
TAMPERE POLYTECHNIC
Computer Systems Engineering, Software Engineering

Lasse Leiniö

TESTING OF S60 SEARCH APPLICATION

Final thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of
Science in Engineering.

Tampere, May 2nd, 2007

Supervisor: Principal lecturer Matti Ilmonen
Instructor: Site Manager Tero Jokinen

TAMPERE POLYTECHNIC ABSTRACT OF THESIS

Author: Lasse Leiniö
Title: Testing of S60 Search application
Date: 2.5.2007
Pages: 26
Keywords: software, testing, search, Series 60
Degree Programme: Computer systems engineering
Specialization: Software engineering

Supervisor: Principal lecturer Matti Ilmonen

Instructor: Site Manager Tero Jokinen

Competition between mobile phone manufacturers has been intense in recent years. In order
not to lose market shares, smartphone vendors are delivering their products with new
technologies at a faster pace. Decreasing delivery times have been adding extra challenges
especially in quality assurance.

Testing is one of the best ways for ensuring the software quality. Appreciation of software
testing has increased and software development projects have been investing more in testing
services.

Features and services of the modern smartphones are close to the ones provided by laptop
computers. Data transfer speeds have increased in wireless communication and the
smartphone end users are provided with more data storage capacity. Increased data amounts
have created a need for a way to search for the stored data. In-Device Search application gives
one solution to finding locally stored data from the Series 60 smartphones.

This thesis focuses on the testing of the In-Device Search application, which was delivered on
Series 60 platform. The graphical user interface and basic functions are described in detail.
System level test planning and test execution are represented and test automation in the
testing of In-Device Search is described.

TAMPEREEN AMMATTIKORKEAKOULU INSINÖÖRITYÖN TIIVISTELMÄ

Tekijä: Lasse Leiniö
Työn nimi: Testing of S60 Search application
Päivämäärä: 2.5.2007
Sivumäärä: 26
Hakusanat: ohjelmistotestaus, hakusovellus, Series 60
Koulutusohjelma: Tietotekniikka
Suuntautumisvaihtoehto: Ohjelmistotekniikka

Työn valvoja: Yliopettaja Matti Ilmonen

Työn ohjaaja: Site Manager Tero Jokinen

Laitevalmistajien välinen voimakas kilpailu nopeasti kasvavilla matkapuhelinmarkkinoilla on
johtanut siihen, että uusimpia teknologioita tukevat tuotteet on saatava yhä nopeammin
markkinoille. Palvelujen monipuolistuminen ja toimitusaikojen lyhentyminen ovat tuoneet
uusia haasteita laadunvarmistukseen. Tuotteen laatu onkin noussut yhdeksi tärkeimmistä
myyntiartikkeleista erityisesti älypuhelinmarkkinoilla.

Yksi parhaimmista ohjelmiston laadunvarmistuksen menetelmistä on ohjelmistotestaus.
Ohjelmistotestauksen arvostus onkin noussut viime vuosina ja ohjelmistokehitysprojektit ovat
panostaneet testaukseen entistä enemmän.

Modernit älypuhelimet ovat toiminnoiltaan ja palveluiltaan jo lähes kannettavien
tietokoneiden tasolla. Langattomien yhteyksien nopeutuminen ja matkapuhelinlaitteiden
tallennuskapasiteetin nousu ovat luoneet tarpeen suurten tietomäärien hallinan
helpottamiseen. Tätä tarvetta vastaan Series 60 alustalle on tehty hakusovellus tiedon
löytämisen helpottamiseksi.

Tässä työssä kuvataan Series 60 alustalle toimitettavaa hakusovellusta ja erityisesti sen
testausta. Työssä keskitytään järjestelmätason testauksen suunnittelun ja toteutuksen
selvittämiseen. Lisäksi kerrotaan testausautomaatiosta ja siitä, kuinka testausautomaatiota
käytettiin apuna hakusovelluksen testauksessa.

TAMPERE POLYTECHNIC FINAL THESIS
Computer System Engineering, Software Engineering
Lasse Leiniö

FOREWORD

This thesis has been done for Ixonos Plc during spring 2007. Site
Manager Tero Jokinen from Ixonos Plc has been the instructor for
the work. Principal lecturer Matti Ilmonen from Tampere
Polytechnic has supervised the thesis.

I want to thank my supervisor Matti Ilmonen for support throughout
the thesis writing process. I thank my instructor Tero Jokinen for
giving the opportunity to do this work. I want to thank all my
colleagues in the software testing team and other project personnel
for their feedback. Also thanks belong to Gareth James for proof-
reading the thesis.

Tampere, May 2007

Lasse Leiniö

TAMPERE POLYTECHNIC FINAL THESIS i (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

1. INTRODUCTION...1
2. SERIES 60...2

2.1 Series 60 platform...2
2.2 Series 60 Graphical User Interface ...3

3. TESTING IN SOFTWARE DEVELOPMENT PROJECT..4
3.1 Testing levels ..5
3.2 Testing techniques and methods ...5
3.3 Benefits of test automation ...6

4. IN-DEVICE SEARCH APPLICATION...7
4.1 Searchable data ...7
4.2 Graphical user interface of In-Device Search application8

4.2.1 In-Device Search main view...9
4.2.2 Grouped results view ..10
4.2.3 Single results view..11
4.2.4 In-Device Search help...12

5. TESTING ENVIRONMENT..13
5.1 Testing tools..13

6. TEST AUTOMATION IN TESTING OF SEARCH APPLICATION14
6.1 Mercury QuickTest Professional ..14
6.2 Test automation environment ...14
6.3 Test automation program..14
6.4 Analyzing the test automation results ...16

7. PLANNING TESTS FOR IN-DEVICE SEARCH APPLICATION................................18
7.1 Master Test Plan ...18
7.2 Test specification ..18
7.3 Selecting test data ...20
7.4 Testing schedules..21

8. TEST EXECUTION AND REPORTING THE RESULTS ...22
8.1 Running tests...22
8.2 Error reporting and fix verification...24

9. CONCLUSIONS...25
10. REFERENCES ...26

TAMPERE POLYTECHNIC FINAL THESIS ii (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

ABBREVIATIONS

BAT Basic Acceptance Testing

Black-box testing Testing method where testing is planned and
executed without knowledge of the actual software
implementation

Error Failure in software

Highlight Way to indicate focus on screen of a mobile device

IMAP4 Internet Message Access Protocol 4

I/O Input / Output

MMS Multimedia Message Service

MTP Master Test Plan

N/A Not Available

OS Operating System

Pane Area on Series 60 graphical UI

POP3 Post Office Protocol 3

QC Quality Center, a testing and test automation tool
provided by Mercury Interactive

QTP Quick Test Professional, software product used in
test automation

S60 Series 60, a Symbian based software platform

SIS Symbian installation file

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

Softkey Software configurable key, which function is shown
on screen of a mobile device

Symbian A software licensing company, which provides
operating system for mobile devices

UI User Interface

USB Universal Serial Bus, a connectivity method

White-box testing Testing method where tests are based on the design
or the structure of the software implementation.

TAMPERE POLYTECHNIC FINAL THESIS 1 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

1. INTRODUCTION

Mobile phone development and the technological evolution of the mobile business
has been rapid in recent years. There is a need for a mobile device, which in
addition to key mobile phone features, has the similar communication and data
handling capabilities as a personal computer. This means, that mobile devices need
to support more applications and different data types as well as means to hold large
amount of data. Whit data storage capacities constantly increasing, users must have
a way to organize and locate the information within their mobile device.

Symbian is one of the most popular mobile device operating system. The Symbian
based Series 60 platform provides many smartphone applications, which are
designed to be user friendly and to make multiple mobile business services
available to the end users. One of the S60 applications is In-Device Search, which
offers one solution for finding user data from a mobile device. The application gives
an option for the end user to search for information from the stored data and to open
it in an application associated with the data type.

The Mobile phone market has been continuing to grow and competition between
mobile service providers has been intense. One of the key factors in this success has
been the quality of a product and this has made smartphone vendors and mobile
phone manufacturers to invest more in software testing services. As one of the best
ways for ensuring the software quality, testing can define when the maturity of a
product is good enough for market. Appreciation of software testing has increased
in recent years and software development projects are investing more resources in
test planning, design and execution.

This thesis focuses on high-level testing of the In-Device Search application. Low
level testing is only mentioned in testing levels and test planning parts of the thesis.
Series 60 platform and In-Device Search testing environment are briefly introduced.
Manual and automated testing of the application is described in detail.

TAMPERE POLYTECHNIC FINAL THESIS 2 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

2. SERIES 60

Symbian OS is an open operating system, which is designed for mobile devices. As
a mobile device operating system, Symbian OS has to provide services with limited
resources such as memory restrictions and low power consumptions. Also mobility
and continuous usage add more challenges for a mobile device operating system. /1/
/3/

Symbian provides resources for platforms, which need support for e.g. messaging,
security, networking, telephony and other real-time communication. Multiple
platforms are based on Symbian OS and more than 100 million Symbian
smartphones were shipped in 2007. /1/

2.1 Series 60 platform

One of the platforms running on Symbian OS is Series 60. Series 60 platform
provides multitasking support between applications and a UI for switching between
the running applications. /3/

Figure 1: High level architecture of Series 60 /3/

S60 platform is based on Symbian OS and it provides services for S60 applications,
S60 java and S60 OS extensions as depicted in figure 1. S60 application services
are base for features, which can be utilized by applications. /2/ /3/

TAMPERE POLYTECHNIC FINAL THESIS 3 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

2.2 Series 60 Graphical User Interface

Graphical area, which displays the application on the screen, is called an application
window. The application window is usually divided into panes. Standard panes in
the application window are the main pane, status pane and control pane. Figure 2
shows an application window and the standard panes on Application menu. /4/

Figure 2: Standard panes in an application window are main pane, status pane and
control pane. Application menu is shown in main pane. /4/

Standard panes are further divided into sub panes. Status pane has for example a
context pane, title pane and a navi pane. Figure 3 shows the division of the status
pane. /4/

Figure 3: Status pane is divided into five sub panes. /4/

The control pane is shown in the bottom part of the application window. Softkey
labels are displayed in the control pane. /4/

TAMPERE POLYTECHNIC FINAL THESIS 4 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

3. TESTING IN A SOFTWARE DEVELOPMENT PROJECT

The main target of software testing is to find errors in the software. Other important
task of software testing is to give reliable information of the current state of the
software. Testing can be used to measure and improve the quality of the software
being tested. Some basic concepts in software testing are test case, test set and error.
/5/

Test case is a single entity, which consists of preconditions, test steps and expected
results. Preconditions define what kind of environmental setup must be prepared
and in which state the software must be before the test execution can be started. For
example needed test data is defined in the test case preconditions. Test steps are
consecutive instructions made for a tester to complete the test. The actual results of
a completed test step are checked against the expected results and test case status is
set accordingly.

Test set is a collection of test cases. Test set is usually planned to cover some area
of the software and the amount of test cases in a test set depend on how much
information from the software is needed. Test cases can be inserted into a test set in
a specific order, which makes the test execution more convenient and faster.

Errors are found during testing, when the test execution doesn’t produce the
expected results. An error is said to be a deviation from a specification, which was
used to create the test cases. /7/

It is good to understand, therefore, that there is no such thing as a piece of error free
software. Testing can point out, that there are errors in software, but testing can not
point out, that there are no errors in software. Software development projects have
limited resources and time and testing has to be stopped at some point. With good
test planning, all major errors can be found before the software product is released.
/7/

TAMPERE POLYTECHNIC FINAL THESIS 5 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

3.1 Testing levels

Testing is usually performed on many levels according to V model of testing, which
is shown in Figure 4.

Figure 4: V model of software testing. /7/

The V model of testing is based upon a waterfall model of software development.
By applying the V model of testing in test planning, the amount of overlapping
testing is reduced and testing is better taken into account in the entire software
development life cycle.

A single module is tested in module testing, which is also called as unit testing. A
module is a program entity, whose size is usually 100 – 1000 lines of code. Module
testing is usually performed by the software developer who has implemented the
module. Module testing is based on module design specifications and it includes
tests for basic I/O operations, functions, conditional statements, etc. /7/

Integration testing is based on technical specifications and it’s performed
simultaneously with the module testing. Testing is focused on the interfaces of the
modules and interactions between different modules and module groups. Testing is
performed by software developer or specific integration tester. /7/

System tests are run on a system, which has all of the software modules integrated.
Testing is done by software testers who have no knowledge of the actual
implementation. Tests are designed against the requirements, so when software
implementation changes, the same test cases can be used if requirements remain the
same. The most common tasks for software testing organizations and software
testing engineers are system level test planning and test execution. /7/

3.2 Testing techniques

In Black-box testing, the test cases are created according to specifications not
implementation. Input is entered into a system under test and output is analyzed
without knowledge of the actual process. Some parts of the software, especially
unspecified functionalities, are most probably not tested with blackbox method. /6/

White-box testing is performed in the same way as black-box testing, but white-box
testers have knowledge of the system, the design or the structure of the code. With
white-box testing it is possible to see how the system works in addition for making
sure that the system does what it is supposed to do. /6/

TAMPERE POLYTECHNIC FINAL THESIS 6 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

Testing is not biased by the knowledge of the implementation in black-box
technique and white-box testing provides possibility to test all of the ways the
system works. Testing effectiveness and quality are clearly increased, when both of
the testing techniques are taken into use in software development project. /6/

3.3 Benefits of test automation

Usually tests are designed to be run manually, which means that tests are planned to
be run by a person. This restricts the test design, because long lasting tests and
repetitive tests are usually demotivating and hard to run by a human tester. Tests,
which are difficult for a human, may be easy for a computer. In test automation, test
cases are executed by a computer without human intervention.

Test automation can be used to automate manual test cases. This is beneficial,
because automated tests can be run parallel with manual test and it frees manual
testing resources to other tasks. More benefits of test automation will be gained,
when automated tests are designed differently from manual tests.

Long period tests and repetitive tests are not reasonable to be run by a human tester,
when they can be automated. This way, the same test can be repeated thousands of
times or with thousands of different parameters. Test inputs can be placed into
tables from which an automated test procedure can fetch the data and enter it into a
program under test. Automated test can later verify that the expected results are
produced by the program. Another benefit of test automation is that automated tests
can be run overnight. /8/

TAMPERE POLYTECHNIC FINAL THESIS 7 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

4. IN-DEVICE SEARCH APPLICATION

The services available for mobile devices are not far from the ones, which can be
used by modern laptop computers. Mobile phones can now utilize high volume
memory cards and end users may create, download and receive data up to several
gigabytes. With older mobile devices, it was relatively easy to find a stored contact
from SIM card or from a sent short message, because memory storage was limited
to dozens of entries. Now, only after a few months of normal business usage, phone
may contain thousands of emails, calendar items, files etc. and it could be time
consuming to try to find out some specific piece of information from the vast
amount of data.

In-Device Search is an application, which provides the mobile device user a
solution for finding locally stored data. User can search for textual strings from both
the phone memory and memory card. In-Device Search has a simple UI, which
allows user to limit the search to certain categories.

4.1 Searchable data

Selectable content classes are messages, emails, contacts, calendar events, notes, to-
dos and files. User can choose one, several or all of the content classes to be
included in search.

First content class is messages, which includes short messages (SMS) and
multimedia messages (MMS). Short message is a text message, which has less than
160 characters. SMS messages are usually sent and received via mobile devices.
Multimedia messages are similar to SMS, but they can also contain images, sounds
and videos.

Messages are searched from specific folders in the Messaging centre application.
The messaging centre has several folders, but search can only be performed on
messages, which are to found in the inbox, my folders, drafts or the sent folder.
When message is received, it is added to the inbox folder. My folders or user
created folders can be used to save messages. Unfinished messages are stored in the
drafts folder and sent messages in the sent folder.

The content of a message is included in the search, but textual strings can also be
searched from both the receiver and sender fields of messages. Also the subject, if
any, of a MMS can be searched.

The calendar content class includes meetings, memos and anniversaries, which are
stored in Calendar application of a mobile device. Subject and location of a meeting
event can be searched as well as subjects of memos and anniversaries.

Notepad notes can be searched by selecting notes content class. Saved text files and
notes are listed in Notepad application.

Received emails can be searched from remote mailboxes, which are defined in the
Messaging centre. Along with messages, emails can also be searched from inbox,

TAMPERE POLYTECHNIC FINAL THESIS 8 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

my folders, drafts and sent folders. Mailboxes can be set up to use IMAP4 or POP3
protocols and search can be done on both mailbox types.

Text can be searched from both the email body and subject fields. Also sender and
receiver can be searched. Receiver information can also be searched from circulated
copy and blind circulated copy fields of a sent email.

The Phonebook application holds contact details and contact groups, which can be
searched by selecting the contacts content class. Contact card has many information
fields and search can be done for content of all textual fields. Most common fields
defined for a contact are first name, last name, mobile phone number and email
address. Also fields like company name, job title, fax number and postal address are
quite common. There is no limit, other than memory constraints for adding
information fields for a contact and most of the fields are searchable. Phone may
contain contact data as business card files, but they can be found by selecting other
files content class.

To-dos or tasks are stored in Calendar application and their subject can be searched.
Not completed and completed to-dos as well as to-dos with all priorities can be
searched.

All files in user area, which are not in system or hidden folders, can be searched by
their filename. Folder names are not included in search.

4.2 Graphical user interface of In-Device Search application

In-Device Search application has three different views. These are Main view,
grouped results view and single results view. All three views of In-Device Search
application are described in the following chapters. Application specific help is
available for most of the Series 60 applications and In-Device Search has help
topics for each of the three views. Also content specific viewers and editors can be
opened from search results.

TAMPERE POLYTECHNIC FINAL THESIS 9 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

4.2.1 In-Device Search main view

In main view, user is shown a selection list of content classes. These content classes
are the areas, from which the data can be searched. The topmost item on the list can
be used to select or deselect all of the content classes. One or several items can be
selected from the selection list. When the In-Device Search application is opened,
all content classes are selected by default. An input field is shown in the bottom of
the main view and it’s used for entering the search string. Search string can contain
many keywords, which can be partial words as well. When keywords are separated
by a white space, the Boolean AND operation is applied between each keyword.

Figure 5: Content classes can be selected and keywords entered in In-Device Search
main view.

If the user wants to perform search with keywords without using AND operation, an
exact search can be used. This is done by entering the search string within
quotations. An exact search produces results, which items contain the whole search
string including the white spaces.

Also commonly used wildcards can be used in search string. Several characters can
be replaced by an asterisk (*) and a single character can be replaced by a question
mark (?).

TAMPERE POLYTECHNIC FINAL THESIS 10 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

4.2.2 Grouped results view

Grouped results view shows the amount of matches, which have been found in each
chosen content class. The search string used to generate the results is shown in the
title pane and the total amount of matches are shown in the navi pane. The amount
of matches in each content class is shown in brackets after the content class name.

Figure 6: Grouped results view shows amounts of matches in each content class.

After search is started in Main view, the grouped results view is opened and search
animation is shown in the context pane. Navi pane indicates when a search is
ongoing and an ellipsis is shown in brackets after each content class. The ellipsis is
replaced with the match amounts, after the search has been completed for the
content class.

Focus can be moved over one of the content class. More detailed, content class
specific search information is available, when one of the content classes is selected.

TAMPERE POLYTECHNIC FINAL THESIS 11 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

4.2.3 Single results view

Single results view is opened, when search is performed for only one content class
or one of the content classes is selected in Grouped results view. Title pane shows
the used search string and navi pane displays the opened content class. Navi pane
shows also the total amount matches in the content class and position number of the
highlighted item.

Figure 7: Single results view shows items, which content matches with the search
string.

If search was performed with more than one content class selected, it is possible to
see the results of other content classes by pressing left or right arrow key. This way
user doesn’t have to go back to the Grouped results view to see the results from
other content classes.

When item is selected in Single results view, the viewer or editor of the content
class specific application is opened. For example, when found contact is selected in
Single results view, Phonebook application is opened and details of found contact is
shown.

TAMPERE POLYTECHNIC FINAL THESIS 12 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

4.2.4 In-Device Search help

It is common in Series 60 devices, that application specific help topics are available.
Help is available for end user in all In-Device Search views. Figure 8 shows help
topic opened from the main view.

Figure 8: Help is available for end user in all In-Device Search views.

Help application contains information about each of the In-Device Search views.
Some of the functions are described and advice on using the application is provided
by Help application.

TAMPERE POLYTECHNIC FINAL THESIS 13 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

5. TESTING ENVIRONMENT

In-Device Search tests are run on Nokia E50 smartphone and the test cases are read
from Quality Center. Quality Center is a software product of Mercury Interactive
Corporation and it’s used for creating, maintaining and running tests. Quality
Center, which is abbreviated as QC, is used via web browser interface. Test cases
are designed in QC and they contain test description, preconditions and test
execution steps. /5/

Before test cases are used in any test set, they are exported into Word documents,
which are used in test specification inspections. After test specifications are
approved, the test cases can be selected into test sets. Test sets are created for every
software release of In-Device Search application and test results are gathered and
exported into test results documents from QC.

Usually In-Device Search software is installed on S60 device by the use of a
Symbian installer file. Symbian installer files are provided by In-Device Search
application developers.

5.1 Testing tools

Test data is added into device used in tests by specific script files. Test data scripts
are created in PC environment and they are later sent to mobile phone. Mobile
phone has a client application which fills the phone with data specified in the script
file. Some other Series 60 tools are used for testing e.g. memory consumption of the
application.

TAMPERE POLYTECHNIC FINAL THESIS 14 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

6. TEST AUTOMATION IN TESTING OF SEARCH APPLICATION

In-Device Search has simplified UI, which allows end user to access search results
more quickly. Simple UI and an existing test automation environment were main
drivers for the decision to use test automation in In-Device Search testing. Test
automation was planned to be used in typing text in input field, making key presses
and reading text from the screen.

6.1 Mercury QuickTest Professional

Mercury QuickTest Professional, which is abbreviated as QTP is a test automation
and testing tool made by Mercury Interactive. The test automation program used in
testing of In-Device Search application was created with VBScript on QTP.
VBScript is scripting language, which syntax is a variation of Microsoft Visual
Basic programming language. /9/

QTP supports creation of multiple test iterations and data handling between
databases, spreadsheets and text files. Program parameters for the test automation
program were fetched from Microsoft Excel sheet and the results were written into
a text file. QTP reporting functions were used to indicate status of test run in QC
and in case of a failure, more detailed explanations of the failure were reported. /9/

6.2 Test automation environment

Test automation environment consists of mobile device, which is connected via
USB cable to PC, which runs the actual test automation program. Test automation
program was created with VBScript and it is run by QTP. Test automation program
for example sends key event actions to mobile device and mobile device responds
by sending textual data from the device UI. Automation specific client software is
running on mobile device handling the communication towards PC.

Test case made for launching the test automation program was created in QC. Test
execution was started and statuses of the test runs were reported in QC as well.

6.3 Test automation program

The basic idea of the test automation program is to enter randomly made, but
predefined keywords to In-Device Search application and to check, that correct
amount of matches are shown in Grouped results view. This means, that keywords
must be created from the same data, which is in the mobile device. Test data is
collected to specific script files, which are later sent to the mobile device. Another
Symbian based tool is used to fill the mobile device with the data from the script
files.

First task in preparing the test automation setup is to create search strings from the
test data file and then count the amount of matches for each string. The amounts
counted at this phase are stored for the post processing, which is done after the test
automation program is run.

TAMPERE POLYTECHNIC FINAL THESIS 15 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

The search strings are stored into a search string array, which is sent as a parameter
to the test automation program. The program takes two more parameters, which are
the total amount of search strings and a file name of the results file.

The test automation program starts by launching In-Device Search application.
After In-Device Search is opened, the program verifies that the correct application
is launched and it is opened in the correct state. Verification is done by checking the
title and the softkeys of the main state.

In the main state the first search string in the search array is entered into the input
field. Search is started and timer value is read for search duration calculation.
Search string is written in the results file together with current date and time
information. After this the program waits until all results are printed on the screen
and the search is completed.

After search is completed, the search duration is calculated and it is stored into the
result file. If search takes too much time, it is also reported in the results. Amount of
matches are shown in brackets in the grouped results view and they are stored into
the results file next to the corresponding content class.

Table 1: Result of one search iteration, which has been produced by the test
automation program.

Table 1 shows one example of search results, which are stored into a result file.
First row shows the number of the iteration, second row show the time stamp and
third row the entered search string. Fourth row shows how much time the search has
taken. Next seven rows show match amounts in each content class.

To make sure, that correct search string was used, the title pane of grouped results
view is read and its content is compared with the entered search string. If the title is
different than the search string, it is reported to the results.

After results are read, program goes back to the main view and verifies the state
from title and softkeys. The next search string is fetched from the search string
array and it is entered into the input field. After search is started the results reading
procedure is repeated for all search strings in the array.

TAMPERE POLYTECHNIC FINAL THESIS 16 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

6.4 Analyzing the test automation results

After search match results are produced by the automation system, the results are
compared with the ones calculated from the test data file. If there are any
differences in the match amounts, it’s prompted in post processing. The keyword,
which caused the difference in the results, is checked again manually.

Test results analysis produce an analysis file, which contains results of all iterations,
which caused unexpected result amounts. One entry of results analysis file is shown
in table 2. First row shows the number of the iteration, the search string and total
amount of matches found by the test automation program and total amount of
expected matches. Next rows show the results in each content class.

In example results shown in table 2, search string “purpose” is 63rd iteration and it
has been found 4 times by the test automation program. Expected amount of
matches has been 5 and due to the difference, this entry has been reported in results
analysis. For some reason the test automation program has not found any items
containing the search string from calendar events. After this, the word “purpose”
will be manually searched from the calendar events and reason for the unexpected
result will be investigated.

Table 2: Different match amounts have been found in analysis. Calendar event
contains a textual string which was not found by the test automation program.

After all iterations have been analyzed, some overall statistic is collected. The first
row in the beginning of the analysis file shows the total duration of the automated
search run. An example of the overall statistics is shown in table 3. The second row
shows an average value and the third row shows a median value of the times of all
search iterations. The fourth row shows the minimum and the fifth row the
maximum search time of a single iteration. Search strings of the minimum and
maximum times are shown in brackets after the search times. Also total amount of
search iterations and total amount of correct results are shown.

TAMPERE POLYTECHNIC FINAL THESIS 17 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

Table 3: Test automation analysis provides overall information about the test run

After test results of automated test run have been analyzed, the search strings which
caused unexpected result amounts are checked again manually. In most of the cases
the results are correct after manual retesting. Sometimes there might be some
unexpected events during a test automation run, which may cause for example a
missed key press and this can be seen as an error in the test results. Programs may
also crash during a long lasting test run especially, when software is in early phase
of software development. This stops the test run and makes QTP to take a
screenshot, which usually clarifies the cause of the failure. After this, the error case
is reproduced manually and the error will be reported as an error in automation
environment or as an error in software under test.

TAMPERE POLYTECHNIC FINAL THESIS 18 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

7. PLANNING TESTS FOR IN-DEVICE SEARCH APPLICATION

Test planning is as important for testing as project planning is for a project.
Planning is started by creating a Master Test Plan. Test planning follows the V
model of software testing and it starts from system-level test specifications down to
the module test plan.

7.1 Master Test Plan

First step in test planning is to create the Master Test Plan. When requirements
specifications and project plan are being developed, the Master Test Plan should be
started. This way testing is taken into account in the early phase of the project and it
may affect on content of the project plan as well. /6/

Master Test Plan deals with important testing related issues such as resource
utilization, risk analysis, schedules, responsibilities, test method definitions, entry
and exit criteria, references, testing strategy, test environment and tools, approvals,
suspension criteria and resumption requirements. Sections in Master Test Plan may
vary depending on areas, which are considered to be relevant for testing in the
current project. /6/

After Master Test Plan is created and requirements are complete, detailed test
planning can be started.

7.2 Test specification

In-Device Search application system level test specifications are created against the
UI specification and feature requirements. UI specification defines all application
states, their functionalities and UI design. All UI elements, graphics and textual
strings of the application are defined in UI specification. Requirements are provided
as a list of application requirements, features and sub features.

Used test environment is explained in the beginning of each test specification. Also
testing tools, testing equipment and possible data needs are defined in the test
specification. Usually persons responsible of testing and persons responsible of the
application design are mentioned. Also possible open items are added in test
specification in design phase.

First test specification is created for basic acceptance testing, which is abbreviated
as BAT. BAT test cases are designed so, that all areas of the application are
covered. The main idea of BAT is to test, that all areas work to some extent and
fixes made after previous release have not caused any regression in other areas of
the application.

In-Device Search functional test specifications were created for giving detailed
instructions how to test the application. Seven functional test specifications were
created for each content class, which were contacts, calendar, notes, to-dos,
messages, emails and files. An additional test specification was made to test how
In-Device Search functioned with memory card. This included file search from

TAMPERE POLYTECHNIC FINAL THESIS 19 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

memory card and searching for messages and emails, when message storage was set
to be on memory card.

There was also a separate functional test specification for testing general UI of the
In-Device Search application. This test specification included test cases for
checking graphical elements of the application as well as softkeys, title and options
list. Textual strings, which were planned to be tested in localization testing, were
also part of UI functional test specification. Usually localized tests are part of all
functional test specifications, but because In-Device Search had so few localization
strings, all tests for them were planned in the same test specification.

Some non-functional test cases were also created and they were included in
functional test specifications. These tests had cases for testing large amounts of
data, memory consumption and feature interaction with other applications.

Figure 9: Test case design is done in QC.

Actual test cases are designed in QC. Test case design starts by defining a
descriptive title for the test case. More detailed information about the test case is
written in description and design steps part of the test case. First field in design
steps part defines the preconditions, which must be met before test step execution
can be started. Test steps are planned to give precise description of actions, which
are supposed to be executed one after the other in order to complete the test case.

Figure 9 shows one test step in design step editor. The step under design is the first
step after the preconditions. In test step, there is a description part, which defines
the action, which tester must perform. After the test step has been performed, tester
checks the actual result of the action and compares it to the expected result. If the
action produces the expected results, the step is passed. Otherwise the step and the
whole test case will be marked as failed.

TAMPERE POLYTECHNIC FINAL THESIS 20 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

Figure 10: QC Test Plan view shows the designed test cases.

Test cases are added in a feature specific folder in QC. Figure 10 shows a
highlighted test case in QC Test Plan view. Column on the left side shows, that
view is in Test Plan, column in the middle shows the folder structure and column on
the right show the preconditions and steps of the highlighted test case.

7.3 Selecting test data

Test data is selected to cover all searchable content in the device. Types of test data
should also cover all special cases, which may arise in normal and heavy phone
usage.

Contact search is performed on contact cards in Phonebook application. Test data
for contact search is selected so, that there are many contacts with varying fields in
the Phonebook. There is also a contact, which has all possible characters in a single
data field and one contact, which have some information entered in all the different
data fields.

Search can be performed on all type of calendar events, which are meeting, memo
and anniversary. Test data is selected so, that lot of calendar events are created in
the Calendar application. All types of events are created and they are distributed to
fill many days in couple of months. Also one day is filled with many events.
Searchable field in Calendar application are meeting subject, meeting location,
memo subject and anniversary occasion.

Task subject can be included in search and different kinds of tasks are created as
test data. Tasks with different priorities, due to dates and completion statuses are
created as test data.

Text can be search from Notepad notes. Hundreds of notes with different content
are created. Also a large note in size of several hundred kilobytes and a note with all
possible characters are used for testing.

In-Device Search can also find different kinds of messages, which are sent, received
or stored in the device. Search needs to find characters from all supported message
types, which are SMS, MMS and email. Messages can be found from Messaging
centre inbox, sent, drafts and user created folders.

Search criteria can be set to meet different fields of messages. Sender, receiver and
message content fields can be searched. Testing is also done for mailboxes, which

TAMPERE POLYTECHNIC FINAL THESIS 21 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

use different protocols in receiving mail. IMAP4 and POP3 mailboxes are tested as
well as mail, which are fetched, not fetched or contain attachments. Message
storage can be set to be on memory card, so searching messages from memory card
is also tested.

All files, which are stored in the user area of the mobile device, can be searched by
their file names. Files of all supported types and some not supported types are used
in testing. Opening files from search results is not a requirement for In-Device
Search application, but this is tested for checking that interaction with other
application works correctly.

7.4 Testing schedules

Need for testing depends on project phases. In the early phases of the project,
maturity of the application largely defines the testing need. Testing need is highest
at the point, where application is about to be released into production. Software
releasing schedule was defined Master Test Plan and it happened mainly in weekly
or bi-weekly basis. Some unofficial releases were delivered for testing between
official releases.

BAT was run for all releases. Functional tests were run for almost all bi-weekly
releases and performance tests every now and then, at least once in a month.
Reasons for unofficial releases was to help software developers in finding root
causes of certain defects or to check that some fix didn’t cause any regression
compared to any older software release.

TAMPERE POLYTECHNIC FINAL THESIS 22 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

8. TEST EXECUTION AND REPORTING THE RESULTS

After test specifications, testing tools, test environment and test data are ready, the
actual testing can be started. Testing is performed according to testing schedule,
which is defined in Master Test Plan. Test cases are executed as they are defined in
test specifications and found errors are reported as planned.

8.1 Running tests

System level tests were usually run on S60 device, which had 3.0 or later S60
version. Usually tests were run on Nokia E50 smartphone, but all supported devices
were tested.

In-Device Search software releases, which were about to be tested were delivered
within flash images or as Symbian installation files (sis). In both cases, the latest
software version of the S60 product was first flashed on the device. If software was
delivered as a sis file, it was installed on the device. Specific installation test cases
were planned and their purpose was to test installation on different products and
environments. These test cases also covered for example installation over existing
In-Device Search application and installation on memory card.

Before the actual application testing can be started, the device must be filled with
the test data. There was a separate program, which was used to fill the device with
predefined test data.

After device has all the needed software and test data, the testing can be started.
Testing starts by opening the correct test set in QC. Test set contains the test cases
and each case defines the description, preconditions, steps and expected results for
the test.

TAMPERE POLYTECHNIC FINAL THESIS 23 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

Figure 11: Test case is in run in QC.

Figure 11 shows on test case, which is under execution in QC. Test case name is
“Open In-Device Search application” and it has only one test step. Preconditions for
running the test steps have been met, which can be seen as passed status after the
preconditions field. Test description and expected results are shown and tester can
type in the actual results of the action that was performed. As the actual result is the
same as the expected, the test step and the whole test case can be marked as passed.

Tests are run one by one so, that the transition between the cases is as convenient as
possible. This means, that the end condition of a test case should be close to the
precondition of the next one. This reduces the total time of test set execution and
more test cases can be added into the test set.

Figure 12: Test set is opened in QC Test Lab view.

TAMPERE POLYTECHNIC FINAL THESIS 24 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

An example test of In-Device Search tests can be seen in Figure 12. Left column
shows, that view is in Test Lab, middle column shows the folder structure of test set
folders and right column shows test cases in the test set. Before the test case is run,
it is shown in “No run” status. Test set execution is started by pressing “Run”
button and after test case is completed, the status of the run is updated into the test
set view. If the actual functionality is the same as expected results, the test case
status will be passed. If it doesn’t meet the expected results the status will be failed.
Sometimes test case cannot be run at all and the status is marked as N/A.

Test execution round will end after all test cases in a test set are run. Error reports
will be raised of the failed cases and all cases and their statuses are collected into a
test results report.

8.2 Error reporting and fix verification

When error is found during testing, it will be reported into errors database. This
database is used for storing all error reports with different statuses. Found error is
first reported with detected status. When error is taken into further investigation,
status of the error report will be set to be in progress. Software developers will
investigate the problem and after the root cause for the failure is found it will be
fixed. When error is fixed, status of the error report will be corrected. When the
error fix is taken into some specific software release, the error status will be set to
released.

After error is reported to be released, the error fix will be verified by testing team.
This means, that testing engineer tests that the fix really corrects the error and no
new error is raised due to the fix. If the error is fixed the error report status will be
marked as verified. If error fix doesn’t correct the problem or it is not sufficient, the
error will be put back to detected state.

After error fix is verified, project management can see that the error has been
correctly processed and the error report will be closed.

TAMPERE POLYTECHNIC FINAL THESIS 25 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

9. CONCLUSIONS

Purpose of this thesis was to describe how system level testing was done for In-
Device Search application in a software development project. Some background of
a need for this kind of application was introduced. Series 60 environment was
described and UI of the application was depicted in detail.

Some software testing theories were referred and test environment of In-Device
Search application was described. The test automation program and automation
result handling process was introduced. Test planning, test design and the actual test
execution were represented in the final chapters of the thesis.

Theories of software testing were actively implemented in the In-Device Search
testing project. Also test automation was used to give more information of the
maturity of the system. Time needs for specific testing tasks became clearer during
the project, which made resource allocation easier. Testing was performed within a
planned schedule and project management received the test results and error reports
in time.

To conclude, the testing of the In-Device Search application was performed as
planned. Good project planning and well organized test planning and test design
were the key factors in the successful completion of the In-Device Search software
testing project.

TAMPERE POLYTECHNIC FINAL THESIS 26 (26)
Computer System Engineering, Software Engineering
Lasse Leiniö

10. REFERENCES

1. Symbian operating system homepage www.symbian.com

2. Series 60 homepage www.s60.com

3. S60 Platform Basics, 2006.

4. S60 UI Style Guide, 2006.

5. Mercury Quality Center http://www.mercury.com/us/products/quality-center/

6. Craig and Jaskiel, Systematic Software Testing. Artech House Publishers. USA
2002.

7. Haikala – Märijärvi, Ohjelmistotuotanto, 7th revised edition. RT Print Oy.
Pieksämäki 2000.

8. Cem Kaner, James Bach, Bret Pettichord, Lessons Learned in Software Testing:
A Context Driven Approach. Wiley Computer Publishing. USA 2001.

9. Automated Testing – Mercury QuickTest Professional
http://www.mercury.com/us/products/quality-center/functional-testing/quicktest-
professional/

http://www.symbian.com/
http://www.s60.com/
http://www.mercury.com/us/products/quality-center/
http://www.mercury.com/us/products/quality-center/functional-testing/quicktest-professional/
http://www.mercury.com/us/products/quality-center/functional-testing/quicktest-professional/

	INTRODUCTION
	SERIES 60
	Series 60 platform
	Series 60 Graphical User Interface

	TESTING IN A SOFTWARE DEVELOPMENT PROJECT
	Testing levels
	Testing techniques
	Benefits of test automation

	IN-DEVICE SEARCH APPLICATION
	Searchable data
	Graphical user interface of In-Device Search application
	In-Device Search main view
	Grouped results view
	Single results view
	In-Device Search help

	TESTING ENVIRONMENT
	Testing tools

	TEST AUTOMATION IN TESTING OF SEARCH APPLICATION
	Mercury QuickTest Professional
	Test automation environment
	Test automation program
	Analyzing the test automation results

	PLANNING TESTS FOR IN-DEVICE SEARCH APPLICATION
	Master Test Plan
	Test specification
	Selecting test data
	Testing schedules

	TEST EXECUTION AND REPORTING THE RESULTS
	Running tests
	Error reporting and fix verification

	CONCLUSIONS
	REFERENCES

