

Harry Sileoni

Design and Development of Software Solution
to Improve Google Drive Shared Folders

Helsinki Metropolia University of Applied Sciences

Master’s Degree

Information Technology

Master’s Thesis

23 November 2015

 Abstract

Author(s)
Title

Number of Pages
Date

Harry Sileoni
Design and Development of Software Solution to Improve
Google Drive Shared Folders

42 pages + 4 appendices (5 pages)
23 November 2015

Degree Master of Engineering

Degree Programme Information Technology

Instructor(s)

Mika Lausamo, Project Manager
Ville Jääskeläinen, Principal Lecturer

The purpose of this thesis was to design and develop a piece of software to improve Google
Drive shared folders in organizational use. The main reason why the topic was chosen, is
that organizations that use Google Drive as a centralized data storage are especially vul-
nerable to a potentially vast amount of work in case of an accidental deletion of items.

The thesis proposes the design and development of software which monitors shared folders
and sets file ownerships to one centralized user to allow an easy way to restore files to a
shared folder which is monitored.

The software was designed and developed in the agile development method, which allowed
and encouraged the requirement specification to change during the development phase.

A finished product was designed, developed and tested in a timeframe of nine months, and
the software is in active pilot use on 11 shared folders of various organizations.

Keywords Google Apps, Google Drive, file server, PHP, shared folder

 Tiivistelmä

Tekijä
Työn nimi

Sivumäärä
Päivämäärä

Harry Sileoni
Design and Development of Software Solution to Improve
Google Drive Shared Folders

42 sivua + 4 liitettä (5 sivua)
23. marraskuuta 2015

Tutkinto Master of Engineering

Koulutusohjelma Information Technology

Työn ohjaajat

Mika Lausamo, projektipäällikkö
Ville Jääskeläinen, yliopettaja

Tämän lopputyön tarkoituksena oli suunnitella ja kehittää ohjelmisto, joka parantaa Google
Drivessä sijaitsevien jaettujen kansioiden toimintaa yrityskäytössä. Pääsyy aiheen valintaan
oli se, että yritykset jotka käyttävät Google Driveä keskitettynä tiedostovarastona, ovat eri-
tyisen alttiita potentiaalisesti suurelle työmäärälle, mikäli jaetusta kansiosta poistetaan tie-
dostoja tai kansioita vahingossa.

Lopputyö tarjoaa suunnitelmaa ja toteutusta ohjelmistosta joka seuraa jaettuja kansioita ja
asettaa näiden sisältämien tiedostojen sekä kansioiden omistusoikeuden keskitetylle käyt-
täjälle, täten mahdollistaen helpon keinon palauttaa vahingossa poistettuja tiedostoja sekä
kansioita.

Ohjelmisto suunniteltiin sekä toteutettiin käyttäen ketterää ohjelmistkehitysmenetelmää,
joka mahdollistaa ja kannustaa muuttamaan tarvekartoitusta myös kehitystyön aikana.

Valmis tuote suunniteltiin, toteutettiin sekä testattiin yhdeksän kuukauden sisällä ja ohjel-
misto on tällä hetkellä koekäytössä usealla yrityksellä, 11 jaetussa kansiossa.

Avainsanat Google Apps, Google Drive, file server, PHP, jaettu kansio

PREFACE

When I started my Master’s studies at Metropolia University of Applied Sciences in 2014,

I immediately started to figure out a topic for my upcoming Master’s thesis. As Google

Apps was one of the main tools we used in my workplace, I figured it could provide an

interesting topic in some form. As all software, Google Apps also proved to include de-

sign flaws partially addressed by at least one third party vendor. Because the vendor did

not include a solution which would have been feasible to our company and most of our

customers, I decided to develop a software solution which would be feasible for reselling

and provide a good topic for my thesis.

The design and development was more challenging than anticipated, but so was the

actual report in a thesis form, as most of the development was done before the written

report. All figures, tables and appendices were made completely by the author. All ele-

ments in this report were made with Google Docs, Google Sheets and Google Drawing,

excluding screenshots. Due to limitations in Google Docs, the final document was re-

built with Microsoft Word.

Last but not least, I’d like to give a loving thank you for my wife Tiina for taking care of

our daughter, while allowing me to work on this project besides my regular day job.

Contents

Abstract

Abstract in Finnish

Preface

Table of Contents

Abbreviations and acronyms

1 Introduction 1

1.1 Background 1

1.2 Technology Problem 2

1.3 Objective and Outcome 3

1.4 Project Methodology 4

1.5 Scope and Structure 5

2 Technology behind Google Drive and Developed Software 6

2.1 Google Drive 6

2.2 Structure and Use of Google Drive 6

2.3 Google Drive Synchronization Client 7

2.4 Google Drive File Permissions 8

2.5 File Locations in Google Drive 8

2.6 Deleting Files in Google Drive 9

2.7 Google Drive REST API 11

2.8 Authorization and Access to Google Drive 15

2.9 PHP 15

2.10 MySQL 16

3 Requirements for Developed Software 17

3.1 Usability Requirements 17

3.2 Hardware Requirements 17

3.3 Software Requirements 18

3.4 Connectivity Requirements 19

3.5 Summary 19

4 Software Structure and Functionality 21

4.1 Practical Methodology 21

4.2 Authentication and Authorization 22

4.3 User Interface 22

4.4 Functionality to Change Item Owner 24

4.5 Programming Language and Framework 26

4.6 Database Structure 26

4.7 Proposed Solution 28

5 Solution Evaluation 31

5.1 Planned Solution Evaluation Methods 31

5.2 Used Methods for Testing 31

6 Encountered Problems during Development of Software 33

6.1 High Resource Usage 33

6.2 PHP Client Library Mismatch with Documentation 33

6.3 Code Re-writing Due to Not Using a Software Development Framework 34

6.4 Complexity of Google Drive API 34

6.5 Files or Folders Not Visible to All Users 35

7 Licensing Terms and Distribution Methods 36

7.1 Current State of Licensing and Distribution Methods 36

7.2 Commercial Use 36

7.3 Source Code Licensing 37

8 Discussion and Conclusions 38

8.1 Results and Analysis 38

8.2 Outcomes 41

8.3 Summary 41

References 43

Appendices

Appendix 1. Initial Google Drive API measurements

Appendix 2: Google Drive API measurements after changes optimization

Appendix 3: HSWDrive logic table for file changes

Appendix 4. Quick guide for users (in Finnish)

Abbreviations and acronyms

Authentication The process of defining whether or not someone or some-
thing is who or what it claims to be

Authorization The function of defining whether or not someone or some-
thing has permitted access to something

Cron A job-scheduler software utility, which is widely used in Linux
based operating systems to run scheduled tasks

Crontab A file which defines tasks for Cron to run in any given time.
Crontab is usually available on a per-user or per-system ba-
sis. Usually both at the same time.

CSS Cascading Style Sheets, a language for defining text and lay-
out formatting in websites and web applications

Download A term used to describe the function of fetching data from a
remote system to a local system

Delta sync A scan and monitoring of all files which have changed since
the previous full or delta sync

Full sync A recursive scan and monitoring of all files within a shared
folder

GNU GPL GNU General Public License, a widely used license for free
software. Indicates that a software is free to use, edit and dis-
tribute by anyone.

Google Apps A web-based office suite from Google, including email, calen-
dar, contacts, a file storage system, a word processor, a
spreadsheet application, a slideshow application and many
other applications

Google Apps for Work The enterprise version of Google Apps, including more ad-
vanced email, company personalization with the exclusion of
advertisements

Google Apps Marketplace The official website for activating third party applications for
Google Apps

Google Drive An internet-based service for storing files

Google Drive REST API Google Drive Application Programming Interface - a set of
protocols to interact with Google Drive programmatically.
Runs over HTTP.

Google Drive SDK Google Drive Software Development Kit - a set of tools for to
integrate software with Google Drive

HSWDrive The name of the developed software

HSWDrive instance A single occurrence of the software, intended to monitor one
shared folder.

HTTP Hypertext Transfer Protocol, a non-secure protocol used
commonly in web browsers to transfer website information

HTTPS HTTP over SSL, a secure version of HTTP, which encrypts
the transferred data

InnoDB A database storage engine, which can be found in MySQL
5.5 and later

MySQL An open source database server software

Oauth An open standard for authorization over the internet

Oauth 2.0 The successor of Oauth. Provides more security and is con-
sidered to be easier to use and understand.

Oauth access token An alphanumerical string, which represents a code to allow
communication between a client and server

PHP PHP Hypertext Preprocessor. A widely used scripting lan-
guage.

TLS Transport Layer Security, a cryptographic protocol to encrypt
data. TLS is the successor of SSL. The latest released ver-
sion of TLS is 1.2.

RAM Random-access memory. A form of temporary file storage in
computers. Provides significantly faster read-write speeds
than a regular hard drive, but does not allow permanent stor-
age.

Upload A term used to describe the function of sending data from a
local system to a remote system

vCPU Virtual Central Processing Unit. Used in virtualized servers
to indicate the amount of CPU’s within the virtual server.
Physical CPU’s are usually shared between virtual servers.

1

1 Introduction

This thesis focuses on the design and development of a piece of software, which im-

proves the functionality of Google Drive shared folders for organizational use. The goal

of the project was to design and develop a software solution which monitors and sets file

ownerships within a shared folder in a way that accidentally deleted files are easy to

restore. The software is to be sold as a service. The finished product was named HSW-

Drive.

1.1 Background

The study discusses the use of shared folders in Google Drive. Google Drive is an inter-

net-based computer file storage service (also known as cloud storage) developed by

Google Inc. It is part of a wider suite of web-based applications, called Google Apps,

which is reasonably priced for companies (Google Apps for Work) and available free for

consumers (with a free Gmail account) and education facilities (Google Apps for Educa-

tion). The current service model was launched on 2012, although the same base has

existed since 2010, when it was still known as Google Docs. Google Drive is currently

used by roughly 240 million active users. (1)

The basic idea of a cloud storage is that a user has his/her own password protected

account, which the user uses to add, modify or delete his/her personal files. With the use

of cloud storage, the end-user does not have to carry any removable mass media (CD /

pendrive / hard drive) with him/her as long as he/she has access to the internet. Because

internet connectivity has spread so wide in today’s world, it is usually unnecessary to

carry the files with you physically.

Due to the fact that a user can share a file or folder to other users or user groups in

Google Drive, it is also possible to use Google Drive as a centralized enterprise data

storage. To establish a centralized data storage, a user must create a folder and share

it to all other users which require access to the same files.

2

When a user adds files to a shared folder, the ownership of the files remain to the user

who added the files. Otherwise any user could fill up the disk space of another user.

When a file is deleted, only the file owner can restore it from the trash bin. Because of

this logic, a problem arises when someone accidentally deletes a file from the shared

folder. The original owner has to be found and the owner must restore the file back to

the shared folder.

This could potentially cause a lot of manual work in case a whole file structure has been

deleted. This challenge can be bypassed by creating a software solution which automat-

ically monitors and logs all the changes done within a Google Drive shared folder. By

changing the ownership of each file to a single dedicated user account, the files are easy

to restore from one user interface in case of an accidental deletion.

1.2 Technology Problem

Although Google Drive provides a platform to share files within a company, there is one

major problem in the concept: when a file is deleted from a shared folder by someone

who is not the original owner of the file, it disappears from the shared folder and is left

orphaned. An orphaned file is a file, which has an owner, but does not have a location,

so it can only be found by the owner of the file by conducting a search. It cannot be found

in any particular folder, not even in the trash. In case of an accidental deletion of large

folder structures, this causes a significant problem in restoring the deleted files and fold-

ers. This has happened to the case company and its customers, thus a solution to avoid

it in the future is required. (2)

As to this date the case company has found only one widely recognised commercial

service to address this problem: AODocs. Although AODocs is much more than just a

system to prevent accidental deletions, the case companies required functionality of AO-

Docs is to convert any Google Drive folder to a controllable file server with advanced

options. The problem with AODocs is that since they released a new version in the last

quarter of 2014, it has not been possible for users to delete or add files to a shared folder

thru the Google Drive interface, thus forcing the users to use the AODocs interface or a

separate browser plugin for adding and deleting files.

3

The case company used AODocs for a trial period of 30 days at the end of 2014 and was

almost ready to purchase it, but after noticing some properties which would have required

the end-users to change working habits, a questionnaire was conducted within the com-

pany to decide whether AODocs was suitable or not for this environment. The question-

naire included the following questions:

 Would installing a separate browser plugin cause significant labour?

 If yes, would it cause significant labour to use the AODocs web interface for han-

dling files, even if it currently does not support drag and drop?

 Would abandoning the Google Drive synchronization client and switching to a

completely browser based solution cause significant labour?

 What applications are used to access Google Drive?

 Provide free comments.

Based on the results of the survey, 8 users out of 9 answered yes to the first three ques-

tions. All users preferred Google Chrome as the initial application to access Google

Drive, but some users also used the Google Drive app on mobile devices and Google

Drive synchronization client to have a local copy of the files. At this point it was clear that

the employees did not like the idea that each and every user in the organization should

either install a browser plugin or learn a new system to add, modify or delete files in a

shared Google Drive folder. According to the free comments section of the questionnaire,

AODocs was taking too much control over the user experience, which led to the conclu-

sion that AODocs was not a feasible solution for the case company.

1.3 Objective and Outcome

The objective of this study was to explore the file deletion logic in Google Drive’s shared

folders and to suggest a solution for easy restoration of accidentally deleted files. The

outcome of this project includes the following:

 Software to allow easy file restoration in case a user accidentally deletes a file or

folder from a shared Google Drive folder

 Documentation for end-users

4

The software must be easy to implement on other folders and organisations, thus making

it easy to sell as a service. Because this type of functionality requires continuous moni-

toring of the folders and files, the finished software must run on a dedicated server.

1.4 Project Methodology

The aim of this project was to design and develop a software solution which monitors

and sets file ownerships in a way that accidentally deleted files are easy to restore. After

the initial requirements (development server and Google Developer credentials) were

obtained, the software was designed and developed using the agile software develop-

ment method and object-oriented PHP language. Most of the programming was done

with the combination of TextMate and Transmit. TextMate was used to write the code

and Transmit was used to upload changes to the server. Programming was done in var-

ious locations, mostly in the developer's home or workplace, due to the fact that software

design and programming can be done anywhere with a laptop and an internet connec-

tion.

The process of the project is described in the following steps:

1. The various ways how a file can be deleted and restored in a Google Drive shared

folder was explored to design a program logic which has minimal impact on the

user experience of Google Drive.

2. Based on the investigation of step 1, various solutions were tested for the best

possible solution.

3. The solution was designed and developed in the following order:

a. A dedicated virtual server to run the software was created in the Google

Compute Engine cloud platform.

b. Google Developer Console credentials were obtained by signing in to a

Google account and following Google’s guidelines.

c. A shared Google Drive folder was created for testing purposes.

d. The software was designed and developed using Google’s client libraries,

PHP programming and a MySQL database engine.

4. The developed software was tested in terms of functionality, speed and ease of

use.

5

After the software is stress-tested and proven functional on various pilot companies for

a time period of at least six months, it is ready to be submitted to the Google Apps Mar-

ketplace for selling. Due to time restrictions, this part was not in the focus of the present

study.

The Google Developer Console credentials were used to gain access to the Google

Drive API. Google Drive API was used to send commands and perform queries to Google

Drive. The actual software was be developed using the PHP language. PHP was chosen

due to the developers vast experience in it and because Google provides PHP client

libraries for the Google Drive API.

1.5 Scope and Structure

This project was limited to Google Apps for Work and Google Apps for Education envi-

ronments so it does not work with free Gmail accounts due to limitations of Google Drive

API. Unlike in AODocs, a separate interface will not be created for handling files. All file

and folder handling and restoration of deleted files can be done directly in Google Drive,

although a separate file restoration interface was made for easier restoration of large file

structures. All files saved in the shared folder must be owned by someone within the

company of the shared folder. Files which are owned by external collaborators, were not

included in the scope of the software, although this might be possible in a future release.

Section 2 explains more about the technical aspects of Google Drive, Google Drive API

and the programming language of the developed software. Section 3 describes the re-

quirements for the developed software to function. Section 4 describes the program logic

and includes illustrating tables for the logic and database structure. Section 5 describes

the evaluation for the finished software. Section 6 lists all encountered problems while

developing the software. Section 7 expresses the current and future possibilities for li-

censing and distribution of the software and Section 8 includes measurement results and

analysis of the finished product and discusses of the possible future insights.

6

2 Technology behind Google Drive and Developed Software

To better understand the technical aspects of Google Drive and the development of the

software solution, the used technologies and software logic are described more thor-

oughly in the following sections.

2.1 Google Drive

Google Drive is an internet-based computer file storage service (also known as cloud

storage) developed by Google Inc. It is part of a wider suite of web-based applications,

called Google Apps.

Google Drive was introduced in April 2012, even though the core service did exist before

this as a file storage system for the Google’s web-based office suite. The early web-

based office suite was called Google Docs and it included functionality for word pro-

cessing, spreadsheets and presentations. After the launch of Google Drive these were

separated into three individual apps: Google Docs, Google Sheets and Google Slides

respectively.

2.2 Structure and Use of Google Drive

Google Drive is used to store and share files and folders in the cloud. It is directly inte-

grated to Gmail (Google’s email system), which enables file sharing directly via the email

interface. The use of Google Drive for file sharing addresses the widely known problem

of large email attachments filling mailboxes. By only sending a link to the file, the recipi-

ent’s mailbox does not get filled by large attachments and the recipient is able to down-

load the attachments on demand. The downside of this method is that the file can only

be downloaded as long as the sender does not delete the original file.

By having files in a cloud storage, there is no need to carry any physical storage media.

All changes made to the files are usually viewable by all privileged users and devices

within a few seconds delay either from the web interface or in a locally synchronized

folder, when using a separate synchronization client software.

7

A noticeable difference between Google Drive and many other Cloud Storage services

is that Google Drive uses tags instead of folders. Although files appear to be inside fold-

ers, they are actually just tagged with the folder names. By using tags, it is possible to

have a file located in various locations at the same time. This method is very similar to

using hard links in a Unix-based operating system, such as Linux. The only practical

difference between a hard link and tag is that hard links are done in the operating sys-

tems file system level, while tags are done in a separate database. By utilizing tags in-

stead of traditional folders, it is possible to save a considerable amount of disk space,

because there is only one copy of any given file, even if it is located in various locations

of various users. (3)

Although having a separate backup system is important, it is not that crucial in such as

vast system as Google Drive, because of the various safety and security implementa-

tions. All data is replicated between various data centers around the globe and each data

center is equipped with emergency power generators, which enable data integrity in case

of a natural catastrophe. The data centers operate on custom built servers which are

exclusively built by Google and run a stripped version of the Linux operating system. (4)

All overwritten files are automatically added to a separate revision history, which allows

file restoration in case of an accidental change in a file. Deleted files are added to the

trash bin before final deletion, which allows users to restore them in case of an accidental

deletion. Some files are even recoverable by Google Support and the organization ad-

ministrator for a few days after emptying the trash bin. For extended data integrity, it is

possible to take data backups from Google Drive to a local computer or a third party

cloud storage, such as Backupify. (5) (6)

2.3 Google Drive Synchronization Client

Google Drive was originally intended for web browser use due to its integration with

Docs, Sheets and Slides. As the number of users increased, Google released the syn-

chronization client for Windows and Mac OS X. The idea of the synchronization client, is

to have a local copy of all or selected files within Google Drive. This way users are able

to access files without opening the web browser. According to the experience of the case

company, many users face the problem of not understanding that deleting or moving

items from a locally synchronized folder also deletes the items from Google Drive. This

8

functionality is one of the main drivers for this project. As of today, there is no official

version of the synchronization client for Linux.

2.4 Google Drive File Permissions

All files and folders in Google Drive are always owned by someone. Even though teams

and companies use Google Drive to collaborate within shared folders, the files within

shared folders are by default always owned by the person who creates or uploads the

file. Each file consumes disk space only from the owner, regardless of the file location.

The file ownership can be transferred to another user within the same organization by

the current owner or programmatically by using Google Drive REST API. After a file has

been transferred to a new user, it will free the consumed disk space from the previous

user and consume it from the new user.

Having files with different owners in a shared folder can create a problem, when a user

account is deleted. Because the files are owned by the user, deleting a user will also

delete the files owned by the user within a shared folder. Another possible problem arises

when a file is deleted from such a shared folder. Because the file is owned by some user,

it can only be found from the owners recycle bin, which makes it difficult to restore in a

multi-user environment.

2.5 File Locations in Google Drive

Each Google Drive user has a “My Drive” folder, which is also called the root or root

folder. Google Drive allows files and folders to be shared and to exist in multiple locations

at the same time. These locations are called parents in the Google Drive REST

API. Having files and folders in multiple locations simultaneously is a handy feature, but

in theory allows a recursive loop. A recursive loop occurs when a parent folder is added

into its child folder. The problem of a recursive loop is that a folder structure is infinite,

because the child folder includes its parent folder. In case a folder structure with a recur-

sive loop would be synchronized as a local copy to the end users computer, it would

cause an infinite number of items, which would rapidly fill the computer’s hard drive.

Besides filling the end users hard drive, it would also make deleting the folder structure

troublesome, because most file systems start the deletion process by calculating the

9

number of items to be deleted. If the number of items is infinite, the calculation process

also takes an infinite amount of time to advance, thus never completes or causes an

error message. A graphical representation of a recursive loop can be seen in Figure 1.

Figure 1. A graphical representation of a recursive loop in a folder structure

Each user can also add shared files and folders to the user’s own root folder for easier

access. The root folder of each Google Drive is called “My Drive”. Even though a shared

folder is owned by someone else, each collaborator can add it into any folder under My

Drive, as long as the user has write access and the location does not cause a recursive

loop. In case the user does not have write access or tries to create a recursive loop, the

operation fails and an error message is shown to the user.

When adding files to a shared folder, the file access permissions are inherited from the

parent. Thus when adding items to a shared folder, it is not required to explicitly share

them to other users, unless the targeted user does not have access to the shared folder.

Google Drive automatically increments access permissions to any object within a shared

folder to match the access permissions of the parent folder. Manually added permissions

are not removed in this process.

2.6 Deleting Files in Google Drive

Only the owner of files and folders can delete them permanently. If the owner deletes

files or folders, they are first moved into the owner’s trash. Deleted files can be restored

as long as the trash section is not emptied. Trashed files are not accessible by collabo-

rators.

10

In case a user with write access deletes files or folders from a shared location, the items

will only be removed from the current parent location, but not from the owners My Drive,

which is considered as the root folder. If the shared location was the only location for the

deleted item, it becomes orphaned. An orphaned file or folder does not exist in any folder,

because it does not have any parent locations. An orphaned item is not considered to be

deleted or trashed, it just no longer exists in any location. The only way to find an or-

phaned file or folder, is to conduct a search in the Google Drive’s web interface. Finding

an orphaned file can be challenging, but it becomes even more burdening in case the

file’s owner is unknown. The visibility of files and folders in My Drive is illustrated in Figure

2. (2)

Figure 2. An illustration of orphaned files in Google Drive

As illustrated in Figure 2, files which reside in an orphaned folder (such as File A in Folder

A) are also potentially hard to find due to the parent folder being orphaned. Even though

File B1 is situated in the orphaned Folder A, it can still be easily found due to its existence

in Folder B, which is situated in My Drive. Although having files directly in the root of My

Drive is not considered as best practice for file organization, it is still directly visible to

the user.

11

When someone deletes a single-parented item from a shared folder, one of the two sit-

uations occurs: If the deleting user is the owner of the item, the folder will be added to

the owner’s trash, from where it is no longer accessible to collaborators in any form be-

fore the user restores the item. If the deleting user is not the owner of the item, the item

is deleted from the current location, but is still accessible to the owner and other users

who are explicitly granted access via manually sharing the item. Even though access is

still possible, it is still as an orphaned file and needs to located by searching via the web

interface of Google Drive.

2.7 Google Drive REST API

Google Drive REST API is an essential part of Google Drive SDK, which includes all the

required commands, protocols and tools to interact with Google Drive. By having an API,

developers around the world are able to extend the functionalities of Google Drive. The

API officially supports the following languages: Go, Java, JavaScript, .NET, Node.js,

PHP, Python & Ruby. Besides these languages, it is also possible to use the API with

any other programming language, as long as the language supports REST calls over

HTTPS. The downside of using an unsupported language is that there is very little doc-

umentation to support development for such languages. (7)

Google provides up to one billion (1 000 000 000) free Google Drive API requests per

project on a daily basis and more can be requested. The number of API requests is

limited to 50 requests per second per user. Most operations are done as the file storage

user of an organization. Depending on the requirements, additional API requests might

be prone to financial expenses. Google Drive API consists of 13 different resources to

access Google Drive functionalities. A resource can be thought as an object, in terms of

programming. The available resources are: Files, About, Changes, Children, Parents,

Permissions, Revisions, Apps, Comments, Replies, Properties, Channels and Realtime.

These resources are explained more thoroughly in the following sections.

Files resource

The Files resource includes methods to list, view, follow, create, modify and delete files

and folders. When using the listing method, this resource cannot be used directly to list

files within a folder. The listing method works in a very similar way than using the search

12

bar in the web based Google Drive interface, with the addition of having more options,

such as the ability to limit a search only to Google Photos or reducing the number of

returned objects.

About resource

The About resource is very simple in terms of methods, because it only includes one

method to get information about a user, such as the used amount of data in Gmail,

Google Drive and Google Photos. The About resource also includes a vast amount of

Google Drive related information, such as sharing policies, some Google Drive API set-

tings and the file ID for the user’s root folder (also known as My Drive).

Changes resource

The Changes resource includes methods to get, list and watch changes done to files and

folders. Every time a change has been done in the user’s Google Drive, a new change

item is created, which includes basic information about the file which has been changed.

The use of a change log for monitoring file modifications is considerably faster than re-

cursively scanning for each file in a folder structure, because only changed files are

listed.

Children resource

The Children resource includes methods to list, remove and add children objects to and

from a folder. To use the Children resource, a file ID of a parent folder must be given

before being able to use this resource. Also folders are considered as files in the Google

Drive API, thus folders also have a file ID. This is the most used resource in this project,

as it is required to list files within folders, while checking for user ownerships. This re-

source cannot be used to delete or trash files or folders. When deleting a child object, it

only deletes the object from the selected parent. To actually delete a file or folder, the

Files resource must be used.

Parents resource

The Parents resource provides methods to list, add and remove parents (locations) of

any item. Like the Children resource, this resource cannot be used to actually delete files

13

or folders. It is only used to add or remove a parent from any child object. This resource

is utilized as part of checking if a file is situated within a shared folder.

Permissions resource

The Permissions resource includes methods to list, modify and remove permissions from

items. Each permission setting for every item has its own permission ID. The permission

resource defines the permission role of an item. In case of modifying existing permissions

for a file or folder, the current permission ID for the given item and user combination must

be obtained by listing the permission objects for a given file. In case of changing the

ownership of an item, the user needs to have a permission object assigned to the given

item. If the user does not have any permission objects assigned to a given item, one

needs to be created, before the user can be converted as the owner of the given file.

This resource is one of the most used resource of this project, as the primary focus is to

centralize the ownership of files to one storage user.

Revisions resource

The Revisions resource includes methods to list, modify and delete revisions of a file.

Revisions are stored automatically for each file by Google Drive when a file has been

updated. Although the possibility to restore file contents may be an option in the future,

this project does not currently focus in restoring file contents, thus this resource is not

utilized at all.

Apps Resource

The Apps resource includes methods to list and view apps, which have been enabled in

the users Google Drive. As this project is not focused in listing for existing external

Google Apps, it is not used at all.

Comments resource

14

The Comments resource includes methods to list, modify, add and delete comments to

file created in Google Docs, Google Sheets or Google Slides. Comments are not cur-

rently supported in other types of files. As this project does not include functionalities to

view or alter comments in separate files, it is not used at all.

Replies resource

The Replies resource includes methods to list, modify, add and delete replies to com-

ments in file created with Google Docs, Google Sheets or Google Slides. As this project

does not include functionalities to view or alter comments in separate files, it is not used

at all.

Properties resource

The Properties resource includes methods to list, create, modify and delete custom prop-

erties for drives stored in Google Drive. The properties can be public to all apps or private

to just one app. As this project does not focus in file properties of separate files, it is not

used at all.

Channels resource

The Channels resource is a resource, which is created when a File resource is set to be

followed with the Watch method. The Channels resource can be stopped with the Stop

method, thus ending the watching or following of a file. Due to requirement of following

all items within a given structure, this resource does not have any practical use in the

current project.

Realtime resource

The Realtime resource includes methods to get and update realtime API models, which

are associated to a selected file. It can be used to monitor changes to a file in real-time,

thus allowing external applications to reflect changes.

15

2.8 Authorization and Access to Google Drive

The Google Drive REST API uses mainly OAuth 2.0 for authorization of the software

against Google’s servers. OAuth 2.0 is the successor of Oauth 1.0 and an open standard

for allowing secure delegation of data resources. The main idea of Oauth is to allow

delegated access to only some part of resources, not to everything. (8) It is used for

access authorization by many notable cloud service providers, such as Google, Mi-

crosoft, Amazon and Dropbox. (9)

To establish a successful connection between the software and Google Apps instance,

a client ID and client secret must be generated within the Google Development console.

The client ID must be granted appropriate permissions for Google Drive on each Google

Apps instance, which will be hosting a shared folder. The permissions are granted from

the Google Apps administration console by an administrator of the Google Apps in-

stance. Once the client ID has been created and permissions are granted, the software

is able to authenticate and gain authorization to Google’s servers by using Oauth 2.0.

The actual authentication and authorization and communication between the software

and Google’s servers is usually done in the following steps: First the software requests

an access token from Google. The access token is received upon a successful authen-

tication. A successful authentication is achieved by using user consent. In this example,

user consent is achieved with the client ID and client secret, which were generated in

the Google Development Console. Assuming the authentication was successful, the soft-

ware receives a session object and an access token, which is valid for a limited time.

The session object is used as a proof of authentication by the software, when sending

queries and commands to Google’s servers. The access token is used to request a new

token before the original token expires. (10)

2.9 PHP

PHP is a widely used server-side scripting language, which was officially introduced in

1995 by Mr. Rasmus Lerdorf. PHP started as a simple procedural language, but it has

been further developed to an advanced object-oriented language. (11) The latest version

branch of PHP is 5.6. (12)

16

Even though PHP is an object-oriented language, it is still not categorised as a program-

ming language, due to the fact that PHP applications are not usually compiled to

bytecode. PHP applications are typically processed directly on a server by a PHP inter-

preter.

2.10 MySQL

MySQL is a relational database management system (RDBMS), owned by Oracle Cor-

poration. MySQL was initially released in 1995 by MySQL AB. MySQL is the world’s

second most used relational database management system and the most used open-

source relational database management system. The latest stable version as of Septem-

ber 30th 2015, is 5.6.27. (13)

MySQL is widely used in website development, but it can also be used for other applica-

tions, such as server-side applications and even as a local database for individual appli-

cations. Since Oracle bought MySQL in 2008, a new open-source fork of MySQL was

created, known as MariaDB, to address concerns about keeping MySQL free and under

the GNU/GPL license. The intent of MariaDB is to maintain a high compatibility with

MySQL for easier transition, in case the development of a free MySQL is seized. Mari-

aDB’s current lead developer is Michael Widenius, who was one of the founders of

MySQL AB.

Because MySQL is still free and under constant development, it was chosen as the da-

tabase platform for this project.

17

3 Requirements for Developed Software

The requirements for the software to function correctly are divided into four categories:

Usability, hardware, software, and connectivity, which are further discussed in the fol-

lowing sections.

3.1 Usability Requirements

Based on the findings of the inquiry done in the case company at the end of 2014, most

users preferred Google Chrome as the application to access the web interface of Google

Drive. Some users also used mobile apps and the Google Drive synchronization client,

to have a local copy of all files within a shared Google Drive folder. Based on this infor-

mation, the developed software needs to work discreetly, without affecting current work-

ing habits or applications. File restoration should be easy enough for regular office work-

ers, although restoration should be done by an experienced administrator for best re-

sults.

3.2 Hardware Requirements

The requirements for the development environment are not high, because the software

is initially used only to monitor a very limited number of shared folders within Google

Drive. The official requirements of the selected operating system (Debian GNU/Linux)

are also so minor, that any modern PC is sufficient for development purposes. (13)

While the development environment does not need to be powerful, the production envi-

ronment on the other hand needs to be powerful enough to provide a good user experi-

ence. Initial benchmarks (Appendix 1) indicate that the monitoring of one shared folder

consumes an average of 3 to 6 % of CPU resources on a typical virtual machine with 1

vCPU and 4 GB’s of RAM. This result was measured by recursively listing all files within

a shared folder. After changing the software’s logic from recursively listing items directo-

ries into a change-based scanning, the CPU consumption was reduced to a stable 3 %

of CPU usage (Appendix 2).

18

The change-based scanning lists only files which have been changed since the last scan.

With this change, the number of required files to list was reduced exponentially, thus

reducing the amount of consumed resources. Based on these measurements, one rela-

tively slow virtual machine is able to withstand the monitoring of at least 32 concurrent

shared folders within Google Drive. This assumption was made on the basis that each

new shared folder to monitor would cause an average of 3 percentage points increase

in CPU usage. By multiplying 3 percentage points by 32, a 96 % CPU usage is achieved.

The actual consumption should be considerably lower due to the fact that the server’s

operating system itself could consume up to 2 % of CPU while on standby, without any

shared folders to monitor, due to automatic updates, indexing and connectivity checks.

A more specific measurement can be achieved with a larger number of folders to monitor.

The CPU consumption is directly linked to the number of API calls (API requests in Ap-

pendix 1 and API Response in Appendix 2) done via Google Drive API, as can be con-

ducted by comparing the CPU usage to the number of API calls per second.

3.3 Software Requirements

The software requirements to run the developed software can be divided roughly in two

sections: server-side requirements and client-side requirements. Server-side require-

ments must be met, for the software to be able to work in the server. Client-side require-

ments are to be met for the user interface to work for the end-user, who intends to restore

file structures to an earlier state.

As for the server-side requirements, Google Drive API requires Google Developer Con-

sole authorization credentials to function, which can be obtained from Google Develop-

ers Console. The Google Drive API PHP client library requires at least PHP version 5.3

to function and the user interface requires at least Apache 2.0 to function. The targeted

development and production environment is Debian GNU/Linux (wheezy), which already

includes Apache 2.2 and PHP version 5.4, so these requirements are automatically ful-

filled just by choosing this operating system. (14)

The client-side requirements are exactly same as using Google Drive itself, because all

file controlling is made within Google Drive or with a separate file restoration interface,

which originates partly from Google Drive. Google Drive requirements include any of the

19

following web browsers: Chrome, Firefox, Internet Explorer, Safari (only on a Mac), as

long as the browser is the newest or second newest version release. (15)

3.4 Connectivity Requirements

All interaction between the software and Google Drive REST API is done via regular

HTTPS requests over port 443, so there is no major requirements for the internet con-

nection speed or firewall settings. Due to the potentially vast number of requests per

shared folder instance, the connection needs to be stable and able to withstand multiple

requests within a small timeframe.

Initial measurements (Appendix 1) indicated that the monitoring of one shared folder

handles about 2 API requests per second and requires about 0.12 Mb/s of download and

about 0.035 Mb/s of upload speed to interact seamlessly with the Google Drive REST

API. After changing the software logic from a full recursive scan to a change-based scan,

the number of API requests was significantly reduced to about 0.2 requests per second

on average. A full recursive scan was named as full synchronization and a change-based

scan was named as delta synchronization (Appendix 2).

3.5 Summary

The requirements for this project consist of three main categories: First the hardware

requirements for the server, which runs the software application must be fulfilled. Sec-

ond, software requirements must be fulfilled to provide the necessary platform for pro-

gramming and using the file restoration interface. Third, running the software and con-

nectivity requirements must be fulfilled to provide a consistent quality of service for the

software.

Debian GNU/Linux was chosen as the operating system for the server platform. Accord-

ing to the official system requirements guide of Debian GNU/Linux, any modern com-

puter would satisfy the basic hardware requirements. Software requirements are divided

in two sections: server-side requirements and client-side requirements. Server-side re-

quirements are automatically met by having the latest version of Debian GNU/Linux and

client side requirements are automatically met if the end-users are able to access Google

20

Drive via a web browser, since the restoration interface is only plain HTML, with the

exception of the instance creation interface, which uses Google Drive file picker for se-

lecting a folder to be monitored. Because the measured network usage was very low,

connectivity requirements are quite modest in terms of speed. Due to this, any modern

broadband connection should suffice. More important than the connection speed would

be the reliability of the connection. Long connection outages might lead into a situation

where a file has been created and deleted before it has been noticed by the software.

This could lead into losing accidentally deleted files permanently.

Because the software is intended to run quickly and serve multiple customers reliably

365 days a year, all the minimum requirements must be exceeded with significantly bet-

ter hardware and network connections. While considering data security aspects, it is also

a best practice to use the latest stable release of required software services and tools.

21

4 Software Structure and Functionality

This section begins by explaining the methodology used to design and develop the soft-

ware. After the methodology section, the technical details are explained more thoroughly.

4.1 Practical Methodology

The project started with the knowledge of a problem with Google Drive’s shared folders

in organizational use. The first step was to find out of any already existing commercial

products which could resolve the current problem. According to a conducted question-

naire in the case company, the only commercial product was not considered feasible.

The questionnaire provided a good starting point for the design of the requirements for

a new software to overcome the encountered problem. The software was designed and

developed in various locations and with various devices in a timeframe of nine months.

As the agile development method was chosen, the initial design did not include too strict

guidelines on how the software should act in different situations. While developing the

software, design plans were constantly changed to reflect the encountered problems.

As a starting point the project required a dedicated server with a PHP runtime environ-

ment, a MySQL database, a Google Apps for Work account and Google Developer cre-

dentials. A virtual server with the product name of n1-standard-1 was bought as a Google

Cloud Computing service. The n1-standard-1 was the cheapest standard typed virtual

server from Google, which was still considered to be more than enough for the software

to function in a pilot phase. The required runtimes and databases were installed on the

server separately. The required Google Apps for Work account and Google Developer

credentials were obtained from Google before the project started.

Due to the developer’s many years of experience with the PHP language, it was chosen

as the language to develop the software. Although the developer had a considerable

amount of knowledge in PHP, some additional information had to be studied via the offi-

cial PHP website during the development. As PHP is categorized as a scripting lan-

guage, it did not require any code compilation and all changes were updated in real-time.

The developer did not have any previous experience with the Google Drive REST API,

so information regarding this had to be gathered from the Google Drive REST API refer-

ence page.

22

The software was developed to run on the server as scheduled task, so it does not need

any user interaction. The evaluation of this project was done by simulating real-life situ-

ations of file and folder deletions while trying to restore folder structures after a deliberate

deletion. The ease and speed of file restorations were the primary metrics of the evalu-

ation for this project. Both metrics were measured by assigning end-users of pilot com-

panies the task of restoring files, which were deleted from a shared folder. The evaluation

methods of the finished product are described in the Solution Evaluation section.

4.2 Authentication and Authorization

User authentication and authorization process was developed by utilizing Google’s Us-

ers PHP API. This means that for a user to access the system, the user has to be in the

super administrators group of the respective organization. The authentication process

was developed to function in the following way: First the user fills a registration form to

sign up for the service. After registering, the user receives a follow-up email with instruc-

tions on how to permit the software access to the user’s Google Apps domain. After the

user has permitted access to the software, the user is able to log-in to the software’s

user interface. The user interface’s login page does not process any credentials, but

redirects the user to a Google’s login page. When the user logs in to his/hers Google

Account, the user will be redirected back to the software’s user interface as an authorized

user. All traffic between the end-users web browser and the developed software is pro-

cessed via a secure HTTPS (HTTP over SSL) connection with the TLS 1.2 protocol,

which is the same technology as used in most commercial online banking systems.

4.3 User Interface

The user interface was designed to allow Google Apps for Work administrators a one-

click restoration of a file structure to a given time. The interface was programmed to allow

access only to registered users with the Super Administrator role for their Google Apps

for Work domain. Once the user has registered to HSWDrive, the user must login to the

system via Google’s authentication system. Google’s authentication system provides

HSWDrive the user’s administrative role, which is used to verify access privileges Au-

thorized users are given the following options: Create a new shared folder instance,

23

modify the organization’s current instances and restore an existing instance to a certain

point of time.

The date restoration interface only restores item locations, not the actual data. In case

the content of a file needs to be restored to a certain date, Google Drive’s built-in revision

control can be used. Items are also never removed, even though a restoration would be

done to a time, when a certain item did not exist. Table 1 illustrates the previous state-

ments in a more understandable way.

Table 1. HSWDrive file restoration logic

As designed, the restoration interface did not include anything else than a item listing for

the selected date and current date, a date selector and a restoration button. The resto-

ration button was implemented with a confirmation alert to prevent accidental restora-

tions. Figure 3 illustrates the file restoration interface in practice.

24

Figure 3. Screenshot from the restoration interface

As can be seen in Figure 3, the logout link includes the email address of the currently

logged user. The email address is directly linked to the currently logged Google Apps

user and in case the user wishes to login again, a new authentication must be done

against Google’s authentication system. The left-hand side column displays the current

status of the selected folder, while the right-hand side column displays the status on the

given date.

4.4 Functionality to Change Item Owner

The main purpose of the designed software, is to change the ownership of all files within

a shared folder to one centralized user for easier file restoration. Once the files are owned

by one centralized user, the files cannot be permanently deleted by other users as ex-

plained in the technology behind Google Drive and the developed software section. The

centralized user is called as the data storage user. Due to the nature of Google Drive

API, various steps had to be taken in order to change the owner of an item within a

shared folder. Because the ownership of an item cannot be changed centrally by one

administrative user, the software has to act on behalf of the previous owner to grant

25

ownership to a new user. Figure 4 illustrates how the owner changing process was

achieved in the developed software.

Figure 4. A flowchart to the illustrate how to change the owner of an item

Based on the flowchart in Figure 4, the first step is to list all permission objects for the

given item. A permission object is an instance of the Permission resource, which was

explained in the Google Drive REST API section. Once the list of permission objects has

been obtained, the software looks for the permission object with the owner role. Based

on the found object, the software is able to detect the username of the file’s owner. If the

file is owned by an external organization or the storage user is already the current owner,

the file is bypassed. After obtaining the owner’s username, the software checks if the

storage user already has a permission object, the ID for that object is stored for future

use. In case the storage user does not have a permission object, the software creates a

permission object for the storage user and stores the ID for the newly created object.

Once the software has the permission object for the current and future user, the software

creates a new Google Drive service as the previous owner, and transfers the ownership

to the storage user.

26

4.5 Programming Language and Framework

Most of the programming was done with the PHP language in combination with a MySQL

database for file status recording. According to the original plan, a PHP based program-

ming framework called Symfony2 was intended to be used for the project. As the soft-

ware logic advanced, it seemed Symfony2 would have been too resource consuming for

such software. Thus plain PHP was finally selected to be the programming language for

this project. Some sections of the user interface required the use of JavaScript.

As the project advanced, it was clear that the original plan of using at least some sort of

PHP framework would have been better in terms of manageability. All functions were

achieved, but as a result of using plain PHP, the software became more complex to

update in the future. If the software becomes a success in terms of sales, a next logical

step would be to re-write most of the code in some PHP framework to support easier

updates in the future.

4.6 Database Structure

MySQL was selected as the database engine. The database consists of four separate

tables. The first table includes a list of all instances. An instance is basically just a row of

information, consisting of the basic information of the centralized data user, company

information, file ID for the shared folder and file ID’s for the lost files folders. The second

table consists of the status of files in the shared folder. This table includes the basic

information of each file, such as the file name, instance ID, and last update time. The

third table is structurally identical to the file table, but only includes the history of old files.

Every time a file is being updated, the third table shows the status history of each file, as

can be deducted from the table below. The fourth table consists of registered users. Only

registered users are allowed to add, modify and restore instances to an earlier stage.

Only registered users are allowed to add, modify and restore instances to an earlier

stage.

27

Table 2. HSWDrive database diagram

Each row in the instances table represents a shared folder for a single organization. The

shared folder may have numerous subfolders and files. The instances table also defines

the location for the files with the status of “Escaped”, “Released” or “Orphaned”, which

are all moved under respectively named folders in the “Lost and found” folder for that

instance.

The file tables and instance table are connected to each other with the instance ID pa-

rameter, by using the built-in relation model of MySQL InnoDB. This relation is indicated

with an asterisk character in Table 2. The main idea of this database scheme is to have

all the up to date file information in one table and another table is used only for logging

purposes. By having a link to the instance ID, if is easy to query for files which belong to

a single instance.

Each row in the users table includes basic information about the user. The isAdmin col-

umn of the user table describes whether the user has full administrative privileges for the

whole system. Users with full administrative privileges are automatically granted full ac-

cess to all organization’s instances. Unlike most database systems, there is no password

column in the users table. The reason for this, is that authentication is done via Google’s

Users PHP API. Login passwords are never stored or handled within HSWDrive.

Each item (file or folder) in the database has a status. Due to the fact that one item can

reside in multiple locations within Google Drive, one item might be listed multiple times

28

in the database, if the item is in multiple shared folders that are monitored by HSWDrive.

The items are separated by an instance ID, which indicates to the folder that is being

monitored. Possible item statuses are: ok, deleted, orphaned, escaped, released,

trashed or external. Table 3 explains thoroughly what each status indicates.

deleted
The item has been permanently deleted or moved outside of the shared folder while
ownership transferred to another user and access revoked from centralized data user.

or-
phaned

The item has been deleted from the shared folder and as a result, it does not have any
parents. This type of item is automatically added to the "orphaned" folder.

ok The item is owner by the centralized data user and situated within the shared folder.

es-
caped

The item is owned by the centralized data user but is moved out from the shared folder.
This type of file is automatically added to the "escaped" folder.

re-
leased

The item is accessible by the centralized data user, but ownership has been given
away and the item is no longer in the shared folder. This type of item is automatically
added to the "released" folder.

trashed
The item has been trashed by the data storage user and it is located in the trash of the
data storage user.

external The item exists in the shared folder, but is owned by an external organization.

Table 3. HSWDrive file status table

As stated previously, all changes to items are scanned once every minute. Each scan

checks the following for all items: Is the item the root folder of the shared folder, has the

item been deleted, does the item exist in the database, what are the current parents, are

the parents currently within the shared folder, is the item owned by the storage user, is

the file owned by the same Google Apps organization, is the file trashed, have the par-

ents changed and has the item’s name changed. To decide what to do to a file in case

of a detected change, the table of Appendix 3 is used to determine the next action and

file status.

4.7 Proposed Solution

The software was named as HSWDrive. It was developed to function in the following

steps: First a company authorizes the software to have access to its Google Drive. Next

the company decides and provides the software a shared folder and a centralized data

user account, which will perform as the central data storage owner. In the third step, the

software performs a recursive scan for the whole shared folder. The software lists all files

and folders stored in the shared folder and adds or updates the files in a database table.

29

While scanning the files, the software changes the ownership of each file to match the

centralized data user account. Only files owned by someone in the same organization

will be modified. After these two steps are done, the software starts to monitor all

changes done within the shared folder. From this point on, it will perform a full scan only

once daily, but individual changes are monitored every minute. In a perfect world the

monitoring alone would be enough, but due to possible errors in file ownership updates

or network connectivity issues, a daily scan was scheduled to overcome possible update

errors.

The end-product is a fully-functional server-side software, which runs as scheduled tasks

via crontab. The software is programmed with the PHP language and it uses the Google

Drive API for interaction with Google Drive. The stages of development are roughly in

the following steps: First the prerequisites (software, hardware, credentials) must be met,

second follows the initial development and deployment, third comes piloting and feed-

back and last comes the final release. The finished product is sold as a service, so the

customer never gets any executable files or code.

The software consists of two separate main components to handle files: Delta synchro-

nization and full sync. The delta synchronization component only checks for changes

done to files in the given folder since the last change. The full synchronization component

runs a recursive scan of all files and folders within the shared folder. A delta synchroni-

zation is run every minute, while a full synchronization is run only once daily. The reason

for this division is that neither of the components alone are effective alone.

A delta synchronization is very quick to run, because it detects only the last changes. On

the other hand, in case of a slight network failure in the delta sync, some files might not

be processed. The full synchronization is less prone to miss files in case of a slight net-

work error, but it might take a very long time to scan a large file structure. Another down-

side of a full synchronization is that it consumes a lot more network and processor re-

sources, due to scanning each and every single file in the folder structure.

Due to the increasing number of shared folder instances, two minor components were

made to run all folder instance synchronizations simultaneously. The main benefit of run-

ning a synchronization for all folders simultaneously is the noticeable increase of speed,

compared to running the synchronization on all folders consecutively.

30

Besides the finished product, a deployment guide was made for administrators to easily

setup HSWDrive on their organization. This was done to make deployment as easy as

possible, considering not being able to use Google Apps Marketplace, which would have

been the easiest solution. Due to time constraints, the deployment guide was considered

to be more worth the effort than submitting a beta staged software publicly to Google

Apps Marketplace.

31

5 Solution Evaluation

The following section describes the designed and implemented methods for evaluating

and testing the developed software solution. The evaluation was done in terms of usa-

bility, resource consumption and speed.

5.1 Planned Solution Evaluation Methods

The product quality was evaluated in terms of functionality, ease of deployment, ease of

use and speed of item restoration in case of an accidental file or file structure deletion.

The functionality evaluation was considered as successful, if the software is able to keep

track of all files and file changes within a shared folder. Besides being able to keep track

of files and changes, the software must also be able to function quickly to provide a fluent

user experience. A delay of 5 minutes was chosen to be the maximum accepted time for

a change to be recorded within normal use, although the expected average delay is less

than one minute. These could be tested by making changes to items in a shared folder

and confirming that the changes are registered within the software’s database. Ease of

deployment was measured by providing the customer administrators a deployment guide

and observing if the customer is able to deploy the software to their organization with

minimal help. Ease of use and speed of item restoration was measured by asking regular

users to deliberately delete files and attempt restoration via the HSWDrive file restoration

interface. This type of evaluation was considered to be the only way to concretely see if

the software is reliable, fast and easy enough for production use with future customers.

5.2 Used Methods for Testing

Besides evaluating the basic requirements of the solution, practical testing was done in

the following categories: resource consumption, speed of use and ease of use with a

total of 11 shared folders from various organizations. The solution was stress tested for

resource usage by deploying various shared folders from various organizations for pilot

use. After the deployment, resource usage was monitored via the server’s own reporting

tools and Google Developer Console. The detailed measurements can be found in the

Results and Analysis section.

32

Speed was monitored by adding items in a shared folder and calculating the time that

the software requires to process the item. The file processing speed was observed af-

terwards, by using Google Drive’s activity pane for the selected items. This method pro-

vided a reliable way to measure speed, without having to compare update time between

Google Drive and the software’s database.

Ease of use was tested in two sections: Implementation and usage. The implementation

section was tested by providing the administrators of customer organizations a deploy-

ment guide and testing if the customers were able to deploy the software by themselves.

The usage section was tested by giving the pilot customers a tasks to recover files by

using the restoration interface. If the customer was able to implement the software with

minimal help, the requirement for ease of deployment was considered as a success. If a

user was able to restore files to any earlier location with minimal help, the requirement

for ease of use was considered a success. A separate quick guide (Appendix 4) was

given to the end-users to help in the deployment and recovery process.

33

6 Encountered Problems during Development of Software

As most software development projects, also this project had problems which were not

anticipated in the design phase. This section describes the encountered problems and

how they were resolved.

6.1 High Resource Usage

While testing the functionality of the first working version of the software, a high amount

of system resource usage was measured particularly in CPU, network and disk usage

(Appendix 1). While this did not cause a major problem in the speed or reliability of the

software with one case company, it would have had a greater impact in an environment

of multiple companies and shared folders. Because the software is aimed to be sold as

a service, it is expected to handle various instances within one physical server without

having noticeable latency or reliability issues.

After a logic survey of the software the cause of high resource usage was pinpointed to

the logic of recursive file scanning. As the initial version of the software used to scan

through all files within a shared folder every hour, it caused a major resource usage peak

every hour. Due to the large number of files within the case companies shared folder,

this scan took almost an hour for each scan. To overcome this problem, a change in

program logic was implemented in the following way: Instead of scanning through all the

files every hour, only the changes made to files within a shared folder were monitored

after the initial recursive scan. This was possible by using the Changes resource, pro-

vided by the Google Drive REST API. With this logic, all changes could be detected each

minute, and still the average resource usage would was measured to be only 10 % com-

pared to the original resource usage (Appendix 2).

6.2 PHP Client Library Mismatch with Documentation

Because the Google Drive API PHP Client library is updated very frequently, the docu-

mentation provided by Google did not always comply with the actual functions of the

34

client library. This caused some significant problems in making the software work cor-

rectly. These problems were exceeded by investigating the source code of the client

library. Requests for correlation of the documentation were sent to Google.

6.3 Code Re-writing Due to Not Using a Software Development Framework

The final decision of choosing not to use Symfony2 framework, unlike originally planned,

caused a significant increase in programming time, because many functions had to be

re-written in the event of a change to the database structure. When this deficiency was

noticed, the software was already developed so far, that moving it to a framework was

not considered to be worth the effort. The software was finished without a framework,

but if time and budget allows, it will be re-written within Symfony2 framework in the future.

6.4 Complexity of Google Drive API

While starting the project, it was not obvious that even seemingly simple operations, such

as changing the owner of a file required multiple phases to achieve. Even though the

software can be granted full administrative privileges to an organization’s Google Drive,

each operation is done subjectively with a user account. This means that instead of

changing the owner of a file needs to be done as the current owner. As an example: It

was not possible to just define a new owner to a file with one simple command. To

change the owner of a file, the first operation was to list all permission objects for the file.

After obtaining a list of permission objects, each object had to be scanned for the

username and permission level. While scanning the permission objects, the current

owner had to be selected to confirm if the file was already owned by the storage user. In

case it was not, the second phase was to check if the storage user had any permission

object at all. In case the storage user did not have any permission object, one needed to

be created. Once the current owner was found and the storage user had a permission

object, the ownership could finally be transferred from the owner’s permission object to

the storage user’s permission object. The transfer had to be done as the previous owner.

Another complexity aspect of Google Drive API was that all items are considered as files.

Understanding that within Google Drive, folders are actually just empty files with children

objects was a new revelation. For simplicity, “item” was selected as the word to represent

35

any file or folder in this thesis. Due to the fact that one item can co-exist in multiple

folders, it was required to understand the concept of parent objects and children objects.

Parent objects can be thought as the locations for the item, while child objects can be

thought as files within a folder. Naturally only folder objects can have children objects.

6.5 Files or Folders Not Visible to All Users

After having the software online for a few days, some pilot companies reported on lost

files, which could only be found by some users in the respective organization. These

reports led to an investigation, which indicated that although the lost items were in the

corresponding folder, they would not be visible to some users. The users who experi-

enced these problems had sufficient privileges to the respective folder, but still some files

would appear have vanished. The underlying reason for this has been unknown up to

this date but a work-around has been implemented to overcome this problem. The work-

around to overcome the issue was to re-share the folder to the users who are experienc-

ing problems. After the folder was re-shared, no further complaints were received by the

users.

36

7 Licensing Terms and Distribution Methods

This section covers basic information about possible licensing terms and distribution

methods for the developed software solution. Even though licensing terms and distribu-

tion methods were not the focus of this project, they are relevant or future reference.

7.1 Current State of Licensing and Distribution Methods

As mentioned in the previous chapters, the software is made to be sold as a service, so

a separate license agreement is not made between the buyer and the seller. On the other

hand, the customer is required to accept a service contract, which describes the content

and price of the subscription. The pricing and contract terms are not the focus of this

thesis, so they will not be discussed any further.

The initial target group consists of companies which have bought Google Apps for Work

from the case company. Due to this target group, most agreements are initially done via

telephone or email, while the distribution is done remotely as a service. After the software

has been distributed to the initial target group, it will be targeted to other companies in

the future.

7.2 Commercial Use

Although the commercial use of the developed software is not the main focus of this

thesis, it is still a focus point of the future. Once the software has been successfully tested

for at least 6 months on various test companies, it can be considered to be a ready for

commercial use. To truly make it commercial, it has to be published in Google Apps

Marketplace for easier distribution.

The following procedure must be done in order to publish the app: First a payment sys-

tem needs to be integrated to the registration form. This can be done with PayPal or

another similar payment system. After that, it is required to register as a developer to

Google Apps Marketplace. Registering requires a 5 USD payment to Google. After reg-

istering, the second phase is to take screenshots of the software and create a manifest

file. The manifest file should include basic information about the software, such as the

37

name, description and icons. After a manifest file has been created and screenshots are

taken, the third phase is to submit the manifest file, screenshots and application URLs

to Google Developer Dashboard. After submitting the app, the fourth phase is to send a

request for listing to Google Apps Marketplace by filling the Google Apps Marketplace

Listing Review Request form. Once the form has been submitted, Google reviews the

software and decides whether or not it is acceptable for publishing. If the software is

considered as acceptable, the fifth phase is to test the installation of the software via

Google Apps Marketplace. If everything works as intended, the final phase is to start

marketing the software via various internet-based channels. (14)

7.3 Source Code Licensing

Although the software itself is intended to be sold as a service for monetary gain, the

source code may be published with the GNU General Public License (GNU GPL) or

similar license, thus granting other developers (individuals and organizations) the free-

dom to use, modify and copy the source code. There are numerous reasons why this is

considered as a good practice. First, all the developers programming knowledge has

been gained from free resources, including most of the API resources and code snippets.

Based on this, it would only be fair to give something back. Second, publishing the source

code would allow other developers to provide feedback and recommendations to im-

prove the code. Third, publishing the source code could also function as public demon-

stration of excellence, thus potentially provide work opportunities in the future. Finally,

as the software is intended to be run on a server, if is very unlikely that small business

organizations would have the resources or knowledge for deploying the software, while

larger business organizations usually tend to avoid open source solutions without a guar-

antee of support.

If GNU GPL is chosen as the license model for the software, each source code file should

include a preamble, indicating that the source code is under the GNU GPL license. For

the time being, no decisions have been made regarding the licensing of the software.

This decision will be made in the future when the software has been further developed

and implemented to a larger scale of customers.

38

8 Discussion and Conclusions

This section discusses the results and outcome of the finished software solution. The

amount of work and resource consumption is the main focus, while the summary section

includes the final measurements.

8.1 Results and Analysis

The development of the software was done within 9 months, which was within the set

timeframe and did not cause any delays to other work matters. The software had a total

of 4194 lines of PHP code and 865 lines of CSS code for the user interface. The original

assumption of required PHP code was less than 1000 lines, so the amount of implemen-

tation work was exceeded multiple times. The main reason for the vast amount of code

was clearly because of not using a PHP framework, which would have minimized the

required amount of manually written code. If the original plan of using Symfony2 Frame-

work had been followed, most of the manually made PHP methods could have been

automized and database structure changes could have been updated from one central

location, instead of updating all functions manually in the case of a change in the data-

base structure.

The software was measured to function with very minimal resource consumption. By

increasing the number of shared folders to be monitored from one to eleven, the only

noticeable resource increase was observed in the CPU usage. As indicated in Figure 5,

the CPU usage with one folder was measured to be approximately 3 %, increasing the

number of folders to eleven increased the CPU usage to approximately 17 %. This indi-

cates that the server should withstand at least 32 concurrent folders, while still having a

50 % CPU consumption average on the current virtual machine. Taking in account that

the used virtual machine is the slowest standard typed virtual machine within the Google

Cloud Computing Platform, it is just a matter of upgrading to a faster virtual machine, in

case more processing power is required.

39

Figure 5. CPU consumption with 11 folders to monitor

By observing Figure 6, it is clear that even with 11 shared folders to monitor, network

and disk usage activity had almost zero impact to the server with less than 50 Kbps

network usage and 30 KBps disk usage on an average. Some traffic spikes were ob-

served, but even those had very minimal constraint to the server.

Figure 6. Network and disk usage consumption with 11 folders to monitor

The only significant increase of resource consumption was measured as the number of

API requests done to the Google Drive API, as can be observed in Figure 7. While the

first version of the software consumed an average of 2 requests per second for one

shared folder, the improved version with a change-based scan only consumed an aver-

age of 0.2 requests per second for one shared folder. The measurement of 11 shared

folders consumed an average of 7 requests per second, which increases that the aver-

age of one folder would be 0.64 requests per second. This sudden increase of requests

can be explained with the fact that most of the latest customers had just migrated to

Google Drive, thus adding new files on a daily basis. Once the new customers have

40

finished their migration, the average number of requests should be considerably lower.

When considering that the maximum number of daily API requests is one billion (1 000

000 000), there is still capacity for 1000 shared folders, even with the measured peak

value of over almost one million daily requests. The success rate of requests was meas-

ured as 100 %, which indicates in a flawless network connection and in the adequacy of

quota for API requests.

Figure 7. API Request measurements with 11 shared folders to monitor

As the requirements indicated that the software had to be easy to use, various tests were

performed by giving customers the task to deploy an instance and restore deleted items.

According to the tests, all 5 customer administrators were able to restore deleted files

successfully. The deployment phase was considered as more difficult to most customers,

due to the advanced setting changes within Google Apps Administrator Console. Only 2

users out of 5 users were able to deploy the software by themselves. Taking in consid-

eration that most of the customers were not technically experienced, this was still con-

sidered as a success in terms of deployment easiness. Once the software is deployed in

Google Apps Marketplace, the deployment will be considerably easier for users with a

less technical background.

41

While building the solution, many new aspects of Google Drive were learned, including

many which are not obvious to the regular user. Before the project was started, it was

quite unclear how Google Drive handles file deletions in shared folders. Even with the

knowledge of Google Drive’s file handling logic, it might still be challenging to explain the

operations logic to regular users in a clear way, due to its owner-based file system. In

the beginning of the project, Google Drive seemed like any other file system, where files

can be listed, copied and modified by simple commands. As the development advanced,

it was clear that the sophistication and design of Google Drive was done in a very differ-

ent way, since each operation to a file required multiple phases to accomplish the desired

outcome. Most of the functions were combined to PHP methods, which made the oper-

ations easier in the future, but the amount of work required to build these functions was

far greater than was anticipated while starting the project. One of the new discoveries

was the fact that a file which is not deleted, but inaccessible to a user is considered to

be deleted in the Google Drive’s point of view.

8.2 Outcomes

A software solution was designed and developed according to the initial requirements.

The software was named as HSWDrive and evaluated successfully with various pilot

customers. The software runs a full synchronization to all HSWDrive instances on a daily

basis and a delta synchronization every minute. File structure restorations were tested

and proven to work as designed.

Even though the software has been proven to work as expected with a set of customers,

further analysis and bug tracking is required before publishing it in Google Apps Market-

place for wide distribution. The software is already in active use by the case company

and many of its customers. Further development for new features, such as file revision

restoration and support for externally owned files is scheduled for the near future.

8.3 Summary

The aim of this project was to design and develop a software solution to allow easy

restoration of accidentally deleted files in a Google Drive shared folder. The software

42

was designed, finished, tested and deployed to various pilot customers within 9 months,

which was considered to be within an acceptable timeframe. The development would

have been faster with a PHP framework but on the other hand, it probably would have

had consumed more system resources. If time allows, the software will be re-written in

a PHP framework in the future.

The software was a success in terms of functionality and demand, as it was proven to

function fluently on various pilot companies. Ease of use was also measured to be sat-

isfactory, as all pilot users were able to restore files and 40 % were able to deploy the

software independently. Some technical issues were discovered during initial deploy-

ment, but once these were overcome, no significant deficiencies were observed. The

software is still in a testing phase, but after a more comprehensive and successful testing

period of at least 6 months, the software can be submitted to Google Apps Marketplace

for easier deployment and sales purposes.

A future release of the software will include the possibility to restore files not only to

earlier locations, but also earlier states. Due to Google Drive’s automatic revision history,

this can be achieved without having to store file data in the software’s own database.

Another functionality to be developed in the future is the possibility to restore files owned

by another organization. Currently this is not allowed, because HSWDrive only handles

files owned by the same organization and file ownerships cannot be transferred between

organizations due to Google Drive’s limitations. Even though it is not possible to take

ownership of such files, it is still possible to monitor and log the files in case of an acci-

dental deletion.

43

References

1. Google Ltd. Atmosphere Live: Keynote. 2014.

2. Google. Find an orphaned file - Google Apps Help. 2015; Available at:
https://support.google.com/a/answer/6008339?hl=en. Accessed March 14,
2015.

3. LeBlanc D. Linux for Dummies. 7th ed. Indianapolis, Indiana: Wiley Publishing,

Inc; 2006.

4. Google Ltd. Data Centers – Google. 2013; Available at:

http://www.google.com/about/datacenters/inside/data-security/, 2015.

5. Google Ltd. View and manage file versions - Drive Help. 2015; Available at:

https://support.google.com/drive/answer/2409045?hl=en, 2015.

6. Google Ltd. Recover a deleted file - Drive Help. 2015; Available at: https://sup-

port.google.com/drive/answer/2405957?hl=en, 2015.

7. Google. Google Drive REST API Overview - Drive REST API. 2015; Available at:

https://developers.google.com/drive/web/about-sdk. Accessed March 14, 2015.

8. Boyd R. Getting Started with OAuth 2.0. : O'Reilly Media; 2012.

9. Pocatilu P, Boja C, Ciurea C. Syncing Mobile Applications with Cloud Storage

Services. Informatica Economica 2013;17(2):96-108.

10. Google Ltd. Using OAuth 2.0 for Web Server Applications. 2015; Available at:

https://developers.google.com/identity/protocols/OAuth2WebServer, 2015.

11. Lerdorf, Rasmus. PHP on Hormones. 2007 April 26.

12. The PHP Group. PHP: Releases. 2015; Available at: http://php.net/releases/. Ac-

cessed March 13, 2015.

44

13. Oracle Corporation. MySQL | The Most Popular Open-Source Database | Oracle.

2015; Available at: http://www.oracle.com/us/products/mysql/overview/in-

dex.html, 2015.

14. Google. Publishing Your App | Apps Marketplace | Google Developers. 2015;

Available at: https://developers.google.com/apps-marketplace/listing, 2015.

Appendix 1

1 (1)

Initial Google Drive API measurements

Initial Google Drive API measurements of 1 shared folder to monitor for the last 4 days.
Measurements taken on March 15th, 2015 at 9:25 pm by Harry Sileoni.

Appendix 2

1 (1)

Google Drive API measurements after changes optimization

Google Drive API measurements for the last 7 days with 1 shared folder to monitor. The
scanning logic was changed on May 10th at 5:20pm. Measurements taken on May 12th,
2015 at 10:30 am by Harry Sileoni. A clear reduction in resource usage can be observed.

Appendix 3

1 (1)

HSWDrive logic table for file changes

Appendix 4

1 (2)

Quick guide for users (in Finnish)

Appendix 4

2 (2)

