

Writing and Running Qmltestrunner Tests

Case: Jolla

Thesis

Häme University of Applied Sciences

Degree programme in Business Information Technology

Visamäki, Autumn 2015

Lauri Johansson

 TIIVISTELMÄ

VISAMÄKI
Tietojenkäsittelyn koulutusohjelma
Systeemityö

Tekijä Lauri Johansson Vuosi 2015

Työn nimi Writing and Running Qmltestrunner Tests

TIIVISTELMÄ

Tämän opinnäytetyön toimeksiantaja oli Jolla Oy. Työn tarkoituksena oli
opastaa kuinka Sailfish OS-ohjelmoijat ja yhteisön jäsenet voivat itse testata
luomansa sovelluksen automatisointiin tarkoitettua työkalua käyttäen. Aihe
on nyt olennainen, sillä Sailfish OS-käyttöjärjestelmän käyttö on kasva-
massa maailmalla.

Työllä oli kaksi pääaihetta: Sovelluksen tekeminen Sailfish OS-laitteelle
sekä automaatiotestaus, jossa perehdytään enimmäkseen qmltestrunnerin
käyttöön. Työssä esitellään Sailfish OS-ohjelmointiympäristö, jossa käyte-
tään itsetehtyä applikaatiota esimerkkinä. Tämän jälkeen esitellään auto-
maatiotestausta lyhyesti ja esitellään kaksi automaatiotestaukseen kuuluvaa
työkalua. Opinnäytetyön toiminnallisena osuutena laadittiin valmis appli-
kaatio ja ohjeistus testityökalun käyttämisestä. Työhön käytetty aineisto on
kerätty erilaisista internetlähteistä. Lisäksi omakohtaista työkokemusta on
hyödynnetty opinnäytettä tehdessä. Opinnäytetyössä hyödynnettiin kokeel-
lista tutkimusta jonka pohjalta luotiin ohjeistus qmltestrunnerin käyttöön.

Lopputuloksena saatiin valmis demosovellus jossa on testit valmiiksi laitet-
tuna. Testit onnistuttiin ajamaan onnistuneesti laitteella ja tulokset pystyt-
tiin lukemaan. Demosovelluksen pohjalta rakennettiin ohjeistus mer-wiki-
sivustolle. Seuraava kehitysidea on sovelluksen edelleen kehittäminen mo-
nimutkaisemmaksi. Samalla voidaan lisätä uusia testejä uusia ominaisuuk-
sia varten.

Avainsanat Jolla, Sailfish OS, Qmltestrunner, Test automation, Qt, QML

Sivut 26 s. + liitteet 6 s.

ABSTRACT

VISAMÄKI
Business Information Technology
Software Engineering

Author Lauri Johansson Year 2015

Subject of Bachelor’s thesis Writing and Running Qmltestrunner Tests

ABSTRACT

The client for this thesis work was Jolla Ltd. The idea was to provide infor-
mation to the Jolla Community members and third party developers about
testing Sailfish OS applications with a test automation tool called
qmltestrunner. This subject is currently a highly relevant topic because of
the growing use of Sailfish OS in the world.

This thesis has two main subjects. The first part is the Sailfish OS and how
to make applications for it. The second part contains information about test
automation and introduces two of the tools used in automation. The thesis
introduces the Sailfish OS programming environment by using a self-made
application. The test automation is introduced first generally and then with
two tools testrunner-lite and qmltestrunner, the second more specifically.
The functional part of the thesis is the demo application and instructions on
how to use the qmltestrunner testing tool. All the material is gathered from
different internet sources, and work experience was used while creating this
thesis. Experimental research was used while doing the thesis. Based on the
results found from the experimental research, introduction for the
qmltestrunner usage was made.

As a result of this thesis project we got a working demo application and
tests running on the demo application. The instructions about how to run
automated tests with qmltestrunner were made to mer-wiki page. These in-
structions should help the developers to test their own applications, and this
would benefit Jolla Store tester for not spending much time in the UI side
issues.

Further development would consist more features for the demo application
and new tests. Also implementation for the Jolla Tablet.

Keywords Jolla, Sailfish OS, Qmltestrunner, Test automation, Qt, QML

Pages 26 p. + appendices 6 p.

VOCABULARY

Qt also said as “cute”, is a cross-platform application framework

QML Qt Meta Language or in other words Qt Modeling Language

is a user interface markup language

Qmltestrunner Automation testing tool for unit testing.

Testrunner-lite Automation testing tool. Using xml-files.

Harbour Place where Sailfish developers can submit their applications

OS Operating System

Qt Creator A cross-platform IDE (integrated development environment)

Sailfish Silica QML-module for developing Sailfish applications

Mer Free and open-source software distribution. Serve hardware

vendors as a middleware for Linux kernel-based mobile-ori-
ented OS.

Nemo Mobile Linux distribution for mobile devices

Qt Quick Module which contains all the essential types for creating

QML-based user interfaces

XML Extensible Markup Language.

API Application programming interface.

Git Distributed revision control system.

SDK Software development kit. Usually a set of software develop-

ment tools.

UI User interface.

IDE Integrated development environment. Software application

which provides comprehensive facilities.

ssh Secure Shell. Targeted for secure telecommunications.

Emulator Hardware or software which enables a host to behave like an-

other computer system.

Qt Test Provides classes for unit testing.

Jolla New Finnish mobile phone maker.

Sailfish OS New Finnish operating system based on Meego project.

Meego Old project started by Nokia and Intel for Linux based mobile

phone operating system.

RPM RPM Package Manager (RedHat Package Manager) is Linux

based package management system.

CSS Cascading Style Sheets, styling document mainly for WWW-

documents.

VM Virtual Machine

TOH The Other Half is a back cover for Jolla Phone.

CONTENTS

1 INTRODUCTION ... 1

2 SUMMARY OF JOLLA LTD. ... 2

2.1 Summary of Sailfish OS .. 2
2.2 Jolla Harbour ... 3

3 MAKING APPLICATION FOR SAILFISH OS .. 5

3.1 Summary of Qt .. 5
3.2 Summary of QML ... 5
3.3 Sailfish Silica... 6
3.4 SailfishSDK ... 7

3.4.1 RPM-Validator .. 7
3.5 MerSDK .. 8
3.6 Other Sailfish Development Kits .. 9
3.7 The Demo Application .. 9

3.7.1 Building and Installing the Demo Application to the Device 12
3.8 Sailfish Application Lifecycle ... 14
3.9 Summary of “libsailfishapp” ... 15

4 TEST AUTOMATION ... 17

4.1 Unit Testing ... 17
4.2 Testrunner-lite ... 18
4.3 Qmltestrunner .. 19

4.3.1 Writing Qmltestrunner Tests ... 19
4.3.2 Executing the Qmltestrunner Tests on Sailfish OS Device 20
4.3.3 Executing the Qmltestrunner Tests on Sailfish OS Emulator 22
4.3.4 Reading the results .. 23

5 SUMMARY .. 25

SOURCES .. 26

Appendage 1 Qmltestrunner usage
Appendage 2 Invoker usage
Appendage 3 Testrunner-lite usage

Writing and Running Qmltestrunner Tests

1

1 INTRODUCTION

This thesis work is about test automation and how to use one of the test
automation tools for automation work. The tool used for this is qmltestrun-
ner. As a side of the main work this thesis also provides information about
QML language, Sailfish OS and how to do applications to Sailfish OS. The
client for this thesis work was Jolla Ltd. The reason for choosing this subject
is because I personally work daily with qmltestrunner and there are no good
instructions on how to use it, therefore making the instructions were needed.

The main purpose for this thesis is to give information to the Sailfish OS
community developers about how they can test with the qmltestrunner tool.
The documentation of the qmltestrunner usage is going to the mer-wiki
page. In addition to documentation, this thesis also provides a demo appli-
cation as an example for qmltestrunner usage.

The thesis will provide answer on how to write and run qmltestrunner tests,
what is test automation, what is Sailfish OS and how to write applications
for Sailfish OS devices. Most of the sources are gathered from the internet
because documentation of Sailfish OS and Qt are found mostly there.

The thesis provides information about Sailfish OS development and also
introduces automation test tool, qmltestrunner.

In this thesis work the demo application and the tests for the demo applica-
tion were made ready and functional. Also the documentation of
qmltestrunner for the wiki-page was done.

Writing and Running Qmltestrunner Tests

2

2 SUMMARY OF JOLLA LTD.

Jolla Ltd. is mobile phone Company established on 2011 in Finland. Cur-
rently the company has 125 employees working in Helsinki, Tampere and
Hong Kong offices. Jolla Ltd. is developing its own mobile devices and a
new independent operating system called Sailfish OS. The first Jolla device,
Jolla Phone, was released to the public late November 2013 and is currently
available all over Europe, Hong Kong, India and Russia. Jolla’s next prod-
uct, Jolla Tablet, was introduced November 2014 and the goal is for it to be
available in autumn 2015. Jolla’s main aim is to open, transparent and in-
dependent in everything they do. (Jolla Oy 2015.)

2.1 Summary of Sailfish OS

Like Linux distributions, the Sailfish operating system is build in the same
way. The core of the OS is based on Mer Project which is an open, mobile-
optimized core distribution. Jolla has developed the Sailfish UI with QML
which is a powerful user experience design language provided by Qt frame-
work. Sailfish OS has many capabilities because of the rich UI elements,
like to create animated, touch-enabled UIs and lightweight applications.
Jolla has created Sailfish Silica which is UI building blocks with custom
components for native applications. (Sailfish OS 2015a.)

Sailfish OS has also the capability to run Android™ applications because
of the Android libraries included (Sailfish OS 2015a).

By nature Sailfish OS and integration is designed to be modular because of
easy support for multiple hardware targets (Sailfish OS 2015a). Image 1
shows the Sailfish OS modular system.

Writing and Running Qmltestrunner Tests

3

Image 1. Sailfish OS modular system.

2.2 Jolla Harbour

Jolla Harbour is the place where developers can submit their ready-made
Sailfish OS applications or Android™ applications. The submit form can
be seen on image 2.

Jolla Harbour is free to join and free to submit applications. Harbour QA
will manually check the applications and see if it’s compatible with all the
rules that Jolla Harbour has. Also some automatic tests are done with RPM-
validator. All the written rules are found in Harbours FAQ-page. (Sailfish
OS. 2015b.)

Writing and Running Qmltestrunner Tests

4

Image 2. Submit-page on Jolla Harbour.

Writing and Running Qmltestrunner Tests

5

3 MAKING APPLICATION FOR SAILFISH OS

This part focuses on Qt, QML and Sailfish application development. Demo
application was made and it is used to demonstrate QML-language. Because
of the demo application, two SDK’s is introduced SailfishSDK and
MerSDK. SailfishSDK is used for developing to Sailfish OS platform.
MerSDK is part of the development to Sailfish OS. This demo application
can be further develop much more complicated program and also made
available to the Jolla Tablet.

3.1 Summary of Qt

Qt is not a programming language, it is cross-platform application develop-
ment framework for desktops, embedded and mobile. Supported platforms
are Linux, OS X, Windows, VxWorks, QNX, Android, iOS, BlackBerry
and Sailfish OS. Qt framework is written in C++. (The Qt Company Ltd.
27.06.2015a.)

Qt has its own IDE (Integrated Development Environment) which is named
QtCreator. Qt Creator runs on Linux, OS X and Windows machines. It of-
fers intelligent code completion, syntax highlighting, an integrated help sys-
tem, debugger and profiler integration. Also it includes all major version
control system integrations like git. (The Qt Company Ltd. 27.06.2015a.)

3.2 Summary of QML

When saying something about QML, Qt Quick needs to be introduced. Qt
Quick is used for building user interfaces (UIs) for set-top boxes, tablet de-
vices, in-vehicle infotainment systems, e-readers and mobile phones. QML,
declarative language comes from Qt Quick. QML is Qt Meta-object Lan-
guage. It is based on CSS and JavaScript. Most of the QML code is just
CSS-style name-value pairs of properties (e.g., color: “black”). Behavioral
parts like response to mouse click is written in JavaScript. Qt Quick has the
access to full power of the Qt. All Qt’s properties, signals and slots of a
QObject-derived class are accessible from QML. (The Qt Company Ltd.
28.06.2015b.)

What makes Qt Quick and QML better than other options? Qt Quick closes
the gap between UI designers and developers because it facilitates commu-
nication via one common medium. UI Designers has the access to Qt Quick
through Quick Designer which is a visual design tool for QML applications.
So basically designers create the UI and then developers adds the function-
ality to that current UI. This maintains close interaction with the designers.
(The Qt Company Ltd. 28.06.2015b.)

Writing and Running Qmltestrunner Tests

6

Image 3. Picture about QML-language

3.3 Sailfish Silica

Sailfish Silica is included in Sailfish SDK. Sailfish Silica is a QML module
for developing Sailfish applications. This module provides additional types
specifically designed for Sailfish applications. While writing Sailfish appli-
cations with QML, it is must to use both modules, Sailfish Silica and
QtQuick. (Sailfish OS. 2015c.)

Sailfish Silica module makes possible to write user interfaces which have
Sailfish look and feel. Module gives use of unique Sailfish application fea-
tures, such as pulley menus and application covers. Current release of Sail-
fish Silica is based on Qt 5.0 and QtQuick 2.0. All the Sailfish applications
should import QtQuick 2.0 version of the module. (Sailfish OS. 2015c.)

Writing and Running Qmltestrunner Tests

7

3.4 SailfishSDK

SailfishSDK contains a collection of tools like: QtCreator (IDE), Mer build
engine, The Sailfish OS Emulator, Tutorial, Design and API Documentation
and repositories for additional libraries and open source code (Sailfish OS
2015d).

The Sailfish OS Emulator is an x86 VM image, containing a stripped down
version of the target device software. The Emulator emulates most of the
functions of Sailfish OS, such as gestures, task switching and ambience
theming. (Sailfish OS 2015d.)

Image 4. SailfishSDK

3.4.1 RPM-Validator

RPM-validator is a script made for checking quality criteria’s quickly for
an application. This tool runs similar checks to the Harbour package vali-
dation process and is automatically updated before each run. This tool can
be found inside the Sailfish SDK, see Image 5.

Writing and Running Qmltestrunner Tests

8

Image 5. RPM-validator tool in Sailfish SDK

3.5 MerSDK

MerSDK or in other words, Mer build engine, seen on image 6, is a virtual
machine containing all the Mer development toolchains and tools. It also
includes a Sailfish OS target for building and running Sailfish and QML
applications. Mer build engine also supports additional build targets and
cross-compilations toolchains. (Sailfish OS 2015d.)

Image 6. Mer build machine

Writing and Running Qmltestrunner Tests

9

3.6 Other Sailfish Development Kits

Besides the normal SailfishSDK, Jolla provides also two other development
kits. These are The Other Half Developer Kit, which is meant for creating
your own ambiences to Jolla device, and Hardware Adaptation Develop-
ment Kit, which is used for creating your own SailfishOS image against and
any Android™ device, e.g. Nexus 5.

Currently community has made many different kinds of The Other Half’s.
Most popular are TOH Keyboard, Solar Panel and Toholed.

3.7 The Demo Application

In this thesis, a demo application is made and built from the scratch. It con-
tains most of the common features from the Sailfish applications. Because
of the nature of this application, it is meant to be a dummy application. A
Dummy application is a kind of application that does nothing particular.
This kind of applications has the best way of showing the use of qmltestrun-
ner tool. Other than showing how to write tests, it does not have any other
use.

The demo application is named to match with the rules in Jolla Harbour.
The rule is that the application name must start with harbour-
<your_app_name> prefix, so the name of the demo application is harbour-
qmltestrunner.

This demo application contains several common features. These features
are pulley menus, buttons, combo boxes and text inputs.
The main page of the application is shown in image 7. Tests are made to
buttons, combo boxes and text inputs.

Image 7. First page of the application

Writing and Running Qmltestrunner Tests

10

On the buttons page there is switch button. Switch button is a TextSwitch
type which provides a Sailfish-styled toggle button with a textual label. This
button switches state to enabled and on disabled state. On the buttons page,
there was also added two regular buttons that does math operations, sums
and differences. Buttons were named “+” and “-“. A clear button was added
so math operations can be set back to normal as shown in image 8.

Image 8. Buttons page

In the combo box page, see image 9, different operations was added, like
text, busy indicator and progress bar. When choosing one of the options UI
shows the corresponding operation.

The ComboBox is a type which provides a label with an attached menu.
This label enables the user to select a value from a list of options.

Writing and Running Qmltestrunner Tests

11

Image 9. Combo box page.

The last page was for text inputs as shown in image 10. On this page the
user must add his name to the corresponding fields. After that the user
presses the accept button and the name is showed in a new window.

Image 10. Text input page.

Writing and Running Qmltestrunner Tests

12

3.7.1 Building and Installing the Demo Application to the Device

Once the application is ready, developer must build it and then deploy the
RPM-package to the device. This is done by various ways. The first option
is by choosing MerSDK-SailfishOS-armv7hl kit in project build configura-
tion. In the Build option developer must choose the release, and in the De-
ploy option developer must choose “Deploy By Building An RPM Pack-
age”. For better understanding see image 11.

Image 11. Project building options

After selecting the correct kit, user should go to Build menu and choose
“Deploy Project “harbour-<your_app_name>” in Qt Creator as shown on
image 12. After successful deploy a prompt window about the path where
the application was deployed should be seen, see image 13. The final binary
should be under the RPMS folder and should look like this: “harbour-
<your_app_name>-0.1-1.armv7hl.rpm. This RPM can be submitted to the
Harbour.

Image 12. Deploying the Project

Writing and Running Qmltestrunner Tests

13

Image 13. Packages paths

A ready RPM can be copied to the device with the ssh-connection or with
normal PC-connection. SSH-connection needs the developer-mode to be set
and ssh-connection enabled on the device and also root access. To copy the
RPM to the device you must use secure copy command, see example 1.

Example 1:

scp harbour-qmltestrunner-0.1-1.armv7hl.rpm
nemo@192.168.2.15:~

This command will ask for the password of the device. The password is the
same with the ssh connection password. Once the RPM is copied to the de-
vice, the ssh connection is needed. After successful connection the RPM
can be installed locally. This is done by doing commands from example 2.

Example 2:

ssh nemo@192.168.2.15 (will ask the password)
devel-su (and then enter password again)
pkcon install-local harbour-qmltestrunner-0.1-1.armv7hl.rpm
Choose yes by pressing y and then enter

Now the application is installed to the device and applications launch icon
should be visible on the application grid view.

The second option for installing the RPM into to the device is by connecting
your device to the PC and choosing “Deploy as RPM Package” option. For
this to work correctly, device type is needed to be set for the MerSDK-Sail-
fishOS-armv7hl. This is done by going to the Tools Options Devices
within Qt Creator. The Mer ARM Device should be added to the list and
not the local PC. See image 14.

When device is set and connected to the PC, green run option comes visible
in Qt Creator and the RPM can be deployed directly to the device. This
operation will install the application to the device and runs it.

mailto:nemo@192.168.2.15:%7E
mailto:nemo@192.168.2.15

Writing and Running Qmltestrunner Tests

14

Image 14. Adding device to SailfishSDK

Third install option is by copy-pasting the RPM via normal PC-connection
to the device. The device should contain file browser application. The file
browser can be installed from the Jolla Store. With file browser, the RPM
can installed normally to the device. Untrusted software installation must
be allowed.

3.8 Sailfish Application Lifecycle

Sailfish is a true multiprocessing system and all of the applications should
have two states supported, Active which consumes all the available screen
real estate and Background which provides cover for home screen. The ap-
plication determines which state it is on by using Qt.application.active prop-
erty. The property is true when the application is running in foreground and
false if the application is running in the background. If the application is
running in the background it mandatory that application minimizes resource
usage. All the animations must pause and unused resources released, if pos-
sible. (Sailfish OS. 2015e.)

While the application is pushed to the home screen, its cover will automat-
ically be created and displayed. Covers are specified via the Application-
Window.cover property. When this property is set display displays the cur-
rent status of the application. Applications may update the cover based on
state changes but no animations should be displayed in the cover. When the
application becomes active cover goes automatically hidden. (Sailfish OS.
2015e.)

Covers can be also Active Covers. These Active Covers provide instant ac-
cess to common actions of the application. Via CoverActionList right
and/or left gestures can be added to the cover. (Sailfish OS. 2015e.)

Writing and Running Qmltestrunner Tests

15

3.9 Summary of “libsailfishapp”

All the third party applications should use libsailfishapp. This eases the de-
velopment of an application for sailfish, makes sure that paths for the appli-
cation is correctly set and provides accelerated startup time. This library,
libsailfishapp, provides functions to set up the project, installs all the files
into right directories and gets important paths at runtime via convenience
methods. (Sailfish OS. 2015f.)

To use this library on project, first is needed to add BuildRequires: pkgcon-
fig(sailfishapp) to .spec-file. Then set TARGET = harbour-yourappname
into the .pro file, and add CONFIG += sailfishapp into the .pro-file, include
sailfishapp.h into the .cpp-file and use the SailfishApp:: methods in the
main(). (Sailfish OS. 2015f.) See images 15, 16 and 17.

Image 15. .spec-file

Writing and Running Qmltestrunner Tests

16

Image 16. .pro-file

Image 17. .cpp-file

Writing and Running Qmltestrunner Tests

17

4 TEST AUTOMATION

Automation is manual testing that is done with a testing tool. First you need
to have a working manual test environment before you can start automation
work. The manual test environment must include detailed test cases and ex-
pected results. The expected results come from the requirement specifica-
tions and also from the test plans. Automation needs different test environ-
ments than manual testing which include test database that can be easily
edited and maintained if the test target changes often. (Pohjolainen. 2003.)

With automation you have to get three benefiting factors, repeatability, lev-
erage and accumulation. Repeatability means that test cases can be tested
many times without changing the test case itself. Leverage means that the
tests are not possible to do manually but can only be done with test automa-
tion. Accumulation means that automated testing performs testing with
fewer test cases than manual testing needs. Especially when test target
changes. (Pohjolainen. 2003.)

Automation is a much quicker way to test the product than manual testing.
With automation you can rerun tests much faster and many times if needed
at a lower cost. In the best scenario automation has lowered testing costs by
about 80%. (Pohjolainen. 2003.)

What test cases are chosen for automation? Usually when starting to auto-
mate something, you should focus more on manually time consuming test
cases first. (Pohjolainen. 2003.)

There are many different test automation tools. One of the methods is to do
test scripts. Test scripts contains commands and instructions for the testing
tool. With test scripts you can find problems in early state phase. (Poh-
jolainen. 2003.)

In this thesis project focus was on two testing tool, testrunner-lite and
qmltestrunner. Testrunner-lite is introduced generally and qmltestrunner
more detailed.

4.1 Unit Testing

Unit testing refers to testing certain functions, areas and units of the code.
This gives the ability to verify what functions are working as expected. With
unit testing we can determine if certain functions return the proper values
while doing inputs. This kind of testing helps us to identify failures in algo-
rithms and helps to improve the quality of the code. If approaching devel-
opment from a unit testing perspective, you most likely write easy code
which is easy to test also. Since unit testing requires code to be easily test-
able. This means you are most likely to write higher number of smaller and
more focused functions in your code. Solid unit tests and well-tested code
also gives an advantage for preventing future changes from breaking the
functionality. The only disadvantage is that it comes at the expense of in-
vesting time to write a suite of tests early in development. (tuts+. 2015.)

Writing and Running Qmltestrunner Tests

18

4.2 Testrunner-lite

Testrunner-lite is a tool used for test executions, which reads xml-files as
input. With this tool operations from table 1 can be done.

Execute automatic, semi-automatic and manual test cases
Execute tests locally or in host-based mode
Validate the used test plan file automatically
Use options and filters to select which test cases to execute

Table 1. Different uses for testrunner-lite

Testrunner-lite tests can be executed with following example command:

testrunner-lite -f /path/to/the/test/xml-file -o ~/re-
sults.xml -v

With testrunner-lite, manual test cases can also be executed. This is defined
in the Test Definition in XML-file. Testrunner-lite goes the defined steps
through and will ask from the user if the test is a pass or a fail. After the test
case is done user can add additional comments about the test. (MerProject.
2015.)

Testrunner-lite has 3 different test case verdicts, Pass, Fail and N/A
(MerProject. 2015).

All the test steps are executed in a separate shell. A new process is spawned
for execution and waits for the step to be finished or timeout. A cleanup
routine is executed once the test case has finished. In cleanup, testrunner-
lite tries to kill all processes left running by the test steps. For more infor-
mation about how-to use testrunner-lite see appendage 3. (MerProject.
2015.)

Example of the xml-file structure for the testrunner-lite:

<?xml version="1.0" encoding="UTF-8"?>
<testdefinition version="1.0">
 <suite name="name_for_testsuite" domain="ui">
 <description>Demo app testing</description>
 <set name="UI-test-for-demo-app" feature="Demo app">
 <pre_steps timeout="15">
 <step>”pre steps here”</step>
 </pre_steps>
 <description>Testing demo app on Jolla 1</description>
 <case manual="false" name="tst_ButtonTest" timeout="180">
 <step>"add qmltestrunner execution"</step>
 </case>
 <post_steps>
 <step>”all the post steps here”</step>
 </post_steps>
 </set>
</suite>
</testdefinition>

Writing and Running Qmltestrunner Tests

19

4.3 Qmltestrunner

Qmltestrunner is a tool used for unit testing. This tool allows to execute
QML files as test cases. These files should contain test_functions.
Qmltestrunner is an open-source project and its source code can be found
from the github.

4.3.1 Writing Qmltestrunner Tests

There are many ways to write tests for applications and all of them are cor-
rect. In this thesis one of the options is chosen.

Once the application is ready, the tests can be added to a Tests-folder in
projects working directory. Then with the Qt Creator, a new QML-file is
added inside the Tests-folder. Once done, a new clean QML-file is opened
on the screen. This created QML-file is going to be the file where all the
helper functions is added. These functions are needed for actual tests.

To be able to create tests correct imports are needed. Example 3 shows what
imports are needed.

Example 3:

import QtQuick 2.0
import QtTest 1.0
import Sailfish.Silica 1.0

After imports, it is needed to add the helper functions inside the TestCase
type. This TestCase type represents a unit test case. JavaScript functions are
used when creating functions within TestCase type. See the example 4. It is
unpredictable how these test functions are found because of the JavaScript
properties. Test framework assists the predictability by sorting the functions
on ascending order of name. This helps if two test is needed to run in order.
(TestCase QML Type. 2015.)

Example 4:

TestCase {
 function click_center(item) {
 var pos = main.mapFromItem(item, item.width/2,
item.height/2)
 testEvent.mouseClick(main, pos.x, pos.y, Qt.LeftButton,
0, 0)
 }
}

Once the helper functions are done, actual test can be added by creating
QML-files inside the Test-folder. The best naming for these QML-files are
adding “tst_” or “test_” front of the test name example “tst_Button-
Tests.qml”. After the creation of the test file it is critical that the correct test
target is opened for testing. This is done by adding a launch action inside
the ApplicationWindow type. This type is used to create the top-level item
in Sailfish application. Every Sailfish application must have this component

Writing and Running Qmltestrunner Tests

20

defined at the root of its hierarchy. This application window is the entry
point for the loading of the app. Inside of this ApplicationWindow type, the
user must add initialPage variant that specifies the page that is displayed
when the application is opened. See example 5 for use of Application-
Window and initialPage on test file.

Example 5:

ApplicationWindow {
 //here we launch the application on certain page
 id: main
 initialPage: Qt.resolvedUrl("../pages/ButtonPage.qml")
}

Before doing any of the test actions we need to inherit the helper QML-file
so helper functions can be used in test creation. This is done by adding the
name of the helper function file to the test file without the .qml part. For
example, if the helper filename is “TestFunctions.qml” then this is inherited
by adding “TestFunctions {}” within the ApplicationWindow. See the ex-
ample 6 for full start of the test file.

Example 6:

ApplicationWindow {
 //here we launch the application on certain page
 id: main
 initialPage: Qt.resolvedUrl("../pages/ButtonPage.qml")

//Test are written always inside the TestFunctions object.
//Name must be the same with the TestFunctions.qml file name.

 TestFunctions {
 name: "Button tests"
 when: windowShown

 //here is the test itself
 function test_buttons(){
 }
 }
}

Once all the mandatories are set, tests can be made as a functions within the
TestFunctions, see example 4.

4.3.2 Executing the Qmltestrunner Tests on Sailfish OS Device

Before tests can be run, the qmltestrunner must be installed to the device.
This is done by taking a ssh connection to the device and as root user in-
stalling two packages, qt5-qtdeclarative-import-qttest and qt5-qtdeclara-
tive-devel-tools to the device, see the example 7. After a successful install
qmltestrunner is installed under /usr/lib/qt5/bin/. Do note though these
packages can be also installed with one command.

Writing and Running Qmltestrunner Tests

21

Example 7:

pkcon install qt5-qtdeclarative-import-qttest
pkcon install qt5-qtdeclarative-devel-tools

When executing tests, the user should go to the place where the tests are
installed. On the demo app it is /usr/share/harbour-qmltestrun-
ner/qml/Tests/.

Once at the Tests-folder next command will execute the test:

invoker --type=generic /usr/lib/qt5/bin/qmltestrunner -input
<name of the test file>

Or if wanted to execute all the tests at once:

invoker --type=generic /usr/lib/qt5/bin/qmltestrunner -input
/usr/share/<harbour-your_app_name>/qml/Tests/

Tests can be executed also in any place on the device. The command for
this is:

cd /usr/share/harbour-<your_app_name>/qml/Tests/ && invoker
--type=generic /usr/lib/qt5/bin/qmltestrunner -input <name
of the test file>

Or if wanted to execute all of the tests at once:

cd /usr/share/harbour-<your_app_name>/qml/Tests/ && invoker
--type=generic /usr/lib/qt5/bin/qmltestrunner -input
/usr/share/harbour-<your_app_name>/qml/Tests/

More information about qmltestrunner usage can be found in appendage 1.

Invoker is a tool which is needed for launching the testing tool qmltestrun-
ner. More information on how-to use invoker can be found on appendage 2.

Tests can be run as a nemo-user (normal user) or as a root user. It is recom-
mended thought to run tests as a nemo user since the normal user runs ap-
plications as a nemo user. When executing the test progress can be seen on
the devices screen and also in the command line (terminal). After full test
run the results can be also seen in the terminal window as image 18 shows.

Writing and Running Qmltestrunner Tests

22

Image 18. Qmltestrunner results

4.3.3 Executing the Qmltestrunner Tests on Sailfish OS Emulator

If the tester does not have a device for testing, tests can be run on Sailfish
OS Emulator which is provided with SailfishSDK. Also it is highly recom-
mended to run tests with emulator rather than on real device. If done some-
thing wrong there is a change to damage the device you are using as a daily
device.

First is needed to take a ssh connection to the emulator with following com-
mand:

ssh –p 2223 nemo@localhost

Then installing the two packages mentioned in chapter 4.3.2. These pack-
ages can be installed as a normal user, nemo in the emulator. It is critical to
have the emulator running on the virtual machine before trying to take a ssh
connection to it. Once at the emulator, the password is required to be set for
the ssh connection. This is done by opening the settings application and
going to the System settings>developer settings –page. The page should
look the same as image 19.

Writing and Running Qmltestrunner Tests

23

Image 19. Developer settings –page on emulator

Now the emulator is ready for deployment. The deployment is done by
choosing MerSDK-SailfishOS-i486 as a kit option when choosing project
build configuration, see image 10 for better understanding. After a success-
ful deployment, the program can be run on the emulator. Testing can be
started now with the same commands as used in real device. The progress
can be seen in the emulator screen.

4.3.4 Reading the results

When all the test are run, the results can be seen in the terminal window.
First lines in the results indicates that testing is successfully started. After
successful start of the qmltestrunner, first test case is started. This is shown
on example 8.

Example 8:

********* Start testing of qmltestrunner *********
Config: Using QtTest library 5.2.2, Qt 5.2.2
PASS : qmltestrunner::Button tests::initTestCase()

Writing and Running Qmltestrunner Tests

24

When the test case is run, qmltestrunner gives verdict and starts cleanup
process for the test case, see the example 9.

Example 9:

PASS : qmltestrunner::Button tests::test_buttons()
PASS : qmltestrunner::Button tests::cleanupTestCase()

If debug items has been set inside the test script file, those are also shown
in results, see the example 10.

Example 10:

QDEBUG : qmltestrunner::Button tests::test_buttons() [D]
test_buttons:21 - Enabled
QDEBUG : qmltestrunner::Button tests::test_buttons() [D]
test_buttons:33 – Disabled

When results of the test case is a fail. It shows like shown in the example
11. Loc entry in the example 11 indicates the test case file where the error
is and also the number at the end of the “Loc” line points to corresponding
line of the test case file.

Example 11:

FAIL! : qmltestrunner::Button tests::test_buttons() Uncaught
exception:
Cannot read property 'width' of undefined
Loc: [/usr/share/harbour-qmltestrunner/qml/Tests/TestFunc-
tions.qml(46)]

When the full testing run is done total results are shown and testing has been
stopped, see the example 12.

Example 12:

Totals: 9 passed, 0 failed, 0 skipped
********* Finished testing of qmltestrunner *********

Writing and Running Qmltestrunner Tests

25

5 SUMMARY

This Thesis should help community members to build and run tests for their
own applications. With this thesis work, UI-errors should be going down.
This helps the store testers to test the applications a bit faster rather than
pointing out all the minor UI-errors seen in the application. This also makes
the quality of the application much higher.

Thesis contains two practical part. The first one was to create demo appli-
cation for testing and second one was to make document for how to write
and run qmltestrunner tests. The application was done and it is working cor-
rectly with the test. This application includes really basic features of the
Sailfish applications. Currently the application is not submitted to the Jolla
Store since there is import QtTest 1.0 which is not allowed according to
Jolla Harbour rules. Also there is two dependencies which are not allowed
to the Store, qt5-qtdeclarative-import-qttest and qt5-qtdeclarative-devel-
tools. This was solved by adding about page inside the demo application
saying how-to install these packages to the device. To get the demo appli-
cation to Jolla Store, it is needed to talk with Jolla Store representative to
allow and make an exception with this demo application. The second prac-
tical work, documentation about how to write and run qmltestrunner tests,
was also made ready and it is going to the mer-wiki page when the correct
technical language checks are made. Mer-wiki is website page where all the
information about mer and how-to is gathered so community can understand
what mer is and contribute to it. This documentation is going to be ported
to mer-wiki page after this thesis project.

First hard blockers during this project was, what kind of application should
be made to demonstrate automated testing. This was solved by doing a
dummy application that contains most of the common features. After com-
pleting the demo application, second blocking issue was how to write the
tests inside the demo application so that they can be run from command line
successfully. This needed some additional understanding about launching
the application before starting the tests. Solution was to add initialPage
component inside the ApplicationWindow type. When the application was
set to open on certain page before tests starts it was easy to write the tests
for the demo application. Some difficulties was on finding the correct text
labels from the UI. These text labels should match with the text set on tests.
To find the correct text labels, self-made debug function was used to find
the correct text label. The debug function listed all visible items from the
current page to the terminal window. From the list it is easy to find all what
is needed for creating the tests.

All in all, thesis project was successful. The demo application demonstrated
the qmltestrunner usage in a basic way. This was the goal for this thesis
work.

Writing and Running Qmltestrunner Tests

26

SOURCES

Sailfish OS. 2015a. About. Sailfish OS. Referenced 20.07.2015. https://sail-
fishos.org/about/

The Qt Company Ltd. 2015a. About. Qt. Referenced 23.07.2015.
http://wiki.qt.io/About_Qt

Sailfish OS. 2015b. Jolla. Harbour. Referenced 23.07.2015. https://sail-
fishos.org/develop/harbour

The Qt Company Ltd. 2015b. Qt Quick. Tutorial. Referenced 24.07.2015.
http://wiki.qt.io/Qt_Quick_Tutorial

Sailfish OS. 2015c. Creating applications with Sailfish Silica. Referenced
15.09.2015. https://sailfishos.org/develop/docs/silica/

The Qt Company Ltd. 2015c. Qt Documentation. TestCase QML Type.
Referenced 20.08.2015. http://doc.qt.io/qt-5/qml-qttest-testcase.html

Sailfish OS. 2015d. Software Development Kit. Referenced 28.07.2015.
https://sailfishos.org/develop/sdk-overview

Sailfish OS. 2015e. Sailfish Application Lifecycle. Referenced 15.09.2015.
https://sailfishos.org/develop/docs/silica/sailfish-application-lifecy-
cle.html/

Sailfish OS. 2015f. libsailfishapp documentation. Referenced 15.09.2015.
https://sailfishos.org/develop/docs/libsailfishapp/

Image 1. SailfishOS. SailfishOS modular system. Referenced 20.07.2015.
Available at https://sailfishos.org/about/

Image 2. SailfishOS. Submit-page on Jolla Harbour. Available at
https://sailfishos.org/develop/harbour

Jolla Oy. 2015. About. Jolla Ltd. Referenced 23.05.2015.
https://jolla.com/about/

MerProject. 2015. Mer-wiki. Referenced 17.08.2015 https://wiki.merpro-
ject.org/wiki/Quality/QA-tools/Testrunner-lite

Pohjolainen, P. 2003. Ohjelmiston testauksen automatisointi. Kuopion yli-
opisto. Informaatioteknologian ja kauppatieteiden tiedekunta. Tietojenkä-
sittelytieteen laitos. Tietojenkäsittelytiede. Pro gradu -tutkielma.

tuts+. 2015. What Is Unit Testing? Referenced 21.08.2015.
http://code.tutsplus.com/articles/the-beginners-guide-to-unit-testing-what-
is-unit-testing--wp-25728

https://sailfishos.org/about/
https://sailfishos.org/about/
http://wiki.qt.io/About_Qt
https://sailfishos.org/develop/harbour
https://sailfishos.org/develop/harbour
http://wiki.qt.io/Qt_Quick_Tutorial
https://sailfishos.org/develop/docs/silica/
http://doc.qt.io/qt-5/qml-qttest-testcase.html
https://sailfishos.org/develop/sdk-overview
https://sailfishos.org/develop/docs/silica/sailfish-application-lifecycle.html/
https://sailfishos.org/develop/docs/silica/sailfish-application-lifecycle.html/
https://sailfishos.org/develop/docs/libsailfishapp/
https://sailfishos.org/about/
https://sailfishos.org/develop/harbour
https://jolla.com/about/
https://wiki.merproject.org/wiki/Quality/QA-tools/Testrunner-lite
https://wiki.merproject.org/wiki/Quality/QA-tools/Testrunner-lite
http://code.tutsplus.com/articles/the-beginners-guide-to-unit-testing-what-is-unit-testing--wp-25728
http://code.tutsplus.com/articles/the-beginners-guide-to-unit-testing-what-is-unit-testing--wp-25728

Writing and Running Qmltestrunner Tests

Appendage 1

QMLTESTRUNNER USAGE

Usage: /usr/lib/qt5/bin/qmltestrunner [options]
[testfunction[:testdata]]...
By default, all testfunctions will be run.

New-style logging options:
-o filename,format :
Output results to file in the specified format
 Use - to output to stdout
 Valid formats are:
 txt : Plain text
 xunitxml : XML XUnit document
 xml : XML document
 lightxml : A stream of XML tags

*** Multiple loggers can be specified, but at most one can
log to stdout.

Old-style logging options:
-o filename : Write the output into file
-txt : Output results in Plain Text
-xunitxml : Output results as XML XUnit document
-xml : Output results as XML document
-lightxml : Output results as stream of XML tags

*** If no output file is specified, stdout is assumed.
*** If no output format is specified, -txt is assumed.

Test log detail options:
-silent : Log failures and fatal errors only
-v1 : Log the start of each testfunction
-v2 : Log each QVERIFY/QCOMPARE/QTEST (implies -v1)
-vs : Log every signal emission and resulting slot invo-
cations

*** The -silent and -v1 options only affect plain text output.

Testing options:
-functions : Returns a list of current testfunctions
-datatags : Returns a list of current data tags.
A global data tag is preceded by ' __global__ '.

-eventdelay ms : Set default delay for mouse and keyboard
simulation to ms milliseconds

-keydelay ms : Set default delay for keyboard simulation
to ms milliseconds

-mousedelay ms : Set default delay for mouse simulation to
ms milliseconds

-maxwarnings n : Sets the maximum amount of messages to
output. 0 means unlimited, default: 2000

-nocrashhandler : Disables the crash handler

Writing and Running Qmltestrunner Tests

Benchmarking options:
-callgrind : Use callgrind to time benchmarks
-perf : Use Linux perf events to time benchmarks
-perfcounter name : Use the counter named 'name'
-perfcounterlist : Lists the counters available
-eventcounter : Counts events received during benchmarks
-minimumvalue n : Sets the minimum acceptable measurement
value
-minimumtotal n : Sets the minimum acceptable total for
repeated executions of a test function

-iterations n : Sets the number of accumulation iterations.
-median n : Sets the number of median iterations.
-vb : Print out verbose benchmarking information.

QmlTest options:
-import dir : Specify an import directory.
-input dir/file : Specify the root directory for test cases
or a single test case file.

-qtquick1 : Run with QtQuick 1 rather than QtQuick 2.
-translation file : Specify the translation file.
-help : This help

Writing and Running Qmltestrunner Tests

Appendage 2

INVOKER USAGE

Usage: invoker [options] [--type=TYPE] [file] [args]

Launch applications compiled as a shared library (-shared) or
a position independent executable (-pie) through map-
plauncherd.

TYPE chooses the type of booster used. Qt-booster may be used
to
launch anything. Possible values for TYPE:
 qt5 Launch a Qt 5 application.
 qtquick2 Launch a Qt Quick 2 (QML) application.
 silica-qt5 Launch a Sailfish Silica application.
 generic Launch any application, even if it's not a
library.

Options:
-d, --delay SECS
After invoking sleep for SECS seconds (default 0).

-r, --respawn SECS
After invoking respawn new booster after SECS seconds (de-
fault 1, max 10).

-w, --wait-term
Wait for launched process to terminate (default).

-n, --no-wait
Do not wait for launched process to terminate.

-G, --global-syms
Places symbols in the application binary and its libraries to
the global scope. See RTLD_GLOBAL in the dlopen manual page.

-s, --single-instance
Launch the application as a single instance. The existing
application window will be activated if already launched.

-o, --keep-oom-score
Notify invoker that the launched process should inherit
oom_score_adj from the booster. The score is reset to 0 nor-
mally.

-T, --test-mode
Invoker test mode. Also control file in root home should be
in place.

-F, --desktop-file
Desktop file of the application.

-h, --help
Print this help.

Example: invoker --type=qt5 /usr/bin/helloworld

Writing and Running Qmltestrunner Tests

Appendage 3

TESTRUNNER-LITE USAGE

/usr/bin/testrunner-lite [options]
Options

-h, --help
Show this help message and exit.

-V, --version
Display version and exit.

-f FILE, --file=FILE
Input file with test definitions in XML (required).

-o FILE, --output=FILE
Output file for test results (required).

-r FORMAT, --format=FORMAT
Output file format. FORMAT can be xml or text. Default: xml

-e ENVIRONMENT, --environment=ENVIRONMENT
Target test environment. Default: hardware

-v, -vv, --verbose[={INFO|DEBUG}]
Enable verbosity mode; -v and --verbose=INFO are equivalent
outputting INFO, ERROR and WARNING messages.
Similarly -vv and --verbose=DEBUG are equivalent, outputting
also debug messages. Default behaviour is silent mode.

-L, --logger=URL
Remote HTTP logger for log messages. Log messages are sent to
given URL in a HTTP POST message.
URL format is [http://]host[:port][/path/], where host may be
a hostname or an IPv4 address.

-a, --automatic
Enable only automatic tests to be executed.

-m, --manual
Enable only manual tests to be executed.

-l FILTER, --filter=FILTER
Filtering option to select tests (not) to be executed. E.g.
'-testcase=bad_test -type=unknown' first disables test case
named as bad_test. Next, all tests with type unknown are
disabled. The remaining tests will be executed. (Currently
supported filter type are: testset, testcase, requirement,
feature and type)

-c, --ci
Disable validation of test definition against schema.

-s, --semantic
Enable validation of test definition against stricter (se-
mantics) schema.

-A, --validate-only
Do only input xml validation, do not execute tests.

Writing and Running Qmltestrunner Tests

-H, --no-hwinfo
Skip hwinfo obtaining.

-P, --print-step-output
Output standard streams from programs started in steps

-S, --syslog
Write log messages also to syslog.

-M, --disable-measurement-verdict
Do not fail cases based on measurement data

--measure-power
Perform current measurement with hat_ctrl tool during execu-
tion of test cases

-u URL, --vcs-url=URL
Causes testrunner-lite to write the given VCS URL to results.

-U URL, --package-url=URL
Causes testrunner-lite to write the given package URL to re-
sults.

--logid=ID
 User defined identifier for HTTP log messages.

-d PATH, --rich-core-dumps=PATH
Save rich-core dumps. PATH is the location, where rich-core
dumps are produced in the device. Creates UUID mappings be-
tween executed test cases and generated rich-core dumps. This
makes possible to link each rich-cores and test cases in test
reporting NOTE: This feature requires working sp-rich-core
package to be installed in the Device Under Test.

Test commands are executed locally by default. Alterna-
tively, one of the following executors can be used:

Chroot Execution:
-C PATH, --chroot=PATH
Run tests inside a chroot environment. Note that this doesn't
change the root of the testrunner itself, only the tests will
have the new root folder set.

Host-based SSH Execution:
-t [USER@]ADDRESS[:PORT], --target=[USER@]ADDRESS[:PORT]
Enable host-based testing. If given, commands are executed
from test control PC (host) side. ADDRESS is the ipv4 address
of the system under test. Behind the scenes, host-based test-
ing uses the external execution described below with SSH and
SCP.

-R[ACTION], --resume[=ACTION]
Resume testrun when ssh connection failure occurs.
The possible ACTIONs after resume are:
exit Exit after current test set
continue Continue normally to the next test set
The default action is 'exit'.

-i [USER@]ADDRESS[:PORT], --hwinfo-tar-
get=[USER@]ADDRESS[:PORT]
Obtain hwinfo remotely. Hwinfo is usually obtained locally or
in case of host-based testing from target address. This option

Writing and Running Qmltestrunner Tests

overrides target address when hwinfo is obtained. Usage is
similar to -t option.

-k KEY, --ssh-key=KEY
path to SSH private key file

Libssh2 Execution:
-n [USER@]ADDRESS, --libssh2=[USER@]ADDRESS
Run host based testing with native ssh (libssh2) EXPERIMENTAL

External Execution:
-E EXECUTOR, --executor=EXECUTOR
Use an external command to execute test commands on the system
under test. The external command must accept a test
command as a single additional argument and exit with the
status of the test command. For example, an external executor
that uses SSH to execute test commands could be "/usr/bin/ssh
user@target".

-G GETTER, --getter=GETTER
Use an external command to get files from the system under
test. The external getter should contain <FILE> and <DEST>
(with the brackets) where <FILE> will be replaced with the
path to the file on the system under test and <DEST> will be
replaced with the destination directory on the host. If <FILE>
and <DEST> are not specified, they will be appended automat-
ically. For example, an external getter that uses SCP to
retrieve files could be "/usr/bin/scp target:'<FILE>'
'<DEST>'".

	1 Introduction
	2 summary of Jolla Ltd.
	2.1 Summary of Sailfish OS
	2.2 Jolla Harbour

	3 Making application for sailfish os
	3.1 Summary of Qt
	3.2 Summary of QML
	3.3 Sailfish Silica
	3.4 SailfishSDK
	3.4.1 RPM-Validator

	3.5 MerSDK
	3.6 Other Sailfish Development Kits
	3.7 The Demo Application
	3.7.1 Building and Installing the Demo Application to the Device

	3.8 Sailfish Application Lifecycle
	3.9 Summary of “libsailfishapp”

	4 Test automation
	4.1 Unit Testing
	4.2 Testrunner-lite
	4.3 Qmltestrunner
	4.3.1 Writing Qmltestrunner Tests
	4.3.2 Executing the Qmltestrunner Tests on Sailfish OS Device
	4.3.3 Executing the Qmltestrunner Tests on Sailfish OS Emulator
	4.3.4 Reading the results

	5 SUmmary
	SOURCES

