

 T A M P E R E
 P O L Y T E C H N I C

P R O F E S S I O N A L M A S T E R T H E S I S

FINAL THESIS

EVALUATING AGILE METHODS
AND THEIR IMPLEMENTATIONS

Minna Väänänen

Information System Competence
May 2008

Supervisor: Paula Hietala

T A M P E R E 2 0 0 8

 T A M P E R E E N A M M A T T I K O R K E A K O U L U
 U APPLIED SCIENCES NIVERSITY OF

 P R O F E S S I O N A L M A S T E R ’ S D E G R E E

Author: Minna Väänänen

Degree Programme: Master Degree Programme in Information System Competence

Thesis title: Evaluating Agile methods and their implementations

Month and year: May 2008

Supervisor: Paula Hietala Pages: 81

ABSTRACT

All kind of Agile software development methods has been found favour with software
companies. Clear paradigm shift is happening at the moment in the software
development world. The old and proverbial waterfall method has been noticed to
contain big defects and that is why many new software development methods have
been developed to solve the known problems.

This thesis has been made to the software development team which is going to switch
from traditional method to an agile method. Earlier research made to the team
recommended that an agile method would solve best the difficulties of the current
software development process. The purpose of this thesis is to study which agile
method would suit best to the projects of the team and how this method could be
adopted.

In theory part of the thesis different agile methods are explained and methods are
compared with each other. In the second part five persons using agile has been
interviewed. The purpose of the interview part is to figure out what agile method has
been used and why, what has been achieved by using agile and how the method has
been adopted. In the third part of the thesis the best agile method for the team and the
projects is proposed. The agile best practices for future software development process
are suggested also. In addition the way how agile method should be taken in use has
been gone through and what is going to change for example in the testing of the
software.

The result of the thesis is concrete proposal for the suitable agile method for the team. It
contains proposal of different practices, an example how the agile method could be take
in to use by pilot project, and how the results and learning from the pilot project can be
exploit in the real agile projects.

Keywords: Agile Software development Program

 T A M P E R E E N
 AMMATTIKORKEAKOULU

 Y L E M P I A M K - T U T K I N T O

Tekijä: Minna Väänänen

Koulutusohjelma: Tietojärjestelmäosaaminen

Opinnäytetyön nimi: Ketterien menetelmien arviointi ja niiden käyttöönotto

Työn valmistumis-
kuukausi ja -vuosi:

Toukokuu 2008

Työn ohjaaja: Paula Hietala Sivumäärä: 81

TIIVISTELMÄ

Erilaiset ketterät ohjelmistokehitysmenetelmät ovat saavuttaneet viime vuosina suuren
suosion ohjelmistoyrityksissä. Selvä paradigman muutos on siis tapahtumassa
ohjelmistokehitysmaailmassa. Vanhassa ja yleisesti käytössä olevassa
vesiputousmallissa on todettu olevan suuria puutteita ja tämän vuoksi viime vuosina on
kehitetty lukuisia uusia menetelmiä ratkaisemaan vanhojen mallien ongelmat.

Tämä opinnäyteyö tehdään ohjelmistokehitystiimille, jonka tarkoituksena on siirtyä
ketterän menetelmän käyttöön lähitulevaisuudessa. Työn taustalla on tutkimus, jossa
todettiin ketterien menetelmien ratkaisevan parhaiten tällä hetkellä tiimin
ohjelmistokehityksessä olevat puutteet. Työn tarkoituksena on tutkia, mikä ketterä
menetelmä sopisi parhaiten tiimin ohjelmistoprojekteihin ja miten menetelmä saataisiin
parhaiten käyttöön.

Teoriaosuudessa tutustutaan erilaisiin ketteriin menetelmiin sekä verrataan niitä
toisiinsa. Haastatteluosuuden tarkoitus oli selvittää viideltä ketterää menetelmää
käyttävältä henkilöltä, mikä ketterä menetelmä oli valittu käyttöön ja miksi, mitä
ketterän menetelmän käytöllä on saavutettu ja miten se on otettu käyttöön.
Kolmannessa osuudessa ehdotetaan perusteluineen tiimille sopivin menetelmä sekä
mitä ketteriä käytäntöjä kannattaa ottaa mukaan tulevaan ohjelmistokehitysprosessiin.
Lisäksi käydään läpi tapa, jolla ketterä menetelmä kannattaisi ottaa käyttöön ja mitä sen
käyttöönotto tulee muuttamaan esimerkiksi testauksessa.

Työn tuloksena on konkreettinen ehdotus tiimille sopivasta ketterästä menetelmästä
erilaisine käytäntöineen sekä ehdotus siitä, kuinka ketterä menetelmä voidaan
pilotoimalla ottaa käyttöön ja kuinka pilotista saatuja tuloksia ja oppimisia voidaan
hyödyntää varsinaisissa ensimmäisissä ketterissä projekteissa.

Avainsanat ohjelmisto ohjelmistokehitys ketterät menetelmät

ABBREVIATIONS...6

1 INTRODUCTION ..9

2 CURRENT SITUATION..10

3 ITERATIVE SOFTWARE DEVELOPMENT ...12

4 AGILE...15

4.1 The Principles for Agile Software Development .. 16

4.2 Agile development .. 17

4.3 Agile methods ... 18
4.3.1 Scrum .. 18
4.3.2 Extreme Programming (XP)... 22
4.3.3 Crystal.. 26
4.3.4 Feature driven development (FDD) ... 28
4.3.5 Adaptive software development (ASD).. 30
4.3.6 Dynamic systems development method (DSDM) .. 33
4.3.7 The Rational Unified Process (RUP) ... 36

4.4 Comparison between different agile methods ... 38

5 USER EXPERIENCE..44

5.1 Background... 44

5.2 Introduction of the agile method ... 45

5.3 Choosing the agile method.. 46

5.4 Building the agile team... 46

5.5 Agile practices and daily work .. 47
5.5.1 Meetings and reviews .. 47
5.5.2 Iterations and requisited results... 48
5.5.3 Actions if schedule fails ... 49
5.5.4 Documentation... 49
5.5.5 Verification of the software .. 50
5.5.6 Continuous integration, daily builds and smoke tests.. 51
5.5.7 Quality of the software ... 51

5.6 Problems and achievements (lessons learned)... 52

6 AGILE METHOD RECOMMENDATION ..54

6.1 Combining Scrum and XP.. 56

6.2 Effects on the organization structure and way of work .. 57

6.3 Specified agile rules and practices ... 60
6.3.1 Continuous requirements’ changes ... 61
6.3.2 Short Iterations .. 61
6.3.3 Product backlog ... 62
6.3.4 Sprint backlog .. 63
6.3.5 Daily stand up meetings .. 63
6.3.6 Retrospective... 64
6.3.7 Pair-programming .. 64
6.3.8 Common code ownership .. 65
6.3.9 Continuous integration... 66
6.3.10 Daily builds and smoke tests ... 66
6.3.11 Agile Testing .. 67

7 TRANSITION TO AGILE..70

7.1 Adopting process ... 70
7.1.1 What must have been done... 70
7.1.2 What is good to be ready... 71

7.2 Pilot Project ... 72

8 CONCLUSIONS ...74

List of references
Appendix A: Questions of the interview

ABBREVIATIONS

Agile software development Framework for software developing. In

agile, software is developed through

the iterations.

ASD Adaptive Software development. Agile

method.

Crystal Family of agile methodologies.

Daily meeting Scrum meeting, daily stand-up meeting.

Project status meeting, which is

arranged every day.

DSDM Dynamic Systems Development Method.

Agile method.

FDD Feature Driven Development. Agile

Method.

IID Iterative and Increment Development

Iteration In agile, the software is developed in

small cycles (iterations).

Product backlog Prioritized list of all the requirements that

the system should include and address

(functionality, features and technology).

Product owner Product owner represents the voice of

the customer. Manages and owns the

project. Gathers up the requirements

(Product backlog) and establishes and

updates the schedule.

RUP Rational Unified Process. Agile method.

Scrum Agile method.

Scrum Master Helps the Product Owner and teams

to notice and remove the problems to

deliver the sprint goal.

Sprint One time boxed iteration in the Scrum

method.

Sprint backlog Detailed document about what and

how the team is going to do in the

upcoming sprint.

TDD Test-Drived Development.

XP Extreme Programming. Agile method.

1 INTRODUCTION

This thesis is executed to software research and development team,

which has developed a worldwide favour reached software.

Organization has been grown fast and heavily and the growth of the

software’s sale still continues. The biggest problems have been noticed

to be nowadays the lack of resources, processing of the change

requirements in the middle of the projects, controlling the quality (no

explicit indicators of quality in use), defective documentation and

orientation of the new employees.

The goal of this thesis is to study how agile software development can be

introduced and made to work in forthcoming further development

projects of the software. Agile software development method is rather

new way of developing software, emphasis of the agile development is

on doing workable software instead of documentation and on direct

communication and short iterations.

Along with the agile software development method for example nature of

the testing of the software will change totally. Nowadays there is a

massive system testing phase in the end of the project, but in agile

method, testing happens continuously in every iteration and there is only

a regression testing phase in the end of the project. Also the

collaboration with the customers is going to grow. One big change

concerns the composition of the groups inside the development team.

Roles of the employees are going to change dramatically. Many things

are going to change, so a careful plan how the introduction of the method

will be performed is needed.

In chapter two the team to whom the thesis is written is introduced. In

this chapter the current situation of the team is explained, what software

9

development method the team is using for the meantime and what are

the biggest problems of the current method.

Chapter three introduces the concept of the Iterative Software

development, what it is and what features it includes. The agile method

is based on the Iterative Software development and therefore it is

important to understand what it means to produce workable software

iteratively, by using continual small development cycles. Also the term

time box is introduced in this chapter, because it is an essential part of

the Iterative Software development.

Chapter four covers the main topics of the agile methodology. The main

values of the agile software development and the principles behind the

agile development concept are explained to get the general view of the

method. In this chapter all most famous agile methods are described with

their principles and practices and also those agile methods are

compared with each other.

The interview research is handled in the chapter five. Five persons were

interviewed to gain information on how the agile method works in the

practice and what it has brought along to the teams of the interviewees.

Intention of these interviews was together with the theory part to produce

the opinion about what agile method could be suitable for the team and

how the methods should be taken in use.

Agile method recommendation is given in the chapter six. This

recommendation is based on the agile method introductions in the

chapter three and the interview part in the chapter four. In this chapter

possible effects on the organization structure and working methods are

considered. Specified agile rules and practices which the team should

adopt are introduced.

9

The way to transit to the agile is handled in the chapter seven. In this

chapter the adopting process itself and things what must have been

done before the first agile project to get the best profit is considered. Also

those things which are good to be ready before the first project are

recommended. The pilot project is also introduced in this chapter. In this

thesis the pilot project is recommended to get training and experience in

agile method before the first actual agile project.

10

2 CURRENT SITUATION

At the moment, software development process of the team is based on

the corporate’s own Unified Process method. This UP method is an

incremental program development model, which is used in many

software development projects in the corporate.

Recently the own UP method has been modified so, that after one

component is ready for the testing, the component verification phase

takes place. The component verification is done separately for every

component. Finally when all the components included into the release

are tested, it is time for the release verification. In that phase all the

components are merged and the verification covers a regression round

for the entire software to ensure that all the new and the changed

functionalities, and the whole system after the merge, work fine. After the

release verification phase and a minor regression round, software is

ready for the customer deliveries or the pilots.

According to the research (Improving the Software Development Process

of a Research and Development Team) made inside the team, this

software development model does not work anymore. Because of the

growth of the software development team (nowadays teams in Finland

and in Bangalore, India) and amount of program’s features, the

development model is out of date and ineffective. There are needs for

better control of the development work and improvement of the quality.

Most of the quality problems of the software development projects have

been noticed at the end of the project in the system testing phase.

Despite of these problems in the phase of development, the team has

been able to deliver the product with reasonable quality to the customers

and the future of the software is promising. The quality of the

development process has to be improved before it starts to influence to

11

the quality of the published program. Until now the problems have been

coped with by lengthening the schedule.

Agile software development method (for example Scrum) was

recommended in the research. With agile method team can respond

quickly to the changing requirements. Method also helps team to develop

software more effective way than nowadays. Goal of this thesis is to

study what agile method would be suitable for the team and how the

method can be introduced.

12

3 ITERATIVE SOFTWARE DEVELOPMENT

The concept of growing the system via iterations is called iterative and

incremental development (IID), but usually it is called simply ‘iterative

development’. All agile methods, including most common methods

Scrum and Extreme Programming (XP) are based on IID. (Larman 2004:

10-11). Different agile methods are explained later on in this thesis.

In traditional waterfall method the software is developed in several

phases, which each follows each other, without opportunity to go back to

the previous phases. The planning phase is always in the beginning of

the project, all plannings and designs are made before the

implementation itself can be started. Testing phase takes place when

implementation work is totally finished. That is the reason why errors are

found late in the project and the schedule of the project might stretch

because of the correction time of the bugs. Also it is hard to accept

change requirements, because all plannings are already made in very

early phase of the project.

Iterative software development (see figure 1) means that software is

build in several iterations in sequence. Each iteration is so called mini-

project, which every one is composed of different activities such as

requirement analysis, design, programming and testing. (Larman 2004:

10.)

13

Figure 1: Iterative Methodology (Schwaber: 7)

Every iteration round generates an iteration release, a stable, integrated,

and tested, partially complete system. Iteration release is not usually

released externally, only the final iteration release, the complete product,

is released to the market or the clients. The outcome from the iteration is

not a prototype or proof of concept, but a subset of the final system.

(Larman 2004: 10-11.)

In principle the output of the every iteration is independent, workable

product, which can be delivered to the customer. But in practice, the

output of the iteration is so called demo, workable product, which is

demonstrated to the customer. That way the customer can see what has

been done in the previous iteration and what kind of product he is going

to get in the future. Also customer can examine that the product is

accordant with customer’s needs and he also might want some changes

which can be taken into account in the next iteration.

Schedule must be planned carefully in every iteration. Iteration time

boxing is the practice of fixing the iteration end date. It is not allowed to

change this end date. If it appears that the iteration is behind the

14

schedule, resolution is reducing the scope (lower priority requests are

not carried out) instead of slipping the iteration end date. Time box of

iterations do not need to be equal in length. The first iteration can be four

weeks, the second three weeks and so on. (Larman 2004: 13.)

Almost every agile method recommends the length of the iteration time

boxes. For example the Scrum method recommends that iteration time

box is one to six weeks, usually always 30 days. The most important

thing is not to follow faithfully different methods’ recommendations but

clarify what is the most suitable iteration length for the own project and

schedule the timetable of the project accordingly. And keep that time.

15

4 AGILE

The Manifesto of Agile Software Development established four core

values (Manifesto for… 2001):

We are uncovering better ways of developing [products] by

doing it and helping others do it. Through this work we have

come to value:

Individuals and interactions over processes and tools

Working [products] over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan.

‘Individuals and interactions over processes and tools’ means that

processes provide guidance and support and tools make effectiveness

better. However all the processes and tools are worthless and won’t

produce results without people having suitable technical and behavioral

skills. (Highsmith 2004: 13.)

‘Working software over comprehensive documentation’ means that

primary goal of the software development is to create software instead of

the document. Documentation however has its place; it is a valuable

guide for customer to understand how and why a system is build and

how to work with the system. (Ambler 2002: 7.)

‘Customer collaboration over contract negotiation’ means that successful

developers work closely with their customer, because only customers

can tell to developers what they want. (Ambler 2002: 7.)

‘Responding to change over following a plan’ means that developer’s

software process must reflect to changes. Every project has to balance

planning and changing. There must be possibility to edit project plan

16

when situation changes, otherwise project plan becomes irrelevant.

(Ambler 2002: 7.)

4.1 The Principles for Agile Software Development

The members of Agile Alliance defined their manifesto into a collection of

twelve principles that agile software development methodologies should

follow to. These principles which can be found from Agile manifesto

pages are as follows (Principles behind… 2001):

1. Our highest priority is to satisfy the customer through early

and continuous delivery of valuable software.

2. Welcome changing requirements, even late in

development. Agile processes harness change for the

customer's competitive advantage.

3. Deliver working software frequently, from a couple of

weeks to a couple of months, with a preference to the

shorter timescale.

4. Business people and developers must work together daily

throughout the project.

5. Build projects around motivated individuals. Give them the

environment and support they need, and trust them to get

the job done.

6. The most efficient and effective method of conveying

information to and within a development team is face-to-face

conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The

sponsors, developers, and users should be able to maintain

a constant pace indefinitely.

17

9. Continuous attention to technical excellence and good

design enhances agility.

10. Simplicity - the art of maximizing the amount of work not

done -is essential.

11. The best architectures, requirements, and designs

emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become

more effective, then tunes and adjusts its behavior

accordingly.

4.2 Agile development

Agile development varies a lot compared with old waterfall method. Agile

software development stands for time boxed iterative and evolutionary

software development and it includes planning with continuous changing.

Agile development uses evolutionary delivery, which means that the

product is develop gradually, with small pieces at the time. Flexible

attitude towards changes is essential part of the agile software

development.

Agile methods cannot be exactly defined, only the foundation of the

methods is the same. Specific practices vary in every agile method.

Every method however shares few same basic practices; short time

boxed iterations are used in every method. Also adaptive, evolutionary

development of the plans and goals are common to all methods. In

addition following same agile principles and practices are emphasized in

every agile method: simplicity of the code, lightness of the processes,

face to face communication, self-directed teams, programming and

workable product over the documentation etc. (Larman 2004: 25-26.)

Agile methods have many common themes. Documentation is subsidiary

in comparison with working functionality (Schuh 2005: 18). The customer

18

appreciates more workable product than comprehensive documentation,

if the product is incomplete because of using time for writing the

documentation. Of course the documentation is a required part of the

product but instead of investing time in writing documents which are not

necessary, agile accentuates the working product.

Time boxing is used to ensure that tough decisions are not delayed, and

that the most important tasks are prioritized. Time boxing also makes

possibility to adopt changes in the middle of the project.

The whole agile team participates in planning and estimating together

with the project manager (Schuh 2005: 18). Teams are self-organized,

what means that team organizes itself, team members decide how much

work they can perform within the iteration, and they decide how they

carry out the workload.

Feedback should be aggregated regularly so that team can make

adjustments during the project (Schuh 2005: 18). Naturally, the feedback

loop is born when after every iteration so called debriefing is held among

the teams and team members to get information on how the iteration

succeeded.

Projects also must be able to adjust their direction as the result of the

internal feedback and the external events (Schuh 2005: 18.)

4.3 Agile methods

Characteristic of most common agile methods are explained in the

following chapters.

4.3.1 Scrum

Scrum is the most common and used agile method in the word. It has

been created by Jeff Sutherland already in the beginning of the 90’s.

Scrum has been used widely and successfully in different kind of projects

19

and several educational material and researches of the Scrum can be

found.

Scrum’s differs from the other agile methods, that it emphasizes self-

directed cross-functional teams, which gather every day to the stand up

meetings. Also strict prescriptive processes are missing. (Larman 2004:

109.)

Scrum’s key practices are (Larman 2004: 109):

• Self-directed and self-organizing team. Teams are responsible for

delivery of successful outcome at each iteration (sprint). Teams

are amongst themselves decided which features can be produce

in this iteration. Also the combination of the roles inside the team

can be decided the team itself.

• No external addition of work to iteration. In other words work

within a sprint is fixed. In next iteration, new requirements and

changes can be taken into account, but in current iteration, no

changes are allowed.

• Daily stand-up meeting with specified questions. Every team

member participates every day in meetings, which take only about

15 minutes.

• 30 days iterations (sprints). Length of the iterations might also

vary, but the recommendation is that the spring is always 30 days

length.

• Approximately three 30 days sprints per release. This also may

change, depending on the size of the product and the project.

• Demo to external stakeholders at the end of the iteration. The

product must be workable; otherwise the demo cannot be shown.

• Client-driven adaptive planning in each iteration.

20

Figure 2 illustrates the Scrum process and the most important practices

of the method.

Figure 2: Scrum process (What is Scrum?... 2008)

Scrum is light framework for dynamic, continuous changing environment.

Several variables are taken into account in Scrum when developing

software and planning the releases. Customer requirements change

continuously and new requirements must be taken into consideration

when planning iterations, time frame must be thought out carefully in the

beginning of the project, resources and backup must be considered etc.

(Schwaber n.d.: 3).

There should be less than eight members in Scrum team but multiple

teams may form a project and build the increment. Scrum has been used

on both, small projects and big ones with hundreds of developers. Scrum

practices include working in a common project room, where small teams

work together and hold daily stand-up meetings, and representatives

from each team meet also daily. (Larman 2004: 111.)

21

It is however possible to work in separate rooms, but according to the

agile main principles, free communication is essential part of the agile

method. Thus the open-plan office is the optimal choice for working

space. Daily stand-up meetings can be held in corridor, if other common

room is not available

The Scrum lifecycle is made up of three main phases: pre-game

(includes two sub-phases: planning and architecture), development and

post-game/release).

Purpose of the planning phase is to establish the vision. Also

expectations are set. In planning phase vision is written, budget and

initial product backlog (contains all prioritized requirements that are

currently known) are made and items are estimated. Also exploratory

and prototypes are made. (Larman 2004: 113.)

In the architecture phase the high level design of the system is planned

according to the items in the product backlog list. Preliminary plans for

the content of the releases are made also. (Coram and Bohner 2005.)

In Development phase (also called the game phase) implementation of

the system is ready for release in a series of 30 day iterations (Sprints).

There might be for example three to eight Sprints in one process before

the system is ready for distribution. Sprint planning meeting are held in

every iteration and also daily Scrum meetings take place. (Larman 2004:

113.)

Each sprint includes following normal software development phases:

requirements, analysis, design, evolution and delivery.

Purpose of the post-game phase (release phase) is the closure of the

release. No requirements are in the backlog list anymore and the system

is ready for the release. (Coram and Bohner 2005.) Training and

marketing & sales belong to the release phase also (Larman 2004: 113).

22

Stakeholders, business users and upper management select the

system’s features and get a regular view into the activities of the team;

the programmers perform the day-to-day management needed to build

the system. (Schuh 2005: 23.)

4.3.2 Extreme Programming (XP)

Extreme Programming is well-known agile method. It is widely in use just

like the Scrum, but contrary to the Scrum’s framework for project

management, XP offers practices for the development work.

XP is founded on four values: communication, simplicity, feedback, and

courage. Its focuses are on collaboration, quick and early software

creation and skillful development practices. (Larman 2004:137.)

XP has twelve core practices are follows (Jeffries 2001):

o Whole team: All the members of one team sit together. Team

must include also a customer, who provides the requirements,

sets the priorities and steers the project. Other possible team

members are programmers and testers. Analysts may help

customer to define the requirements. Also there might be a coach,

who helps the team keep on track and facilitates the process, and

the manager, who provides resources, handles external

communication and coordinates activities. The best teams have

no specialists, only general contributors with special skills.

o Planning game: XP planning addresses two key questions in

software development: foretelling what will be performed by the

due date, and determining what to do next. Planning games

means a set of rules and moves that may be used to simplify the

release planning process.

o Customer Tests: Customer defines one or more automated

acceptance test to show that the feature is working. The team

23

builds the tests and uses them to prove to themselves and to the

customers, that the feature is implemented correctly.

o Small Releases: Team releases running and tested software on

every iteration. Software is visible, and given to the customer, at

the end of every iteration. Everything is open and concrete.

o Simple Design: Teams build software based on a simple design.

Programmers design and code a system that works here and

now, not something, that may be needed in the future.

o Pair Programming: Two programmers are sitting side by side at

the same machine and build together software. This way all code

is reviewed beforehand and quality of the design, testing and code

is better.

o Test-Driven Development: Every time any programmer releases

any code to the repository (twice a day or more) every

programmer tests are run correctly. This way programmer gets

immediate feedback.

o Design Improvement: XP uses a process of continuous design

improvement called ‘Refactoring’. In refactoring process, all the

duplications in the code are removed and ‘cohesion’ of the code is

increased. Refactoring is supported by comprehensive testing to

be sure that nothing is broken.

o Continuous Integration: In XP, teams keep the system fully

integrated throughout the development. This way the system is

never far from a production state.

o Collective Code Ownership: On a XP project, any programmer

pair can improve any code at any time. It increases quality of the

code and reduces faults.

24

o Coding Standard: Teams follow a common coding standard. All

the code in the system looks coherent and harmonious.

o Metaphor: ‘Metaphor’ is teams’ developed common vision (simple

description) of how the program works.

o Sustainable Pace: Sustainable pace means that the team

members work hard at a pace that they can go along with for the

time being.

One essential idea of the XP is that different practices should be tailored

to suit the needs of individual projects. Project does not need to adopt all

XP practices but select suitable and needed practices.

An XP project is run in one- to four –week iterations. XP is a very handy

tool for rapid prototyping and systems intended for rapidly changing

business environments. At the end of the each iteration, fully

programmed, tested and production worthy version of the system is

delivered. Usually a specific number of iterations are grouped into a

release and new software is delivered into production less frequently.

(Schuh 2005: 22.)

XP is suited for small and medium sized teams, only three to twenty

project members in the team. Also the physical distance between the

team members can not be big because the communication and

coordination between project members should be possible all the times.

Following five phases constitute the life cycle of XP (see figure 3):

Exploration, Planning, Iteration to Release, Productionizing,

Maintenance, and Death. (Larman 2004: 142.)

25

Figure 3: XP life cycle (Ambler 2007b)

Customer writes the story cards (features) in the Exploration phase, in

which they specify what is wanted to be included in the first release. Also

in the Exploration phase, project team familiarize themselves for

example with the technology and the practices they will use in the

project. Also the prototype of the system can be built. (Larman 2004:

142.)

In the Planning phase the stories are set to the priority order. Also an

agreement of the content and the schedule of the first release are made.

(Larman 2004: 142.)

The Iterations to release phase includes several iteration before the first

release. Each iteration takes one to four weeks to implement. In the first

iteration a system with the architecture of the whole system is created.

Customer’s created functional tests are run at the end of the every

iteration. After the last iteration the system is ready for the production.

(Coram and Bohner 2005.)

In the Productionizing phase more tests and performance checks are

made before the system can be released. New changes may be found

and they might still be included in the current release. The postponed

26

ideas and suggestions are documented for the later implementation.

(Coram and Bohner 2005.)

The XP project must keep the system in the production while also

producing new iterations. In the Maintenance phase support for

customers is given. (Coram and Bohner 2005.)

The Death phase takes place when the customer does not have any

more stories to be implemented. The necessary documentation of the

system is written and no more changes to the architecture, design or

code are made. The death phase can be executed also if the system is

not delivering the demanded outcomes, or if it becomes too expensive to

develop anymore. (Coram and Bohner 2005.)

4.3.3 Crystal

Alistair Cockburn developed Crystal methods. In Crystal method

‘peopleware’ issues (such as communication and education) are

prioritized over process.

Crystal is a collect of software development methodologies, which are

people focused, communication-centric, ultra light and highly tolerant.

Following three properties are central to every Crystal methodology:

frequent delivery, close communication and reflective improvement.

(Schuh 2005: 30.)

Crystal methodologies are cataloged by project size and criticality.

Project size (people on the team) is marked by color (the darker the color

the heavier the methodology) and criticality (measures the severity of

damages) by letter (C: Comfort, D: Discretionary money, E: Essential

money and L: Life). According to the Crystal, as the team gets larger, a

heavier methodology is required. (Schuh 2005: 31.)

Projects use incremental development cycles, which lengths are not

more than four months, recommendation is between one and three

months. Crystal methodologies do not define which development

27

practices, tools or work products have to be used. For example practices

of XP or Scrum can be adopted. (Schuh 2005:33.)

Following three main Crystal methodologies have been constructed:

Crystal Clear, Crystal Orange and Crystal Orange Web. Only Crystal

Clear and Crystal Orange have been constructed and used in practice.

(Schuh 2005: 32.)

Crystal Clear is meant for very small project up to eight people working

on one team and same area. Crystal Orange is designed for medium

sized projects, with 10 to 40 members in the project. Duration of the

project is max two years. (Schuh 2005: 32-33.)

Both Crystal Clear and Crystal Orange use following policy standards

(Abrahamsson, Salo, Ronkainen, Warsta 2002: 391):

o Incremental delivery on a regular basis

o Progress tracking by milestones based on software deliveries and

important decisions rather than written documents

o Direct user involvement

o Automated regression testing of functionality

o Two user viewing per release

o Workshops for product- and methodology-tuning at the beginning

and in the middle of each increment.

According to the Crystal Clear, incremental delivery happens within a two

to three month time frames. In Crystal Orange, the duration of the

increments can be max four months. (Schuh 2005: 32-34.)

1 Original source of information: Cockburn, Alistair 2002. Agile Software Development. Boston:
Addison-Wesley.

28

4.3.4 Feature driven development (FDD)

Feature Driven Development (FDD) is an agile and adaptive approach

for developing systems. FDD focus is on the design and building phases,

not to the entire software development process. It does not require any

specific process model to be used and it has been designed to work with

the other activities of a software development project. (Abrahamsson,

Salo, Ronkainen, Warsta 2002: 47.2)

FDD is based on eight main practices, from which the agile team can

adopt one or more. However the best profit can be obtained only when

all eight practices are taken in use. Those practices are (Schuh

2005:26):

o Domain object modeling: overall roadmap of the system to be

built. It is composed of high-level diagrams that describe the

relationships between classes and sequence diagrams that

demonstrate behavior.

o Develop by feature: Common foundation to all agile

methodologies.

o Class ownership: Each class within a system is assigned to a

specific programmer. Opposite of XP’s collective ownership.

o Feature teams: Since features usually involve more than one

class, feature teams are the common approach to design and

development in FDD.

o Inspections: Focus on the identification of defects. Improve the

transfer of the knowledge and conformity of coding and design

standards.

2 Original source of information: Palmer, S.R. and Felsing, J.M 2002. A Practical Guide to Feature-
Driven Development. Upper Saddle River, NJ, Prentice-Hall.

29

o Regular build schedule: Complete system is built at regular

intervals.

o Configuration management: The code, analysis, design and

testing artifacts need to be stored and versioned throughout the

lifetime of the project.

o Reporting/visibility of results: Regular and easy-to-understand

updates of status.

FDD consists of five sequential processes (see figure 4). During these

processes the system is designed and built completely. Typically an

iteration (that includes both designing and building) of a feature takes

one to three week period of work for the team.

Figure 4: FDD Workflow (Nelson n.d.(b))

Five processes of the FDD method are Develop an Overall Model, Build

a Features List, Plan by Feature, Design by Feature and Build by

Feature (Nelson n.d.(b)).

o Develop an Overall Model: The project beginnings with a so called

high level walkthrough, where the chief architect and team

members are informed of the high level description of the system.

The overall domain is then divided into different domain areas and

more detailed walkthrough is held for each of them with the

30

domain members. After that a development team works in small

groups and produces object models for the specific domain area.

Then development team decides the suitable object models for

each of the domain areas. Finally domain area models are

merged into an overall model.

o Build a Features List: In the Feature list, the development team

states each oh the client valued functions included in the system.

Features should no take more than two weeks to complete,

otherwise they should be divided into smaller pieces. Users and

sponsors of the system review the feature list for insuring the

validity and the completeness.

o Plan by Feature: Subsequently it is time to produce the

development plan. High level plan is created, in which the feature

sets are ordered according to the priority and dependencies and

also assigned to Chief Programmers.

o Design by Feature and Build by Feature: A group of features is

selected from the feature sets and feature teams needed for

developing the selected features are formed. Selected features

are produced by iterations; one iteration should take two weeks in

maximum. Iterative process includes following tasks: design

inspection, coding, unit testing, integration, and code inspection.

After that the completed feature is promoted to the main build.

4.3.5 Adaptive software development (ASD)

Adaptive Software Development (ADS) emphasis is on the problems in

developing complex, large systems. In ADS, the static Plan-Design-Build

lifecycle is replaced with a dynamic Speculate-Collaborate-Learn

lifecycle. In other words ADS project is carried out in cycles; every cycle

consists of three phases as shown in figure 5: speculate, collaborate and

learn. (Schuh 2005: 36.)

31

Figure 5: The ASD lifecycle phases (Highsmith 2000: 26)

Speculate phase includes two phases (Project initiation and Adaptive

cycle planning) and seven different steps Highsmith 2000: 26):

o Conduct the project initiation phase: setting the mission and

objectives of the project, understanding and documenting

constraints, establishing and outlining requirements, making initial

size and scope estimates, and identifying key project risks.

o Determine the project time box: setting the time box for entire

project.

o Determine the optimal number of cycles and the time box for

each: for a small or medium sized application, cycles usually

takes from four to eight weeks.

o Write and objective statement for each cycle: developing a theme

or objective for each of the cycles.

o Assign the primary components to the cycles: see next step.

o Assign the technology and the support components to cycles:

Every cycle must deliver a visible, tangible result to an end user.

o Develop a project task list: Each component can be a target of a

task. Also additional tasks, which are not directly component

32

related but necessary for project complication, can be added to

the task list.

Purpose of the Collaborate phase is to deliver working components.

Several components may be under coincident development. Actual

programming activity occurs in Collaborate phase. Contrary to the

Scrum, ADS does not define how the programming should be done or

how programmers should go about performing technical activities.

(Schuh 2005:36.)

In ADS, focus is on collaboration across the project team instead of

focusing on design, build and testing. ADS does not recommend any

specific procedure for fostering collaboration within a project. Collaborate

practices can be adopted for example from Extreme Programming (XP).

For example pair programming and collective code ownership are

suitable practices for small closely-spaced teams. (Highsmith 2000:27.)

Giving feedback is the main purpose of the phase Learn. Each iteration

ends with a quality review. In review, following issues are gone through:

result quality from the customers’ and technical point of view, the

functioning of the delivery team and the practices they are utilizing, and

the status of the project. (Highsmit 2000:27.)

Focus of the ADS is on the results and the quality of the results instead

of tasks or the process used for producing the result. Characteristics of

the adaptive development cycles are as follows (Abrahamsson, Salo,

Ronkainen, Warsta 2002: 713):

o Mission-Driven: All activities in each development cycle must be in

accordance with the overall project mission. The mission must be

checked, as the development proceeds.

3 Original source of information: Highsmith, Jim 2002. Agile software development ecosystems.
Boston: MA., Pearson Education.

33

o Component-Based: Development activities are not task-oriented.

Focus is on developing working software by building the system a

small piece at a time.

o Iterative: Focus of the development is on redoing. Components

develop over several iterative cycles according as customers’

feedback.

o Time-Boxed: Regular deadlines forces a project team

continuously re-evaluate the validity of the mission and make hard

trade-offs early in the project.

o Change-Tolerant: Developers must constantly evaluate whether

the components they are developed are probably to change.

o Risk-Driven: The development of the high-risk items should be

begun as early as possible.

ADS has only few practices to daily development work: iterative

development, feature-based (component-based) planning and customer

focus group reviews.

4.3.6 Dynamic systems development method (DSDM)

Dynamic Systems Development Method is most famous framework for

rapid application development (RAD) in the UK. The basic idea of the

DSDM is to fix time and resources, and then adjust the amount of

functionality accordingly. (Nelson n.d.(a).)

Focus of the DSDM is on building systems in quick and small

increments. Compromises between more valuable and less valuable

features are needed to be made. DSDN has nine main principles (Schuh

2005: 38):

o Necessary active user involvement.

o Authority for the team to make decisions.

34

o Frequent delivery of products.

o Propriety for business purpose is criterion for acceptance of

deliverables.

o Iterative and incremental development.

o Changes during development are reversible.

o Requirements are baseline at a high level.

o Continuous testing integration.

o Collaboration and cooperation between stakeholders.

Size of the development team should be composed of two to six

members. Several teams can work together within one project.

DSDM is composed of five phases (see figure 6): feasibility study,

business study, functional model iterations, design and build iteration,

and implementation. Feasibility and business studies are done only once

one after the other. Three last phases, according to the agile principles,

are iterative and incremental. Time boxes of the DSDM takes form two to

six weeks. Each of these time boxes can contain multiple cycles of each

of the iteration phases. (Nelson n.d.(a).)

35

Functional Model
Iteration

Design & Build
Iteration

Implementation

Feasibility and
Business Study

Figure 6: DSDM project flow (Nelson n.d.(a))

In Feasibility Study phase, it is decided if DSDM is suitable method for

the project by answering given questions provided by the DSDM

consortium. Also the technical feasibility of the project is assessed.

Feasibility report and an outline plan for the development are results of

this phase. Basic process flows of the business are analyzed in Business

Study phase. (Nelson n.d.(a).)

In Functional Model Iteration phase functional models of the components

are produced. New prototypes of the models are produced iteratively

until quality of the product is acceptable and it can be implemented.

In the next phase, Design and Build iteration, the prototypes are fleshed

out and tested. Users review the prototypes and give the feedback.

(Nelson n.d.(a).)

In Implementation phase, the prototypes are transferred into production.

New features are incorporated into the work environment.

36

4.3.7 The Rational Unified Process (RUP)

RUP is a special model of the more generic Unified Process. RUP is not

actually one of the pure agile methods, but because RUP is based on an

iterative and incremental foundation that is common to agile, it can be

counted on to the agile methods.

RUP is system development process, but in addition, it is a system

development process framework. It means that RUP is a structure, from

which a process can be created. An organization does not need to adopt

the whole RUP process, but the process can be tailored to meet the

needs of the organization. The specifics of the process vary, but the

main concepts remain the same (Ambler 2005: 17.)

RUP has six main practices: developing software iteratively, managing

requirements, using component-based architectures, visualing model

software, verifying software quality, controlling changes to software.

(Abrahamsson, Salo, Ronkainen, Warsta 2002: 59.4)

o Develop software iteratively: Iterative development is the basic

practice of the RUP. Software is developed in small increments

and short iterations.

o Manage requirements: Identifying the requirements of the system

that possibly change over the time. Requirements are prioritized,

filtered and traced.

o Use component-based architectures: Those components which

are most likely to change can be isolated and to be more easily

managed. The components can be also re-used.

4 Original source of the information: Kruchte, P 2000: The Rational Unified Process: an Introduction.
Addison-Wesley.

37

o Visually model software: By using a common visualization method

(for example Unified Modeling Language, UML), system

architecture and design can be demonstrated clearly to all parties.

o Verify software quality: Verification is done on every iteration and

thus faults and defects can be noticed earlier in the development

cycle.

o Control changes to software: Any changes to the requirements

must be managed, and the effects of the changes made to the

software must be traceable.

RUP is composed of four phases (see figure 7): Inspection, Elaboration,

Construction and Transition (Larman 2004: 180).

Figure 7: RUP lifecycle (Ambler 2007a)

Inspection phase is short-term, takes ideally only few days. Iterations are

not usually needed. In this phase, life-cycle objectives are stated, critical

use cases are identified, candidate system architectures are composed,

and the schedule and cost estimations are laid for the entire project. Also

38

estimations are made for the following elaboration phase. (Nelson

n.d.(c).)

In Elaboration phase, plans how the system should be built and how it

will work are defined. Detailed models and descriptions are made, such

as use case diagrams, use case descriptions, sequence diagrams and

class diagrams. Also working prototype can be made. (Nelson n.d.(c).)

The actual product is created and the code of the product is written in the

Construction phase. The product and the code is also tested. (Nelson

n.d.(c).)

In Transition phase, the ownership of the product is assigned to the

customer. Verification can be continued also in this phase, and training

of the product can be provided to the customer. (Nelson n.d.(c).)

4.4 Comparison between different agile methods

It is extremely important to choose correct, suitable agile method or a

combination of different agile methods for the team. Because all the agile

methods are not applicable to any type of a project, it is necessary to

carefully consider what agile method would fit to the project. Perhaps it

would be useful to combine different agile practices together from

different methods.

Projects have variation a lot for example in their length, complexity,

susceptibility to risk, recourses, resource competences, stability of the

requirements etc.

If all these details needed to be taken into account in the agile process, it

would lead to selecting and tailoring the agile method from the beginning

for each project over and over again. In practice that is not possible

neither advantageous, since taking new method into use will always

require some kind of start-up period. During the start-up phase there

39

usually is some resistance against new methodologies and the

motivation level of the team may suffer due to confusing atmosphere.

Once the method is selected the basic practices should be kept the

same and the process should be developed step by step without

disruptive changes between the projects.

The following sections introduce some most obvious advantages and

disadvantages found in different agile methods that should be taken into

account when selecting the method and practices for the team.

Advantages and disadvantages of Scrum

Scrum is light process framework that can be complemented with

practices and processes from other more detailed defined methods like

XP. Self organized teams are the core of the method and the team

should take much responsibility in achieving the targets. Scrum itself

does not define any programming practices for the implementation phase

but it defines what is expected from the team, and some basic practices

that the team should follow in order to achieve its goals (for example 15

minute daily meetings with accurately defined questions). This promoting

of the team work and self organization can be seen as major advantage

since it should raise the motivation level.

In Scrum any changes are denied after the sprint requirements have

been defined in the beginning of each sprint. For the team this is good

since it provides some peaceful time to perform all the tasks needed to

complete the sprint requirement list. On the other hand, for example

sprint of one month may cause unacceptable delay, if some major

customer is asking a quick solution for some small specific problem.

Actual worst case delay may be then nearly two months before the

solution is seen in release.

40

Scrum breaks the problem in hand to small parts that are manageable by

the team. The daily builds, constant integration, and testing will

guarantee that the bugs are found.

Advantages and disadvantages of XP

Major advantage of XP is that it is widely used and there exists lot of

different information sources. XP defines process with frequent builds

and iterations and goes into more details in actual management and

programming practices than Scrum. Disadvantages are that the method

is applicable for small teams (5-10 programmers only) and that the on-

site customer requirement cannot be fulfilled in our case. The

organization of the team has already spread over several locations and

therefore the one-site requirement presented in XP is not applicable

either.

XP is somewhat free-formed allowing the developers to address new

issues or requirements on the fly, which could be useful in some

situations requiring rapid reactions to customer needs. The amount of

formal meetings is minimized, the daily stand up meetings are seen as

effective way of sharing the information.

The code quality is under constant peer review because of the pair

programming. On the other hand some individuals may resist pair

programming at least during the start-up period.

XP enhances the production efficiency by reducing the amount of

documentation, which may be seen either good or bad thing. The

product may be ready sooner, but in worst case without updated

documentation to be provided for the customer.

XP has some useful practices which could be taken into use in parts of

the team but it does not provide a complete solution for our team.

41

Advantages and disadvantages of Crystal

Crystal defines different kind of processes for small and large projects so

it should provide suitable methodology. It does not define any strict tools

or practices and those could be taken from other methods. Crystal Clear

might be not applicable since it is defined for only six developers in

maximum and requires a shared office space. However, Crystal Orange

is targeted for medium-sized projects and could be more easily adjusted

for our purposes. It promotes for effective communication and that team

members should be located on one site, which is not applicable for us.

Testing is seen as integral part of the development and each smaller

team working in the project should have a test engineer.

One major disadvantage is that the method has not been used in our

company and hence there is no in-house experience in applying the

method in practice.

Advantages and disadvantages of FDD

FDD addresses model centric design which could have some impacts in

starting new, and especially continuing old projects with no existing

models.

The weakest practice of FDD is the individual code ownership that will

raise the risk level in schedule wise for example if some key specialist

gets sick in critical development phase. The information sharing is much

better for instance in XP, because due to the pair programming practice,

at least two people are sharing all the details on the part they are

working on. The iterations are not so tightly defined as in other agile

methods and in that sense the process definition would require some

more work to be done in start-up phase.

FDD defines practices also for big teams and how multiple teams work in

parallel so it is scalable for different kind of projects. However the

42

iteration content is not as well defined as in other agile methods. FDD

uses inspection to remove defects and improve the quality. Testing is

mandatory part of the process.

Advantages and disadvantages of ASD

In ASD collaboration, iterative development component by component

and customer feedback are addressed. ASD describes general

guidelines for development process but leaves very much to be planned

for everyday practices.

The advantage is that the practices could be tailored to fit for the team

requirements. On the other hand, disadvantage is that developing the

practices fitting in to the ASD process, perhaps requires more work and

time than the methods describing more strict practices.

Advantages and disadvantages of DSDM

DSDM is the most formal of all the agile methods and requires more

documentation as well. The process contains much architectural design

in the beginning of the projects. Testing is addressed heavily and each

project team is required to have at least one test engineer, which is

good.

Business value is expected to have highest priority and a specific

approach is presented to define how important a certain requirement is

for on-going iteration.

Major disadvantages are that the process seems to be very heavy and

that the access to material describing the practices in detail is charged

and controlled by Consortium.

43

Advantages and disadvantages of RUP

Common visual modeling method and documentation are addressed for

insuring effective communication. Testing and verification are considered

as integral part of iteration round which is excellent.

Commercial tools for RUP exist, which could speed up the start-up

phase but also would require extra investments.

RUP is again method that more describes and gives a framework for

developing and tailoring the process for the project team. Again this

might lead to a long start-up time in taking the methodology in to use.

44

5 USER EXPERIENCE

An interview study was made about the practice of using agile method in

a team. Five persons were interviewed and all of them work in the same

company but in different teams and with different products. They all also

represent different responsibilities (Verification engineer, System

architect, Quality manager, R&D Manager and Software design

engineer).

The purpose of the interviews was to find out what agile method is used

mostly and why and how it was introduced. I also wanted to know, which

were the most common problems and difficulties when agile method was

taken in use and the old method was superseded. Questions of the

interview can be found from appendix A.

Also the purpose of the interview was to clarify the common practices the

agile method brought along.

5.1 Background

Almost all interviewees have been using some agile method nearly two

years. Only one interviewee was now using some other method than

agile, but the rest was still using agile with their daily work.

Scrum in its pure or somehow moderated form was commonly in use. I

did not pick up any team/person who had used something else than

Scrum in our company. There are agile wiki pages in our intranet, and

also XP Programming, Crystal and other methods are mentioned there,

but in our circle of acquaintances Scrum was the most commonly in use.

The role of the interviewees in the agile teams varies much. One of them

is a software design engineer and a member of the agile team, one was

some time ago a verification engineer and a member of the agile team,

but worked occasionally also as a Scrum master. One worked first as a

Scrum master, but now she is a quality manager and acts as a

45

responsible manager of the agile process. One interviewee is team

leader but acts also as a Scrum master. One is the system architect and

customer trainer and act as a team member of the agile team.

5.2 Introduction of the agile method

Part of the teams, which members was interviewed, took agile in use

gradually. But rest of the teams adopted agile method at once, without

any pilot teams or pilot projects.

Interestingly it was no self-defeating to introduce agile method totally at

once. Before interviews, I thought that it can not ever success to change

one software development method to another at once, because it is

totally new way of work to the most of the people. And of course there is

always the natural resistance which delays the adoption of the new

method. During the interviews it came evident, that introducing a new

method can be made at once, but it takes a lot of work and hard

commitment to get a new agile method to work.

Maybe one reason that agile method can be taken in use at once is, that

the age structure in our company is quite homogeneous, the average

age of the employees is quite low and most of the employees has been

worked in the company relatively short time.

However it took quite long time to get used to the new method. Almost

everybody said that it took at least a year to achieve the most workable

way to utilize the agile method. Perhaps it would have been easier to

follow strictly some agile method instead of adopting few features from

one agile method and few from other.

The resistance of the change is maybe bigger when adopting the new

method is made at once. But that way the effect of the resistance stays

at the acceptable level because of its brevity.

46

It took only a few weeks to employees in agile teams to understand new

working practices. However one interviewee said that education should

have been planned more carefully than actually made. So, although it is

possible to introduce a new method at once, it is important to introduce

the new method somehow (for example teach the new method by way of

pilot project) and perhaps also arrange an actual training.

5.3 Choosing the agile method

All teams, which representatives were interviewed, concluded to choose

Scrum as their agile method.

One big reason for that decision was that it was possible to participate to

the lectures of Graig Larman, the expert of the Scrum method. As a

matter of fact, Larman recommended to one interviewee that they should

adopt the Scrum in its pure form. Larman also recommend that after the

team has familiarized itself with pure Scrum, they can tailor method to

format that fit for the team in question.

5.4 Building the agile team

All teams of the interviewees were consisted of five to ten employees.

According to the agile method, those teams were cross-functional, in

other words teams were composed of persons with different roles. For

example there were following roles represented in one interviewee’s

team: architect, several software developers and verification engineers,

usability expert, domain expert and of course the Scrum master.

All teams are responsible for one software function, the whole team

might be composed of even 70 persons, and team has been divided to

sub teams of ten persons or less. In one team, there was in one point 15

persons, but it was considered to be too big and hard to manage:

meetings were drawn out and because of the excessive workload;

performance of the scrum master’s own tasks out side of scrum work

became weaker.

47

5.5 Agile practices and daily work

Every team has their own way of use of agile practices. Although every

team used Scrum as their agile method, practices varied somehow.

However every teams’ working methods and –habits had same aspects

and elements, they were modified to be suitable to the team.

5.5.1 Meetings and reviews

Daily Scrum meetings are arranged, depending on the team, once a day

or few times a week. One team held meetings initially every day, but

after a while they noticed that best way to this team is to get together

only few times a week. Even though it is against the rules of the Scrum.

Scrum Master did not participate in all daily meetings, but teams

gathered without the master to go through all specified questions.

Daily meetings take usually about 15 minutes and every participant

answers to all three questions:

o What did you do since last Scrum

o What got in your way of doing work

o What will you do before the next Scrum

In addition to these questions one team had their own extra questions,

such as are there needs for help or peer review from other team

member, or needs for internal demos.

If some problems came up in the daily meetings, new meetings were

arranged for discuss about those problems. Only those workers, who are

related to particular problem or who can help to solve it, are invited to

that meeting. That way all the other can carry on their own tasks and

they do not have to use working time for nothing.

48

All interviewees had similar views on the length of the daily meetings; it is

important that daily meetings do not take too much time. Purpose of the

daily meetings is not to make specifications how things should work but

go through what has been done and what will be done.

In addition to daily meetings, all teams also arranged other agile

meetings. Usually every month two Sprint Plannings are arranged, where

the teams plan following iterations. Also Requirements workshops are

held, where features, workflow and other requirements are went through,

so that the whole team gets the common understanding for the goal.

Sprint review is held after every iteration. In review all the achievements

and workings are talked through. After the Sprint review, retrospective is

held for developing the Sprint process.

5.5.2 Iterations and requisited results

Usually iterations take one month, according to the recommendation of

the Scrum. One team arrived at a conclusion that normally iteration takes

four weeks, but in holiday period, because of the small number of the

employees, length of the sprint was extended to eight weeks.

In one team, project is carried on in two weeks iteration. Results have

been excellent and the team members are fond of that shorter cycle.

Required results of the iterations varied between the teams. Generally

speaking, workable demo was required outcome of the iteration. With

demo, team can show how product work and what has been done since

the last iteration.

In the demos, only workable functionality is shown. It is not permitted to

represent unfinished or unworkable functionality; the status of the

function must be ’Done’. Minimum requirements are that items, which

status is ‘Done’, are coded, unit tested, reviewed, integrated and more or

less functionally tested. One requirement for the status ‘Done’ is that

49

functionality of the product is also described shortly in the wiki-pages of

the team.

In other team, requirements of the results of one iteration are that the

specifications are done and published. Also demo is represented, which

covers one or several requirements. Testing team has run the test cases

and the customer documentation has been published, testing team does

not directly belong to the agile teams in that team, contrary to the agile

rules.

5.5.3 Actions if schedule fails

In all agile methods, schedules are kept, but content must be reduced if it

looks like that desired outcome cannot be attained within the planned

schedule. All teams also held to that rule. Schedules were kept strictly;

content of the backlog was changed when needed. But also the strict

rule was that unfinished product is not permission to demo. If product is

unfinished at the end of the sprint, this item is transferred to next or later

sprint.

It came to light, that when it is busy, overtime work is done because half-

done products cannot be shown in the demo meetings. And also in the

daily meetings some developers do not have temerity to confess that

there has not been any progress. In one team, overtime ban has been

set and content has been reduced, if schedules fail.

5.5.4 Documentation

Usually agile is considered as being a good excuse to fail the

documentation. This was not the case in the teams of the interviewees.

Any of the team documentation was not fallen off; in some team

documentation became even better in particular cases. In one team

documentation was quite poor before moving to the agile. And it still is,

after using agile few years. So agile it self does not make documentation

better, because emphasis of the work is on producing workable product

50

instead of using time for writing perhaps even useless documents. In one

team they dreamed that along with agile, specifications and other

documents would not have to be written anymore. This illusion was

noticed to be wrong in no time.

Overall documentation is always needed to some extent. For example in

Extreme Programming, pair programming ensures, that strict

documentation is not needed between developers because main

emphasis is on communicate via voice and working in tandem with a

colleague. But still other stakeholders need written information and

documentation is needed to write to them. Also testing documentation

(for example test cases) must be up to date, even if main stress is on

actual test work.

5.5.5 Verification of the software

Every interviewee impressed on, that the amount of the verification has

been grown substantially. Usually investment in verification

documentation is higher and along with the documentation, also testing it

self has got better.

Because agile teams are cross functional, also verification engineer

belongs to the team. That is considered to be a positive thing, because

that way a tester gets in on development from the start and the bulk of

the bugs can be found in the early stage of the software development.

Anyway in one team faults have been found unexpectedly late in the

project and that is why faults have been corrected right at the end of the

release. Herein I started to wonder if it is a real agile method in use in

this team. In agile this kind of situation can not happen because of the

continuous testing. If faults are found in very late in the project, the agile

method is not used correctly; some kind of minor waterfall cycles might

be in use. In that case the team should go through its development

method once again and think how to make it better.

51

5.5.6 Continuous integration, daily builds and smoke tests

According to the interviews, every team uses continuous integration. But

term ‘continuous integration’ was used against its right meaning.

Continuous integration does not mean that integration is done once a

day and a build every night. Continuous integration means non-stop

integration. When some changes are done to the code, automated

integration is done and unit test are run for ensuring workable product. If

building or unit tests fail, first thing is to fix those bugs. Further

development of the product takes place after fixing the faults. That way

continuous integration helps, that code is unbroken and valid all the time.

Also daily builds and smoke tests were used in the teams. Smoke tests

are run after every build; they inform that the build succeeded and

program is in publication condition.

5.5.7 Quality of the software

Quality of the software varied between the teams largely. In one team,

attention was paid to the verification in early stage of adopting the agile

method so much, that the product was very high class and well-designed

already in the first pre-pilot. But in the later project, testing was invested

less and it was directly seen in the quality of the product.

In other team quality of the product was not such as the customer

desired. The customer was not satisfied with the quality and the

customer did not always even know what kind of product they received.

This is maybe due to the lack of the customer participation to the

approval of the requirements, design and final out come. One agile rule

is that customer must take part in design and development work all the

time. Also too strict schedule was mentioned to be a one reason for a

bad quality. Accomplishment of the product has been quickened but at

the same time number of the faults has been increased and the quality

has been gone down.

52

5.6 Problems and achievements (lessons learned)

One big problem when transferring to the agile was developers’

resistance of the changes. Resistance existed no matter which way to

transfer to the agile; in one go or gradually with a few practice at the

time. Resistance of the changes fell naturally off in process of time when

new method was learned and when it was noticed, that there were also

good aspects.

Every interviewee found good aspects from agile, nobody thought, that it

is better to return back to the old way of work. Pair programming was

found to be a good practice, though it was not used officially in any of the

teams. Especially continuous code review of the pair programming felt as

a positive thing, which brings down the number of the faults. One team

used pair programming mostly when doing difficult tasks, for example

when developing new functionality to the product.

Also common code ownership was brought up as a thing which improves

the competence transfer to all team members. This assures that for

example in case of acute illness, developing of the program can

continue, because basically anyone can carry on the work of other team

member.

One positive thing what agile brought along was that every member of

the project knows in more detailed level what is the situation of the

developing process and project. Daily meetings versus normal weekly

meetings helps everybody to be more familiar with meaning of the own

work and with the general view of the project.

Agile project demands that a customer commits to participate to the

project for the whole project life cycle. Customer must be a one member

of the team. Otherwise it might happen, that program is developed

differently from the desires of the customer. Hence the kind of changes

are accepted to the program, which customer does not prioritize and

53

important features might be left off against customer’s will. It is important

that the customer get the product they need, and the customer should

also know what kind of product they are going to get.

54

6 AGILE METHOD RECOMMENDATION

Choosing the right agile method is not the most important thing when

moving to agile. Graig Larman said in his lecture (Tampere 28.2.2008),

that team does not DO agile, but BE agile. That means that agile is not

only following specific agile practices. Basic idea of the agile is that the

focus is on adopting changes, not on following the plans. Practices itself,

just as time boxed iterations and daily standups, comes along with

mobilization of the agile method. They are only superficial practices, they

are not agile itself and using those practices does not make team as an

agile team.

There is no one and only suitable agile method for the team. Any of the

agile methods is not ready for taking in use as such, but they must be

adjusted to the project and the surrounding environment. In circle of

acquaintances Scrum is in use with different modifications and features.

But interviews and literature brought up that Scrum does not alone solve

all problems team has at the moment: lack of quality, problems in change

management, delayed finding of faults etc. Scrum gives framework how

project management and teams work, but it does not define any engineer

practices.

Larman said in his lecture that Scrum cannot be customized, that Scrum

is needed to follow totally or it is not Scrum at all. However, it is said in

many other source of information (for example Shuch 2005:47) and also

interviewees said that agile methods can be and must be modified and

adopted in case of need.

One of the basic ideas of the XP is that it is not applicable, or it is not

even worthwhile, to adopt all XP practices for all the individual projects.

Instead of using all XP practices, they should be tailored to suit the

needs of the projects. In this study, I arrive at a conclusion that we can

take the best suitable XP practices in use in our team, but in addition,

also some other agile method practices can be adopted.

55

FDD and other less known methods could suit to the team if they are

modified and tailored to fit to the team. Problem is that there is no

experience and counseling available nearby. In addition there is no

literature easily available and even researches of method usage in the

real world are not necessarily made. Also educational material and

education can be hard to find. That is the reason why it is dubious and

risky to adopt that kind of method, from which is unknown how it fit to the

in practice.

From Scrum and XP there is arranged high class education, even in

Finland. Also inside of the company education is available for Scrum and

XP, literature is available, and the most important thing is that know-how

can be found from the company.

There is a strong possibility that when the team has familiarized itself

with agile and used it for some time, own practices and way of work are

changed in process of time. And perhaps it is found out later that some

other agile method would suit better for the team and development of the

product. A big problem is that there is no method for choosing the right

agile method. No perfect list or tool exists, which could help to choose

the right method and proper practices. Every company and team selects

itself its method and practices and then tailors them to meet the needs of

the team. Best way to start using agile method is just select the method

and start using it.

The project must be the reason to select a specific agile method.

Organization structure cannot be the main criterion; on the contrary

project size and complexity among other things should be deciding

factors when choosing which agile method is taken in use. Organization

is going to undergo in the end a big transformation due to agile.

Next the proposal for suitable agile method for the team is introduced.

The proposal is based on the theory in the beginning of this thesis and

the interviews.

56

6.1 Combining Scrum and XP

Scrum would be the most natural selection for an agile method to take

into use in our team, since some competence to take it into use already

exists in our team at the moment and it has been used in several other

teams in our company. We could find a “Scrum mentor” from our

company to guide our team into use of Scrum and give us help in

troubled situations. This sort of a person is needed in the first projects,

when the process is developed and tuned to meet our needs, and we do

not ourselves have the know how to do the analysis and tune the

process into the right direction. Mentor has to be someone outside of the

team to be able to give fair recommendations how the team practices

should be developed.

However Scrum is a framework for project management and it misses

detailed practices for everyday work. For instance XP could provide

some more detailed practices that could be useful and taken into use in

development of our product. It is possible to complete Scrum with XP

practices, and there exists several studies and user experience on the

subject, which support the opinion that this might be good solution for our

team also (Sliwa 2002). Testing and agile expert Elisabeth Hendrickson

gave a lecture on 20.6.2007 and recommended combination of Scrum

and XP for getting the best possible outcome from agile methods. For

example ADM (Advanced Development Methods Inc.), the enterprise

behind the Control Chaos web-pages, has developed XP@Scrum

method. Figure eight describes the way these two methods are unified

on XP@Scrum.

57

Figure 8: XP@Scrum (XP @ Scrum 2008)

In following chapters it is described what kind of effects taking Scrum

and XP into use has on organization to which this thesis has been written

and how the daily work of the team is going to change. In addition I have

listed and explained those agile practices, which are in my opinion the

most suitable to our team.

6.2 Effects on the organization structure and way of work

The largest change for our organization structure will be the cross-

functional teams. At the moment the Research and Development (R&D)

organization of our product has been divided into three different teams,

two development teams and one testing team. When the transfer to

Scrum is done the existing teams will be broken down to approximately

seven people cross-functional teams. Each of these new teams will

58

consist of expertise and competence in different areas, implementation,

documentation, testing, and architectural design. The challenge is that in

these cross-functional teams every member has to be a real expert ones

own field and also have some knowledge on the work of other team

members. According to Scrum principles there are no specific roles in

the teams. In my opinion this is not possible in practice, since in the

development of a complicated product like ours it is impossible for

everyone to be specialist on every area. In our team there are experts in

specific fields, and that kind of expertise does not develop quickly, on the

contrary it takes years to attain it. Also it is not possible that all scrum

teams include all kind of roles (technical writer, architect, developer,

tester etc.) because we do not have that kind of resources. So, specific

persons must partake to several scrum teams’ activities.

One big challenge is how to fit one specific team to the agile/scrum

model. This team is development team, but it does not write code, but

they produce so called configuration files to the product. Agile is meant

to the pure coding team and for example almost all XP practices are

suitable for the programmer (pair programming, continuous integration

and daily builds). So, it is important to consider carefully how this team

can act in the agile project.

Team members must be social and the atmosphere has to be good since

tasks are performed together in the same office space. Changing the

office environment to fit the agile requirements might be a quite big thing

in fact. Agile addresses on co-operation and sitting in one shared space.

Every team should work in one room and since the team size is quite

large this requires open-plan offices. Nowadays the teams are mostly

located in 2-3 person rooms and the resistance to move into open-plan

may be considerable since people usually feel that the level of privacy is

lower in open-plan offices.

At the moment one problem is the customer requirements handling.

Product is not always meeting the needs and requirements of the

59

customer. The whole focus of agile is that customer is constantly part of

the development process and should be even considered to be taken as

one team member. In our case the latter idea is not applicable. Greg

Larman suggested a solution to this problem in his lecture on 28.2.2008.

In Scrum the Product Owner can act as “in-house” customer since

product owner has all the information on customer needs and

requirements. Despite of these facts the product owner cannot be

constantly available for the R&D team to act for the customer. Therefore

so called Product Owner Proxy (PoD) will work between the R&D team

and the Product Owner. PoD works inside the R&D team and acts as

messenger between the Product Owner and the team. This gives the

teams a possibility to be constantly aware of the customer requirement

changes and re-plan and adjust the work accordingly.

However, use of PoD does not solve all the problems with requirements

handling. Product owner needs to be also aware of what has been done

to fulfill the requirements and what the actual results are. Therefore in

Scrum before every sprint, in Sprint planning meeting, the Product

Owner, Scrum Master, the Scrum team, and possibly the customer

representatives gather to decide the sprint targets. In this manner the

Product Owner has an active part in developing the product and can

affect on the level of customer satisfaction on the product.

After the sprint Product Owner holds so called retrospective together with

Scrum Master and team members. In retrospective, members review the

Sprint phases and evaluate the success and failures. When it comes to

the quality, the most important feature is the demo after the sprint where

the designer shows what has been done and how it works. Demo works

as a prototype product to show what has been done during the sprint and

to gain instant feedback from the customer if the designed feature fulfills

the needs. This requires active participation of Product Owner since

none of the designers is able to decide or to know about the real needs

60

of the customer. The product may work as planned and specified but if it

does not work as the customer wants it is failed one.

The testing and the role of the test engineers in the organization will

change a lot also. These changes are described in chapter 6.3.11

Testing.

Many of the practices in use nowadays will change when transferring to

use of agile methods. These changes are overviewed in the following

chapters.

6.3 Specified agile rules and practices

The principles of the Agile Manifesto are considered as compulsory

when using the agile method, otherwise the method cannot be

considered as one. However, as already seen from the variety of

different methods presented in chapter 4.3, the practices vary from

method to method.

Agile methods can be adopted in incremental manner, step by step.

Everything does not need to be changed overnight and it should not, it is

possible to define and take into use new practices when the needs are

identified and the organization is ready for it. If we decide to use Scrum,

complied with XP practices, the first step could be using the Scrum for

project management. Some of the XP practices that are seen the most

useful could be tried simultaneously.

Evidently it is also possible to do it the other way around, start with taking

the development level practices into use first and then build Scrum

management on top of that. The problem in this approach is that the

R&D team is not using any of agile method practices at the moment.

Also changing only some of the development level practices is not real

agile since the customer interface and customer related practices would

not change at all. It is better to start from the project management level

61

and in that way start to define the functionality of the whole organization

and the teams in agile manner.

It is extremely important to analyze and define what practices will bring

us the best result and not just to select the ones that feel the most

comfortable and easiest to start with.

6.3.1 Continuous requirements’ changes

Most important is the way how it is regarded to the changes. One main

point of the agile is to accept continuous, mandatory changes and try to

adopt them instead of trying to hold on to specification once planned.

Changes must be managed carefully, all the changes are not needed to

take into account and added to the product, but it is important to give

chance to the changes. That is the reason why iterations must be short

enough, so changes can be adopted at short notice.

Accepting the continuous changes might be one stumbling stone when

moving to the agile. At the moment planning of the product is done in the

beginning of the product. Of course changes are even now done quickly

without long warning times, but usually changes are considered to be

more or less negative things. That is why it requires big changes to the

scheme of things to approve the fact that it is not always possible to

know what will be done in the next sprint. Future cannot be predicted as

exactly as earlier.

6.3.2 Short Iterations

Important and of course mandatory practice is short iterations. One of

the main principles of the agile is that the product must be in delivery

condition in regular, short intervals, at intervals of few weeks or

maximum few months. In Scrum, iteration takes usually four weeks. After

that actual and workable functions should be shown.

62

At the moment the product is done in several, partly overlapping projects,

of which every one takes from few months to even one year. The demo

is not given in the middle of the development process, but almost the first

“public” demonstration is held when the testing phase begins. This

happens very late in the project.

Demonstrations might be hard thing to approve for the developers

because they have been used to that the product is not shown in public

before it is ready for testing. Short sprints and demos after the sprints

dragoon developers into showing the results of their work to the

audience, even if the product is not complete at all.

The shorter the iteration, the better is known what the situation of the

project is. The longer the iteration, the longer the correction takes if it is

realized that the product is not working as it should work. Also the

receiving the feedback quickly helps to reach the optimal results.

6.3.3 Product backlog

Product backlog is basically compulsory part of the product management

and planning. Without Product backlog it is not possible to know what to

do and planning the sprints and sprint backlogs cannot be done. So,

Product backlog must be available already in the first agile project, it

cannot be take in use sometime in the future.

Product owner owns the product backlog list and prioritize the items in

the list. Owner makes the list of features and functions, which are wanted

to include in the product. Product backlog is updated, modified and

added continuously. All undone requirements are found from backlog.

Items are removed from the list when they are added to the product. If

items are not ready (malfunction or unfinished item) after the sprint, they

will be returned back to the Product backlog list.

63

6.3.4 Sprint backlog

Sprint backlog is a list on items, which the team is going to carry out in

that sprint. One interviewee said, that kind of official sprint backlog

should have existed at the beginning of the agile usage, because it is the

only way to know exactly which tasks are going to be performed in that

sprint. Of course the list has existed earlier, but in black and white and

near to hand it serves the purpose best.

6.3.5 Daily stand up meetings

At the moment each independent development and testing teams holds

their own weekly line organization meetings, in which team members go

through all finished and future tasks and other happenings. These

meetings should be maintained (but shortened), because weekly

meetings are good way to talk through all line organization related things.

But in the future daily stand up meetings are arranged in addition to

weekly meetings.

Daily scrum (in other words daily stand up meetings) is held every day,

and it should take under half an hour. Every cross-functional team

member participates to the meeting together with the Scrum master.

Meetings are usually held in the same place and in the same time every

day, usually in the corridor or common work area if available. Every team

member is supposed to participate to the meeting every day.

Problems are not solved in the meeting, but extra meetings are arranged

for solving those problems. In daily meeting every participant (excluding

Scrum master) tells what he has done since the last meeting (held

preceding day), what he is going to do today and are the any obstacles

to doing those tasks.

But like one interviewee said, they found out that it was best for them to

reduce the amount of daily meetings. Now they hold meetings only three

64

times a week. However it might be good idea to stick to daily meetings,

because it offers good possibility to understand both own and other team

members’ work and what is still undone. Meetings do not take effective

working time a lot, because it takes usually only few minutes per day.

6.3.6 Retrospective

Making the best benefit out of the mistakes made is to learn from them.

One very useful feature of the agile is retrospectives. They improve the

quality of the product and way of work.

At the moment, at least the verification team is using some kind of

feedback giving. Team members send the list about experiences to the

team leader after the project. How well those listed things are taking into

account in the future projects is unknown.

In agile, retrospectives are more official meetings after the sprint, where

team goes through all feelings and facts about what went right and what

wrong. Teams are gathered together to some kind of workshop, where

they are considering these things.

Retrospectives are held in agile more often than for example in

traditional waterfall method; after every sprint. That way feedback is

received in very quick rate and agile process at least in theory develops

and gets better from sprint to sprint.

6.3.7 Pair-programming

Pair programming demands great changes in working methods for

team’s current members. Some of the developers have been developing

the product almost from the start and they have worked with same

component or sub area. Own strict area has been determined to every

developer. So, opposite might exist, because not all employees want to

work with somebody else.

65

One opportunity might be that every self-organized team could decide

itself, that do they want to use this practice. Even inside the team it could

be possible that part of the developers use pair programming. The others

can work alone.

Pair programming can be recommended, because the quality of the

program would certainly be improved and the amount of the faults would

become less, because one feature of the pair programming is on-line

and continuous code review. Other developer inspects while the other

one writes the actual code. Also decisions and doings are considered

together, alone might some details and point of views go over the board.

Pair programming demands constant presence, telecommuting does not

work. However it is agile’s one main principle that all operates nearby, by

choice in the same room. Also working time of both developers must be

alike; this might be a big problem in our team.

6.3.8 Common code ownership

Common code ownership might impress that chaos is guaranteed.

Everybody has access to every code and every one can made chances

when ever. Common code ownership has however so many good

aspects that it is worthwhile to consider adopting it.

At the moment every team member is liable for own code, nobody else

has access to the code. No one else can make corrections and changes

to it. If the developer is for some reason incapable for doing changes to

the code, work stands idle. Moving to the common code ownership helps

maintenance and distribution of the code.

Pair programming is partly common code ownership, but it can be

extended to cover also other team members. All team members are

liable for the code; if the bug is noticed, it will be fixed. No matter who

has written the code and the bug. But after every change, unit tests that

66

the developers have been written earlier must be run. That insures that

the changes made are correct and functional.

6.3.9 Continuous integration

Continuous integration requires a lot of work before it starts to produce

results properly, but it has so many advantages, for example better

quality, that taking it to use must be considered. The amount of extra

work should not be too much for the team, since the team will anyway do

automatic daily builds after transfer to agile.

Continuous integration will anyway require change in working habits,

since at the moment there exists no practices like constant integration

and automatic testing at all. Writing and developing the automatic testing

will increase the amount of work, especially in the beginning, but on the

other hand it should decrease the time needed for debugging and we

should be able to find the errors earlier than before.

6.3.10 Daily builds and smoke tests

The team has already started to plan how to perform automatic builds.

There is a plan to start the builds in near future. Nowadays the package

is mostly done in manual manner; one build may take even several hours

depending on the amount of changes. Packages are done approximately

once in a week. That is far too rare, what comes to finding errors and

keeping up the quality. If the product is built for example only once per

week and it happens to be broken, it might take several weeks before all

the faults are found and the product is fixed again.

So called smoke tests that are the part of the automatic builds and

confirm the functionality of the product are not in use at the moment

neither. Building those test sets will take some time but so does the

check of the build manually. When the automatic builds will start the

manual checks become impossible since the builds will happen daily not

weekly. There are no resources to do the job manually every day so the

67

automatic smoke test cases need to defined and test system for running

those cases has to be developed.

6.3.11 Agile Testing

I had a possibility to talk with Graig Larman after his lecture. When I told

him that I work as a test engineer, he told me that my job description will

change totally after transfer to agile has been made.

Nowadays the team’s testing process follows quite faithfully the

traditional waterfall testing process except that the components are

verified straight away when they are ready and all components’ common

release verification is the last phase of the project. So, testing phase is in

the end of the project and all the faults are found very late in the project.

Currently the work mode is such that the test engineers work in their own

team. Designers perform their own module tests and after that, it is the

testing team turn to do their component verification and release

verification tests.

One of agile principles is that everybody will do testing, not only the test

engineers. The software has to be done from the beginning so that it is

testable. Testing is constantly going on, greatly due to the continuous

integration. Everyone at the team is responsible for the quality despite of

what is ones title. (Hendrickson 20.6.2007, lecture.)

Hendrickson made a point on her lecture in Tampere 20.6.2007 on the

fact that the test engineers need to be integrated, in a way, to the

designers. They should work in the same office room and share the

tasks of track testing and updating the programming status.

In agile, software is tested already in the beginning of the development

work, throughout the lifecycle. One principle of the agile testing is that all

code should always be tested. Functionality, which has not been tested,

cannot be delivered under any circumstances. Second principle is that

tests are written before or in tandem with the code itself. So, test cases

68

cannot be written afterwards. Third principle is that all team members,

including developers and testers, write tests. And fourth is that

automation must be used, it is not an alternative. (Leffinwell 2007: 156.)

Agile testing is divided in three different types, automated acceptance

tests, automated unit tests and manual exploratory testing.

Programmers write the unit tests themselves, and they are always

automated and thereby tests can be run often in contrast to manual

tests. Unit tests can be also used with the continuous integration system

so that every time integration is done, unit tests are run. (Leffingwell

2007:157.)

Acceptance cases are traditionally run at the end of the development (in

our projects they are called component and release verification tests). In

agile world acceptance testing are performed concurrently and

incrementally, every time when new piece of functionality is added to the

system. Acceptance tests determine if the product meets the

expectations of the end user (so called black box test). (Leffingwell

2007:157.)

Manual Exploratory Testing takes place after the automated acceptance

test. It provides additional feedback and all those parts of the program,

that cannot be verified in automated test, are tested manually.

(Hendrickson 20.6.2007, lecture.)

In addition of those testing practices mentioned before, it is possible to

use for example a method called Test Driven Design (TDD). It combines

test-first development (tests are written before the code) and refactoring.

If anything, TDD is a programming technique instead of the tool for the

testers. (Ambler 2007c.)

69

As a summary, the testing is going to change all out when moving to the

agile. It demands hard work before testing automation will work properly

and also the roles of the current testers will change totally.

70

7 TRANSITION TO AGILE

It is possible to transit from earlier development process to the agile

process totally in one go or partly, little by little. It is not the most

important thing to adopt individual practices but to accept the idea behind

the agile. Moving to the agile is total paradigm shift to from one develop

method to the other.

7.1 Adopting process

When moving from earlier way of doing software to the new method,

many things are going to change. The biggest change relates to way of

thinking and work, but also some concrete changes are going to happen.

Teams and organization structure change, titles change, tasks change

and even working area might change.

Before starting being agile certain things must be ready. It is not enough

only start to use short iterations or other single agile practices. In

following chapters few more or less mandatory cases are presented,

which must be ready or done before agile process can be taken in use in

the first project.

7.1.1 What must have been done

Few things must be decided and ready before starting the first agile

project. In order to get the project work properly at full blast.

Team must be organized. In present team there are three quite big

groups, which will be split to smaller teams when moving to the agile.

Team also are formed again, there is no more separated development

and verification teams, but in the future teams are going to be cross-

functional.

Clarifying the roles of the members in the agile project is an essential

part of the initial state of the agile project. Product Owner and other

71

project management members have to be known, and the customer or

the representative of the customer need to be engaged with the project

from the start. Also the members of the development teams have to be

clarified, who is doing and what.

The schedule of the project has to be made before the project can be

started. The length of the iterations must be decided and decision

introduced to all project members.

Agile training for team members and other stakeholders must be

arranged. Management and agile teams must know which are the main

principles and practices of the agile, to be able to use the method.

7.1.2 What is good to be ready

Not all should be ready or clarified before the first project. However some

things should at least thought through before shifting to the agile. If it is

possible and if there is time, it is worthwhile to arrange following matters

beforehand, so the moving process is easier and it does not take time in

the project to arrange these things.

Open-plan offices or other common space are supported in agile. It could

be good idea to arrange so that all team members would locate to the

same room or near from the start.

Routine activities should be automated. Testing automation, nightly

building and opportunity to continuous integration should be arranged all

ready in day one. The pilot project serves no purpose, it these things

cannot be tested and tried during the pilot.

In addition it would be good idea if project has its own wiki pages, which

helps to share information between the all project stakeholders and

inside the teams. We have good wiki pages inside our company and we

can also utilize those pages.

72

In this phase it might be a good idea to decide also other practices,

which are going to be used in the project. Of course some practices can

be adopted also later on and in the pilot project practices can be tried,

take in to use and dropped out. But in order for minimize the chaos of the

starting phase; it could be good idea, if the developers know all the

practices which can be used.

7.2 Pilot Project

It might be better to start with a minor pilot project instead of big, critical

project. In pilot project agile practices and processes can be tried without

fear that some important and valuable product for customer fails. In pilot

practices can be added or removed if it seems that that practice is

necessary or unnecessary for the team. Different length of iterations can

be tested at the same time. Therefore the pilot project should not be too

short, because if long enough, several iterations can be gone through,

and the agile process can be developed from iteration to iteration. The

problems noticed in the previous iteration can be corrected in following

iterations. Also in pilot project agile processes can be tried to integrate

with already existing processes.

In pilot project it is clarified the risks and problems which arise along with

Agile and those problems can be solved before starting the actual first

Agile project.

Piloting of the agile method should start by finding those people who are

willing to try work with new method. When the pilot is over, these people

can naturally tell to others how agile works for real, and what it brings

along. Participants of the pilot project can also evaluate what kind of

education is needed and how other employees can be introduced to the

use of agile.

It is good to use the help of the external consult already in the pilot

phase, if know-how cannot be found inside the company. Also the pilot

73

participants should study at least something about the selected agile

methods and practices. It is difficult and frustrating to learn something

totally new in the middle of the work. At least a minor theory base also

decreases the change opposition. For example this thesis offers a

compact learning material to study the basics of the agile methods.

Overall the pilot project can give and learn a lot. When it is performed

and planned carefully, it gives a good base for the first real agile project.

74

8 CONCLUSIONS

There is no practical experience or specialists of the agile methods in the

team. The theory part of this thesis provides a theory base what agile is

and what it contains. It was hard and tedious process to wade through

agile literature and information. This thesis offers complete information

package of most important agile methods and practices.

The proposal to combine two different agile methods is not certainly to

first nomination of the product management for the agile method to our

team. Reason for my proposal is that this is the only way how we can

obtain the agile tools to both management and development work. Other

practices I proposed to our project can be of course taken in use, but

these practices are good way to start. Practices do not make the team to

be an agile. Iterative way of making products and adopting the

continuous changes makes the team agile.

Although I interviewed only the employees of the one company,

everyone stood for the different occupational group and point of view to

the agile methods. It was interesting to hear opinions on for and against

agile. I heard a lot of good comments about what should definitely be

taken into account and what can be almost ignored. Every person had

their own thoughts what good the agile method has been brought along

and what bad. That way by interviews and theory learning I was able to

perceive the best way on being agile.

The thesis has been done to our company and to our team to be precise,

the outcome is however be generalized to other comparable

organizations. However every organization, every work community,

every worker and every project is individual. Thus the agile method

should be tailored to every project, but the combination of the Scrum and

XP can be widely used in different kind of projects.

75

Agile method is going to be taken in use in near future in the team. This

thesis can be however developed further; it is possible to modify or

expand this thesis by adding our own experiences of mobilization the

agile method and make extensive handbook to the other teams and

organizations. Further development can be the research of what the

implementation of the agile method has been brought along, how the

adopting of the method happened for real, and what could have been

done better and where we succeeded.

76

List of references:

Abrahamsson Pekka, Salo Outi, Ronkainen Jussi, Warsta Juhani 2002.
Agile software development methods. Review and analysis. Espoo: VTT
Publications.

Ambler, Scott W 2002.
Agile Modeling: Effective Practices for eXtreme Programming and the
Unified Process. New York: John Wiley & Sons, Inc.

Ambler, Scott W 2007a.
Agile Modeling and the Rational Unified Process (RUP). [online] [referred
13.01.2008].
http://www.agilemodeling.com/essays/agileModelingRUP.htm

Ambler, Scott W 2007b.
Agile Modeling Throughout the XP Lifecycle. [online] [referred
15.01.2008].
http://www.agilemodeling.com/essays/agileModelingXPLifecycle.htm

Ambler, Scott W 2005.
A Manager’s Introduction to The Rational Unified Process (RUP). [online]
[referred 13.01.2008].
http://www.ambysoft.com/downloads/managersIntroToRUP.pdf

Ambler, Scott W 2007c.
Introduction to Test Driven Design (TDD). [online] [referred 23.03.2008].
http://www.agiledata.org/essays/tdd.html

Coram, Michael and Bohner, Shawn 2005.
The Impact of Agile Methods on Software Project Management. [online]
[referred 06.04.2008].
http://ieeexplore.ieee.org/iel5/9677/30561/01409937.pdf?arnumber=140
9937

Helesuo, Pekka 2004.
XP-ohjelmointi vs. RUP-prosessi. Pro Gradu. Joensuun yliopisto,
Tietojenkäsittelytieteen laitos, Matemaattis-luonnontieteellinen
tiedekunta. Joensuu.

Highsmith, Jim 2004.
Agile Project Management. Boston: Pearson Education, Inc.

77

Highsmith, Jim 2000.
Retiring lifecycle dinosaurs –Using Adaptive Software Development to
meet the challenges of a high-speed, high-change environment. [online]
[referred 07.01.2008]. www.jimhighsmith.com/articles/Dinosaurs.pdf.
- Software Testing & Quality Engineering, Vol. 2 Issue 4.
www.stickyminds.com/BetterSoftware/magazine.asp

Jeffries Ron, Anderson Ann, Hendrickson Chet 2001.
Extreme Programming Installed. New York: Pearson Education
Corporate Sales Division.

Jeffries, Ron 2001.
What is Extreme Programming? [online] [referred 20.7.2007].
http://www.xprogramming.com/xpmag/whatisxp.htm

Larman, Graig 2004.
Agile & Iterative Development. A Manager’s Guide. Boston: Pearson
Education, Inc.

Leffingwell, Dean 2007.
Scaling Software Agility –Best Practices for Large Enterprises. Boston:
Pearson Education, Inc.

Manifesto for Agile Software Development 2001.
[online] [referred 20.7.2007]. http://www.agilemanifesto.org/

McConnell, Steve 1996.
Daily Build and Smoke Test. [online] [referred 9.9.2007].
http://www.stevemcconnell.com/ieeesoftware/bp04.htm

Mitra, Amit, Gupta, Amar 2006.
Creating Agile Business Systems with Reusable Knowledge. Cambridge:
Cambridge University Press.

Nelson, Scott n.d.(a).
Software Development Methodologies: Dynamic Systems Development
Method (DSDM). [online] [referred 12.01.2008].
http://www.scottwnelson.com/article15-methodologies-dynamic-systems-
development-method-dsdm.php

Nelson, Scott n.d.(b).
Software Development Methodologies: Feature Driven Development
(FDD) [online] [referred 12.01.2008].
http://www.scottwnelson.com/article17-methodologies-feature-driven-
development-fdd.php

78

Nelson, Scott n.d.(c).
Software Development Methodologies: The Rational Unified Process
(RUP). [online] [referred 12.01.2008].
http://www.scottwnelson.com/article10-methodologies-rational-unified-
process-rup.php

Principles behind the Agile Manifesto 2001.
[online] [referred 20.7.2007].
http://www.agilemanifesto.org/principles.html

Schuh, Peter 2005.
Integrating Agile Development in the Real World. Massachusetts:
Charles River Media, Inc.

Schwaber, Ken, Beedle, Mike 2002.
Agile Software Development with Scrum. New York: Prentice-Hall, Inc.

Schwaber, Ken n.d.
SCRUM Development Process. [online] [referred 20.6.2007].
http://jeffsutherland.com/oopsla/schwapub.pdf

Sliwa, Carol 2002.
XP, Scrum Join Forces. [online] [referred 25.07.2007].
http://www.computerworld.com/softwaretopics/software/appdev/story/0,1
0801,69183,00.html

What is Scrum?
[online] [referred 25.07.2007].http://www.controlchaos.com/about/

XP @ Scrum.
[online] [referred 21.01.2008]. http://www.controlchaos.com/about/xp.php

Lectures:

Elisabeth Hendrickson 2007.
Agile testing. Lecture. 20.6.2007 Tampere

Graig Larman 2008.
Introduction to Lean, Agile and Iterative Development. Lecture.
28.2.2008 Tampere

79

APPENDIX A

Questions of the interview:

1. How long time your team have used Agile method?

2. Which Agile method your team is using? Are you using pure agile

method or modified/mixed method?

3. What is your role in team?

4. Why just this agile method was chosen?

5. How this method was taken in to use? Gradually or at once?

6. How many persons are working in your team?

7. What kind of meetings do you arrange? Daily, weekly etc.

8. What are the meeting practices? Questions?

9. How long are the iterations?

10. What are the criteria of the iterations? What are the required results?

11. What good agile method brought along?

12. What bad agile method brought along?

13. What happened to the quality of the software? Improved or

deteriorated?

14. Has the completion of the program accelerated?

15. Are you using pair-programming? Other practices?

16. What problems you faced up during the software development

method replacement? How those problems could have been

avoided?

80

17. In which level was the documentation before the agile method? How

much implementation changes documentation required when agile

method was taken in use?

18. How about the documentation now?

19. How exactly the criterias are adhered to?

20. How long period of transition was needed?

21. Did you use external consultant?

	ABBREVIATIONS
	1 INTRODUCTION
	2 CURRENT SITUATION
	3 ITERATIVE SOFTWARE DEVELOPMENT
	4 AGILE
	4.1 The Principles for Agile Software Development
	4.2 Agile development
	4.3 Agile methods
	4.3.1 Scrum
	4.3.2 Extreme Programming (XP)
	4.3.3 Crystal
	4.3.4 Feature driven development (FDD)
	4.3.5 Adaptive software development (ASD)
	4.3.6 Dynamic systems development method (DSDM)
	4.3.7 The Rational Unified Process (RUP)

	4.4 Comparison between different agile methods

	5 USER EXPERIENCE
	5.1 Background
	5.2 Introduction of the agile method
	5.3 Choosing the agile method
	5.4 Building the agile team
	5.5 Agile practices and daily work
	5.5.1 Meetings and reviews
	5.5.2 Iterations and requisited results
	5.5.3 Actions if schedule fails
	5.5.4 Documentation
	5.5.5 Verification of the software
	5.5.6 Continuous integration, daily builds and smoke tests
	5.5.7 Quality of the software

	5.6 Problems and achievements (lessons learned)

	6 AGILE METHOD RECOMMENDATION
	6.1 Combining Scrum and XP
	6.2 Effects on the organization structure and way of work
	6.3 Specified agile rules and practices
	6.3.1 Continuous requirements’ changes
	6.3.2 Short Iterations
	6.3.3 Product backlog
	6.3.4 Sprint backlog
	6.3.5 Daily stand up meetings
	6.3.6 Retrospective
	6.3.7 Pair-programming
	6.3.8 Common code ownership
	6.3.9 Continuous integration
	6.3.10 Daily builds and smoke tests
	6.3.11 Agile Testing

	7 TRANSITION TO AGILE
	7.1 Adopting process
	7.1.1 What must have been done
	7.1.2 What is good to be ready

	7.2 Pilot Project

	8 CONCLUSIONS

