers. The message ID in the payload section of

the frame is what is used to uniquely identify the content of a frame. A controller

is able to search for a specific data using a filter mechanism. A static segment

guarantees strong communication latency since it exactly known when a frame

is being transmitted.

Dynamic segment

A dynamic segment is subdivided into so-called minislots which are

substantially shorter than a static slot. A minislot has just enough space to

accommodate a potential start time of a frame. Each slot is exclusively owned

by one FlexRay communication controller for transmission of a frame on a

certain channel. All controllers in the network have information about a current

minislot. So when a controller wants to transmit in a minislot, this action is

detected by all other controllers and the counting of minislots is interrupted.

Thus, a minislot becomes a real slot that has enough space for a frame

transmission. The expansion of a minislot reduces the total number of minislots

and minislots counting is renewed only after the end of the frame transmission.

In case when there is no data to transmit by the owner of a minislot, the latter is

not expanded and the slot counting is not interrupted. So a minislot does not

use any additional bandwidth, saving the latter for other lower-priority minislots.

A scheme used by a dynamic media access control ensures optimal use of

reserved bandwidth. The minimum duration of a minislot mainly depends on a

network parameter (delay) and by the maximum deviation of the clock

frequency in the controllers.

Frame format

All the communication is carried out in the form of the frames. The message,

consisting of bytes, is packed as it is shown in Figure 1.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

Figure 1. Flexray frame format (National Intruments, 2009, p.5)

Each of FlexRay messages consists of three parts: header, payload and trailer.

The header has 40 bits, 11 out of which belong to the identifier (ID). Any ID can

identify a message except ID=0x00, which is used to identify invalid messages.

As can be seen from Figure 1, the ID is preceded by four indicator bits, which in

turn are preceded by a reserved bit. The payload preamble indicator shows

whether a network management vector is being transmitted in the payload of a

static message or whether a message identifier is being transmitted in the

payload of a dynamic message.

The null frame indicator is served to indicate whether the payload is regular or

invalid.

The sync frame indicator indicates whether the messages transmitted in the

static segment are being used as sync frames in the context of synchronization.

The startup frame indicator indicates whether the message in the static

segment is a part of a startup frame in the context of startup.

The payload length shows the size of the payload in words and consists of 7

bits. The identifier is protected by the CRC method, an error-detecting code

used to detect accidental changes to raw data.

The header CRC sequence consists of 11 bits and is calculated basing on the

identifier, payload length, sync frame indicator, startup frame indicator and a

generator polynomial defined by the FlexRay specification.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

The cycle counter consists of 6 bits and shows the number of the cycle in which

the message is sent.

The maximum payload is 254 user bytes. The same value of the payload length

is shown for all messages transmitted in the static segment. This default value

is defined by a system designer during the configuration phase. The payload

length for dynamic messages may vary.

In the message transmitted in the static segment, the first 12 bytes are used to

transmit the network management vector. The payload preamble indicator

should be set in the header.

If the payload preamble indicator is set for a message in the dynamic segment,

then the payload starts with a network management vector. The first 2 bytes of

a dynamic message are the message identifier. The message identifier helps

the system designer to specify a payload more precisely.

The CRC method is used to protect the payload. In the framework of the CRC

method, a CRC sequence is calculated basing on a header, a payload and a

generator polynomial defined by the FlexRay specification. The CRC sequence

is added to the header and payload as the trailer (Vector, 2010).

Symbol window

A symbol window is a fixed-length time slot, in which special symbols can be

transmitted. These symbols are used for network management purposes.

Network idle time

A network idle time allows no traffic to be scheduled on the communicational

channel. It is a protocol-specific time window. A network idle time is used by

communication controllers to execute the clock synchronization algorithm. The

clock synchronization causes the offset correction that requires some

controllers to edit their view of the time forward, and others to edit their view of

the time backward. During this time, no consistent operations of the media

access control can be guaranteed. Since the duration of the network idle state

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

should be subtracted from the network bandwidth, it is kept as short as

possible. The idle time is a global parameter and it has to be consistent within

the network. Depending on a structure of a communication cycle, there are

basically three reasonable configurations recognized:

 Static configuration, which contains only static slot for transmission. At

least two slots owned by different controllers should be in a static

segment in order to enable clock synchronization. In case of a fault-

tolerant clock synchronization, there should be at least four static slots in

a static segment.

 Mixed configuration includes both a static segment and a dynamic

segment. The ratio between a static bandwidth and a dynamic bandwidth

can vary.

 Dynamic configuration has all of its bandwidth only for dynamic

communication. However, this type of configuration still requires a

“degraded static segment” containing two static slots (National

Instruments, 2009, p.5).

2.2 CAN bus

CAN bus

The CAN standard defines the network that links all the nodes connected to a

bus and enables them to talk with one another. The central node is not required

and new nodes can be added at any time (Corrigan, 2008, p. 7)

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

Figure 2. CAN network (Corrigan, 2008, p.7)

There is a CAN transceiver between the bus and each CAN controller. The

CAN bus consists of two differential signal wires CANH and CANL. As is shown

in Figure 2, the CAN transceiver is used to convert the Tx and Rx lines sent by

the controller to differential signals CANH and CANL. The two signal lines of the

bus, CANH and CANL, in the recessive state, are passively biased to ≈ 2,5 V.

The dominant state on the bus takes CANH ≈ 1 V higher to ≈ 3,5 V, and takes

CANL ≈ 1 V lower to ≈ 1,5 V, creating a typical 2-V differential signal as

displayed in Figure 3.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

Figure 3. The CANH and CANL lines during a CAN production (Corrigan, 2008,
p.8)

The differential signaling ensures noise immunity and fault tolerance of CAN.

Balanced differential signaling allows high signaling rates over twisted-pair

cable and reduces noise coupling. Balanced signaling assumes that the current

in each signal line is the equal but opposite in directions, resulting in a field-

cancelling effect.

The specification of the bus is defined by the High-Speed ISO 11898 Standard

(Corrigan, 2008, p.8), according to which a maximum signaling rate is 1 Mbps

with a bus length of 40 m with a maximum of 30 nodes. The cable is a shielded

or unshielded twisted-pair cable with 120 Ohm characteristic impedance. The

nominal specific propagation delay of the two-wire bus line is specified at 5

ns/m. In order to be physically compatible, all nodes in the network must use

the same or a similar bit-timing (Corrigan, 2008, p.8).

CAN protocol

The Controller Area Network (CIA, 2013, p.4), developed by Bosch in the early

1980s, is an international standard meant for fast serial data exchange between

electronic controllers in motor vehicles. In 2012, the CAN protocol was

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

enhanced by Robert Bosch GmbH and receive the name CAN FD (flexible data-

rate) (CIA, 2013, p.5).

The CAN protocol uses a “broadcast communication mechanism” which is

based on a message-oriented transmission protocol. It recognizes only

message content. Each message has a unique identifier which defines the

priority of a message and its content. CAN provides a high degree of system

and configuration flexibility due to using a content-oriented addressing scheme.

The existing CAN network easily joins new stations in case they are purely

receivers. Such configuration of a CAN network allows the reception of multiple

data and synchronization of distributed processes. Simple servicing and

upgrading of the network is possible, since data transmission does not depend

on the availability of specific types of stations.

 Real-time data transmission

In real-time data processing, the priority of a message defines how fast it will be

processed. The priority is specified by the identifier of each message. The

priorities are set during the system design in binary format and cannot be

changed dynamically. The lowest binary number corresponds to the highest

priority. Bus access conflicts are handled by the “wired-AND” mechanism,

according to which the dominant state overwrites the recessive state. All those

stations with recessive transmission and dominant observation fail to acquire a

bus access. They become receivers of the message with the highest priority

and renew their attempt to acquire bus access only when the bus is available

again.

Such a mechanism guarantees low individual latency times in real-time systems

and it proves to be especially advantageous in overload situations.

CAN frame format

The CAN protocol supports two message frame formats that differ in the length

of identifier. The “CAN base frame” supports a length of 11 bits, and the “CAN

extended frame” supports a length of 29 bits. The 11-bit message always has

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

priority over the 29-bit message. Among the other benefits of 11-bit message

are the shorter bus latency time. It also uses less bandwidth comparing to the

29-bit message and has higher error detection performance.

As can be seen from Figure 4, the CAN frame has the following structure:

 The “Start Of Frame (SOF)” is a start bit that begins a frame message

 The “Arbitration field” includes the identifier and the “Remote

Transmission Request (RTR)” bit which is dominant for data frames. In

case of CAN extended frame, the identifier contains two recessive bits:

SRR and IDE

 The “Data Length Code (DLC)” indicates the number of following data

bytes in the “Data field”. If the message is used as a remote frame, the

DLC field contains the number of requested data bytes

 The “Cyclic Redundant Check (CRC)” guarantees the integrity of the

frame

 The “Acknowledge (ACK) field” compromises the ACK slot and the ACK

delimiter. The ACK bit is sent as a recessive bit and is overwritten as a

dominant bit by those receivers which have at this time received data

correctly.

 The “End of Frame (EOF)” indicates the end of the message

 The “Intermission Frame Space (IFS)” is the minimum number of bits

separating consecutive messages.

Figure 4. CAN base format (Kvazer, 2014)

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

 Error handling

The CAN protocol signals errors immediately once they occur instead of using

acknowledgement messages. The CAN protocol implements three mechanisms

for error detection at the message level:

 Cyclic Redundancy Check (CRC): The CRC ensures the frame security

by adding a frame check sequence (FCS) at the transmission end. The

receiver compares re-computed FCS with the received FCS. When they

do not match, it means that a continuity counter error (a break in the

sequence numbers) has happened.

 ACK errors: Receivers acknowledge the received frames. In case the

transmitter does not receive a confirmation, an ACK error is detected.

 Frame check: It is used for frame structure verification. The bit fields are

compared with the fixed format and the frame size. Errors detected by

frame check are “format errors”

The CAN protocol implements two mechanisms for error detection at the bit

level:

 Monitoring: Each station that transmits is also able to observe the bus

level and thus detects differences between the bit sent and the bit

received

 Bit stuffing: After every five consecutive equal bits, the transmitter

inserts a stuff bit into the bit stream. This way the synchronization edges

are generated. The stuff bit is removed by the receiver.

Error detection with a help of one of the mechanisms, as described earlier,

leads to the current transmission abortion by sending an “error frame” which

prevents other stations from accepting the data. After the first transmission has

failed, the sender automatically re-attempts transmission (CIA, 2013, p.13).

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

2.3 ASAM MCD2-NET (FIBEX) standard

The ASAM MCD2-NET (FIBEX) standard is a uniform XML-based data format

that provides a description for setting the software of automotive networks.

FIBEX stands for “Field Bus Exchange Format”. FIBEX consists of two

interfaces, one of which is generic and the other one contains technology-

specific extensions for FlexRay, CAN and other protocols. The standard

accepts the definitions of network topologies that consist of ECUs with network

ports and gateways. Technology-specific properties are given for each network

port.

FIBEX is widely used in the automotive industry for configuration, design,

monitoring and simulation of communication in networks (ASAM, 2013).

The described format should comply with the following requirements:

 Design support: The format should support all steps of the design

process, meaning that incomplete topologies or intermediate stages

should be allowed.

 Covered areas: They should be able to model entities from different

areas:

o Functional network, consisting of functions, signals, services and

data types

o System topology that describes the logical layout of the system

o Communication properties, describing frames, their timing settings

and etc.

 Scalability: The format should be scalable, support both simple data

structures and complex data buses or multi-bus networks

 Support for extensibility: The format should be extensible, meaning it

should be possible to adjust it easily to manufacturer-specific

requirements

 Simplicity: The format should support the description of systems without

a functional level

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

 Communication architectures: the format should support the most

common automotive data buses like LIN, FlexRay, CAN, TTCAN, MOST,

Ethernet

Below is listed a description of the entities defined in FIBEX:

 Entities in system topology

o Cluster: a cluster describes a group of ECUs, connected in an

arbitrary topology. Nodes (ECUs) in a cluster use the same

communication protocol.

o Channel: a channel connects ECUs to a cluster through

communication medium. To be a part of a cluster, an ECU has to

have at least one controller connected to at least one channel of

the cluster.

o Connector: The connector is meant to describe the bus-interfaces

of the ECUs and to define the sending/receiving behavior

o Controller: The controller is a piece of hardware that ensures the

ability of nodes to send frames to and receive from the

communication medium

o Coupling-elements: These are network devices that ensure data

transmission without generating or terminating communication.

Coupling-ports are used to establish the connection between the

network entities and the communication medium

o ECU: The Electronic Control Unit has one or more host

processors that execute part of a distributed application. An ECU

can be a gateway if it is connected to two or more different

clusters by two or more of its communication controllers

o Gateway: An ECU that is connected to two or more different

clusters by two or more of its communication controllers. It

ensures a frame mapping between those clusters

 Entities describing functional level

o Function: a function is a part of a distributed application running in

an ECU

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

o Input-port, output-port: Exactly one function is being assigned to

an input port and an output port. The signal entity ensures the link

between the output port of one function and an input port of

another function.

 Entities describing signals

o Coding: A coding provides the conversion between CODED-

TYPE and PHYSICAL-TYPE

o Signal: It is a contiguous sequence of bits of a defined length. As

to its “functional” purpose, it is an input or an output parameter of

a function.

 Entities describing the communication level

o PDU: A Protocol Data Unit consists of one or more SIGNAL-

INSTANCES or MULTIPLEXES

o PDU-INSTANCE: It describes the BIT-POSITION and the

UPDATE_BIT_POSITION of a PDU within a FRAME

o INCLUDED-PDU: It is a collection of INCLUDED-SIGNALS of an

ECU-PORT or a PDU-REQ

o MULTIPLEXER: It is an optional part of PDU that contains

information about alternative contents of PDU

o SWITCHED-PDU-INSTANCE: It is a PDU-INSTANCE in the

DYNAMIC-PART of a MULTIPLEXER

o STATIC-PDU-INSTANCE: A STATIC-PDU-INSTANCE is a PDU-

INSTANCE in the STATIC-PART of a MULTIPLEXER

o STATIC-PART: It is a static part of a MULTIPLEXER

o DYNAMIC-PART: It is a dynamic part of a MULTIPLEXER

o PDU-TRIGERRING: It describes a way the triggering of a PDU is

done

o FRAME: A frame is a datagram with a payload section of a certain

length in bytes. A frame contains an arbitrary number of non-

overlapping signals and /or multiplexers

o FRAME-TRIGGERING: It describes the way the triggering of a

frame is done

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

o TIMING: It defines timing behavior of a FRAME or a PDU on a

CHANNEL

o SIGNAL-INSTANCE: It defines the BIT-POSITION and the

UPDATE-BIT-POSITION of a SIGNAL within a PDU

o INCLUDED-SIGNAL: It is a list of SIGNAL_INSTANCES for use in

an INCLUDED-PDU

o ORDERED-SIGNAL: An ordered signal

o ECU-PORT: An INPUT-PORT or OUTUT-PORT in the

communication oriented view

o SWITCH: A SWITCH value specifies a data region in the same

frame. It is a bit field of defined length

o ABSOLUTELY-SCHEDULED-TIMING: It specifies a sending

behavior with the guaranteed time for the frames transmission

o RELATIVELY-SCHEDULED-TIMING: It specifies a sending

behavior with a predefined order

o EVENT-CONTROLLED-TIMING: The event has to be registered

first, so that a PDU could be sent

 Entities describing requirements

o SIGNAL_GROUP: It contains signals that must always be kept

together in a common frame

o REQUIREMENT: Functional or port requirements

o FUNCTION_REQ: It specifies CYCLE-PERIOD, CYCLE-OFFSET,

DEADLINE and WCET of a function and references all functions

for which this request is valid

o PORT-REQ: It specifies MAX-AGE, GENERATION-TYPE,

CYCLE-PERIOD, CYCLE-OFFSET of a SIGNAL and references

all ports for which this request is valid

o PDU-REQ: It specifies INPUT-PORT, OUTPUT-PORT and

references ECUs where the referenced PORTs are located

 Entities describing gateways:

o GATEWAY: It is the entity that transfers signals and/or frames

between channels

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

o CONNECTOR-MAPPING: It provides the information about the

channel connected to the ECU that is served by the gateway

o FRAME-MAPPING: It describes the frames that are transferred

between the CHANNELs

o PDU-MAPPING: It defines the PDUs that are transferred between

the FRAMEs

o SIGNAL-MAPPING: It describes the signal transferred between

the PDUs

o OPTIMISED-MAPPING: It describes the transfer functions

between frames on byte and bit level

o GW-DIAGNOSIS-DATA: It describes the routing of diagnostic data

 Entities describing higher protocols

o PROTOCOL: Specification of a clusters protocol

o TP-CONFIG: Extension point for the transport layer schema

o NM-CONFIG: Configuration of the network management protocol

 Entities describing services

o SERVICE-INTERFACE: An IDL (Interface Description Language)

describes the interface of software components. IDL allows

communication between software components that do not share a

common language

o PACKAGE: It is used to build hierarchical structures

o DATATYPE: Datatypes are used by fields, event or method

arguments in services (ASAM, 2013).

2.4 FIBEX extensions for CAN

In this section an introduction to special FIBEX extensions used for configuring

CAN network is given. The base is the original FIBEX standard described

earlier.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

2.4.1 Controller-Type

The CAN specific extension for the CONTROLLER-TYPE. The CAN specific

CONTROLLER attributes are required for the CAN stack configuration in an

ECU linked to the CAN cluster. The CAN-specific CONTROLLER attributes can

be specified in two different ways:

 Exact values are provided by the ECU developer (CAN-BIT-TIMING)

 Requirements are provided that are checked by the ECU developer

(CAN-BIT-TIMING-REQUIREMENTS)

CAN-BIT-TIMING

In the CAN-BIT-TIMING specific extension, the following parameters can be

configured:

 TIME-SEG0: It describes the duration of time 0 in time quanta (TQ). The

time segment 0 includes the propagation segment and the

synchronization jump width.

 TIME-SEG1: It describes the duration of the time segment 1 in time

quanta (TQ).The time segment 1 and the duration of the phase-buffer-

segment 2 are identical.

 SYNC-JUMP-WIDTH: It describes the possible variation range of the

sample point in time quanta (TQ). The SYNC-JUMP-WIDTH should be

less than the minimum of the duration of the phase-buffer-segment 1 and

the duration of the phase-buffer-segment 2

 NUMBER-OF-SAMPLES: There can be 1 or 3 sample points in a CAN

controller

CAN-BIT-TIMING-REQUIREMENTS

The specification of ranges for the CAN Bit Timing configuration parameters are

allowed after careful consideration by the ECU developer. The required ranges

are the following:

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

 MAX-NUMBER-OF-TIME-QUANTA-PER-BIT: It shows the maximum

number of time quanta in the bit time

 MAX-SAMPLE-POINT: It shows the maximum value of the sample point

in a percentage of the total bit time

 MAX-SYNC-JUMP-WIDTH: It shows the maximum Synchronization

Jump Width value in a percentage of the total bit time

 MIN-NUMBER-OF-TIME-QUANTA-PER-BIT: It describes the minimum

number of time quanta in the bit time

 MIN-SAMPLE-POINT: It shows the minimum value of the sample point in

a percentage of the total bit time

 MIN-SYNC-JUMP-WIDTH: It shows the minimal Synchronization Jump

Width value in a percentage of the total bit time

2.4.2 Identifier-Value-Type

EXTENDED-ADDRESSING

With the CAN protocol, two frame formats are possible: the standard frame with

11-bit identifiers is defined in the CAN specification 2.0 A, the extended frame

with 29-bit identifiers and is defined in the CAN specification 2.0 B.

2.5 FIBEX EXTENSIONS FOR FLEXRAY

This section introduces special FIBEX extensions used for configuring a CAN

network. The base is an original FIBEX standard described earlier.

2.5.1 Controller-Type

The FlexRay common extension for the CONTROLLER-TYPE includes node

specific low-level parameters from the FlexRay Spec 2.1A

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

2.5.2 Cluster-Type

The FlexRay common extension for the CONTROLLER-TYPE includes cluster

specific low-level parameters from the FlexRay Spec 2.1A

KEY-SLOT-USAGE

The FlexRay specification allows every device to send a sync, a sync frame and

start-up frame or neither. When sending a sync or a start-up frame the slot ID of

the KEY-SLOT should be given.

CHANNEL-TYPE

In the default configuration, there are two channels with the names A and B that

can be used. Therefore, the extension of the common CHANNEL-TYPE

includes the element FLEXRAY-CHANNEL-NAME.

CONNECTOR-TYPE

The device that has an ability to wake up the network needs to know which

channel the device uses in order to send a wake pattern. Since every

CONNECTOR belongs to exactly one ECU and references exactly one

CHANNEL, the FlexRay extension of the common CONNECTOR-TYPE

includes a Boolean WAKE-UP_CHANNEL flag (ASAM, 2013).

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

3 IMPLEMENTATION OF A FIBEX LOADER FOR A

CAN

3.1 Defining use cases for FIBEX loader for CAN

The FIBEX format contains all information about network topology, configuration

parameters, schedules, frames, and signals. That gives maximum information

and functionality to a user to configure a CAN network. In Figure 5, a use case

diagram describes the interaction between a user and a network.

Figure 5. Use case diagram for FIBEX Loader implementation for CAN

3.2 Defining an architecture for FIBEX Loader for CAN

Since a FIBEX file has XML-based format, it can be easily translated into a

class-object model. The implemented version of a FIBEX loader classes’

structure for Flexray can be used as a base for a FIBEX loader for a CAN.

Below an overview of a basic FIBEX configuration which is implemented by all

protocols is given.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

Figure 6. FIBEX loader classes’ structure.

The MCD2NETDocument described in Figure 6 is the main class that includes

all information from a FIBEX file. The object of this class is passed later to

processing classes. The detailed description of the class MCD2NETElements is

given below. In Figure 7 the key entities, that are important for understanding an

automotive protocol, are described.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

Figure 7. FIBEX loader MCD2NETElements classes’ structure.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

A detailed description of the main classes that are used in processing the

information from xml file is given in Figures 8-13.

Figure 8. FIBEX loader MCD2NETProcessingInformation class structure.

The MCD2NETCoding subclass described in Figure 8 contains all information

regarding signal coding, limits, units, and computational methods.

A short overview of the MCD2NETSignal class is shown in Figure 9. It contains

references to MCD2NETCoding, MCD2NETDesc and MCD2NETSignalType

which contain all additional information about the signal. Every signal has a

unique ID that is stored in the MCD2NETSignalInstance class as a reference.

The MCD2NETSignalInstance class is a subclass of the MCD2NETPDU

described in Figure 10.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

Figure 9. FIBEX loader MCD2NETSignal class structure.

The MCD2NETPDU class contains payload and control information. A PDU

may or may not contain signal instances and a multiplexer. The implementation

of multiplexing in more details is given in Section 3.3 of this thesis work. A PDU

is the data format which is used for storing data within a frame.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

Figure 10. FIBEX loader MCD2NETPDU class structure.

The relation between a PDU and a frame is described in Figure 11.

Figure 11. FIBEX loader MCD2NETFrame class structure

Information about received and sent frames can be accessed from the channel.

The reference to each frame is stored in MCD2NETFrameTriggering class, the

structure of which can be seen in Figure 12. The current hardware

implementation has only one CAN channel.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

Figure 12. FIBEX loader MCD2NETChannel class structure.

All frames in the network can be either received or transmitted frames. This

information is accessible from an input (receiving frame) port or an output

(transmitting frame) port. Each port in the network refers to a specific ECU that

it belongs to. The structure of the ECU class can be seen in Figure 13.

Figure 13. FIBEX loader MCD2NETECU class structure.

As described in Figure 6, the architecture for MCD2NETDocument class is used

for a FIBEX loader implementation for a CAN. Following specifications for CAN,

the following modifications in MCD2NETDocument class were carried out: the

MCD2NETController class was extended with CAN specific parameters;

MCD2NETFrameTriggering holds additional values as well.

In the next step, the FIBEX configuration file is being deserialized and

converted to MCD2NETDocument type. This allows us to refer to the

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

information from FIBEX file as to a class-object model. The following step is to

process the information and parse it.

The general flow of composing a FIBEX model which is passed to a CAN

interface can be seen in Appendix 1.

3.3 Multiplexing implementation

The most challenging part in FIBEX Loader implementation was the

implementation of multiplexing. Unlike CANDBC, another file format was used

to configure CAN networks, in FIBEX files, the frame’s data has a different

format. It consists of PDUs that include signals. Since the CANDBC

implementation already exists, it was decided to adapt the final FIBEX model to

a CANDBC model. That will simplify the integration into MicroLabCar software

and will allow using common interfaces. This part is described in section 3.4.

Since the CANDBC frame contains only a list of signals, a similar list for each

frame was created. The signals are being read from PDUs and depending on

the type of PDU, they store the information about multiplexing if one is present.

As y can be seen from Figure 10, in case of a multiplexed PDU, it contains a

switch and a dynamic part. Following the data format of a CANDBC file, a

switch should be converted to a signal as a multiplexer signal and added to a

general payload of a frame. A constructor with a specific argument handles the

converting as shown in Figure 14.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

FibexSignal

+ID:String
+ShortName:String
+GermanLongName:String
+EnglishLongName:String
+CodingRef:FibexSignalCoding
+MultiplexString:String
+isEndian:Boolean
+BitPosition:Integer
+BitLength:Integer

+FibexSignal(switch:MCD2NETMultiplex
erSwitch)
+FibexSignal(instance:MCD2NETSignal,
coding:FibexSignalCoding)

Figure 14. A FibexSignal class structure

Each signal contains information about multiplexing and a multiplexer itself if it

is multiplexed. The multiplexer signals, switches in our case, have a key word

“switch” in ID property.

3.4 Integration of a FIBEX loader into a CAN interface

As mentioned before, a CAN network can be configured either from a CANDBC

file, which is already implemented, or a FIBEX file. Therefore in this part of my

thesis work, it was important to come up with an idea of how to generalize and

unify the integration of CANDBC and FIBEX files. The task was to make CAN

architecture easily extendable and the changes within any of configuration files’

loaders should be easily applied. Therefore approach adopted was to use a

common interface for reading both CANDBC and FIBEX files, allowing the

microLC architecture to be indifferent to any changes in external DLLs.

Figure 15 describes CAN interface architecture for reading information from the

FIBEX loader. Each of the classes implements an interface, which is referred to

further in logic and the GUI layer. For the CANFIBEXProtocolService class, an

adapter class SerialProtocolAdapter was used. The purpose of using an

adapter class in this case was to overloading interface methods

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

ProcessEvents(variable as HardwareEvent) and ResolvePayload(variable as

HardwareEvent) with methods with different signatures – ProcessEvents(event

as CANRxEvent) and ResolvePayload(event as CANRxEvent). The idea behind

the interfaces is to possibly use it for other protocols as well. That means they

should be as general as it is required in order to be implemented by other

protocols’ services.

The same architecture is implemented for CANDBC loader, so the current

version of the software is already able to work with both libraries.

Figure 15. CAN interface architecture for reading information from FIBEX
loader.

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

3.5 Testing

The testing of the FIBEX loader for CAN was carried out using a microLC3

device (Picture 1) and a CANcaseXL device (Picture 2), which is a professional

CAN interface produced by Vector, to simulate communication in a CAN

network.

Picture 2. CANcaseXL device

For the monitoring purposes, the CANalyzer tool from the same producer was

used.

For both devices, FIBEX configuration files were loaded. The results of sending

frames from microLC3 and CANcaseXL can be seen from the screenshot of a

CANalayzer window in Picture 3 and 4.

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

Picture 3. Sending a frame from microLC3.

As can be seen from Picture 3, a frame from microLC3 is sent. The same

frame is received by the CANcaseXL as it is shown on the right side of the

picture 3. After looking at the detailed description of the received frame in a

CANalyzer window, one can confirm the correctness of the received data by

comparing it to the signal values in the microLC3 window.

Picture 4 describes sending a frame from the CANcaseXL to the microLC3. The

detailed descriptions of both the transmitted frame in CANcaseXL and the

received frame in a microLC3 window demonstrate the correctness of the

processing of transmitted and received data on both devices.

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

Picture 4. Sending a frame from CANcaseXL.

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

4 IMPLEMENTATION OF FIBEX SPECIFIC

EXTENSIONS

4.1 Bit coding

Unlike a CANDBC configuration file that has textable or numerical interpretation

of a signal, a FIBEX file has a ”coded” type of a signal interpretation. A signal

encoding in this case has multiple bit patterns, each corresponding to a certain

signal state. An example of such bit coding can be seen in Picture 5.

Picture 5. An example of bit encoding type in a FIBEX file.

Such a type of signal encoding serves as a filter for setting signal states.

In order to be able to work with these signal patterns, a signal mask and a

signal filter are calculated. The algorithms are described in Picture 6.

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

Picture 6. Code implementation of bit mask and bit filter calculations.

A raw value of signal is converted to a binary format. A logical bitwise AND

operation is performed on each pair of the corresponding bits of a binary signal

value and a filter value. The resulting value from this operation should match

with a corresponding bit mask.

For example, we have the following bit pattern:

0 - - - - 1

The filter is: 100001

The mask is: 000001

Let us take a raw value of signal as 3, which in binary format is 000011.

000011 bitwise AND 100001=>000001 which matches to a mask 000001.

So in this case, a signal state that correspons to a matching pattern would be

set.

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

The necessary extensions in GUI and logic layer were carried ou to implement

the bit coding and were demonstrated during the demo.

43

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

5 CONCLUSION

This thesis had a practical significance for the commissioning company. The

work, that was done, was a part of bus systems development for the microLC

project for Bosch that has been going on already for a few years. This thesis

took care of configuring one specific protocol – a CAN protocol, developed by

Bosch in the early 80s. It is an international standard meant for fast serial data

exchange between electronic controllers in motor vehicles.

Since the hardware implementation of CAN has been carried out earlier, a

standard called CANDBC was used for configuring the CAN network. This file

standard has a simpler design, thus it is suitable for configuring networks with a

simpler architecture. In order to support networks with more complicated design

a new standard called FIBEX was developed. The implementation of network

configuration using FIBEX was the aim of this thesis work.

In order to proceed with a solution to this task, a good understanding of a

complicated architecture of the microLC software and strong knowledge of CAN

protocol workflow were required. After a couple months of study and research,

the practical part was successfully completed. A number of tests on the

hardware was performed using special monitoring tools, confirming the

correctness of a data flow.

The implementation of FIBEX for configuring CAN network opens many

possibilities for further development of other automotive protocols. One example

of those is LIN, which has been recently released within the microLC project.

The FIBEX standard structure, that unifies all common characteristics of

automotive protocols, allows using the current FIBEX implementation for

configuring other networks with small adjustments of protocol specific

extensions.

44

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

SOURCE MATERIAL

ASAM, 2013. ASAM MCD-2 NET(FIBEX) ASAM. Available at: <

http://www.asam.net/> [Accessed 06.05.2014].

CIA, 2013. CAN specification. Available at: < http://www.can-cia.org> [Accessed

19.04.2015]

Kvaser, 2014. CAN Protocol Tutorial. Available at: <http://www.kvaser.com/can-

protocol-tutorial/> [Accessed 17.04.2015].

National Instruments, 2009. FlexRay Automotive Communication Bus Overview.

Available at :< http://www.ni.com/white-paper/3352/en/> [Accessed

28.03.2015].

Texas Instruments, Corrigan S., 2008. Introduction to the Controller Area

Network (CAN) Texas Instruments. Available at :<

http://www.ti.com/lit/an/sloa101a/sloa101a.pdf > [Accessed 02.04.2015].

Vector, 2010-2015. E-Learning module “Introduction to FlexRay”. Available at :<

https://elearning.vector.com/vl_flexray_introduction_en.html > [Accessed

02.04.2015].

http://www.can-cia.org/

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Daria Shevchenko

A sequence diagram describing a flow of composing a FIBEX model

