.
g
TR L AAGA-HELIA

University of Applied Sciences

KotiPi: Developing a smart home application

with Raspberry Pi

Mirya Nezvitskaya

Bachelor’'s Thesis in
Business Information

Technology

August 2015

- Abstract
N
BTN L AAGA-HELIA

University of Applied Sciences 22.8.2015

Author
Mirya Nezvitskaya

Degree programme
Business Information Technology

Report/thesis title Number of pages
KotiPi: Developing a smart home application with Raspberry Pi and appendix pages
37+21

Nowadays smart home is an important segment of Internet of Things. This research is
created for enthusiasts who are interested in IoT and home automation and would like to

engineer it themselves.

Raspberry Pi is an excellent affordable computer that can be used for practical projects;
however there are no turnkey full home automation systems that would be available to a
user, though many parts of automation tasks in Raspberry Pi are available via tutorials, blogs
and forums. This project is a basic home automation system that is open-source, so it can

be used by anyone, and improved and developed further.

The idea of this project is to make functions usable via a web application that can be
accessed via a smart phone, a tablet or a laptop. The project also introduces areas for
improvement and ideas for future development that can bring this prototype to a fully

customized home automation system and even for commercial areas.

Overall, the project explains theoretical background of technologies and concepts used, how
to set up necessary environment, how to develop its features, and how to create a web
application. The evaluation and analysis have also been made in order to assess future

probability that such a project can be used commercially and privately.

Keywords
Automation, Embedded Systems, Control Engineering, Raspberry Pi, Smart home, Internet
of Things, PHP, JavaScript, Python, Bash

Abbreviations and Terms

App

ARM

Bash

CSS

CSl

DDNS

DIY

Ethernet

GitHub

GPIO

Ground (pins)

GUI

HTML

Hz

loT

IP

IT

JavaScript

Application

Advanced RISC Machines processor

UNIX shell and command language

Style sheet language

Camera Serial Interface

Dynamic Domain Name System

Do it yourself

Family of computer networking technologies

Platform for sharing code

General-purpose Input/Output

Integrated circuit power-supply

Graphical User Interface

Hypertext markup language

Hertz, the unit of frequency

Internet of Things

Internet Protocol

Information Technology

Dynamic programming language

kQ kilo ohm, SI unit of electrical resistance

LED Light-emitting diode

oS Operating System

Open Source Project developed with a free license

PHP Server-side scripting language

Pi Raspberry Pi

Python High-level programming language

SD Secure Digital

SSH Secure shell, cryptographic network protocol
SQLite Relational database management system
ul User Interface

URL Uniform Resource Locator

\Y, Volt

VLC videoLAN cross-platform multimedia player

Table of Contents

A 1 1 0 T [Tod 1 0] o PSR 1
1.1 Need for the appliCation...........oooii i 1
1.2 Thesis objectives and deliverables ... 2
1.3 DeliMItatioN.....ccooeieeeeeeeeeee e 3

2 Theoretical backgroUNdoooiiiiiiiii e e 4
2.1 HOME QUIOMALION ..oiiiiiiiiiiiiieiieeeeeee ettt 4
2.2 Embedded SYSIEMISo 4
P T = - =] o] o 1= ¢ V0 = RSP 5
2.4 RElayS @nd SENSOIS ... cciiiiiiiiiie it e et e e e e a e e 6
2.5 WED APPlICALION . .uue e 6

3 RESEAICN PIAN ... e 8
3.1 Traditional system developmENtcccccoiiiiiiiiiiiii e e 8
3.2 PIOJECE PIAN . 9
3.3 SOMWArE FEQUINEIMENTS.uuuiiiiiiiiiiiitiiieeieeeieie bbb bbbbeeeeebeeeebennnnnnes 10

4 NecesSary NVIFONMENTcciiiiiiiiiiieie e 11
4.1 Setting up Raspberry Pi's native OS, Raspbian..........cccccccvviiiiiiiiiici e, 11
4.2 Setting up SSH fOr remMOte 10QINuuuiiiiiiiiiiiiiiiiiiiiiiiie e 11
4.3 Setting up Nginx web server for a Web app...........euuevviiiiiiiiiiiiiiiiiiiiiee 13
4.4 Creation Of dAt@DASEuuiiiiii e e e e e e 13

5 Architecture and design of the SYyStem ... 15
5.1 Architecture of KOtPi.........uuuiiiiii i 15
5.2 DeSigN Of KOUPI ...cccoviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee et 16
5.3 Testing of the architecture’s system...........cccccevvviiiiiiiii 16

6 Developing the fEAIUIEScooi e e 20
6.1 Connection Of SENSOIS 10 Pi....ccccvvviiiiiiiiiiiiiiiiiee e 20
6.2 Controlling lights with Raspberry Pi with remote control outlets 21
6.3 Setting up music for alarm and web app to play......cccoeevviiviiiiiiiii e, 25
6.4 Setting up Raspberry Pi's camera module for sensing movement 26
6.5 Creating a web app and controlling all the features with itccccccceeii i 27
LG T 1= 2111 T 33

A =V 111 T= 11T] o PP 35

7.1 EVAIUALION OF TESUILS . eeeeiee e e 35

7.2 ProjeCt @ValUationoouuiiuiiiii e e e e e 35

7.3 FULUIre deVEIOPMENL.. ..o e e e 36
S TS0 101 0= PP PTPTTTR 37
] (=] €= o > RPN 38

Y o] o7 g Lo o] = PP P PP PPPPPPPPP 40

1 Introduction

It is paradoxical, yet true, to say, that the more we know, the more
ignorant we become in the absolute sense, for it is only through
enlightenment that we become conscious of our limitations.
Precisely one of the most gratifying results of intellectual evolution
is the continuous opening up of new and greater prospects.
Nikola Tesla

Nowadays, simplifying life tasks plays an important role of IT development. It is with
automation and loT that developers and researchers are being fascinated and determined
that it is the future where all IT development would go. Without any doubt, automating
everyday tasks can save a lot of time and effort. However, still these days home automation
products are not widely available and are quite expensive, so not everyone can afford them.
But a new trend in technology is DIY automation systems.

This project follows the trend of DIY philosophy, meaning it is not a ready-made system, but
combined by oneself, and is dedicated to creating a fully functional prototype of home
automation application system management with Raspberry Pi that can be used by anyone.
Since all of the software that is used in this project is open source and the hardware is
inexpensive, anyone can create and enjoy their own “smart home” application without big
expenses. Moreover, this project is licensed under Apache license, which is an open source

license, so anyone can use KotiPi for studying, using or modifying.

1.1 Need for the application

Currently there are no full smart home Raspberry Pi systems available, only separate
automation functions. However, Raspberry Pi is used for many practical projects. It is an
excellent inexpensive tool for learning and creating new solutions. Raspberry Pi has a rather
large community built around it with the purpose of sharing code, solutions and techniques
associated with the platform. Since the source code is open source, anyone can use this
prototype for developing their own smart home application. Also once the project is
complete and the results are satisfying, it can be published in Raspberry Pi Foundation
page or Raspberry Pi Foundation Blog as a part of open source projects written on
Raspberry Pi. Furthermore, a private stakeholder for this project, Matias Henri R6nnberg,
who is also acting as an active supporter and collaborator, plans on to continue improving

and developing this project from the prototype that is created.

1.2 Thesis objectives and deliverables

The thesis objectives are as follows:

1.

to use Raspberry Pi for engineering a smart home application

Several solutions for developing a smart home application can be deployed. How-
ever, as stated above, Raspberry Pi is used for its practicality. In this project there
is a working Raspberry Pi server with functional sensors and lights attached to it
through GPIO pins and a relay board; a working web application that can interact

with Raspberry Pi.
to develop a smart home application with Bash, Python, JavaScript and PHP

The target is to develop a working prototype of a smart home application. The
concrete and measurable result is a smart home application and an analysis written
about it. The project is concentrated on the back-end programming (reading output
from sensors, turning on/off relays on the relay board) as well as frond-end
programming (web application for the user). The application has 3 main modules,
which are: wake up call, lock house and unlock house. The lock house turns off all
the lights automatically, music and activates camera module that detects movement.
If the camera would detect movement an email is sent to a user about it; once the
user unlocks the house, the camera module is turned off. The wakeup call is a
smoother version of an alarm clock. Instead of an alarm tone, the application wakes
you up with music and lights turning on. Also the app controls outside lights, shows

inside temperature, and can play music.
to make the end product open-source, so anyone can learn how to use it

One critical point of this project is to make the prototype of a smart home application
available for everyone, so it can be used for studying, using and modifying the solu-
tion. The idea is to follow the open source philosophy and to contribute to the open
source. Thus, this project is registered under Apache license and is available on
GitHub.

1.3 Delimitation

For such a project with a narrow scope it is important to mention what does not belong to it
and should be delimitated. Since the research is not based on theoretical or literature
analysis, information about Raspberry Pi in general is omitted (how Raspberry works or
how GPIO pins work). However, Chapter 2, Theoretical Background, covers Raspberry Pi
basics. Also, this project does not cover Raspberry Pi Model A, Model B+ and 2 Model B.
Moreover, there are no other possible solutions or features of a web application other than
those that are mentioned in software requirements. Last, but not least, this project does not
cover the discussion of whether Raspberry Pi is the best feasible tool for home automation

application.

2 Theoretical background

Theoretical background covers general information and tools used for developing the smart
home application. Furthermore, it explains some concepts that are used for creating this

project.

2.1 Home automation

Home automation goes back to the beginning of the 20t century. Home appliances are

considered to be the first step into automation of home tasks. The first to ever be born was
the engine-powered vacuum cleaner in 1901. In the next 40 years other appliances were

invented, for example irons, washing machines, toasters, etc.

During 60s the first smart device was born, though a commercial failure, it was a device for
creating shopping lists, controlling temperature and turning different appliances off and on.
During 90s smart home became a very popular concept, and home automation became a
new multi-billion industry from affordable options to expensive unique automotive tasks.
Nowadays, home automation is mainly about security and energy-efficiency. (Hendricks, D.
The History of Smart Homes, 2014) Current home automation trends are DIY systems,
appliances, security, smart locks and loT. (Clauser, G. New Trends in Home Automation,
2014)

2.2 Embedded systems

Embedded system is a device that is used to control, monitor, and assist the operation of
equipment, machinery or plant. (Jain, P. Embedded System, Engineer's Garage, 2015)
Embedded systems are interacting with the outside world with the help of sensors, relays
and other systems, for example mechanical or electrical. Most commonly used examples

of embedded systems are navigation systems, mobile phones, internet servers, etc.

“Today, embedded systems are found in cell phones, digital cameras, camcord-
ers, portable video games, calculators, and personal digital assistants, micro-
wave ovens, answering machines, home security systems, washing machines,
lighting systems, fax machines, copiers, printers, and scanners, cash registers,

alarm systems, automated teller machines, transmission control, cruise control,

http://www.engineersgarage.com/articles/printers-types-working

Micro USB Povver:|

fuel injection, anti-lock brakes, active suspension and many other devices/

gadgets.” (Jain, P. Embedded System, Engineer’s Garage, 2015)

2.3 Raspberry Pi

Raspberry Pi is a small inexpensive single-board computer that was created in 2006 in

University of Cambridge as a learning tool for students. (Raspberry Pi Foundation, 2015)

Nowadays it is used both by professionals and amateurs. The power of Raspberry Piis in
GPIO pins that it has.

“These pins are a physical interface between the Pi and the outside world. They
are switches that you can turn on or off (input) or that the Pi can turn on or off
(output). Seventeen of the 26 pins are GPIO (system) pins; the others are power
(3.3V or 5V) and ground.” (Raspberry Pi Foundation, 2015)

Raspberry Pi has several models; the model used for this project is Model B. Figure 1 shows
the schema of Pi Model B.

RCA Video .
26 pins [Audio LED
0000000000000
0000000000000 HEREINE
] Broadcom LAN Controller
SD Card 2xUSB 2.0
i - LAN
HDMI CSI Connector Camera

Figure 1. Schema of Raspberry Pi Board B (Source: made by author)

2.3.1 Raspberry Pi as an embedded system

Since Raspberry Pi can communicate with an outside world, the most popular usage for
Raspberry Piis as a part of an embedded system, where other boards, sensors, etc. would
communicate with each other. Pi does that with the help of GPIO pins. Figure 2 provides a
detail schema of pins.

Ground (all blue pins)
| GPIO GPIO GPIO

GPIO GPIO GPIO

Figure 2. Schema of Pi pins on Model B (Source: made by author)

2.4 Relays and sensors

A relay is an electromechnanical switch made up of an electromagnet and a set of contacts.
A relay consists of 2 different circuits that are independent. In the first circuit a switch is
controlling power to electromagnet. The second circuit is being operated by an armature,
which is acting like a switch. (Bullock, M. How Relays Work, Electronics How Stuff Works,
2015) Relays are used to control a circuit with a low-power signal, for example, radio or
telephone. A sensor is a device that senses or detects some characteristics of the
environment, for example temperature or humidity. There are two types of sensors: analog
and digital. Raspberry Pi uses digital sensors. However, it is possible to attach analog

sensors to Raspberry Pi via a breadboard or an analog-to-digital converter.

2.5 Web application

Web applications are involved with lots of moving parts and interacting components.
(Purewal, S. Learning Web App Development, 2014) A web application simply put is a
program that runs in a web browser. It is created by a browser supported language. In this
project the front end part of the application is created using HTML, CSS, and JavaScript,
while back-end of this project is implemented with Bash, Python, PHP and JavaScript.
There are different technologies that can be used for web development. However, these

days the most crucial part is the responsive web style. Lots of devices are used that are
different in size, thus adjustable screen size is important for any web application. For this
application, also a responsive web style is used, so anyone from any device can access
without depending on the size of the application. Bootstrap CCS is an open source project,
it has many responsive web styles that can be used by anyone. One of the styles,
Jumbotron, is used in this project.

3 Research plan

Research plan covers the methodology of this project, project plan, as well as the intended
results of the project. It is particularly important in this project, since here is specified how

the work is conducted, how a system should work, and what should be the deliverables.

3.1 Traditional system development

Since this project has a narrow scope and only a prototype of a system is introduced, a
traditional system development cycle was chosen, as represented on figure 3. First, the
project’s priorities and opportunities are selected, where it is determined that a home
automation application with Raspberry Pi is needed, since there are no full turnkey
solutions, only parts of the system. Second, basic requirements are made and the intended
results are introduced. Third, the specifications of architecture and design are introduced,
where also the architecture is being tested and confirmed that it can be used as a feasible
solution. Fourth, the features are being developed and tested. And last, the system is being
evaluated, and the future development for improved system is being introduced in order to
continue development of this system.

Only basic requirements are being introduced, basic architecture and design, because
requirements engineering does not belong to the scope of this project, and the project’s
main concentration is on the development process, other than requirements engineering
process. However, it would be recommended, if such a project would be picked up as a
commercial project, a traditional IS Development cycle could be used, since this method’s

every single step is logical and rational.

s Determine how to address business opportuni-
) ystems ties and priorities. Conduct a feasibility study to
Ut”hieéﬂ:;;g'sgg lmE,erSDt' u‘itt':{m determine whether a new or improved busi-
problem or Feasibility Study ness system is a feasible solution.
opportunity Develop a project management plan and
l obtain managemeant approval,
. Systems Analyse the information needs of employees,
Dﬁ%gl?ﬁ;?%g“ Analysis customer, and other business stakeholders.
System Solution —t Fﬂﬁzdtiléu(r::al Develop the functional requirements of a system
Requirements that can meet business priorities and the needs
l of stakeholders.
Develop specifications for the hardware,
Sys’r%msdﬁ-nii_lﬁ'ts software, people, network and data
) 5;‘;;‘;5: resources, and the info rmational products
specifications that will satisfy the functional requirements
of the proposed business information
1 systerm.
) Systems Acquire (or develop) hardwarg and soft-
Implermenting and +——+ | Impléementation ware. Test the system, and train people to
m?'?é?;‘;?%;he Product: operate and use it.
sygem Salution Pperational System Convert to the new business system,
‘l' Manage the effects of system changes an
Systems end users.
M%p;s:ggce Use a post-implementation review process
Improved System | to monitor, evaluate, and modify the busi-
ness system as needed,

Figure 3. Traditional System Development Cycle (Source: O’Brien, J.A. and Marakas, G.
Introduction to Information Systems, 2005)

3.2 Project plan

The development part of the project can be divided into 4 parts:

1. Setting up the necessary environment. This part includes setting up Raspbian
OS, setting up a cryptographic network protocol (SSH) to allow remote login, setting

up a web server for a web application and creation of a database with SQLite.

2. Architecture and design of the system and testing the architecture of a smart
home application. This covers an architecture design and a preliminary system
design, as well as the connection of a relay board to Raspberry Pi, turn it on/off with
Python and Bash scripts and lastly, turn it on/off with PHP through a web server to

test the architecture.

3. Developing features. After necessary environment is set up, all the features that
are mentioned in Chapter 3.3., Software requirements, are developed and

explained.

4. Testing. The final part compares Chapter 3.3, Software requirements, features of
the project with the actual results, after which the testing is done. Since the scope

of this project is narrow, automated testing is omitted.

3.3 Software requirements

Since this project has a narrow scope, it is necessary to also point out the requirements of

the project and intended results.

— aweb app should be working in the local area network

— an app can turn on/off outside and inside lights

— an app shows temperature in live time (being updated every second)

— auser can set up an alarm clock that will be remembered by the app

— auser can play music with the app

— anapp, when house is locked, detects movement with the help of a camera by calculating
pixels, and sends an email to a user

— a history can be accessible via an app

These requirements are the foundation of the development of the features, and are
precisely followed during the system development, as well as used during final part of

development, which is testing.

10

4 Necessary environment

In this part, how to set up the necessary environment for this project is explained.

4.1 Setting up Raspberry Pi’s native OS, Raspbian

Any Linux OS that has been ported for the ARM processor of the Raspberry Pi can be used
with Raspberry Pi. The list of these can be found on the official Raspberry Pi site
(raspberrypi.org). For this project, Raspberry Pi native OS, Raspbian, is used. The official
image can be downloaded from the official Raspbian page (raspbian.org). After
downloading the OS image, it can be written onto an SD card using the dd utility found in

most Linux distributions with the following command as a root user:

dd bs=4M if=nameofimage.img of=/path/to/SDcard

The dd utility is a Linux utility for converting and copying files; the arguments used are block
size (bs=), source (if=) and destination (of=). Once OS is written onto an SD card, the card
needs to be put into the SD card slot of the Raspberry Pi, and the machine needs to be
turned on, by plugging it in. Configuration settings need to be set up by localizing keyboard,
time, etc. In this step, an important parts in configuration are to enable camera and to enable

SSH. Raspbian has a set-up utility called raspi-config through which all of these

settings can be done.

4.2 Setting up SSH for remote login

Raspberry Pi can be accessed via SSH, for this a local IP of Pi should be known. In order

to learn machine’s IP address a simple Bash command can be typed:

ifconfig

Once the command is being executed, network interface configuration is shown. The Pi's
local IP address can be found under ethO inet addr as shown on figure 4. Once
machine's IP address is known, Pi can now be accessible by any machine in local network.
In order to access it on a Linux machine (or any machine that supports Bash interpreter) a

simple SSH command is used:

11

ssh user@youripaddress

Where a default user in Raspberry Pi is pi, and your IP address is the address of Pi machine.
After executing the command, the program asks for the password; the default password for
pi is raspberry. Once the password is entered successfully it is important to change your
password. A secure connection with Raspberry Pi via SSH has been set. An example is

shown on figure 5.

~ Terminal - pi@raspberrypi: ~ - + X
File Edit View Terminal Tabs Help
pi@raspberrypi: ~fwaww X | pi@raspberrypi: ~ X

mitt Lic

pi@raspberrypi
Figure 4. Command ifconfig being executed (Source: author’s screenshot)

b Terminal - pi@raspberrypi: ~ - ==
File Edit Wiew Terminal Tabs Help
pi@raspberrypi: ~ X pi@raspberrypi: ~ X | pi@raspberrypi: ~ >

m rya-HpP ssh pi@l192.1 .1.200

PREEMPT Thu

ABSOLUTELY NO WARRANTY, to the

n ri May 1 11 2615 from mirya-hp-mini-5162

ygim:
aspberrypi

Figure 5. Once SSH is accessed, welcoming screen (Source: author’s screenshot)

12

4.3 Setting up Nginx web server for aweb app

Nginx is an open source HTTP server and proxy. In order to download it onto Raspberry Pi,
the apt-get command, which is a command for the advanced packaging tool, needs to be

used as a root user:

apt-get nginx

After Nginx has been downloaded, it is important to check if PHP is available on a machine,
if not it is necessary to install PHP by executing next command as a root user:

apt-get install php5-fpm php-apc

Now that Nginx and PHP are available on Raspberry Pi machine, several modifications are
needed to be made onto Nginx configuration to add PHP to Nginx, so that instead of basic
HTML files, Nginx can also read PHP files; as a root user it is heeded to go into Nginx

configuration file, where nano is a text editor:

nano /etc/nginx/sites-available/default

In Appendix 1 the modified configuration is attached. Once the configuration is set, Nginx

has added PHP to be used by the web server.

4.4 Creation of database

Database is needed only if some data needs to be stored. In the case of this project, data
is needed for temperature data, and also to store users and their passwords. For this project
a simple SQLite database is created. In order to create a database, SQLite needs to be

installed on Raspberry Pi, for this the following command is executed as a root user:

apt-get install sglite3

For this project SQLite3 is used, other than SQLite, because SQLite3 has more functions
that can be used for the Pi's database. After SQLite has been installed, the project's

database can be created. In order to create a database sglite3 nameofdatabase

13

needs to be executed in bash terminal. Next the tables are created with their values, and

the tables can also be filled with test data, for now. Figure 6 shows the tables that are used

for the database for this project.

> pi_database.db - Mousepad

File Edit View Text Document Navigation Help

create table user(
userid INTEGER PRIMARY KEY,
login TEXT,
password TEXT,
email TEXT,
phonenumber TEXT,
firstname TEXT,
lastname TEXT
)i
create table relay(
relayid INTEGER PRIMARY KEY,
relayname TEXT,
bemgpio INTEGER,
relaystate INTEGER

create table sensor(
sensorid INTEGER PRIMARY KEY,
sensorname TEXT,
address TEXT
)i
create table templog(
tempid INTEGER PRIMARY KEY,
value INTEGER,
date DATETIME,
FOREIGN KEY(tempid) REFERENCES sensor(sensorid)
)i
create table wakeup(
wakeupid INTEGER PRIMARY KEY,
user INTEGER,
time DATETIME,
state INTEGER,
musicscript TEXT,
lightscript TEXT,
FOREIGN KEY(user) REFERENCES user(userid)

Figure 6. Database for this project (Source

: made by author)

14

Filetype: None Line: 13 Column: 24

5 Architecture and design of the system

This chapter explains the architecture and design of the system, as well as the architecture
is being tested, by connecting relay board to Raspberry Pi, turning it on/off with Python and

then with web app.

5.1 Architecture of KotiPi

The core architecture of this project is simple: Raspberry Pi interacts with sensors, a relay
board and a camera module through Python or Bash; PHP then sends the scripts’ data to
a web server, where JavaScript together with HTML and CSS translate the data into human
readable form, as well as inserting data into a web app. Figure 7 represents how the

architecture of such project would work.

DEVELOPER

SENSORS/RELAY/CAMERA

Figure 7. Architecture of KotiPi (Source: made by author)

15

5.2 Design of KotiPi

The main concentration of this project is to make a web application interact and get data
from sensors, relays and a camera module; however, front-end is still important for this
project. To make the application creation easier, some CSS has been used from Bootstrap’s
Narrow Jumbotron. Bootstrap is a framework to create responsive web sites. Since this app
can be used by a smartphone, a laptop or a tablet, a responsive web page is an important
aspect of the design for this project. Bootstrap’s Narrow Jumbotron is a suitable library for
such a project. It can be downloaded from the official Bootstrap page (getbootstrap.com).
In this project, only Narrow Jumbotron’s CSS files are used. Figure 8 represent a sketch of

a web app

ON

OFF

Figure 8. Design of KotiPi (Source: made by author)

5.3 Testing of the architecture’s system

Relay board is a switch with a low-voltage signal, similar to GPIO pins that Raspberry Pi

has. The relay board used for this project is Sainsmart 5V 8 channel relay board.

In order to connect a relay board to Pi, first Raspberry Pi needs to be shut down and

unplugged. Once Pi is unplugged, the relay’s female cables need to be connected into

16

Raspberry Pi’s pins; the pins to connect them in should match, for example a ground female
cable goes into a ground pin slot. In figure 2 a sketch of Raspberry Pi pins provides detailed
information of pins’ position on the board. (Pater, T. Connect a relay board to your
Raspberry Pi. 2015)

5.3.1 Python script to turn on/off relays

In order to check if the relay board is connected correctly, a simple Python script can be
created for turning on/off relay boards’ LED lights. The script imports Raspberry Pi GPIO,
sets the loop through pins and turns on lights corresponding to the pin. Once the script is

run, the LED lights on relay board go on and a click can be heard:

#! /usr/bin/python

import RPi.GPIO as GPIO

import time

GPIO.setmode (GPIO.BCM)

#pin numbers should be specified

pinNumbers = [17, 23]

#create a loop

for i in pinNumbers:
GPIO.setup (i, GPIO.OUT)
GPIO.output (i, GPIO.HIGH)

#time to sleep in between

sleepTime = 2

main look

try:
GPIO.output (17, GPIO.LOW)
print “1”
time.sleep(sleepTime)
GPIO.output (23, GPIO.LOW)
print “2”
time.sleep (sleepTime)

GPIO.cleanup ()

print “Bye”

17

except KeyboardInterrupt:
print “Quit”

GPIO.cleanup ()

5.3.2 Accessing relay controls with web

In order to access a relay board with web, first of all a GPIO interface library needs to be
installed, called wiringPi. In order to install wiringPi library, in terminal the following
commands needs to be executed as a root, first git needs to be installed, and the GPIO
interface library from git, which is an open-source control system, is installed:

apt-get install git-core
git clone git://git.drogon.net/wiringPi

Now it is needed to clone the library from git, and the library needs to be installed and built:

cd wiringPi
git pull origin
./build

After installing and building wiringPi library, it is much easier to access GPIO pins. With
wiringPi library, it is possible to turn on and off relays via simple Bash command where 17

is the number of pin, where one of the relay boards is connected:

gpio mode 17 out
gpio write 17 1
gpio write 17 O

These commands first specify that pin 17 produces an output, next the relay board is
switched on, and then switched off. Next, a simple webpage can be created to turn on and
off arelay board. Nginx stores all the filesin /usr/share/nginx/www; there 2 new files
need to be created, one for turning on relay — turnon.php, where it is specified that the

output is produced, and the relay goes on:

18

<?php
system (gpio mode 17 out);
system(gpio write 17 1);

?>

Another file needs to be created to turn off relay — turnoff.php; in which the program turns
off the relay.

<?php
system (gpio mode 17 out);
system(gpio write 17 0);

?>

Now web access needs to be tested, in web browser the following is executed, where IP

address is the Pi's IP address:

ipaddress/turnon.php
ipaddress/turnoff.php

When first page is executed, relay board is switched on, the light can be seen and the click

can be heard, while the second page, once executed, turns relay off.

19

6 Developing the features

This chapter contains all of the developing features for KotiPi, as well as the creation of the

web app.

6.1 Connection of sensors to Pi

There are different sensors that can be used for Raspberry Pi, for example, humidity or
infrared motion sensor. In this project, only one sensor is used, temperature sensor that

measures house’s temperature and is updated every second.

6.1.1 Connecting temperature sensor to Pi

Digital temperature sensor that is used for Raspberry Pi for this project is Sainsmart. In
order for a temperature sensor to work, a 4.7kQ resistor needs to be soldered onto the
sensor between pin 2 and 3. Then the temperature sensor is connected into Raspberry Pi
with dupont wires to the corresponding pins, as shown on figure 2.

Once the sensor is connected to Raspberry Pi the kernel modules need to be enabled to
support one wire sensors, which in this case measure temperature. The command for

enabling and disabling kernel modules is modprobe, which can only be run as a root user:

modprobe wl-gpio modprobe wl-therm

Once the kernel module is loaded, the temperature values are located in
/sys/bus/wl/devices. Once the folder is accessed via the terminal, in this folder
there is a unigue alphanumerical address for each sensor, which is connected to Raspberry
Pi, next a sensor's folder is accessed, and inside the folder, the command for concatenating

the file that houses the output of the sensor needs to be executed:

cat wl slave

Two lines are printed, where on the second line the section that starts with “t=" is the
temperature degrees in Celsius. In figure 9 an example is shown. (Kirk, M. Raspberry Pi

Temperature Sensor. 2015)

20

b Terminal - pi@raspberrypi: /sys/bus/w1/devices/28-00043d47 caff - + X
File Edit View Terminal Tabs Help

pi@raspberrypi: ~ X pi@raspberrypi: ~ X | pi@raspberrypi: fsys/bus... X

#755 PREEMPT Thu Feb 12 17:14:31 GMT 2015 armvbl

are free software;
ribed in the

xrent

jin: F a) 1 2015 from mirya-hp-mini-51682

;-:rt::rer' rypi_

igraspberrypi
0043d47caff wl bus masterl
igraspberrypi

Figure 9. Concatenated file of the temperature sensor (Source: author’s screenshot)

6.2 Controlling lights with Raspberry Pi with remote control outlets

There are several options to control lights with the Raspberry Pi. One is to connect the
power wires from the light into the output slots of a relay board, so when the relay board is
switched on, the light is switched on. However, this option is quite dangerous, since it is
needed to work with open wires that are 230V, and knowledge of basic electronics is
required. Much simpler and safer solution is to buy wireless remote control outlets. For this
project a standard 230V 50Hz package of wireless remote control outlets from Clas Ohlson

is used, as you can see on figure 10.

In order to make a light turn on and off with a relay board, a remote control needs to be
disassembled and soldered to wires, that would be connected to a relay board. First of all,
a plastic container needs to be removed from the remote control, as shown on figure 11.
Once a plastic container is removed, a battery and buttons on/off can be seen. These
buttons need to be connected to the pins on the relay board, so when Pi sends a signal to

the relay board that it should go on, the button goes on, and a wireless outlet goes on also.

21

Any kind of wires can be used, for this project wires from an old Ethernet cable is used. As
well as buttons, a battery needs to be connected to the power, the power of this remote
control is 3V. Figure 12 shows how and where to solder a wire for the power. In order to
solder: first, a soldering iron needs to be warmed up, once it is hot, a small part of a solder
is used to heat up to hold together the wire and the power; once it is done, it needs to be
cooled off.

Figure 10. Remote control with a wireless outlet (Source: photo by author)

22

$
o

~N
N
(o
wn

EMW203T
12062012

@ ® wze3ss
CNUS 5

Figure 11. Inside remote controller (Source: photo by author)

WEEiieeie®
) A ARAR
2L

Figure 12. Solder connects power and a wire (Source: photo by author)

23

The buttons on the remote control need to be soldered to the wires as well. In order to solder
them, it is important to understand how such buttons work. For each wireless outlet there
are two buttons: on and off. Each button (on or off) turns on for a second and then goes off.
Figure 13 shows where each wire needs to be soldered — one inside and one outside, which
are then connected to a single relay, which can then make or break the connection between
leads simulating the button being pressed. Once everything is soldered, the wires can be
attached to the correct terminals on the relay board. To check if everything is set up
correctly, two PHP scripts can be run, that were created in Chapter 5.3.2, Accessing relay
controls with web, script turnon.php and script turnoff.php. However, since the structure of
turning on and off is different with remote control buttons, it is needed to modify those
scripts. In one script the pin needs to go on, then wait for a second, and go off. To turn the
light on pin 17 is used:

<?php
system(gpio mode 17 out);
system(gpio write 17 1);
sleep(1l);
system(gpio write 17 0);
?>

To turn the light off, pin 23 is used:

<?php
system(gpio mode 23 out);
system(gpio write 23 1);
sleep(l);
system(gpio write 23 0);
?>

24

Figure 13. Where the wires are to the buttons (Source: photo by author)

6.3 Setting up music for alarm and web app to play

When the alarm starts, music is played. It is possible to create a playlist and store it locally;
however, it would require capacity to be used on the SD card. Another way is to download
an internet radio playlist, since the music is streamed online, very little capacity is needed
to store a playlist file. For this project, a playlist is used from RadioTunes (radiotunes.com).
RadioTunes is an online radio, where different playlists can be downloaded and listened
through different music players. For this project, VLC player is used. In order to download
VLC player an apt-get command needs to be executed from Terminal as a root user:

apt-get install vlc browser-plugin-vlc

Once VLC player is downloaded, a change to the binary file for the VLC player needs to be
made, because VLC commands cannot be run with a root user privilege. The next command
needs to be executed as a root user:

25

nano /usr/bin/vlc

There a word geteuid, a function that returns user ID, needs to be replaced with
getppid, a function that returns the parent process ID of the process that is being called.
Once the file is saved, VLC commands can now be accessible for a root user also. In the
production environment a more elegant solution should be made as manually editing binary
files may result in unwanted behaviour. (Alam, S. Hacker's Garage, VLC is not supposed

to be run as root. Sorry — Solution, 2015)

In this project the playlist is also ran without a display, just through an SSH connection. In
order to do this the following Bash command needs to be executed (once the playlist is
downloaded onto the Pi machine):

cvlc --x1l-display :0 RadioTunes-RootsReggae.pls

In this command x11-display :0 is an X server for windowing GUI programs, while display
:0 tells GUI programs how to communicate with GUI, in this case that VLC is starting from
display number O (the first display); RadioTunes-RootsReggae.pls is the name of the file of

a streaming playlist.

6.4 Setting up Raspberry Pi’s camera module for sensing movement

For this project an official Raspberry Pi camera module is used, which is needed to be
connected into the CSI connector port, shown on figure 1. Once it is connected, Raspberry

Pi needs to be updated, two commands need to be executed in Terminal as a root user:

apt-get update apt-get upgrade

Once all the necessary updates have been made to Raspberry Pi, a simple Bash command

can be executed to take a photo from the camera and to check if it works:

raspistill -o image.jpg

26

There are two main commands used for Raspberry Pi camera module: raspistill for
taking images, and raspivid for taking videos. These commands have some

parameters that can be used with them:

— -t 1000 for recording 1000 milliseconds (1 second) video, can be any amount
— -vf for flipping vertically
— -hf for flipping horizontally

(Raspberry Pi Foundation, Camera Module, 2015)

In this project, the camera is used for sensing motion by calculating pixels in the frame. In
order to create such a script, first an image Python library needs to be installed as a root

user:

apt-get install python-imaging-tk

Once the library is installed a Python script for sensing motion can be created. A full script
is attached to Appendix 2. The script works so, that it watches for a motion, while piping an
image from raspistill to analyse and process. Once the motion is detected it calls raspistill
that takes a high-resolution image to the disk. The script then checks for the free space that
is available, and if none is available it starts to erase old images. (Modified from Raspberry

Pi Foundation, Lightweight python motion detection, 2013)

6.5 Creating aweb app and controlling all the features with it

This chapter goes through basics of creating a web app for this project. The source code
for this web app is available on GitHub (https://github.com/miryanezvitskaya) and in

Appendix 3.

6.5.1 Creating home page

The main two pages for this project are index.php and home . php. These files need to
be created in Nginx web server pages in /usr/share/nginx/www. There these two
files need to be created, and also it is the location for downloading Bootstrap’s Jumbotron.
In this file, the previous two PHP files should be available as well: turnon.php and

turnoff.php. These files are being used for turning on and off inside light with the

27

remote control attached to a relay board and a wireless outlet. All of the files created for the

web app need to be kept in this folder.

6.5.2 Adding lights to be controlled by the web app

As stated previously, in Chapter 6.2, Lights, two PHP files were already modified for turning
on and off inside lights. The same needs to be done for outside lights. In order to do this, it
is needed to know in which pins the buttons on and off are connected from the remote
control in the relay board. Once it is learnt, two new PHP files can be created, for example,
outsideon.php and outsideoff.php. The syntax is the same as in turning inside
lights on and off. In this project, the pin for turning on outside light is 24, while for turning off
is 22:

<?php
system(gpio mode 24 out);
system(gpio write 24 1);
sleep (1)
system(gpio write 24 0);
?>
<?php
system(gpio mode 22 out);
system(gpio write 22 1);
sleep (1)
system(gpio write 22 0);
?>

Once it is tested that two PHP files work, a JavaScript function can be created in order to
control these two files from the home page with buttons. (Tinkernut. Making Raspberry Pi
Web Controls. 2015)

The syntax for turning on lights is as follows (outside or inside, depending on the PHP file

that would be opened by JavaScript):

28

$ (document) .ready (function () {
S('"clickON') .click (function () {
var a = new XMLHttpRequest()
a.open ("GET", "turnon.php");
a.onreadystatechange=function ()

if (a.readystatechange=function () {
if (a.readyState==4) {
if (a.status == 200)

else alert ("HTTP error");

a.send();

1)

1)
The same syntax goes for turning off the lights, though when JavaScript opens up a file, a

”

PHP file needs to be addressed there for turning off the lights (a.open(*GET”, “turnoff.php”)).

Once JavaScript functions are ready, two buttons can be created for turning on and off
buttons in home page. In the body of a home file the following syntax needs to be put:

<button type="button" id="clickON">ON</button>

<button type="button" id="clickOFF">OFF</button>

Then the home page needs to be accessed by going into a web browser and typing IP
address of Pi machine/home.php. Two buttons should be seen “ON” and “OFF”, when
clicked lights should go on and off. The same process is used for the outside lights, creating
two JavaScript functions for reading PHP files for turning on and off files. Then the files are

inserted into the button ID.

6.5.3 Temperature data to the web app

In order to read temperature data on the web app, first it needs to be collected and sent by
a PHP file. (Modified script from Henrik, N. PHP Temperature Monitor. Raspberry Pi

Foundation. 2013) A new PHP file needs to be created; there PHP opens the temperature

29

sensor, gets the data, transfers the data into human readable form (makes a decimal from

the integer format as it is shown by the Terminal), and last, sends the data it got:

<?php

$file = '/sys/devices/wl bus masterl/28-
00043e0£55ff/wl slave';

$lines = file($file);

Stemp = explode('=', S$lines[1]);
Stemp = number format ($temp(l] / 1000, 1, ',', '');
echo S$temp . " C";

?>

Then a JavaScript function needs to be created in home file in order to get the data from
the PHP file, where first the interval is set as to how often the function gets the data from
the PHP file (in this project every second):

var auto refresh =
setInterval (function ()

{
$('#load tweets').load('readtempdata.php');
}, 1000);

In order to get this data to the home page, the ID of this JavaScript function needs to be

inserted:

<label id="load tweets”></label>

6.5.4 Controlling music through web app

In order to play music through the web app, the data needs to be sent into PHP file:

30

<?php
$outcome = shell exec(‘cvlc --xll-display :0 RadioTunes-
RootsReggapls’) ;

?>

6.5.5 Adding lock/unlock house to the web app

For locking and unlocking the house, a motion Python script is needed that was created in
Chapter 6.4, Camera. (The full script is available in Appendix 2). For locking the house the
JavaScript functions for turning off the lights are needed as well (in Chapter 6.5.4, Lights).
In order for the Python script to be available on the web app, first a PHP file reads the data
from the Python script, then a JavaScript function sets the interval to run the PHP file all the
time, while the house is locked. In order to do so, first a PHP file needs to be created, where
the data from a Python file is read:

<?php
Sresult=system (python motion.py) ;
exec (Sresult) ;

?>

Now a JavaScript function needs to be created for getting data from a PHP file and also

running the Python script constantly, while the lock house is on:

var auto refresh = setlInterval (

S (document) . ready (function () {
S('motionON) .click (function () {

var a = new XMLHttpRequest()

a.open ("GET", "motionon.php"):;
a.onreadystatechange=function ()

if (a.readystatechange=function () {
if (a.readyState==4) {
if (a.status == 200)

else alert ("HTTP error");

31

a.send();

1)
})71000) ;

6.5.6 Final configuration and hardware

The features can be expanded and improved, if needed. Once the project is complete, and
the desired modifications are made, the system can go “online”. In the scope of this project,
the system is only available on a local network. It is always available on a local network, as
long as Raspberry Pi is on. Nginx server is known to sometimes cause problems and is
needed to be restarted. In this case, crontab can be used to schedule nightly restart of
Raspberry Pi and Nginx. Also it is recommended to not update and upgrade Raspberry Pi
often, as new libraries and kernels can interact with the current ones that are used by the
web app. If upgrade is required, it is recommended to back up all the files and spend some
time carefully upgrading and updating the machine. If power outage is known to happen, a
UPS (uninterruptible power supply) is recommended to get, so the web server would never
go down. On Figure 14, a hardware of this embedded system can be seen. The web
application’s full source code is available in Appendix 3. The screenshots of different pages
of the web app on different devices are available in Appendix 4. The app is resizable and is
in correspondence with the initial mock-up design of KotiPi in Chapter 5.2, Design of KotiPi.

The logo of KotiPi has been added as well.

32

Figure 14. KotiPi hardware (Source: photo by author)

6.6 Testing

Since the project has quite a narrow scope, the automated debugging testing of the system
is omitted this time, and the testing process compares only the intended results that were
introduced in Chapter 3.3, Software requirements. During the creation of this project, each
feature was tested individually to make sure it works, or which features are needed to be
improved. The app is available on the local area network twenty-four seven. A user can
easily turn on and off the outside and inside lights. The app shows temperature in live time,
being updated every second. A user can set up an alarm, which once it's on, will turn on
the inside light and start the playlist. A user can play a playlist anytime by turning the button
on, or off if to turn off music. A user can lock or unlock the house.

33

6.6.1 Minor shortcomings

The sending of the email about the intruder does not work. In the first prototype, it is possible
to send an email to an administrator, however, not to a user. In second prototype, this is the
first part of the application that is prioritized. Second, because of such a short timeline, not
all data is available in the history, only the temperature, name of sensors, and functions of
relays. History tab in the app can be improved and developed further, for example, it can
also contain all the photos that the web app takes.

34

7 Evaluation

This chapter describes the evaluation of results excluding testing that was done in Chapter
7, Testing. Furthermore, a full project evaluation is conducted, as well as ideas for future

development are introduced.

7.1 Evaluation of results

For the home automation application, the testing can be found in previous Chapter. 7.
However, that testing only covers the web app itself. It is also important to evaluate the
results of the development as a whole. There were several minor shortcomings during the
development, the main one being a complicated set up. It turned out to be much more
challenging to write scripts in Bash and Python, then to make scripts accessible with PHP,
and to create a user interface with JavaScript, HTML and CSS. For the next project, it would
be recommended to use a Python framework, for example Django or Flask. However, such
challenges can be considered an advantage if new things are being learnt constantly.
Otherwise, the results of this project as a whole are quite satisfying; during the development
new technologies have been learnt, and a prototype of a home automation application has
been made.

7.2 Project evaluation

This project started as an idea to learn how to use basics of engineering embedded
systems. It turned to be more time-consuming that originally planned. The work time was
400 hours. The main purpose of this project was to create a prototype of a home automation
system from an idea. In order to realize such a project in real life and make it available to
more users more time is needed, as well as knowledge. Only with thoroughness,
forethought of logical actions, testing the system in practice in order to adapt it to real life

such a system can become a turnkey solution.

During the process, a small survey was conducted (10 people, different age group) with the
purpose to understand the chances of the prospect of realization of such a system. It is
clearly quite common for people over 40 to be concerned with such a project, main reasons
being safety and security of a home automation application. However, the younger age
group agreed that home automation makes life easier and more enjoyable, since the daily

tasks are outsourced to a machine.

35

7.3 Future development

Since the timeline of this project was tight, only a basic working prototype of Raspberry Pi
home automation app was created. In future, more features and improvements can be
made. First of all, it would be quite useful to set up a DDNS for this project. A DDNS is a
dynamic domain name system that is updating a name server in DNS in real time
automatically, allowing the user to type a URL. Currently, the system can be accessed only
on a local network, but with DDNS it can be accessed anywhere. In particular, No-IP
services can be used. They provide a free name or a custom name that can be bought for

a small fee.

Currently, the system does not let the user to customize a lot of things. In particular, he/she
can’t change what music to play on the web app, how often a temperature sensor is
updating its data, or what features are set for alarm or lock/unlock house. In future
development, more freedom could be provided to a user, even with some administration
tasks. The system becomes interesting for a user to use, when there are options to choose

from.

Furthermore, better security can be introduced into such a system, particularly if the
application would be accessible through public internet. For example, now the passwords
are stored as plain text in the database; however, the passwords should be hashed and/or
salted in the database, so they can’t be stolen. Last, but not least, since Raspberry Pi acts
as a web server in this project, it can also become a cloud, where a user can upload and

store files.

36

8 Summary

The purpose of this project was to create a simple working open source Raspberry Pi home
automation application, named KotiPi. During the process, some theoretical background as
well as how to set up necessary environment, how to develop features of automation, and
how to create a web app were presented. Anyone can create such a system from scratch
following this project. The project also introduced the ideas for future development, and how
to make such a project into a turnkey solution. Shortcomings of the project were also

mentioned, so anyone can improve it, and develop it further.

Internet of Things is growing and expanding; it is important to follow new innovative
technologies, however like Nikola Tesla said “the more we know, the more ignorant we
become”, thus only by learning and continuing to grow “intellectual evolution is opening up
of new and greater prospects”. (Nikola Tesla) Home automation simplifies everyday tasks

and helps in freeing time for acquiring new knowledge and explore the world of unknown.

37

References

Alam, S. (2015). VLC is not supposed to run as root. Sorry. — Solution. URL:

www.hackersgarage.com/vic-is-not-supposed-to-be-run-as-root-sorry-solution.html/

Brainflakes. (2013). Raspberry Pi Foundation. Lightweight Python Motion Detection. URL:
www.raspberrypi.org/forums/viewtopic.php?t=45235/

Bullock, M. (2015). How relays work. URL: electronics.howstuffworks.com/relay.htm/

Clauser, G. (2014) New Trends in Home Automation. URL:

http://www.electronichouse.com/daily/smart-home/new-trends-in-home-automation/

Hendricks, D. (2014). The History of Smart Homes. URL:

www.iotevolutionworld.com/m2m/articles/376816-history-smart-homes.htm/

Henrik, N. (2013) PHP temperature monitor. URL:
www.raspberrypi.org/forums/viewtopic.php?t=64902&p=479148/

Jain, P. (2015). Embedded System. URL: www.engineersgarage.com/articles/embedded-

systems/

Kirk, M. (2015). Raspberry Pi Temperature Sensor. URL:

www.cl.cam.ac.uk/projects/raspberrypi/tutorials/temperature/

O’Brien, J.A., and Marakas, G. (2005). Introduction to Information Systems. New York.

Pater, T. (2015). Connect your relay board to your Raspberry Pi. URL:
www.trafex.nl/2014/08/25/connect-a-relay-board-to-your-raspberry-pi/

Purewal, S. (2014) Learning Web App Development. O'Reilly.

Raspberry Pi Foundation. (2015). GPIO: Raspberry Pi Models A and B. URL:

www.raspberrypi.org/documentation/usage/gpio/

38

http://www.iotevolutionworld.com/m2m/articles/376816-history-smart-homes.htm/
http://www.iotevolutionworld.com/m2m/articles/376816-history-smart-homes.htm/
http://www.engineersgarage.com/articles/embedded-systems
http://www.engineersgarage.com/articles/embedded-systems
http://www.engineersgarage.com/articles/embedded-systems
http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/temperature
https://www.trafex.nl/2014/08/25/connect-a-relay-board-to-your-raspberry-pi/
https://www.trafex.nl/2014/08/25/connect-a-relay-board-to-your-raspberry-pi/
http://www.raspberrypi.org/documentation/usage/gpio/
http://www.raspberrypi.org/documentation/usage/gpio/

Raspberry Pi Foundation. (2015). Camera Configuration. URL:

https://www.raspberrypi.org/documentation/configuration/camera.md/

Tinkernut. (2015). Making Raspberry Pi Web Controls. URL:
www.youtube.com/watch?v=EAMLWbShFFQ/

39

https://www.raspberrypi.org/documentation/configuration/camera.md
https://www.raspberrypi.org/documentation/configuration/camera.md

Appendices

Appendix 1. Nginx Configuration

(V= B) I B < A R

(]

B R N

Fed B Bd BI BI BRI B I R J
W00 =l noun

L5y W'Y
[=)

L5 [F S Ry A R Y |
L) I = R 8]

You may add here your
server {
...
#}
statements for each of your virtual hosts to this file
You should look at the following URL's in order to grasp a solid understanding
of Nginx configuration files in order to fully unleash the power of Nginx.
http://wiki.nginx.org/Pitfalls
http://wiki.nginx.org/QuickStart
http://wiki.nginx.org/Configuration
2
Generally, you will want to move this file somewhere, and start with a clean
file but keep this around for reference. Or just disable in sites-enabled.
#
Please see fusr/share/doc/nginx-doc/examples/ for more detailed examples.
#
server {
#listen 80; ## listen for ipwd; this line is default and implied
#listen [::]1:80 default_server ipvBonly=on; ## listen for ipvé
#lisays php:ta varten
listen 88;

server_name Sdomain_name;

#root Svar/www;

index index.html index.htm;

access log fvar/log/nginx/access.log;
error_log /var/log/nginx/error.log;
location ~\.php$ {

fastcgi pass unix:/var/run/php5-fpm.sock;
fastcgi split_path_info ~(.+\.php)(/.*)$;
fastcgi index index.php;

fastcgl_param SCRIPT _FILENAME $document_root$fastcgl script_name;
fastcgl param HTTPS off;

try_files Suri =404;

include fastcgi params;

}

40

36
37
38
39
40

42
43
44
45
46
47
43
49
50

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
63
69

root Jusr/share/nginx/www;

index index.html index.htm index.php;
Make site accessible from http://localhost/

server name localhost;
location / {

First attempt to serve request as file, then

as directory, then fall back to displaying a 464.
try files Suri $uri/ /index.html;

Uncomment to enable naxsi on this location

include /fetc/nginx/naxsi.rules

h;

location /doc/ {
alias fusr/share/sdoc/;
autoindex on;
allow 127.0.08.1;
allow ::1;
deny all;

1

Only for nginx-naxsi used with nginx-naxsi-ui :

#location /RequestDenied {

proxy pass http://127.0.0.1:8080;

#}
#error_page 404 /404 .html;

process denied requests

redirect server error pages to the static page /50x.html

#

#error_page 5080 582 503 584 /50x.html;

#location = /58x.html {
root Jusr/share/nginx/www;

#}

pass the PHP scripts to FastCGI server listening on 127.8.0.1:90080

=
#location ~ '\ .php% {

fastcgi split path_info ~(.+\.php){/.+)5;

NOTE: You should have "cgi.fix pathinfo = 8;" in php.ini

#

41

e T B e e e M I B |
W 00 =] O N e L) P e

[R
-

i i i i
Do D QD O o QW W0 w0 w o W w00 00 00 00 00 00 00 00
LN o Ll B e 2 WD 00 =] O LN e L P e D WD 00 s O N s Ld RJ

another virtual host using mix of IP-, name-, and port-based configuration

With php5-cgi alone:
fastcgli pass 127.0.0.1:9008;
With php5-fpm:
fastcgi pass unix:/var/run/php5-fpm.sock;
fastcgli index index.php;
include fastcgl params;
#}
deny access to .htaccess files, if Apache's document root
concurs with nginx's one
#
#location ~ /. ht {
deny all;
#}
}
#
#cerver |
listen 8000;
listen somename:8080;
server name somename alias another.alias;
root html;
index index.html index.htm;
#
location / o
try files $uri $uri/ =404;
1}
#}
HTTPS server
#
#cerver {
listen 443;

server name localhost;

#

root html;

index index.html index.htm:

42

185

index index.html index.htm;
186 #
187 # ss51 on;
108 # ssl_certificate cert.pem;
109 # ssl certificate key cert.key;
118 #
111 # ssl session timeout 5m;
112 #
113 # ssl protocols S5Lw3 TLSw1;
114 # ss1 ciphers ALL:!'ADH:!EXPORTS6:RC4+RSA:+HIGH : +MEDIUM: +LOW: +55Lv3 i +EXF;
115 # ssl prefer server ciphers on;
116 #
117 # location / {
118 # try files $uri Suri/ =404;
119 #}
120 #j

43

Appendix 2. Python Camera Motion

#!fusr/binfpython

impert S5tringIO

import subprocess

import os

import time

from datetime import datetime

from PIL import Image

threshold = 10

sensitivity = 20

10 forceCapture = True

11 forceCaptureTime = 68 * 60 # Once an hour

12 filepath = "/home/pi/www/picam"

13 filenamePrefix = "capture"

14 diskSpaceToReserve = 40 * 1024 * 1024 # Keep 40 mb free on disk
15 cameraSettings = ""

16 # settings of the photos to save

17 saveWidth 1296

18 saveHeight 972

19 saveQuality = 15 # Set jpeg quality (0 to 160)

20 # Test-Image settings

21 testwWidth = 100

22 testHeight = 75

23 # this is the default setting, if the whole image should be scanned for changed pixel 1
24 testAreaCount = 1

25 testBorders = [[[1,testwWidth],[1,testHeight]]]

26 debugMode = False # False or True

27 # Capture a small test image (for motion detection)
28 def captureTestImage(settings, width, height):

[V I = T = B 5 B L. L I]

29 command = "raspistill %s -w %5 -h %5 -t 200 -e bmp -n -0 -" % (settings, width, height)
30 imageData = StringI0.StringI0()

31 imageData.write(subprocess.check output(command, shell=True))

32 imageData.seek(d)

33 im = Image.open(imageData)

34 buffer = im.load()

35 imageData.close()

44

36 return im, buffer
37 # Save a full size image to disk
38 def saveImage(settings, width, height, quality, diskSpaceToReserve):

39 keepDiskSpaceFree(diskSpaceToReserve)

40 time = datetime.now()

41 filename = filepath + "/" + filenamePrefix + "-%04d%02d%02d-%02d%02d%02d.jpg" % (time.year, time.month, time.day, time.hour, time.minute, time.second)
42 subprocess.call("raspistill %s -w %s -h %s -t 200 -e jpg -q %5 -n -0 %s" % (settings, width, height, quality, filename), shell=True)

43 print "Captured %s" % filename

44 # Keep free space above given level
45 def keepDiskSpaceFree(bytesToReserve):

45 if (getFreeSpace() < bytesToReserve):

47 for filename in sorted(os.listdir(filepath + "/")):

48 if filename.startswith(filenamePrefix) and filename.endswith(".jpg"):
49 os.remove(filepath + "/" + filename)

50 print "Deleted %s/%s to avoid filling disk" % (filepath,filename)
51 if (getFreeSpace() > bytesToReserve):

52 return

53 # Get available disk space
54 def getFreeSpace():

55 st = os.statvfs(filepath + "/")

56 du = st.f_bavail * st.f_frsize

57 return du

58 # Get first image

52 imagel, bufferl = captureTestImage(cameraSettings, testWidth, testHeight) I

60 # Reset last capture time
61 lastCapture = time.time()
62 while (True):

63 # Get comparison image

64 image2, buffer2 = captureTestImage(cameraSettings, testWidth, testHeight)

65 # Count changed pixels

66 changedPixels = @

67 takePicture = False

68 if (debugMode): # in debug mode, save a bitmap-file with marked changed pixels and with visible testarea-borders
69 debugimage = Image.new("RGB", (testWidth, testHeight))

70 debugim = debugimage.load()

71 for z in xrange(0, testAreaCount): # = xrange(0,1) with default-values = z will only have the value of 0 = only one scan-area = whole picture
7 for x in xrange(testBorders[z][@][0]-1, testBorders[z][@1[1]): # = xrange(®,100) with default-values
73 for y in xrange(testBorders(z1[11101-1, testBorders[zl1[11[11):

74 if (debugMode):

75 debugim[x,y] = buffer2[x,yl

76 if ((x == testBorders[z][0][0]-1) er (x == testBorders[z][@][1]-1) or (y = testBorders[z][1](0]-1) or (y == testBurders[z][1][1]-1]):‘
77 debugim(x,yl = (@, @, 255) # in debug mode, mark all border pixel to blue
78 # Just check green channel as it's the highest quality channel

7 pixdiff = abs(bufferllx,yl[1] - buffer2[x,yl[1])

an if pixdiff > threshold:

a1 changedPixels += 1

82 if (debugMode):

83 debugim[x,y] = (@, 255, @) # in debug mode, mark all changed pixel to green
84 # Save an image if pixels changed

85 if (changedPixels > sensitivity):

86 takePicture = True # will shoot the photo later

87 if ((debugMode == False) and (changedPixels > sensitivity)):

as break # break the y loop

89 if ((debugMode == False) and (changedPixels > sensitivity)):

98 break # break the x loop

91 if ((debugMode == False) and (changedPixels > sensitivity)):

az break # break the z loop

93 if (debugMode): I

94 debugimage.save(filepath + "/debug.bmp") # save debug image as bmp

as print "debug.bmp saved, %s changed pixel" % changedPixels

a6 # Check force capture

a7 if forceCapture:

ag if time.time() - lastCapture > forceCaptureTime:

99 takePicture = True

100 if takePicture:

101 lastCapture = time.time()

102 saveImage(cameraSettings, saveWidth, saveHeight, saveQuality, diskSpaceToReserve)

103 # Swap comparisen buffers

104 imagel = image2

105 bufferl = buffer2#!/usr/bin/python

45

Appendix 3. Web App Source Code

1 l/ Space out content a bit */
2 body {

3 padding-top: 20px;

4 padding-bottom: 20px;

5 background-color: #edecfg;
6 }

7

8 label {

q font-weight: normal;
10}

12 button {

13 padding: none;

14 border: none;

15 background: none;

16}

17 /* Everything but the jumbotron gets side spacing for mobile first views */
12 .header,

19 .marketing,

20 .footer {

21 padding-right: 15px;

22 padding-left: 15px;

23}

24

25 /¥ Custom page header */

26 .header {

27 padding-bottom: Z0px;

28 border-bottom: 1lpx solid #536374;
29 }

36 /% Make the masthead heading the same height as the navigation */
31 .header h3 {

32 margin-top: 0;

33 margin-bottom: 0;
34 Line-height: 40px;
35}

46

/* Custom page footer */
. footer {

padding-top: 19px;

color: #777;

border-top: lpx solid #5a6374;
¥

/* Customize container */
@media (min-width: 768px) {
.container {
max-width: 730px;
1
}
.container-narrow = hr {
margin: 30px 0;
}

/* Main marketing message and sign up button */
.jumbotron {
text-align: left;
backgroun-color: #fff;
}
.jumbotron .btn {
padding: 14px 24px;
font-size: 21px;

}

/* Supporting marketing content */
.marketing {
margin: 40px 0;
hy
.marketing p + hd {
margin-top: 28px;
¥

47

72 /* Responsive: Portrait tablets and up */
73 @media screen and (min-width: 768px) {

74 /* Remove the padding we set earlier */
75 .header,

76 .marketing,

77 .footer {

78 padding-right: 0;

79 padding-left: 0;

ae 1

81 /* Space out the masthead */

82 .header {

83 margin-bottom: EBpﬂ;

84 1

a5 /* Remove the bottom border on the jumbotron for visual effect */
86 .jumbotren {

a7 border-bottom: ©;

a8 1

89 1}

48

1 budy {

2 padding-top: 40px;

3 padding-bottom: 40px;

4 background-color: #edecfg;

5 1

6

7 .form-signin {

] max-width: 330px;

9 padding: 15px;

10 margin: 0 auto;

11 }

12 .form-signin .form-signin-heading,
15 .form-signin .checkbox {

14 margin-bottom: 10px;

15}

16 .form-signin .checkbox {

17 font-weight: normal;

12}

19 .form-signin .form-control {

20 position: relative;

21 height: auto;

22 -webkit-box-sizing: border-box;
23 -moz-box-sizing: border-box;
24 box-sizing: border-box;
25 padding: 10px;

26 font-size: 16px;

27}

28 .form-signin .form-control:focus {
29 Zz-index: 2;

3o}

31 .form-signin input[type="login"] {
32 margin-bottom: -1lpx;

33 border-bottom-right-radius: o;
34 border-bottom-left-radius: 0;
35}

36 .form-signin input[type="password"] {
37 margin-bottom: 10px;

38 border-top-left-radius: 0;

39 hurder-tup-rlight-radius: B;

an }

49

1 k!DOCTYPE html>

2 <html lang="en"=

3 <head=

4 <meta charset="utf-8"=

5 <meta http-equiv="X-UA-Compatible" content="IE=edge"=
B <meta name="viewport" content="width=device-width, initial-scale=1"=
7 <meta name="description" content="KotiPi web application'=
8 <meta name="author" content="Mirya Nezvitskaya"=

q <link rel="icon" href="../../favicon.ico"=

10

11 <title=KotiPi=/title>

12

13 <!-- Bootstrap core (55 --=>

14 <link href="css/bootstrap.min.css" rel="stylesheet">
15

16 <!-- Custom styles for this template --»

17 <link href="css/signin.css" rel="stylesheet"=

18

19 <!--sql.js for reading database --=

20 <script sre="js/sql.js"=</script=

21 <script=>

22 var xhr = new X¥MLHttpRequest();

23 xhr.open('GET', '/home/pi/pi database.sglite', true);
24 xhr.responseType = 'arraybuffer';

25

26 xhr.onload = funcTionle) {

27 var uInt8Array = new Uint8Array(this.response);
28 var db = new 50L.Database(uInt8Array);

29 var contents = db.exec("SELECT * FROM user"};

30 }:

31 xhr.send();

32

33 </script>

34

35 <script language="javascript"=

50

</5Criy

function pasuser(form) {

if (form.login.value=="admin"} {

if (form.pswd.value=="penis") {

location="home.php"

1 else {

alert("Invalid Password")

1

} else { alert("Invalid UserID")

1

} I

pt>

</head=>

<body>
<div

<f

class="container">

orm class="form-signin">
<h2 elass="form-signin-heading">Please sign in</h2>
<label for="inputLogin" class="sr-only"=Login</label>
<input name="login "type="login" id="inputLogin" class="form-control" placeholder="Login" required autofocus>
<label for="inputPassword" class="sr-only">Password</label>
<input name = "pswd" type="password" id="inputPassword" class="form-control" placeholder="Password" required>
=div class="checkbox"

<label>

<input type="checkbox" value="remember-me"> Remember me

</label>
<fdiv>
<button class="btn btn-1g btn-primary btn-block" type="submit" onClick="pasuser(this.form)">Sign in</button>

</form=
<fdiv>
<!-- IE10 viewport hack for Surface/desktop Windows 8 bug --=
<script src%"jsfiel@-viewport-bug—workaround.js")qgscript>
</body>
</html=

51

£ !DOCTYPE html>
<html lang="en"=
<head=
<meta charset="utf-8"=
<meta http-equiv="X-UA-Compatible" content="IE=edge"=
<meta name="viewport" content="width=device-width, initial-scale=1"=
<meta name="description" content="KotiPi web application"=
<meta name="author" content="Mirya Nezvitskaya'=

=title=KotiPi</title=>

<!-- Bootstrap core C55 --=
<link href="css/bootstrap.min.css" rel="stylesheet"=

<!-- Custom styles for this template --=
<link href="css/home.css" rel="stylesheet">

<!-- Script for buttons--=

=script sre="http://code.jguery.com/jquery-1.11.0.min.js"></script=
<!--script for inside light--»
<script type="text/javascript"=
$(document) . ready(function{){

S0 '#clickonl').click(function(){
var a = new XMLHttpRequest();
a.open("GET", "insidelighton.php"};
a.onreadystatechange=function(}{

if (a.readyState==d4){

if(a.status = 280){

1
else alert("HTTP error");
1
1
a.sendl();
j3H

52

36
37
38
39
40

42
43
44
45
46
47
48
49
50

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
it
69

1

IF
1IE

I1E

I1F

S(document) . ready(function(){
$('#click0FF1') .dlick(function(){
var a = new XMLHttpRequest();
a.open("GET", "insidelightoff.php");
a.onreadystatechange=function(}{
if (a.readyState==4){
if(a.status == 286){

else alert("HTTP error")

a.send();

<!--script for outside light--=
§(document) . ready(function(){
S('#clickonz'). click(function(){
var a = new XMLHttpRequest();
a.open("GET", "outsidelighton.php"};
a.onreadystatechange=function(}{
if (a.readyState==4){
if(a.status == 280){

else alert("HTTP error");

a.send();

§(document) . ready(function(){
S '#click0oFF2').click(function(){

53

b e T e e I I I L |
W 00 =] O N e L B e

oo oo
L=]

3 et et e i e
oD O @ D D Wi W W WO W o W w00 0D 0D 000D 00 00 0o
N ofa Wl R e 2 WD 00 s OO f L R e 2 WD 00 s OO R L P

11E

1

1

lE

a.open("GET", "outsidelightoff.php");
a.onreadystatechange=function(){
if (a.readyState==4){
if{a.status == 200){

else alert("HTTP error")

a.send();

=!--script for speakers--=

$(document) . ready(function(}{
S('#clickon3') .click(function(){
var a = new XMLHttpRequest();
a.open("GET", "musicon.php"};
a.onreadystatechange=function(){
if (a.readyState==4){
if(a.status == 200){

else alert("HTTP error");

a.send();

%(document) . ready(function(){
$('#clickoFF3') .click(function(){
var a = new XMLHttpRequest();
a.open("GET", "musicoff.php");
a.onreadystatechange=function(){
if (a.readyState==4){

54

166}

167 else alert("HTTP error"}
108}

19}

118 a.send();

111 });

112

113 });

114 =</script=

115

116 <!--script for alarm clock-->
117 <script type="text/javascript=
118 var sound = new Audio("/home/pi/www/RadioTunes-RootsReggae.pls");
119 getID = function(value){

120 return document.getElementById(value);
121 }

122 var hour = getID{"hour"},

123 minute = getID("minute"),
124 h = getID({"h"},

125 m = getID("m"),

126 aswitch = getID("switch"),
127 off = getID("turnoff"),
128 refreshtime = 608,

129 alarmtimer = null;

130 aswitch.0n = false;

131 aswitch.value = "OFF";

132 function alarmonoff(){

133 switch{aswitch.0On)

134 {

135 case false:

136 aswitch.0On = true;

137 aswtich.value = "ON";
138 alarmset();

139 break;

55

140 case true:

141 aswitch.0On = false;

142 aswitch.value = "OFF";

143 }

144 }

145 function disablealarm(){

146 sound.pause();

147 off.style.display = "none";

148 1 T
149 function alarmplay(){

150 if (aswitch.oOn)

151 {

152 off.style.display = "block";

153 sound.play();

154 }

155 else

156 alert{"There was an error.");

157 T

158 function alarmset(){

159 clearTimeout (alarmtimer) ;

160 var tomorrow = false;

161 if (hour.value<h.value)

162 {tomorrow = true;}

163 else if (hour.value == h.value minute.value < m.value)

164 {tomorrow = true;}

165 var date = new Date(), year = date.getFullYear(), month = date.getMonth(), day = parseInt (date.getDate());
166 if (tomorrow){day += 1;}

167 time = new Date (year, month, day, hour.value, minute.value, second.value, date.getMilliseconds());
168 time = (time - (new Date()));

169 if (alarmswitch.on = false)

170 alarmswitch();

171 alarmtimer = setTimeout(function()){alarmplay();},parseInt(time));
172 T

173 timeRefresh = function(){

56

ol]]
o~ o o,

[
(=)
- 2 w0

233

239
24A

h.innerHTML = date.getHours();
h.value = h.innerHTML;
m.innerHTML = date.getMinutes()
m.value = m.innerHTML;
setTimeout("timeRefresh()", refreshTime);
¥
numCap = function(obj, min, max){
obj.value = Math.max(obj.min, Math.min(obj.max, obj.value) };
alarmset();// Starts up the alarm automatically when a value is changed.
i

timerefresh();

var a = getID{"hour");

a.value = h.innerHTML;

a = getID("minute");

a.value = m.innerHTML;
</script=

<!--show temperature every second refreshes temperature--=
<script type="text/javascript" src="http://code.jquery.com/jquery-latest.js"></script>
<script type="text/javascript"=

var auto refresh = setInterval{function{)}{
$('#showtemp') . load(' tempshow.php'});
}, 1600);
</script=
=/head>
<body=

=div class="container">
<div class="header clearfix">

<div class="header clearfix">

</divs>

<div class="jumbotron">
<h2> Wake Up <input id="hour" type="number" min="8" max="23" onChange="numCap(this);
</div>
<div class="jumbotron">
<h2><span class="glyphicon glyphicon-music" aria-hidden="true"= Music play</hZ=
</div>
<div class="jumbotron">
<h2> Lights In<button type= "button" id="clickON1"> ON
<button type="button" id="clickOFF1"> OFF </button>Lights Out<button type= "button" id="clickOM2"> ON <button type="button" id="clickOFF2"> OFF </bu
</divs>
<div class="jumbotron">
<h2> Lock House <button type="button"> ON <button type="button"> OFF </button=<
<fdiv>
<div class="jumbotron">
<h2> Video<button type= "button"'> take photo </button=</h2z>
</divs>
<div class="jumbotron">
<h2> Temperature <label id="showtemp"></label></h2>
<fdiv> I
<div class="jumbotron">
<h2> History</h2=
</divs>
<footer class="footer">
<p>© KotiPi 2015</p=>
</footer>
<fdiv> <!-- /container -->
<!-- IE10 viewport hack for Surface/desktop Windows 8 bug -->
<script src="../../assets/js/iel@-viewport-bug-workaround.js"></script=
</body>
<rhtmls|

57

Appendix 4. Screenshots of application on different devices

Please sign in

58

® Wake Up OFF

I3 Music play

Lights In ON OFF Lights Out ON OFF

A Lock House ON OFE

59

Please sign in

Login
Password

[Remember me

B video take photo

o Tefﬂnperature 20,4 C

& History

© KotiPi 2015

60

[192.168.1.200/home.php
2 n

KOTI
Pl

61

