

Symphony Plus as application for
power plants

AC500 Subproject

Daniel Hummel

Bachelor’s thesis
Electrical Engineering
Vaasa 2014

BACHELOR’S THESIS

Author:
Degree programme:
Specialization:
Supervisor:

Daniel Hummel
Electrical Engineering, Vaasa
Automation Technology
Ronnie Sundsten

Title: Symphony Plus as application for power plants -AC500 subproject

10.04.2014 41 Pages 28 Appendicies

ABSTRACT

This thesis work is in its entirety a project consisting of two parts made to study
and evaluate the functionality of the S + Operations in combination with the AC500
PLC. This thesis covers the part of the AC500 PLC, developed by ABB.

It provides information on programming of a demo process and the applications
associated with the AC500 that are used to achieve a functioning demo process. The
demo process is used to test the functionality in combination with S + Operations
while evaluating the features and characteristics of the PLC. The Water & Wastewater
library is used to provide extended programming content for the demo solution. The
actual programming is done in PS501 Engineering Tool.

A comparison with another system is made to weigh characteristics and solutions
against each other. The comparison is made on the basis of a system overview from
an engine power plant. A solution with AC500 as an application in a power plant is
presented and discussed based on the comparison.

The end result is a working demo process that is controlled using the AC500 in combi-
nation with S+ Operations, which was also considered to be an overall flexible solution.
From the demo process it is possible to continue to develop and test the functionality
with AC500.

Language: english Keywords: AC500, PLC

EXAMENSARBETE

Författare:
Utbildningsprogram och ort:
Inriktning:
Handledare:

Daniel Hummel
Elektroteknik, Vasa
Automationsteknik
Ronnie Sundsten

Titel: Symphony Plus som applikation för kraftverk -AC500 delprojekt

10.04.2014 41 sidor 28 Bilagor

ABSTRAKT

Detta examensarbete är i sin helhet ett projekt best̊aende av tv̊a delar, utförda för att
studera och evaluera funktionaliteten vid S+ Operations i kombination med AC500.
Detta examensarbete omfattar delen för PLC:n AC500, utvecklad av ABB.

Det ges information om programmering av en demoprocess och de tillämpningar som
i samband med AC500 används för att uppn̊a en fungerande process. Demoprocessen
används för att testa funktionaliteten i kombination med S+ Operations, men
samtidigt evaluera de olika funktionerna och egenskaperna av PLC:n. Water &
Wastewater biblioteket används vid programmeringen av demoprocessen, men för
själva programmeringen av PLC:n används PS501 Engineering tool.

En jämförelse med ett annat system görs för att väga egenskaper och lösningar mot
varandra. Jämförelsen görs p̊a basis av en systemöversikt fr̊an ett kraftverk. Av
evaluationen och jämförelsen presenteras möjligheter till lösningar med AC500 som
tillämpning i ett kraftverk

Slutresultatet är en fungerande demoprocess som styrs med hjälp av AC500 i kombi-
nation med S+ Operations med god funktionalitet. Fr̊an demoprocessen är det möjligt
att fortsätta vidareutveckla och testa funktionaliteten med AC500.

Spr̊ak: engelska Nyckelord: AC500, PLC

Table of contents

1 Introduction 1
1.1 Target . 1

2 ABB 2
2.1 In Finland . 2
2.2 Power Generation . 2

3 Programmable Logic Controllers 3
3.1 History . 3
3.2 Functionality . 3

4 CS31 4
4.1 Technical data . 4
4.2 In practice . 4
4.3 Restrictions . 5

5 AC500 6
5.1 Introduction . 6
5.2 Overview . 7
5.3 Technical data and features . 8
5.4 References . 9

5.4.1 Sewage Treatment Plant, China 10
5.4.2 Desalination Plant, Israel . 10
5.4.3 Water Reuse Treatment Plant, China 11

5.5 Summary . 11

6 PS501 Engineering Tool 12
6.1 Control Builder Plus . 12

6.1.1 Hardware configuration . 12
6.1.2 Parametrization . 13
6.1.3 Diagnostics . 13

6.2 CoDeSys . 13

TABLE OF CONTENTS

6.2.1 Languages . 13
6.2.2 Programming . 13

6.3 CoDeSys with other brands . 14

7 Water & Wastewater 15
7.1 Functionality . 15
7.2 Function blocks . 16

7.2.1 Hardware interface . 17
7.2.2 Application interface . 18
7.2.3 HMI interface . 18
7.2.4 FB Motor1 1 . 18
7.2.5 FB Motor2 1 . 18
7.2.6 FB Valve1 1 . 19
7.2.7 FB Valve2 1 . 19
7.2.8 FB Transmitter1 1 . 19
7.2.9 FB Alarm1 1 . 20
7.2.10 FB AlternationTime1 . 20
7.2.11 FB AlterationPri2 1 . 20
7.2.12 FB LimitControl1 1 . 21
7.2.13 FB LimitControl2 1 . 21
7.2.14 FB Actuator1 1 . 21
7.2.15 FB TimeData1 . 21
7.2.16 FB OperatingData1 1 . 22
7.2.17 FB Accumulator1 1 . 22
7.2.18 FB Weir1 1 . 22
7.2.19 FB Inflow1 1 . 23

7.3 Implementation . 23

8 Project X - Using AC500 24
8.1 Introduction . 24
8.2 Communication . 24

8.2.1 Siemens . 24
8.2.2 ABB . 25

8.3 Common Control Panel . 25
8.3.1 Siemens . 25
8.3.2 ABB . 25

8.4 Generator Control Panel 1-5 . 26
8.4.1 Siemens . 26
8.4.2 ABB . 26

8.5 HMI . 27
8.5.1 Siemens . 27

TABLE OF CONTENTS

8.5.2 ABB . 27
8.6 Summary . 27

9 Creating a Project 28
9.1 Project . 28
9.2 Overview . 28
9.3 Hardware installation . 29
9.4 Communication protocols . 29
9.5 Hardware configuration . 30
9.6 Software Configuration . 32
9.7 Summary . 35

10 Results 36

11 Discussion 38

12 Bibliography 40

Appendices

List of Figures

3.1 PLC functionality . 3

4.1 Overview of bus topology in practice [5] 4
4.2 Connecting bus on AC500 terminal base [5] 5
4.3 CS31 module connection [5] . 5

5.1 AC500 [8] . 6
5.2 AC500 Centralized system [7] . 7
5.3 AC500 Terminal base and CPU . 8
5.4 CPU processing time comparison [4, 15, 14] 9
5.5 Load and work memory comparison. (observe different symbols of

measure)[4, 15, 14] . 9

6.1 PS501 Engineering Tool . 12

7.1 Structure [3] . 15
7.2 Functionality of the hardware interface. [3] 17
7.3 FB Motor1 1 [3] . 18
7.4 FB Motor2 1 [3] . 18
7.5 FB Valve1 1 [3] . 19
7.6 FB Valve2 1 [3] . 19
7.7 FB Transmitter1 1 [3] . 19
7.8 FB Alarm1 1 [3] . 20
7.9 FB AlternationTime1 [3] . 20
7.10 FB AlternationPri2 1 [3] . 20
7.11 FB LimitControl1 1 [3] . 21
7.12 FB LimitControl2 1 [3] . 21
7.13 FB Actuator1 1 [3] . 21
7.14 FB TimeData1 [3] . 21
7.15 FB OperatingData1 1 [3] . 22
7.16 FB Accumulator1 1 [3] . 22
7.17 FB Weir 1 [3] . 22
7.18 FB Inflow1 1 [3] . 23

LIST OF FIGURES

8.1 Communication . 24
8.2 Common Control Panel . 25
8.3 Engine panels 1-5 . 26
8.4 Engine power plant operator stations 27

9.1 Watertank process . 29
9.2 Hardware installation . 29
9.3 Opening CoDeSys . 31
9.4 I/O setting in HW PRG . 32
9.5 PLC PRG . 32
9.6 Calling CALLBACK STOP using system task configuration 32
9.7 High availability function blocks . 33
9.8 Modbus function blocks . 33
9.9 Analog signal scale configuration values 33
9.10 Scale configuration to signal . 34
9.11 Transmitter block . 34
9.12 Web visualization of CPU load . 34

LIST OF ABBREVIATIONS

PLC Programmable Logic Controller

CPU Central Processing Unit

CRC Cyclic Redundancy check

CBP Control Builder Plus

ST Structured Text

IL Instruction List

LD Ladder Diagram

FBD Function Block Diagram

SCL Structure Control Language

CPU Central Processing Unit

PMU Power Monitoring Unit

AVR Automatic Voltage Regulator

I would like to thank Mr. Ronnie Sundsten at Novia University of Applied
Sciences and Mr. Frank Redlig at ABB, who have been my supervisors during
this thesis work. They have provided me with guidance and support throughout

this project.

1

1. Introduction

This Bachelor’s thesis is conducted on behalf of the ABB Power Generation depart-
ment in Vaasa. I have been given the task to participate in research on Symphony+
operations in combination with AC500 as a solution for engine power plants. This the-
sis focuses on AC500, and describes all essential parts necessary to know for readers to
understand the outcome and discussion of this thesis. Mr. Anton Wargh is responsible
for the S+ operations part of this investigation.

1.1 Target

The purpose of this thesis is to investigate Symphony Plus Operations in combination
with AC500, using the Water & Wastewater library, as a solution for power plants.
This thesis focuses on AC500 and the goal has been to develop a demo solution of
a watertank process, where the functionality of the AC500 can be tested and further
developed. This has been done through research, consultation with experts and tests
done with the Demo solution. This solution will be an example of how to configure
AC500 for establishing a connection between S+ Operations and AC500 using OPC.
It is also used to determine the possible area of use for the AC500 in power plants and
compare it to existing solutions and thereby determine advantages and disadvantages
as well as potential improvement areas regarding S+ Operations in combination with
AC500, and with AC500 in general.

2

2. ABB

ABB is globally known for being leaders in power and automation tecchnologies. Cur-
rently ABB is based in Zurich, Switzerland, but the company is active in approximately
100 countries, with about 150 000 employees.

The company’s current form was created in 1988 and comprises five divisions that are
in turn organized in relation to the customers and industries that are being served.
This form was established through a merger between ASEA and BBC, which are both
electrical companies established before the 20th century and are responsible for inno-
vative solutions in areas like turbines, transformers, switchgears, robots etc. [6]

2.1 In Finland

ABB in Finland can be found in over 30 locations with about 5500 employees. ABB
is also one of Finland’s biggest employer in the industry sector with a revenue of 2,3
billion euro of which 184 million is used on research and development.

The ABB organisation in Finland consists of Discrete Automation and Motion, Low
Power Products, Process Automation, Power Systems and Power Products, and their
respective sub-units.[2]

2.2 Power Generation

Power Generation is a part of the ABB Power Systems division, which consists of
Power Generation, Substations and Network Management. The Power Generations
unit focuses on planning and delivering power plants as turnkey solutions. The Power
Generation unit in Finland is located in Vaasa and specializes in gas, gas turbine,
hydro, thermal and nuclear power plants. The hydropower unit has its biggest focus is
the Nordic countries.[1]

3

3. Programmable Logic
Controllers

The AC500 is a PLC (Programmable logic controller) and therefore it is necessary
to know the basics of the functionality of the PLC to be able to understand later
chapters of this thesis. The features and functions of newer PLCs have changed since
the literature references for this chapter were written, but the principle of the PLC is
generally the same.

3.1 History

Programmable logic controllers, or PLCs as they are referred to in the industry, have
since 1969 become the most popular mean of controlling machinery and plant opera-
tions. These small logics would replace long cabinets of relays and wiring that were
used earlier. Microprocessors have been used as the brain of the PLC since around
1974 and from that evolved together with the advances in the electronics industry to
provide powerful and reliable PLCs.[13]

3.2 Functionality

The PLC system consists of a CPU which contains the microprocessor that interprets
the input signals and, according to programs stored in its memory it carries out control
actions that communicate descisions as signals to the outputs. To have an interface
between the system and the outside world the PLC needs an input and output section,
where it receives information from external devices and also communicates it back to
external devices. For the PLC to have an understanding of what to do it needs a
programming device and a memory unit. The programming device is used for inserting
the project specific program into the memory unit of the PLC. The memory unit is
then used by the microprocessor for control actions, also input and output data are
stored in this area. Lastly, a power supply is needed for the processor and interface
modules. [9]

Figure 3.1: PLC functionality

4

4. CS31

This chapter describes the features of the communication protocol CS31 with AC500
using RS458 as a transmission medium. This bus protocol was developed by ABB in
1989 and is widely used in AC500 solutions. It is provided as an onboard interface with
most AC500 CPUs. This chapter should give the reader an input in bus characteristics
that will be necessary to know to fully understand later chapters.

4.1 Technical data

The CS31 bus uses mostly RS485 (twisted pair, with shield) for communication, but
can be used with fiber optic cables (requiring a converter) or contact lines and slip
rings. It should be noted that bus characteristics may differ from RS485 when using
other types of transmission mediums. There is a limit of 31 modules that can function
as slaves on the bus. The master handles communication with slaves using polling,
which means that it sends a request to the slave and receives a response. The maximal
length of a busline is 500m, or with repeaters it can extend to 2000m. The baudrate
used is 187,5 kB/s with an 8-bit CRC appended to each telegram. This enables process
input/output data to be written and read. [10]

4.2 In practice

In practice when the AC500 PLC is used as a CS31 Master, the busline is connected
on COM1 interface of the PLC terminal base as seen in the following pictures. These
configurations may differ from module to module, but these are taken from those used
in chapter 9 and are very general. [5]

Figure 4.1: Overview of bus topology in practice [5]

5

Figure 4.2: Connecting bus on AC500 terminal base [5]

(a) middle of bus (b) end of bus

Figure 4.3: CS31 module connection [5]

4.3 Restrictions

One mentionable restriction when using the CS31 protocol is in decentralized systems
with the slave module. The Slave module can be viewed as a cluster with multiple
attached I/O modules. The maximum amount of I/O modules connected to a slave
module depends on the used CS31 bus module. The different bus modules may be
specified for a given number of I/O module extensions, and a cluster with maximal
configuration, which is a CS31 module with the maximum amount of I/O modules
attached, can occupy two addresses. This means that if the first CS31 bus module is
located at address 2, then the following has to be set at address 4.

However, getting maximal configuration on a CS31 cluster does not necessarily mean
that all I/O module slots are used. This occurs when I/O modules exceed the amount
of digital or analog subscribers. This can either be manually counted or viewed using a
tool like Control Builder Plus. These restrictions may differ from module to module.[5]

6

5. AC500

This chapter describes the features and benefits of the ABB AC500 PLC. To prove the
goal of this thesis it is crucial to be familiar with the AC500 PLC, and therefore it is
a necessary part to include. The chapter describes the basics of the AC500 that are
needed to fully understand later chapters. Some references where AC500 have been
used are also shown and discussed to give a better grasp of an example area of use.
The AC500 series can be found with different special features such as:

• AC500 - With or without internal Ethernet coupler.

• AC500 eCo - Budget PLC.

• AC500 S - Offers safety features for critical applications.

• AC500 XC - Offers state of the art technology for extreme conditions.

This chapter focuses on the AC500 with internal Ethernet coupler.[4]

5.1 Introduction

Figure 5.1: AC500 [8]

The AC500 PLC and the whole AC500
family consist of modules that are eas-
ily combined and scaled to fit descrip-
tions given by customers. There are al-
ways expansions made throughout the
lifetime of power plants and other plant
industries. Most AC500 CPU mod-
ules are installed on the same ter-
minal base, so when upgrading, only
the CPU module has to be replaced
for a more powerful version. This
leads to minimal maintenance and down-
time.

AC500 offers high availability, which
can be described as warm standby re-
dundancy without cycle synchronization
(Software-layer redundany). This is dis-
cussed and described further in chapters
10 and 11. All AC500 CPU modules offer a display for setting mostly communication
addresses but also different start-up modes. Errors and diagnostics are shown on the
display allowing fast troubleshooting.[4]

7

5.2 Overview

Figure 5.2: AC500 Centralized system [7]

AC500 as a centralized system offers very efficient scalability of projects and ease of
use. As seen in figure 5.2, the green highlighted module refers to the CPU unit. The
CPU unit itself as seen in figure 5.1 has to be mounted on a terminal base and supplied
with 24VDC(figure 5.3 Power). The terminal bases for CPU units can have one, two
or four slots for communication modules to be mounted on. All modules have to be
mounted on terminal bases. Centralized I/O modules are connected with the CPU
module through connectors on the terminal base.

Communication interfaces for the AC500 is possible using common open industrial
networks via Ethernet, PROFINET, EtherCAT, ARCNET, Profibus, CANopen, De-
viceNet, Modbus and CS31.

Using a centralized I/O rack, the maximum amount of modules supported by AC500
is ten. The amount of decentralized I/O racks is restricted by the used fieldbus type.
The AC500 does not support hot swap when replacing I/O modules.

A lithium battery and SD-memory card are not supplied with the CPU and does not
need to be used. It is however a recommended solution to use both a lithium battery
and an SD-memory card. The lithium battery is used for saving RAM content and
as a back-up for the real-time clock. The SD-memory card is used for updating CPU
firmware, storing user programs and as a back-up of user data.

AC500 modules offer Ethernet communication with TCP/IP and UDP/IP protocols
through the internal Ethernet coupler and the RJ45 connector located on the terminal
base. These can be used simultaneously.[4]

8

5.3 Technical data and features

Figure 5.3: AC500 Terminal base and CPU

• 1. Battery Slot

– Save RAM content

– Back-up real-time clock

• 2. SD-Card Slot

– Back-up user data

– Store user programs

• 3. FieldBusPlug

– Profibus DP (slave)

– CanOpen (slave)

– DeviceNET (slave)

• 5. Ethernet RJ45

– Programming

– Internet Protocols (webserver,
FTP, e-mail,time sync, etc.),

– IEC 60870-5-104

• 6. COM 2 - serial

– Programming

– ASCII protocol

– MODBUS-RTU (master or
slave)

• 7. COM 1 - Spring terminal

– Programming

– CS31 Bus (master)

– ASCII protocol

– MODBUS-RTU (master or
slave)

All CPUs of the AC500 family are equipped with the same features, but with an ex-
ception for some models like PM572 and PM582 that don’t offer Web server’s data for
user RAM disc . PM592-ETH, which is the most powerful module, is the only CPU
offering User flashdisc, stated in technical documents as 4GB Flash nonremovable used
for Data-storage, program access or FTP functions. The amounts of integrated memory
and process time are features that improve when changing from an inferior to superior
CPU.[4]

9

The following comparison is done between AC500 and Siemens S7 CPUs with values
gathered from their respective data sheets. An ”average” model from each vendor was
chosen as well as one of the more powerful versions.

Figure 5.4: CPU processing time comparison [4, 15, 14]

As seen in the figure above, the processing times for PM583-ETH and CPU3125-2 show
minimal differences when compared, whereas the PM592-ETH from ABB is multiple
times faster than the others. The CPU416-5H, which is a powerful Siemens CPU, does
not reach the same processing time as the PM592-ETH, but exceeds the other ABB
and Siemens CPU multiple times.

A memory comparison is made using the same devices. The memory type is stated
differently from both vendors. In ABB data sheets stated as Integrated User Data
Memory is compared to in Siemens data sheets stated as Integrated (for data) for work
memory size. Load memory is stated in ABB data sheets as Memory Size User Pro-
gram and in Siemens integrated (for program).

Figure 5.5: Load and work memory comparison. (observe different symbols of measure)[4, 15,
14]

As seen in the figure above, again the same proportions of difference can be noted. It
should be noted that the memory size used for CPU416-5H is the integrated value and
can be expanded using a RAM memory card up to 64 Mbyte.

5.4 References

The AC500 family is a fairly ”new” line of PLCs on the market and has therefore not
been used in such a large scale as PLCs that have a longer product history, which due
to their time on the market have established bigger ”communities” for knowledge and
support. Taking this into consideration it can be assumed that ABB customers should
be introduced to a solution using AC500 to prove their features and benefits. This
section of references is included to show one area of use where PLCs from the AC500
family have been used by ABB as a new solution or as a replacement for existing
solutions. All these references comprise different water and wastewater solutions.

10

5.4.1 Sewage Treatment Plant, China

• Design Request

– Full open system, run steadily

– High control precision

– Integrate & maintain easily
based on module solutions

– Programmed easily, fit on se-
quence flow control

• Project Introduction

– Occupies < 26km3

– First step 20 km3/day, in future
40 km3/day

– Solve the problem of pollution of
industry section and protect wa-
ter environment.

This was a new solution and based on the design request and the project introduc-
tion two AC500 PM581−ETH are used, both with four DI524-32DI, two DC532-24DC
and one AI523-16AI. Both PLCs were installed in the power distribution room and
communicate with SCADA using Modbus TCP/IP. The AC500 PM581−ETH fulfills
high-speed computing requirements of the sewage treatment and the system that is
fitted on a sequence flow chart can be developed by engineers using PS501 open pro-
grammable environment. It also fulfills the communication equipment and network
requirements. Moreover it has passed a variety of international standard certifications
considering sewage treatment plant environment.

5.4.2 Desalination Plant, Israel

• Design Request

– Energy saving solution.

– Multicontrol PLCs for reverse
osmosis desalination process.

• Project Introduction

– Older Plant controlled by Modi-
con PLCs with redundatn CPUs,
bus lines

– Desalination facility utilizes Re-
verse Osmosis

– It will produce 100 million m3

fresh water per year

In this project AC500 was used as a replacement for an old design and based on the new
design request and project introduction, the project realization involve 120 × AC500
PLCs, AC drives and a solution based on Microsoft Dot Net and XML technology.
One of the challenges was to use relatively independent PLC groups with separate
PLCs for each task instead of using a small amount of PLCs with redundant CPU and
bus lines. Competitive pricing position, energy savings and reduced maintenance costs
are beneficial to the customer as well as improved membrane life thanks to pressure
regulation.

11

5.4.3 Water Reuse Treatment Plant, China

• Design Request

– Communication

– Stability

– Compatibility

• Project Introduction

– Wastewater treatment for eco-
nomic development area

– Former existing solution:
Siemens S7-300

Based on the design request and project introduction, the project configuration consists
of two different stations. The PLC main station with a PM581 CPU and several I/O
modules, which is used to coordinate to remote station controllers and the Chemical
Dosing Station. These are linked by industrial switches for high speed data exchange
on site. There are totally 6 remote stations equipped with a PM581 CPU and several
I/O modules. The benefits for the customer are flexible options for communication
integration with Phase I Siemens system, as well as a common programming environ-
ment - PS501. The use of CS31 bus for decentralization is another of the technical
benefits.

5.5 Summary

The previous section is gathered from ABB AC500 success stories and these three
were picked to display that AC500 has been successfully used as a ”new” solution
in projects, as well as a replacement for an existing control system and that it has
been implemented to coexist with a former existing control system. They are shown
as descriptions of those projects, but the whole project consisting of all details can
be found at http://www150.abb.com/spaces/PLC-and-automation-Marketing-Team-
Space/SitePages/References-and-SuccessStories-INTERNAL.aspx. This is an internal
ABB database for information that cannot be accessed without access permission.

12

6. PS501 Engineering Tool

PS501 Engineering Tool is the ABB AC500 vendor-specific configuration tool with a
range of different functions. This chapter gives an explanation of the two main parts of
the PS501 Engineering Tool, which are Control Builder Plus and CoDeSys. They will
to some extent be compared to other programming and configuration tools. Since the
PS501 Engineering Tool is the programming environment for the AC500, it is necessary
to know the overall basic parts of it to be able to fully understand later chapters. The
current version of PS501 Engineering tool is version 2.3.0.

Figure 6.1: PS501 Engineering Tool

6.1 Control Builder Plus

Control Builder Plus is the vendor-specific part of the PS501 Engineering tool suite,
and can be referred to as CBP. CBP is the starting point when configuring a new
project. CBP handles all hardware configuration and to some point also the bus and
Ethernet configuration of the project. These hardware configurations of used modules
are sent to CoDeSys for finalization in the program.

6.1.1 Hardware configuration

All CPUs, I/O modules, interface and fieldbus modules are added into CBP to provide
the user with an overview from the device tree. From the device tree the user can add
or delete modules, but there is no graphical overview of the communication nor the
system.

13

6.1.2 Parametrization

Configuration of hardware modules is done through parametrization. From here the
user can choose specific configuration outcomes and solutions. Here all hardware set-
tings are set for the different modules, such as mappings of I/O channels that are sent
to CoDeSys and are a crucial part of the system functionality. Also IP addresses and
module adresses have to be set according to hardware setup for the correct functional-
ity. All parameters and settings for respective module are accessible by doubleclicking
on them.

6.1.3 Diagnostics

When using diagnostics in CBP the following can be monitored: CPU Diagnostics, CPU
statistics, Version information and PLC Browser. Also input values can be viewed live
from CBP as well as communication module and fieldbus diagnostics.

From the different diagnostics it is easy to monitor cycle times, load on buses and
CPUs which makes maintenance and troubleshooting much easier.

6.2 CoDeSys

CoDeSys itself is free to download programming environment developed by a German
company called 3S-Smart Software Solutions. CoDeSys licenses are free of charge. This
chapter only discusses CoDeSys version 2.3, as it is the version included in PS501.

6.2.1 Languages

CoDeSys offers programming in all five IEC 61131-3 languages, which include Instruc-
tion List, Structured Text, Ladder diagram, Function block diagram and Sequential
function chart. Beyond that it also offers programming in a language called Continu-
ous function chart, which is not defined as an IEC standard.

Structured Control Language, which is used by Siemens, cannot be used when pro-
gramming in CoDeSys, but SCL is based on Structured Text so the similarities when
programming are noticeable. Using IEC 61131-3 languages when programming is ben-
eficial because it allows third party tools and module access as well as an easier inte-
gration with other systems.
[11]

6.2.2 Programming

CoDeSys itself is hardware independent so the capabilities when creating programs are
endless. Learning the programming environment in CoDeSys may have a steep learn-

14

ing curve since it differs very much from e.g. Simatic manager, which is a widely used
programming environment from Siemens.

Since CoDeSys by itself is hardware independent it needs to know the configuration of
the project-specific hardware and its attributes, especially for the PLC. When using
AC500 it is gathered from Control builder plus into CoDeSys as a Target file. This
is needed for the software when using hardware specific blocks and different hardware
diagnostics.

The main components when programming in CoDeSys is Program Organization Unit
(POU), Data types, Visualizations and resources. POU consists of all functions, func-
tion blocks and programs. The data types section makes it possible to create your own
data types such as structs and references etc. along the standard data types. Visu-
alization is for making HMI visualizations, or if the PLC supports web visualization
(visualization on webserver) or target visualization (visualization directly on PLC dis-
play). In resources, the configuration and organization of the project are found, e.g.
global variables, task configuration, Library manager etc.

Program execution in CoDeSys is performed through task configuration, which can be
found under resources tab. From the task configuration different forms of tasktypes
such as cyclic with interval time, freewheeling and triggered by event or external event
can be made and have to be set with a priority. Those programs made under POU can
then be appended in the task. There are restrictions on PLCs regarding how many
tasks can be used. Both PM583-ETH and PM592-ETH can have a maximum of 16
tasks, whereas for example PM573-ETH can only handle a maximum of three tasks.

6.3 CoDeSys with other brands

There is a large number of PLC manufacturers that offer programming with IEC 61131,
but the cross compatibility is lost because there is to my knowledge no standards for
import and export of programs or projects. There are only ”guidelines” written as
standards for the program-code itself. This means that when making a program in for
example FBD it follows IEC 61131-3 standards and is compatible to some extent with
other platforms and programming environment, but since there are no standards for
exporting and importing files, they cannot be shared between vendors. [12]

Some manufacturers that offer CoDeSys for their modular PLCs are Berghof, Eaton,
Festo , Hitachi, Mitsubishi, Schneider, WAGO etc. The whole list can be found at
CoDeSys.com . Just like AC500 has a specific target file, most of these also have a
vendor-specific part creating a Target file specific to their own platform. If the project
only consists of basic functions and function blocks that don’t need the information
about the PLC, that program can be used on multiple platforms. [16]

When using CoDeSys for programming an extension of function blocks with OSCAT
library is very useful (http : //www.oscat.de/). This is a hardware independent IEC
61131-1 library provided license free. Since it is open source it offers great flexibility
and includes over 800 library modules.

15

7. Water & Wastewater

This chapter describes the functionality of ABB Water & Wastewater library and the
library in combination with S+ operations. The library has been developed by ABB
for the purpose of giving standard solutions for waste and wastewater applications. A
license must be ordered and requested via ABB when included and used in CoDeSys.
The Water & Wastewater library is used in this thesis because of its current content of
function blocks. This is explained in the Water & Wasterwater chapter and also used
in later chapters.
The current library version is V1.0, but the Water & Wastewater library V1.1 is planned
to launch in 2014.

7.1 Functionality

When trying to understand the functionality of the Water & Wastewater library one
must first understand the basic PLC project structure. Many PLC systems as well
as AC500 systems provide diagnostic information of the hardware layer that is nearly
impossible to make use of in user applications. When using ABB AC500 systems,
projects are separated in two main parts, which are hardware configuration and user
application. With the Water & Wastewater library it is possible to create a program
called HW PRG between hardware and user application. HW PRG is where pre-made
function blocks for S500 I/O modules with their individual configuration and mappings
are called, as seen in figure 7.1.

Figure 7.1: Structure [3]

This program is not included in Task configuration but instead called through the
main program with a function called HW Diag, which is included in the library. Call-
ing HW Diag is necessary for the functionality of the library and should be included
in a cyclic manner.
HW diag is protected in the library with a nowrite flag and can therefore not be changed
by the user. Instead HW PRG must be made as a program containing those hardware
configurations that are specific to the project. HW Diag uses HW PRG as a reference

16

when refreshing IO data and passing diagnostic messages.
For example: When using the default program PLC PRG and appending it to a
cyclic task it is possible to call HW Diag simply by calling HW Diag() in PLC PRG.
This means that the diagnostic function HW Diag is called every PLC cycle through
PLC PRG, and HW PRG is therefore not necessary to append in task configuration.
Following the guidelines given for HW Diag, input/output processing and diagnostic
reset is executed in HW PRG as:

IF HW_Diag.HWCallTask=1 OR HW_Diag.HWCallTask=2 OR

(HW_Diag.HWCallTask=3 AND (HW_Diag.HWDiagStart OR HW_Diag.HWDiagEnd)) THEN

(* Processing of Input/Output or global diagnostic buffer shift *)

(* For update of I/O, modules have to be listed here *)

Module1();

Module2();

END_IF;

The second part of HW Diag is diagnostic processing. Function blocks for I/O modules
have no information of where they are located on the I/O bus or fieldbus, so the program
has to be made so that it passes the diagnostic message to the right function block.
Diagnostic messages can then be read from the outputs of HW Diag.

IF HW_Diag.HWCallTask=3 THEN

(* Modules are called periodically to process errors. This is based on their position in the rack *)

IF HW_Diag.HWDiagComp=14 THEN (* I/O bus *)

CASE HW_Diag.HWDiagDev OF

1: (* Module number one on I/O rack *)

Module1();

2: (* Module number two on I/O rack *)

Module2();

ELSE

; (* Non-recognizable module *)

END_CASE;

ELSE

; (* Non-recognizable module *)

END_CASE;

END_IF

7.2 Function blocks

The Function blocks in the Water & Wastewater library can be sorted into four different
groups depending on the functionality.

• Device control blocks

FB Motor1 1, FB Motor2 1, FB Valve1 1 FB Valve2 1, FB Transmitter1 1

17

• Application logic blocks

FB Alarm1 1, FB AlternationTime1, FB AlterationPri2 1, FB LimitControl1 1,
FB LimitControl2 1, FB Actuator1 1

• Real time function blocks

FB TimeData1, FB OperatingData1 1, FB Accumulator1 1

• Calculation blocks

FB Weir1 1, FB Inflow1 1

All these blocks have an application interface and an HMI interface. Device control
blocks have an additional hardware interface since they are connected to the hardware
layer. The function blocks under device control blocks also have a first scan behavior
because of this. This ensures a smooth transition when the program is updated by
giving the hardware layer time to read the hardware inputs and outputs and update
correct IO variables. This delay occurs because block outputs are not updated and I/O
signals are ignored for the first cycle.[3]

Figure 7.2: Functionality of the hardware interface. [3]

7.2.1 Hardware interface

As mentioned before, hardware interface is only present in those function blocks that
are meant to be connected to the hardware layer. This interface interacts between the
function blocks and the I/O modules of the PLC as seen in figure 7.2. The data types
used for this interface are marked with an IO prefix followed by the name.[3]

18

7.2.2 Application interface

Application interface is present in all Water & Wastewater function blocks. Application
interface variables are used to connect to other parts of the program. Input variables
of the application interface can be changed from both inside and outside the block.
Output variables of the application interface can be used directly as inputs to other
blocks or copied to other variables.

Output variables cannot be changed from outside the block, nor can they be accessed
from HMI or SCADA.[3]

7.2.3 HMI interface

HMI interface is present in all Water & Wastewater library function blocks that have
to be accessed from S+ operations. HMI variables are divided into read-only and
writable variables. Read-only variables are in general marked with an SO prefix and
writable with an IP prefix, e.g. in FB Transmitter1 1, the HMI.SO value which is
the output value from the block can only be read and displayed on the HMI, but
HMI.CONF.IP LimAHH which is the level of the HH-alarm can be set from S+ oper-
ations.
Device control blocks can also be accessed from S+ operations in such a way that pro-
tection is bypassed allowing writing directly to PLC outputs. This has to be done with
careful consideration.[3]

7.2.4 FB Motor1 1

Figure 7.3: FB Motor1 1 [3]

This function block can be used when a motor or similar device has to be controlled
using only one activation signal and one feedback signal. [3]

7.2.5 FB Motor2 1

Figure 7.4: FB Motor2 1 [3]

19

This function block can be used when a motor or similar device has to be controlled
using analog speed control. [3]

7.2.6 FB Valve1 1

Figure 7.5: FB Valve1 1 [3]

This function block can be used when a valve has to be controlled using activation
signals in both directions and feedback from both directions. This valveblock can be
set from e.g. alarm outputs or other BOOL type variables. The operating time of the
valve can be set and valve position can be monitored from that. [3]

7.2.7 FB Valve2 1

Figure 7.6: FB Valve2 1 [3]

This function block can be used when a valve has to be controlled using analog value
as setpoint for the valve, and analog feedback from the valve. This block can e.g. be
operated with a controller output ordering the position of the valve.[3]

7.2.8 FB Transmitter1 1

Figure 7.7: FB Transmitter1 1 [3]

This function block is used when evaluating an analog signal. It has a hardware in-
terface where it handles both analog and digital input. The type of variable into the
hardware interface of the block is REALIO or BOOLIO. This means that it has to be
connected to the hardware layer and cannot be used with another type of variable as
input signal.
When the block is in normal operation and has a value from e.g. an analog input, the
value is passed to both application and HMI interfaces. Scaling of the signal is done
inside the block. [3]

20

7.2.9 FB Alarm1 1

Figure 7.8: FB Alarm1 1 [3]

This function block monitors a BOOL variable and if a TRUE edge occurs for a longer
time than the configurated DelayOn, an output alarm signal is set to TRUE. This
block can be used to monitor fire alarms, level switches, door alarms etc. [3]

7.2.10 FB AlternationTime1

Figure 7.9: FB AlternationTime1 [3]

This function block can handle four objects. The functionality of the block is to
alternate between the four objects. The longest running one is stopped first and the
one being stopped for the longest time is next to start.[3]

7.2.11 FB AlterationPri2 1

Figure 7.10: FB AlternationPri2 1 [3]

This function block can handle four objects. The functionality of the block is to
alternate between the four objects. Unlike FB AlternationTime1 this function block
uses a priority list when alternating between objects. The possibilities are:

• Choice 1: LineA – LineB – LineC – LineD

• Choice 2: LineB – LineC – LineD – LineA

• Choice 3: LineC – LineD – LineA – LineB

• Choice 4: LineD – LineA – LineB – LineC

[3]

21

7.2.12 FB LimitControl1 1

Figure 7.11: FB LimitControl1 1 [3]

This function block monitors a reference value of type REAL. This value is measured
against a maximum of four different limits to which output is set, which makes it
suitable for different types of reservoirs, tanks, etc.[3]

7.2.13 FB LimitControl2 1

Figure 7.12: FB LimitControl2 1 [3]

This function block monitors a reference value of type REAL and, when the config-
urated limit value IP LimStart is exceeded, the output BOOL is set to TRUE. This
function block can be connected directly to start/stop of motors and valves.[3]

7.2.14 FB Actuator1 1

Figure 7.13: FB Actuator1 1 [3]

This function block works as a counter, monitoring the rising edge of a BOOL type
signal. When exceeding the pre-configured number of pulses, the output signal is set
to TRUE.[3]

7.2.15 FB TimeData1

Figure 7.14: FB TimeData1 [3]

This function block handles system time and provides time information for the other
blocks of the real time clock function block group. The internal clock of the PLC is
used for calculating the local time and daylight savings.[3]

22

7.2.16 FB OperatingData1 1

Figure 7.15: FB OperatingData1 1 [3]

This function block is used for calculating operating data for certain devices. It mon-
itors a BOOL type signal and while the signal is TRUE it uses FB Timedata1 to
calculate operating data. Runtime data, time to service etc. are obtained with this
function block.[3]

7.2.17 FB Accumulator1 1

Figure 7.16: FB Accumulator1 1 [3]

This function block is used for calculating different types of quantities. For example
energy or water comsumption can be calculated on timebase using FB Timedata1. The
pulse mode or analog mode can be used based on preference.[3]

7.2.18 FB Weir1 1

Figure 7.17: FB Weir 1 [3]

This function block calculates the flow in rectangular and triangular weirs. The weir is
divided into ten segments. Data on volume and height of the individual segments has
to be configured for the right functionality of the block. [3]

23

7.2.19 FB Inflow1 1

Figure 7.18: FB Inflow1 1 [3]

This function block calculates the flow into or out from a tank. The functionality is
similar to FB Weir1 1 and the tank has to be divided into ten segments.Data on volume
and height of the individual segments has to be configured for the right functionality
of the block. [3]

7.3 Implementation

As of today the Water & Wastewater library consists of earlier listed function blocks,
but for this thesis I was also able to try the PID controller function block, which is
planned to be launched in Water & Wastewater V1.1 later this year. It had the nec-
essary interfaces to function with S+ operations . These function blocks cover almost
all critical blocks used for Project X, which is discussed in Chapter 8. An exception
is the function block for breakers which cannot be found in Water & Wastewater, but
can be developed based on a requirement specification and included in the library in
the future. Symphony Plus Water Automation department in Sweden is responsible
for updates of the library.

The function blocks are easily implemented in CoDeSys from where they can be utilized
from S+ operations after they are downloaded on the PLC. This is a part that is
described by Mr.Anton Wargh in his thesis - Symphony plus as application for power
plants - S+ operations subproject.

24

8. Project X - Using AC500

This chapter is an essential part of the thesis, as it shows how an existing system
solution could be solved using AC500. The layout is from an engine power plant in
Liberia using a Siemens solution. This chapter gives a clear view of the advantages and
disadvantages of the different system solutions. PLC program sizes and programming
environment advantages and disadvantages are not addressed in this chapter. The full
system overview can be seen in Appendix 1.

8.1 Introduction

The engine power plant is a 20MW Power Plant with the configuration of 5 Diesel
engines at 4,164 MW a piece, located in Liberia (Personal communication 26.03.2014).
I believe there have been som changes in the system overview since the revision used
for this thesis work. This should not be of any concern, since the overall solutions are
more relevant than the specific solution for this project.

8.2 Communication

This section describes different types of communication protocols used, based on the
layout. They are compared to those available with the AC500.

8.2.1 Siemens

Figure 8.1: Communication

For the Siemens solution the different
communication types used are listed in
figure 8.1. On panel-level, Ethernet is
used to communicate both inside and out-
side the panels via switches. Profibus is
used to communicate to remote stations
and it is also used to achieve redundancy
to remote stations, and via Y-link to sin-
gular devices. Communication to relays
is done with Modbus TCP in this case,
instead of the widely used IEC 61850 standard.

25

8.2.2 ABB

For the ABB solution, Ethernet can be used in the same way as in the Siemens so-
lution, but instead of Profibus a solution using CS31 is mandatory for achieving high
availability. Redundancy on device level is not manageable because of the lack of an
Y-link. Both TCP and UDP can be utilized at the same time, offering both fast trans-
mission and a more reliable transmission. Communication to relays can be achieved
with Modbus TCP or using IEC 60870-5-104 depending on device support.

8.3 Common Control Panel

The common control panel is the ”main” panel of the plant. It is also the most critical
panel and has to be kept running for the functionality of the power plant.

8.3.1 Siemens

Figure 8.2: Common Control Panel

For the CCP (central control panel) two
S7-400 H type PLCs are used to handle all
communication and program operations.
Synchronization between the two redun-
dant PLCs is achieved through Siemens
communication. The redundancy is used
for remote I/Os and motor control de-
vices, e.g. Simocode, which is used to give
more control over different motors located
on the plant. The redundancy is synchro-
nized continuously using Siemens’ own in-
ternal communication via an optical fiber.

8.3.2 ABB

AC500 cannot be used in this case, as the
high availability solution using CS31-buses will cause problems because of its restric-
tions on the ratio between nodes and bandwidth (about 60 nodes in this case). Instead,
using the AC800 PLC for the common control panel in this case could be a more ef-
ficient solution to maintain redundancy in the system. Communication to AC500 in
other panels can be achieved using Modbus TCP or Profibus, as well as a working
communication with S+ operations using Ethernet. The AC800 is a PLC developed
by ABB, but this will not be discussed any further in this thesis.

26

8.4 Generator Control Panel 1-5

There is one Generator Control Panel per engine in the power plant. They are not as
critical as the Common Control Panel because the plant can even function with one
engine faulting.

8.4.1 Siemens

Figure 8.3: Engine panels 1-5

For the GCP (Generator Control Panel)
an S7-400 PLC is used to handle commu-
nication and program operations. GCPs
in this case are installed with PMUs and
protection relays and communication to
these are achieved using standard Mod-
bus TCP. The generator protection relay
is connected directly to operator stations.
There is no redundancy in the GCP pan-
els, and communication to Remote I/O
stations is done with Profibus. The AVR
(Automatic Voltage Regulator) is con-
nected only to other AVRs in this case.
A viscosimeter used to measure the vis-
cosity in fluids is connected via a switch
and converter (Modbus TCP/ RS485).

8.4.2 ABB

The AC500 is a suitable solution for
the Generator Control Panels thanks to
the lack of redundancy in those panels.
Profibus can be used in the same way as for the Siemens solution. For communication
to PMU and relays, AC500 supports IEC standard 60870-5-104 and Modbus TCP.
This could also be solved using another fieldbus, e.g. Profinet which would support a
ring type topology if necessary. Using the AC500 as a Profibus or Profinet master is
achieved by using separate communication modules. The viscosimeter could be used
via the same type of solution via a switch and a converter.

27

8.5 HMI

Figure 8.4: Engine power plant operator stations

This part is explained in Mr.Anton Wargh’s subproject on S+ operations, but some
aspects are worth mentioning in this part as well.

8.5.1 Siemens

The solution shown in Figure 8.4 was in this case changed to a Siemens solution, using
WinCC SCADA.

8.5.2 ABB

This could be solved by using OPC server and S+ operations. The benefits of this
solution are presented in the thesis conducted by Mr.Anton Wargh and are discussed
more thoroughly there, so readers should refer to this document.

8.6 Summary

This chapter gives a direct input for the reader to see the current capabilities of the
AC500. There are some aspects of the AC500 that could be improved to make it more
suitable for this area of use. These aspects are discussed in chapters 10 and 11 where
it is directly weighed against the Siemens PLCs, using information from experience
gathered during this thesis work and inputs from specialists and co-workers.

28

9. Creating a Project

This chapter describes the overall making of a project using PS501. This project is
going to be connected with S+ operations. It is based on the demo setup made by me
and Mr.Anton Wargh to test the usability and functionality of AC500 in combination
with S+ operations. The steps are explained in an ”overall”type of way instead of a step
by step way, because the overall configuration is more relevant than program-specific
settings and configurations. The project can be seen in Appendix 2.

9.1 Project

The target with the demo solution is to determine the functionality of the AC500 PLC.
It was therefore necessary to get a hardware setup providing those functions that are
mostly used in e.g. power plant projects. The focus was on performance, redundancy,
communication and I/O modules consisting of both digital and analog inputs and
outputs, with support for thermocouple. The hardware modules chosen for this were:

• 2 X PM590-ETH CPU

• AX522 - Analog input/output module, 8AI/8AO, PT100.

• AI531 - Analog input module, 8AI, thermocouple.

• CI590 - High availability, CS31, 16DC

• Ethernet switch

9.2 Overview

Mr.Anton Wargh and I chose to make the demo solution based on a watertank process.
The watertank process itself is a simple type of process consisting of mainly tanks and
valves, but can be expanded to use almost all function blocks included in the Water &
Wastewater library. Since it is a demo solution intended to be shown and displayed,
the watertank solution is a good solution based on its simplicity.
The functionality of the watertank process is based on two different water tanks. These
tanks have a continuous flow between them from tank 1 to tank 2. The level in Tank
1 is regulated by its inflow through a valve that is operated by a PID controller. The
level in tank 2 is only regulated if the level reaches a high limit, leading to a drain-valve
opening and triggering an outflow from tank 2. If the limit reaches a high-high limit,
not only does the drain-valve of tank 2 open, but a pump starts to run which then
increases the outflow of the tank. The operating data for the pump is calculated as
well as the outflow quantity.

29

Figure 9.1: Watertank process

9.3 Hardware installation

It is easiest to start with mounting of all modules on their respective terminal bases.
The terminal bases are easily locked on a DIN-rail, but the order in which the I/O
modules are mounted has to be noted if the hardware is not present during the hardware
configuration in Control Builder Plus. This has to be noted because it has to comply
with the configuration in Control Builder Plus. Since this is a decentralized system,
power supply is needed for both ”clusters”.

Figure 9.2: Hardware installation

9.4 Communication protocols

The communication protocols used in this project are:

• CS31 bus for high availability

• Ethernet for programming and for communication to S+ workstation

• Modbus TCP for testing functionality

30

• UDP/IP communication between CPUs

The CS31 bus that is used in this project to achieve high availability has to be connected
from the COM1 port on both CPU modules to the CI590 high availability module. End
terminators are default for the CI590 module, but on the COM1 port of both CPUs an
120Ω resistor has to be added for the bus to function properly. This can be verified by
measuring the resistance over the bus with a multimeter. The multimeter should show
a resistance of 60Ω. Two rotary switches are located on the CI590 module for setting
the address of the module. This address has to comply with the configuration in both
Control Builder Plus and CoDeSys.

Ethernet communication is used for programming the PLCs and for being able to go
online and monitor the functionality in CoDeSys. Connection to S+ operations is also
achieved using Ethernet. When having multiple computers and PLCs connected to
the same network, it is crucial to avoid IP-conflicts by choosing different static IP-
addresses. The IP-addresses of the two PLCs can be set either from the display or
through Control Builder Plus. Communication parameters are then set to either of
those addresses depending on the desired PLC to connect to.

Modbus TCP was used in this project to test its functionality and load on CPU. There
are hardware independent Modbus function blocks in CoDeSys that were used for this.
In Control Builder Plus the onboard Ethernet coupler has to be configured for this by
adding Modbus TCP/IP server/client. Read and write of registers was tested by using
a secondary laptop running a Modbus server simulator. The Modbus program was
appended to a 10ms cyclic task and recorded a polling interval of 2̃0ms in the Modbus
server simulator.

UDP/IP is used for data transfer between PLCs. It is used with high availability for
the communication between CPUs. Modbus TCP can also be used for this and is a
more reliable way, because TCP has checksums and uses resending to assure stable
data transaction. With UDP this cannot be achieved on the same level, but it is a
faster type of communication.

9.5 Hardware configuration

Hardware configuration is done in Control Builder Plus. To be able to start the hard-
ware configuration, specifications should be known. There are ways to change the
hardware configuration if modules are replaced after the configuration is done, but
then those changes have to be downloaded into CoDeSys from Control Builder Plus.
The hardware configuration begins with naming of a new project and saving it. One
can choose to start a new AC500 project or just new project, but by choosing AC500
project the CPU can be chosen directly from the AC500 project window. Though two
CPU modules of the same type are used in this project, only one has to be added to the
project tree. This is because high availability needs to have the same project configura-
tion to function properly. Therefore the same project configuration is downloaded into
both CPUs with the exception of individual IP-address configuration. The IP-address

31

is set to 192.168.0.10 as default, but can be changed from the display of the CPU
module, in Control Builder Plus under tools/IP-Configuration or from IP Settings lo-
cated in the Project tree. When using the last mentioned it should be known that it
overwrites both display and IP-Configuration tool data. In this project the AC500 web
server is tested, so under IP setting in tab Extended settings the option Web server
active is checked.

Since this project uses a decentralized I/O rack, the I/O modules should not be added
directly to the CPU module like in centralized extension, but under the used com-
munication interface module. Interfaces, located as one of the main ”branches” of the
project tree displays onboard interfaces that can be used. These have to be configured
for the bus protocol used, and for this project, the CS31 - bus is chosen on COM1.
The parameter operating mode is default set to master and therefore it does not need
to be changed. When the bus protocol is chosen for respective interface, modules that
are connected to the interfaces should be added as devices under that interface. For
this project the CI590 module is added under the earlier configured COM1 interface,
and I/O modules are then added onto the CI590 module. The address chosen from the
rotary switch that is physically located on the CI590 module has to comply with the
parameter module address on the CI590 module in Control Builder Plus.

As mentioned before, I/O modules are added to the CI590 module in this project.
Like all other modules in hardware configuration they are added from an ABB vendor
specific device list. I/O modules have to be added in Control Builder Plus in the same
order that they are physically installed on the DIN-rail, for the correct functionality.
The I/O module configuration is critical for the functionality of the project, because the
mappings, which are the variables names, addresses, channels and types, are exported
to CoDeSys to achieve the use of I/O modules in the program.

Figure 9.3: Opening CoDeSys

Only those variables that are configured
with names are exported to CoDeSys.
The configuration of the channels also has
to be done in Control Builder Plus. This
is dependent on the module used, but for
this project 0..20mA was chosen for all
active channels, since two analog inputs
and two analog outputs are used.
Under branch Onboard Ethernet in the
project tree, UDP data exchange, Mod-
bus server and Modbus client are added.
When these configurations are done, con-
figuration data and mapping data are ex-
ported to CoDeSys by doubleclicking on
source code file.

32

9.6 Software Configuration

CoDeSys opens with an empty program called PLC PRG located in the POU tab.
This project uses multiple Water & Wastewater function blocks, thus the library has
to be added. For the library to function properly the option ”Replace constants” has
to be checked. This option can be found under Project/Option/Build.

The mapping variables are imported to CoDeSys and can be seen in Resources tab
under Global variables/Interfaces/COM CS31 Bus/CI590 CS31. To make use of these
variables a program called HW PRG is made. Here both I/O modules are implemented
using their specific function blocks from the Water & Wastewater library. HW PRG
for this project is structured based on guidelines in document 2VAA002998 with a few
modifications. Structured text is used because it allows for easier and faster coding.

Figure 9.4: I/O setting in HW PRG

PLC PRG is used in this project as a ”main” program where first scan behavior and
HW Diag both are executed. Going to Resources tab and by opening Task configura-
tion a cyclic 50 ms task is created and PLC PRG is appended to that task.

(a) Programcode (b) Task Configuration

Figure 9.5: PLC PRG

The high availability configuration requires an additional library called HA CS31 AC500 V23.
HA PRG and CALLBACK STOP are programs added to POU for high availabil-
ity. Callback stop, which is the mandatory name for the program, calls function
HA CS31 CALLBACK STOP intended to detect CPU stop event.

Figure 9.6: Calling CALLBACK STOP using system task configuration

This program is called from Task configuration under System events by checking stop
and typing the program name under the column called POU. Another program called

33

HA PRG is made containing HA Diag and HAcontrol which are the diagnostic block
and the block handling the high availability switchover. This program is appended in
a cyclic task of 20ms called HAtask.

Figure 9.7: High availability function blocks

The Modbus communication was solved by using function blocks called ETH MOD MAST
in a program called MODBUS. This program was also appended in a Task of 10ms
called MODBUS. Modbus was tested using a second laptop running Modbus server
simulator, where the polling time and register set and read were monitored.

Figure 9.8: Modbus function blocks

The rest of the programs implement mostly function blocks from Water & Wastewa-
ter. These were made to control the process tank level using values from the program
called watertank, consisting of calculations that simulate inflow or outflow of a wa-
tertank. Since no real process tank was used, the simulated level calculated in the
watertank was set to the first analog output of module AX522. This had to be done
because the signal used in FB Transmitter1 1 has to be RealIO. That is accomplished
by wiring the first analog output to the first analog input, thus making it possible to
use FB Transmitter1 1. Parameters have to be set for the outgoing signal or else the
module function block will get an error because of the lack of maximum and minimum
values.

Figure 9.9: Analog signal scale configuration values

The analog input is then used in FB Transmitter1 1 and scaled as 0..100. This signal
is used for the PID controller block in the program CONTROLLERS. The valves and
motor blocks are located in the program called MOVING OBJECTS.

34

]

Figure 9.10: Scale configuration to signal

(a) offline view

(b) Online view

Figure 9.11: Transmitter block

The Water & Wastewater function blocks need to have an IN OUT type variable con-
taining a specific configuration for certain constants e.g. scaling values for the trans-
mitter block. These values are saved in a Global variable file under resources tab.
Since these values are configuration values and therefore need to be persistent, they
are saved as VAR GLOBAL RETAIN PERSISTENT. These values are then loaded
into the struct CONF var under Data types tab, from where they can be called to
function blocks with configuration values.

As the web server option was checked already in Control Builder Plus, the only thing
that needs to be done is to open target settings under resources tab, under which
Visualization ”Use 8.3 file format” and ”Web visualization” have to be checked. In this
project the CPU load is visualized as a web server and is accessable by
IPaddressofCPU/webvisu in Internet explorer.

Figure 9.12: Web visualization of CPU load

35

9.7 Summary

This chapter has given an understanding of the overall configuration of the demo solu-
tion from where the results shown in chapter 10 are determined. To establish a working
communication with S+ operations symbol files had to be loaded into the PLC as well
as loaded into S+ operations. These had to be up-to-date for the communication to
work.

36

10. Results

The demo solution for investigating S+ operations in combination with AC500 was
made according to Chapter 9. As a result of the demo solution Mr.Anton Wargh and I
were able to determine the functionality of S+ operations in combination with AC500,
and AC500 in general.

Despite the fact that the whole program size is relatively small it was interesting to
see that the cycle time was not reduced even though I was running Demo, Modbus
and HA programs at the same time on minimal task cycle times, trying to stress the
PLC. This was observed from the Modbus server simulation software polling time and
Control Builder Plus diagnostics.

High availability was tested with functional switchover between the two CPUs. How-
ever, since the demo process and its values are calculated, instead of using ”real” inputs
some values tend to keep counting beyond their limits. This is because both programs
run simultaneously and calculate tank volumes and levels instead of using ”real”process
values. It was easy to work with and configure the CS31 bus, but unfortunately it was
the only bus tested with AC500. However, since AC500 supports multiple bus-types
and these hold international standards, using them should not be harder than with the
CS31 bus. CS31 was the only bus supported with high availability.

At first it was difficult to understand the functionality of the Water & Wastewater
library with all the different layers. After understanding the connection between these
layers and the other attributes of the library, I came to the conclusion that it is a very
efficient way of handling function blocks, especially when they have to be connected
to some form of HMI. The current selection of function blocks worked as they were
intended. The Preliminary PID-function block felt a bit unfinished but could be used
in S+ operations, and also the application functionality worked well for the purpose in
the demo solution.

There was no standard Timestamping solution for the AC500, but Mr.Mika Kuukasjärvi
had programmed a function block for timestamping earlier, which I was able to try. It
was only tested on an application level, since no form of function to link the timestamps
further was found in the function block. My supervisor Mr.Frank Redlig and I decided
that programming such a link fell outside the target of this thesis.

Overall we made a working demo solution from where the earlier mentioned aspects
could be determined. Using Control Builder Plus and CoDeSys has a steep learning
curve, and since CoDeSys is basically a ”freeware” from the beginning it didn’t feel
like it had the same standard of usability as proprietary branded programs. Function
blocks were used in S+ operations from where Mr.Anton Wargh could operate Water

37

& Wastewater function blocks, but variables that I made to determine which CPU was
master for the high availability switchover in the OPC server was something we did
not get to function properly. Timestamping was the only critical feature that we didn’t
get to function between AC500 and S+ Operations. Mr.Anton Wargh describes some
aspects of the timestamping from an OPC and S+ operations point of view in his thesis.

As a result of the comparison in Project X to determine advantages and disadvantages
I was able to determine that the current features of the AC500 could not be used
for a common control panel with the specifications of Project X. This is because high
availability is only supported using the CS31 bus, and the amount of nodes in Project
X (≈ 60) exceeds the amount of nodes that can be used with CS31 (31). The other
features of AC500 should suffice based on the specification from the layout of Project X.

On the other hand, when analyzing the generator control panels that don’t need re-
dundancy, AC500 could be a possible solution. This is based on technical specifications
that have been compared as well as supported protocols and network types. As a con-
clusion the AC800 could be used for the common control panels until a solution for high
availability with AC500 that meets all the specifications is developed. On generator
control panels AC500 could be a possible solution for this specification.

As a conclusion, assuming a realization of power plant projects using AC500 in the
future, areas of improvement should include AC500, the Water & Wastewater library
and CoDeSys. AC500 high availability should have a comprehensive and practical
solution to achieve communication to third party modules and devices. Timestamping
should be developed to a fully functional solution that can be used in engine plant
projects. The Water & Wastewater library could be updated according to different
plant specifications to improve the extent of the library. CoDeSys usability should be
improved by investigating the abilities of the SFC and CFC languages for sequential
programs and also the use of project templates in CoDeSys.

38

11. Discussion

This thesis work covers a wide area, including PLCs, networks, Programming, imple-
mentation, power plant and water treatment plant configurations. Since it is also part
of a two-part project investigating S+ operations in combination with AC500, me and
Mr.Anton Wargh who was in charge of the second part, had to have meetings at regular
intervals to determine where we were and how we would continue from that. We had
both made similar timetables so we would be able to keep the same pace and be able
to achieve the target more easily.

I also had regular follow-ups with Mr.Frank Redlig about the progress and he explained
aspects of power plants and their PLC system layouts in general. He also helped with
providing information and useful contacts for the AC500.
Because I was conducting this thesis work on behalf of ABB Power Generation I had
good and modern equipment available as well as large databases of information. But
regarding examples and guides on AC500 it was hard to find useful information. The
most difficult thing was to find good information and guides on PS501, which really
slowed down the progress.

The time spent on the project during autumn/winter of 2013 was very limited because
of a hectic school schedule, but I was able to intensify the time at the beginning of
2014. In the beginning when I was learning to use both CoDeSys and Control Builder
I had to use evenings and weekends to do this, which slowed down the process. If I
was to conduct this project work again, I would try to order components at an earlier
stage and also try to have more structure in the way we tested the demo solution.
Narrowing down the written part was difficult since it involved a wide area. I tried to
include all those parts that are necessary to get an overall picture of both the demo
solution and Project X to be able to understand the results.

It is going to be interesting to see the outcome of this work. I think the AC500 PLC
has great potential for power plant implementation when some of the features such
as eg. high availability has been improved. With the shown interest from domestic
sales and R&D looking for a pilot project, I think improvements and support could be
accelerated if it were to be realized.

Mr. Frank Redlig and I discussed the solution using Siemens, to where he pointed
out that synchronization between CPUs put a huge load on them, because of all the
communication running and the heavy synchronization communication, which leads to
slower cycle times. Using AC500 with faster process time and high availability could be
a better solution. This depends on requirements on the redundancy from customers,
since high availability is a software-layer redundancy and has a switchover time of a
multiple number of cycles. I have been in contact with Mr.Mika Kuukasjärvi from

39

domestic sales, stated as a PLC specialist. He told me about a PROFINET solution
that is going to be launched at the end of next year or beginning of 2016. This solution
will support High availability to redundant PROFINET IO-devices. Currently the only
supported solution is CS31, to which only AC500 I/Os can be connected. The Profinet
solution should have a wider device support compared to CS31.

Communication to relays was in this case using Modbus TCP, which is supported by
AC500, but according to Mr. Frank Redlig communication to relays is often achieved
using IEC standard 61850. This again, according to Mr. Mika Kuukasjärvi, cannot
be used with AC500, but instead it can be achieved using supported IEC standard
60870-5-104. Devices that support this standard are unknown.

When I was in contact with Mr. Mika Kuukasjärvi to verify the solution of chapter
8, he pointed out an interest from domestic sales when I attached a system layout
from Project X. He mentioned that if the high availability is the only thing preventing
this from realization, it could probably be accelerated to a solution from R&D because
they are looking for pilot projects. Considering the improvement areas mentioned in
chapter 10, a form of workgroup consisting of Water & Wastewater library personnel
and e.g. Mr. Mika Kuukasjärvi as an ABB PLC specialist as well as personnel from
Power generation in Vasa would give a wider area of inputs for a more complete project
solution.

A solution for the timestamping could also possibly be achieved by this workgroup.
Possibly by using Mr.Mika Kuukasjärvi’s timestamp block linked to an OPC server and
if necessary, interfaces to S+ operations. Using it in CoDeSys, appended to a triggered-
by-event type of task, it could possibly be triggered on I/O-level in combination with
Water & Wastewater library.

There was no complete comparison made on price differences when using the AC500.
My own opinion is that a solution using AC500 would reduce costs, both regarding
hardware and software, considering that the program environment is based on CoDeSys
and also that the AC500 PLC has a lower cost in general.

This is based on a rough comparison on prices between a Siemens bundle set consisting
of two pieces of CPU416-5H with racks, synch-modules and backup batteries (a listing
price of about 21200 e) and the ABB PM592-ETH module as a high availability setup
consisting of two pieces of PM592-ETH with terminal bases (a listing price of about
8000 e). Even on a more basic level when comparing Siemens CPU315-2 and ABB
PM583-ETH, the result is the same, as the Siemens CPU315-2 has a listing price of
about 1950 eand the PM583-ETH about 1250 e. It would be interesting to see such a
comparison on a project-level, comparing the costs of program environments and their
licenses as well as hardware modules.

I have learned a lot during the time I have spent on this thesis. Both theoretically and
practically in areas such as PLCs, programming, hardware testing and implementation
and power plant technology overall. Considering this I feel like I now have a better
understanding of power plants in general and their critical parts. I believe I have
improved my skills when working in a group and also when consulting others for getting
other points of view, and maybe a better solution in the end.

40

12. Bibliography

[1] ABB. ABB Oy, Power generation. 2014. url: http://new.abb.com/fi/abb-l
yhyesti/suomessa/yksikot/power-generation (visited on 01/23/2014).

[2] ABB. ABB Suomessa. 2014. url: http://new.abb.com/fi/abb-lyhyesti/suo
messa (visited on 01/23/2014).

[3] ABB. AC500 Water library 1.0 Engineering Guide. Document nr. 2VAA002998.
2013. url: http://abblibrary.abb.com/global/scot/scot354.nsf/verityd
isplay/7b8b11dbf9c9609dc1257be900231837/$file/2VAA002998_-_en_SPlu

s_Water_AC500_Library_Engineering_Guide.pdf.

[4] ABB. Automation products. url: http://www05.abb.com/global/scot/s

cot397.nsf/veritydisplay/eb210cacee41f03dc1257c210039f215/$file/

1SBC125003C0204-Automation%20Products_New-BR.pdf (visited on 01/23/2014).

[5] ABB. “CS31”. CS31 Rev 3.1.pdf, Internal pdf used for training courses. 2014.
(Visited on 01/21/2014).

[6] ABB. Who are we - ABB in brief. 2014. url: http://new.abb.com/about/abb
-in-brief (visited on 01/23/2014).

[7] AC500. url: http://www.industrialpartners.eu/uploads/tx_ipprojects
/ctl110104_ABB_AC500_PLC__1__01.jpg (visited on 02/15/2014).

[8] AC500 CPU. url: http://img1.exportersindia.com/product_images/bc
-small/dir_48/1428958/abb-ac500-extreme-condition-plc-454512.jpg

(visited on 02/15/2014).

[9] W Bolton. Programmable Logic Controllers, fourth edition. Elsevier Newnes,
2006.

[10] CoDeSys. “CS31”. Website. CoDeSys HTML Help, Section CS31. 2010. (Visited
on 02/15/2014).

[11] Codesys Development System. 2013. url: http://www.codesys.com/products
/codesys-engineering/development-system.html (visited on 02/15/2014).

[12] IEC. IEC 61131. 2014. url: http://www.iec.ch/dyn/www/f?p=103:105:
0::::FSP_SEARCH_ORG_ID,FSP_SEARCH_AND,FSP_SEARCH_QUOTE,FSP_SEARCH_

OR,FSP_SEARCH_NONE,FSP_SEARCH_DOCREF,FSP_SEARCH_STAGECODE,FSP_

SEARCH_HEAD,FSP_SEARCH_PUBPROJREF,FSP_SEARCH_DATERANGE,FSP_SEARCH_

DATEFROM,FSP_SEARCH_DATETO,FSP_REQUEST:,,,,,,,,61131,0,,,456l

(visited on 02/15/2014).

[13] W.Jeffcoat K. Clements-Jewery. The PLC workbook, Programmable Logic Con-
trollers made easy. Prentice Hall, 1996.

http://new.abb.com/fi/abb-lyhyesti/suomessa/yksikot/power-generation
http://new.abb.com/fi/abb-lyhyesti/suomessa/yksikot/power-generation
http://new.abb.com/fi/abb-lyhyesti/suomessa
http://new.abb.com/fi/abb-lyhyesti/suomessa
http://abblibrary.abb.com/global/scot/scot354.nsf/veritydisplay/7b8b11dbf9c9609dc1257be900231837/$file/2VAA002998_-_en_SPlus_Water_AC500_Library_Engineering_Guide.pdf
http://abblibrary.abb.com/global/scot/scot354.nsf/veritydisplay/7b8b11dbf9c9609dc1257be900231837/$file/2VAA002998_-_en_SPlus_Water_AC500_Library_Engineering_Guide.pdf
http://abblibrary.abb.com/global/scot/scot354.nsf/veritydisplay/7b8b11dbf9c9609dc1257be900231837/$file/2VAA002998_-_en_SPlus_Water_AC500_Library_Engineering_Guide.pdf
http://www05.abb.com/global/scot/scot397.nsf/veritydisplay/eb210cacee41f03dc1257c210039f215/$file/1SBC125003C0204-Automation%20Products_New-BR.pdf
http://www05.abb.com/global/scot/scot397.nsf/veritydisplay/eb210cacee41f03dc1257c210039f215/$file/1SBC125003C0204-Automation%20Products_New-BR.pdf
http://www05.abb.com/global/scot/scot397.nsf/veritydisplay/eb210cacee41f03dc1257c210039f215/$file/1SBC125003C0204-Automation%20Products_New-BR.pdf
http://new.abb.com/about/abb-in-brief
http://new.abb.com/about/abb-in-brief
http://www.industrialpartners.eu/uploads/tx_ipprojects/ctl110104_ABB_AC500_PLC__1__01.jpg
http://www.industrialpartners.eu/uploads/tx_ipprojects/ctl110104_ABB_AC500_PLC__1__01.jpg
http://img1.exportersindia.com/product_images/bc-small/dir_48/1428958/abb-ac500-extreme-condition-plc-454512.jpg
http://img1.exportersindia.com/product_images/bc-small/dir_48/1428958/abb-ac500-extreme-condition-plc-454512.jpg
http://www.codesys.com/products/codesys-engineering/development-system.html
http://www.codesys.com/products/codesys-engineering/development-system.html
http://www.iec.ch/dyn/www/f?p=103:105:0::::FSP_SEARCH_ORG_ID,FSP_SEARCH_AND,FSP_SEARCH_QUOTE,FSP_SEARCH_OR,FSP_SEARCH_NONE,FSP_SEARCH_DOCREF,FSP_SEARCH_STAGECODE,FSP_SEARCH_HEAD,FSP_SEARCH_PUBPROJREF,FSP_SEARCH_DATERANGE,FSP_SEARCH_DATEFROM,FSP_SEARCH_DATETO,FSP_REQUEST:,,,,,,,,61131,0,,,456l
http://www.iec.ch/dyn/www/f?p=103:105:0::::FSP_SEARCH_ORG_ID,FSP_SEARCH_AND,FSP_SEARCH_QUOTE,FSP_SEARCH_OR,FSP_SEARCH_NONE,FSP_SEARCH_DOCREF,FSP_SEARCH_STAGECODE,FSP_SEARCH_HEAD,FSP_SEARCH_PUBPROJREF,FSP_SEARCH_DATERANGE,FSP_SEARCH_DATEFROM,FSP_SEARCH_DATETO,FSP_REQUEST:,,,,,,,,61131,0,,,456l
http://www.iec.ch/dyn/www/f?p=103:105:0::::FSP_SEARCH_ORG_ID,FSP_SEARCH_AND,FSP_SEARCH_QUOTE,FSP_SEARCH_OR,FSP_SEARCH_NONE,FSP_SEARCH_DOCREF,FSP_SEARCH_STAGECODE,FSP_SEARCH_HEAD,FSP_SEARCH_PUBPROJREF,FSP_SEARCH_DATERANGE,FSP_SEARCH_DATEFROM,FSP_SEARCH_DATETO,FSP_REQUEST:,,,,,,,,61131,0,,,456l
http://www.iec.ch/dyn/www/f?p=103:105:0::::FSP_SEARCH_ORG_ID,FSP_SEARCH_AND,FSP_SEARCH_QUOTE,FSP_SEARCH_OR,FSP_SEARCH_NONE,FSP_SEARCH_DOCREF,FSP_SEARCH_STAGECODE,FSP_SEARCH_HEAD,FSP_SEARCH_PUBPROJREF,FSP_SEARCH_DATERANGE,FSP_SEARCH_DATEFROM,FSP_SEARCH_DATETO,FSP_REQUEST:,,,,,,,,61131,0,,,456l
http://www.iec.ch/dyn/www/f?p=103:105:0::::FSP_SEARCH_ORG_ID,FSP_SEARCH_AND,FSP_SEARCH_QUOTE,FSP_SEARCH_OR,FSP_SEARCH_NONE,FSP_SEARCH_DOCREF,FSP_SEARCH_STAGECODE,FSP_SEARCH_HEAD,FSP_SEARCH_PUBPROJREF,FSP_SEARCH_DATERANGE,FSP_SEARCH_DATEFROM,FSP_SEARCH_DATETO,FSP_REQUEST:,,,,,,,,61131,0,,,456l

41

[14] Siemens. CPU416-5H PN/DP, 16MB. Technical Data. Jan. 25, 2014. url: http
://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo

&lang=en&objid=54325254&objaction=csviewtd&td=1&caller=view (visited
on 02/15/2014).

[15] Siemens. Siemens CPU315-2 PN/DP, 384 KB. Technical Data. Feb. 2, 2014. url:
http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.c

sinfo&lang=en&objid=36816516&objaction=csviewtd&td=1&caller=view

(visited on 02/15/2014).

[16] 3S-Smart Software. Codesys Device Dir. 2013. url: http://www.codesys.com
/company/codesys-device-directory.html (visited on 02/15/2014).

http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&lang=en&objid=54325254&objaction=csviewtd&td=1&caller=view
http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&lang=en&objid=54325254&objaction=csviewtd&td=1&caller=view
http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&lang=en&objid=54325254&objaction=csviewtd&td=1&caller=view
http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&lang=en&objid=36816516&objaction=csviewtd&td=1&caller=view
http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&lang=en&objid=36816516&objaction=csviewtd&td=1&caller=view
http://www.codesys.com/company/codesys-device-directory.html
http://www.codesys.com/company/codesys-device-directory.html

APPENDIX 1

Filename:

Directory:

Change date:

Title:

Author:

Version:

Description:

AC500.AC500PRO

C:\Users\FIDAHUM\Desktop\Thesis\CBP_project_files\Ac500_First_program\Ac500_PM590_First__AC500_PM590_ETH__AC500

2.1.14 17:05:06 / V2.3

Demo process

Daniel Hummel

V1.0

Watertank process with AC500 in combination with S+ Operations

APPENDIX 2
Page 1 of 27

ANALOG (PRG-FBD)

0001 PROGRAM ANALOG
0002 VAR_EXTERNAL
0003 level:FB_Transmitter1_1; (*Level In Tank*)
0004 level2:FB_Transmitter1_1; (*Level In Tank2*)
0005
0006 END_VAR
0001

FB_Transmitter1_1
level

FBMode
AlLatch
ExtReset
DisHighAlarm
DisLowAlarm
CONF

SO_Value
SO_SignErr

SO_AHH
SO_AH
SO_AL

SO_ALL

2#00000000
SO.GlobalAlarmBlock

conf.level

Analog in 1, Tank 1

0002

FB_Transmitter1_1
level2

FBMode
AlLatch
ExtReset
DisHighAlarm
DisLowAlarm
CONF

SO_Value
SO_SignErr

SO_AHH
SO_AH
SO_AL

SO_ALL

2#00000000
SO.GlobalAlarmBlock

conf.level

Analog in 2, Tank 2

APPENDIX 2
Page 2 of 27

CALLBACK_STOP (PRG-ST)

0001 PROGRAM CALLBACK_STOP
0002 VAR_EXTERNAL
0003 dwEvent: DINT;
0004 dwFilter: DINT;
0005 dwOwner: DINT;
0006
0007 END_VAR
0001 (*Mandatory name for Program*)
0002 HA_CS31_CALLBACK_STOP(dwEvent, dwFilter, dwOwner);

APPENDIX 2
Page 3 of 27

CONTROLLERS (PRG-FBD)

0001 PROGRAM CONTROLLERS
0002
0003 VAR_EXTERNAL
0004 controller:FB_PID1_1;
0005 END_VAR
0001

FB_PID1_1
controller

SO_PV
SO_SP
SO_MinOut
SO_MaxOut
SO_MaxIncr
SO_MaxDecr
SO_TrackVal
SO_Track
SO_FeedForward
InitModeReset
CONF

SO_Out
SO_OutHigh
SO_OutLow

SO_SPIgnore
SO_SumAlarm

Level.SO_VALUE

0
100

conf.controller

PID controller Tank 1

0002

CONF.controller.IP_CmdManOut
AND

FALSE
FALSE

APPENDIX 2
Page 4 of 27

HA_PRG (PRG-FBD)

0001 PROGRAM HA_PRG
0002
0003
0004 VAR
0005 HA_diag: HA_CS31_DIAG;
0006 HAcontrol: HA_CS31_CONTROL;
0007 hacontrol_man_change:BOOL:=FALSE;
0008 hacontrol_ackn:BOOL:=FALSE;
0009 hacs31_sync_EN: BOOL:= TRUE;
0010 HA_sync: HA_CS31_DATA_SYNC;
0011 END_VAR
0001

HA_CS31_DIAG
HA_diag

EN
COM

DONE
ERR

ERNO
NUM_SLV_CFG
NUM_SLV_ACT

ACTIVE_SLV
ERR_MIX_WIRING

TRUE
1

High availability diagnostics

0002

HA_CS31_DATA_SYNC
HA_sync

EN
DATA
LEN

DONE
ERR

ERNO

hacs31_sync_EN
ADR

AT1V

SIZEOF
AT1V

High availability syncronization

0003

HA_CS31_DATA_SYNC
HA_sync

EN
DATA
LEN

DONE
ERR

ERNO

hacs31_sync_EN
ADR

AT2V

SIZEOF
AT2V

High availability syncronization

0004

HA_CS31_DATA_SYNC
HA_sync

EN
DATA
LEN

DONE
ERR

ERNO

hacs31_sync_EN
ADR

controller.so_sp

SIZEOF
controller.SO_SP

High availability syncronization

0005

HA_CS31_CONTROL
HAcontrol

EN
ETH_SLOT
IP_ADR_CPU_A
IP_ADR_CPU_B
ACK_CHG_OVER
MANUAL_CHG_OVER

DONE
ERR

ERNO

TRUE
0

'192.168.0.10'
'192.168.0.11'

FALSE
FALSE

High availability switchover data handling

APPENDIX 2
Page 5 of 27

HW_PRG (PRG-ST)

0001 PROGRAM HW_PRG
0002
0003
0004
0005 VAR
0006 HWOnlineChangeCount_old:USINT:=0;
0007
0008 module1:HW_MOD_AX522; (*S500 I/O module*)
0009 module2:HW_MOD_AI531; (*S500 I/O module*)
0010 test:REAL:=100;
0011
0012 END_VAR
0013
0014
0015
0016
0017
0018 VAR_EXTERNAL
0019 (*Value_outWord: INT;*)
0020 HWOnlineChangeCount:USINT:=10; (* Increased +10 with each online change *)
0021
0022 END_VAR
0001 IF HW_Diag.HWCallTask=1 OR HW_Diag.HWCallTask=2 OR (HW_Diag.HWCallTask=3 AND (HW_Diag.HWDiagStart OR HW_Diag.HWDiagEnd)) THEN
0002 (* Input/Output processing or global diagnostic buffer shift *)
0003 (* All modules have to be listed here, if they want to update their I/O and diagnost ics *)
0004 module1();
0005 module2();
0006 (*END_IF;*)
0007
0008 ELSIF HW_Diag.HWCallTask=3 THEN
0009 (* Modules are periodically called to process errors, based on their position in the rack *)
0010
0011
0012 CASE HW_Diag.HWDiagComp OF
0013 11: (* CS31 *)
0014 IF HW_Diag.HWDiagMod=31 THEN (* Whole slave station failed *)
0015 IF HW_Diag.HWDiagDev=1 THEN (*CS31*)
0016 module1(ExtAlarm:=TRUE); (* First module on I/O rack *)
0017 module2(ExtAlarm:=TRUE); (* Second module on I/O rack *)
0018
0019 ELSE; (*CS31*)(* Unrecognized station on bus *)
0020
0021
0022 END_IF;
0023
0024 END_IF;
0025 ELSE;
0026 (* Unrecognized component *)
0027 END_CASE;
0028 ELSE
0029 ; (* Wrong call *)
0030 END_IF;
0031
0032 IF HWOnlineChangeCount<>HWOnlineChangeCount_old THEN
0033 HWOnlineChangeCount_old:=HWOnlineChangeCount;
0034
0035
0036 (* Only variable connections to HW and Application here *)
0037 (* Calling modules should be done further down the program *)
0038
0039 (* I/O bus module 01 HW configuration *)
0040 (*module1.InvertIn:=2#00000000;*)
0041 (* module1.InvertOut:=2#00000000;*)
0042
0043 module1.pHWInput:=ADR(in0);
0044 (*module1.pHWInput:=ADR(in0);*)
0045 module1.pHWOutput:=ADR(out0);
0046 (*module1.pHWOutput:=ADR(out1);*)
0047
0048 (* I/O bus module 01 application connections *)
0049
0050
0051 module1.AI0:=ADR(level.IO.IO_Value); (*Input to Transmitter block*)
0052 module1.AO0:=ADR(Watertank.value_outWord1); (*Output to Analog I/O module*)

APPENDIX 2
Page 6 of 27

0053 module1.AI1:=ADR(level2.IO.IO_Value); (*Input to Transmitter block*)
0054 module1.AO1:=ADR(Watertank.value_outWord2); (*Output to analog I/O module*)
0055 (* Analooginputs unused *)
0056 (* module1.AI1:=;
0057 module1.AI2:=;
0058 module1.AI3:=;
0059 module1.AI4:=;
0060 module1.AI5:=;
0061 module1.AI6:=;
0062 module1.AI7:=;*)
0063
0064
0065
0066 (* Digital outputs *)
0067
0068 (* Unused I/O
0069 MOD01.DO0:=ADR();
0070 MOD01.DO1:=;
0071 MOD01.DO2:=;
0072 MOD01.DO3:=;
0073 MOD01.DO4:=;
0074 MOD01.DO5:=;
0075 MOD01.DO6:=;
0076 MOD01.DO7:=;
0077 *)
0078
0079 (* I/O bus module 02 HW configuration*)
0080 (*module2.pHWInput:=ADR(%%%%%%);*)
0081
0082 (* I/O bus module 02 application connections *)
0083 (* Analog inputs *)
0084
0085 (* Unused I/O
0086 module2.AI0:=ADR();
0087 module2.AI1:=;
0088 module2.AI2:=;
0089 module2.AI3:=;
0090 module2.AI4:=;
0091 module2.AI5:=;
0092 module2.AI6:=;
0093 module2.AI7:=;
0094 module2.AI8:=;
0095 module2.AI9:=;
0096 module2.AI10:=;
0097 module2.AI11:=;
0098 module2.AI12:=;
0099 module2.AI13:=;
0100 module2.AI14:=;
0101 module2.AI15:=;
0102 *)
0103
0104 END_IF;

APPENDIX 2
Page 7 of 27

MODBUS (PRG-FBD)

0001 PROGRAM MODBUS
0002 VAR
0003 write_data:ETH_MOD_MAST;
0004 read_data:ETH_MOD_MAST;
0005 edge:R_TRIG; (*Temporary solution, doesnt need to be used*)
0006
0007 errnumber AT %MD0.0 : WORD;
0008
0009 DATA AT %MW0.0 : DWORD;
0010 test:BOOL:=TRUE;
0011
0012
0013 END_VAR
0001

ETH_MOD_MAST
write_data

EN
SLOT
IP_ADR
UNIT_ID
FCT
ADDR
NB
DATA

DONE
ERR

ERNO errnumber
0

1
16
10

5
ADR(DATA)

OROR
read_data.DONE

read_data.ERR

R_TRIG
edge

CLK Qtest

IP_ADR_STRING_TO_DWORD
IP_ADR'192.168.0.30'

Enables block with puls signal BLINK with a set time of 1sec. Function block is dedicated to the CPU internal Ethernet port with command 0 on SLOT. write data function with Function 16 on FCT

0002

ETH_MOD_MAST
read_data

EN
SLOT
IP_ADR
UNIT_ID
FCT
ADDR
NB
DATA

DONE
ERR

ERNO
0

1
3

15
5

ADR(DATA)

OR
write_data.DONE

write_data.ERR

IP_ADR_STRING_TO_DWORD
IP_ADR'192.168.0.30'

Enables block with puls signal BLINK with a set time of 1sec. Function block is dedicated to the CPU internal Ethernet port with command 0 on SLOT. Read data with function 3 on FCT

APPENDIX 2
Page 8 of 27

MOVING_OBJECTS (PRG-FBD)

0001 PROGRAM MOVING_OBJECTS
0002 VAR_EXTERNAL
0003 pump:FB_Motor1_1;
0004 digvalve:FB_Valve1_1;
0005 valve:FB_Valve2_1;
0006 END_VAR
0007 VAR
0008 mcount AT %MW0.0 : UINT;
0009 Tank1level:REAL;
0010 Delay_on: TOF;
0011 Delay_onvalve: TOF;
0012 END_VAR
0013
0014
0001

FB_Motor1_1
pump

SO_StartOrder
SO_Reset
SO_BlockStart
ExtAlarmBlock
EnLocalSwitch
Direction
FBMode
XALatch
CONF

SO_AnswerOn
SO_ReadyToRun

SO_Blocked
so.GlobalReset

so.GlobalAlarmBlock
FALSE

0
0

2#00000000
CONF.pump

TOF
Delay_on

IN
PT

Q
ETT#15s

AND
level2.SO_AHH

digvalve.SO_answeropen

The pump used in in the demo solution to flush Tank 2 when high-high-alarm level is reached

0002

FB_Valve1_1
digvalve

SO_OrderOpen
SO_OrderClose
SO_Reset
SO_BlockMove
ExtAlarmBlock
Direction
EnLocalSwitch
XALatch
ValveType
FBMode
CONF

SO_ReadyToOperate
SO_AnswerOpen
SO_AnswerClose

SO_Blocked
SO_Position

so.GlobalReset

so.GlobalAlarmBlock
0

FALSE
2#00000000

1
1

conf.digvalve

TOF
Delay_onvalve

IN
PT

Q
ET

level2.so_AH
T#10S

AND
level2.so_AH

level2.so_AHH

Digital valve to flush Tank 2

0003

CONF.digvalve.IP_CmdManMode
AND

FALSE
FALSE

0004

FB_Valve2_1
valve

SO_OrderPos
SO_Reset
SO_BlockMove
ExtAlarmBlock
Direction
EnLocalSwitch
XALatch
ValveType
FBMode
CONF

SO_ReadyToOperate
SO_AnswerOpen
SO_AnswerClose

SO_Blocked
SO_Position

controller.SO_Out

TRUE
FALSE

1
1

conf.valve

Analog valve to Tank 1 controlled by PID controller

APPENDIX 2
Page 9 of 27

0005

conf.valve.IP_CmdManmode
AND

FALSE
FALSE

APPENDIX 2
Page 10 of 27

OPERATINGDATA (PRG-FBD)

0001 PROGRAM OPERATINGDATA
0002
0003 VAR_EXTERNAL
0004 motor_data:FB_OperatingData1_1;
0005 timedata:FB_TimeData1;
0006 Waterout: FB_Accumulator1_1;
0007 END_VAR
0008 VAR
0009
0010 END_VAR
0001

FB_TimeData1
timedata

CONF SO
DSTStatus

conf.timedata

Time data that is used

0002

FB_OperatingData1_1
motor_data

SO_ActSignal
CONF
SO_Time

SO_AlServicepump.SO_answeron
conf.motor_data

timedata.so

Runtime data and time to service for pump

0003

FB_Accumulator1_1
Waterout

SO_AnalogInput
SO_PulseInput
Enable
AccType
PulsInputUnits
FactorHour
FactorDay
FactorWeek
FactorMonth
FactorYear
FactorTotal
CONF
SO_Time

watertank.VT2O

TRUE
TRUE

conf.waterout
timedata.so

Used to measure quantity of water flushed from Tank 2

APPENDIX 2
Page 11 of 27

PLC_PRG (PRG-ST)

0001 PROGRAM PLC_PRG
0002
0003 VAR_EXTERNAL
0004 SystemClock:FB_TimeData1; (* System time handling *)
0005 controller:FB_PID1_1;
0006 AT1V: REAL;
0007 END_VAR
0008
0009 VAR
0010 {flag noread,nowrite on}
0011 FirstScan:BOOL:=TRUE;
0012 PLC_Master: BOOL;
0013
0014 END_VAR {flag off}
0001 (* Obligatory FUNCTION call FOR HW_Diag *)
0002
0003
0004 (*Determine Master PLC for OPC server*)
0005 IF fG_HA_PRIMARY THEN
0006 HW_Diag();
0007 PLC_Master:= TRUE;
0008 END_IF
0009
0010 (*Calling CPU diagnostics used in visualization*)
0011 CPU(EN:=TRUE , DONE=> , ERR=> , ERNO=>);
0012
0013 (* Handling configuration variables *)
0014
0015 (*First scan extra behaviours*)
0016 IF FirstScan THEN
0017 controller.InitmodeReset:=FALSE;
0018 AT1V:=3000;
0019 (*CONF.controller.IP_CmdManOut:=FALSE;*)
0020 FirstScan:=FALSE;
0021 END_IF

APPENDIX 2
Page 12 of 27

TIMESTAMPING (PRG-FBD)

0001 PROGRAM TIMESTAMPING
0002 VAR
0003 TS_OUT_ARRAY: ARRAY [0..99] OF TS_DATA_STR;
0004 END_VAR
0005 VAR_EXTERNAL
0006 timestamp:TS_EVENT_STR;
0007 END_VAR
0001

TS_EVENT_STR
timestamp

ev0
ev1
ev2
ev3
ev4
ev5
ev6
ev7
ev8
ev9
ev10
ev11
ev12
ev13
ev14
ev15
msg0
msg1
msg2
msg3
msg4
msg5
msg6
msg7
msg8
msg9
msg10
msg11
msg12
msg13
msg14
msg15
Clear
TS_OUT

TS_Flaglevel.so_ahh
level2.so_ahh

'level tank1'
'level tank2'

TS_OUT_ARRAY

Timestamp block, only used to test functionality in application.

APPENDIX 2
Page 13 of 27

watertank (PRG-ST)

0001 PROGRAM watertank
0002 VAR_EXTERNAL
0003 AT1V: REAL; (*Actual Tank 1 Value*) (*Is set 3000litre volume on first scan*)
0004 AT2V: REAL; (*Actual Tank 2 Value*)
0005 END_VAR
0006
0007 VAR
0008 AnalogSignal_par: SignalParReal:=(MinVal:=0,MaxVal:=100,Unit:='%'); (* parametersettings of analog signal*)
0009 value_outWord1: REALIO; (*Analog signal to output 1*)
0010 value_outWord2: REALIO; (*Analog signal to output 2*)
0011
0012 CIF: REAL:= 150; (* Constant IN Flow Tank 1, 100litre *)
0013 CV1: REAL:=-500; (*correction value if over 10000*)
0014 CV2: REAL:= 500; (*correction value if under 0*)
0015
0016
0017
0018 MT1V: REAL:=10000; (*Max value in Tank*)
0019 VT1I: REAL; (*Value Tank 1 IN *)
0020 VT2I: REAL; (*Value Tank 2 IN*)
0021 (*fbt: REAL:= 60; constant flow between tanks, 60 litre*)
0022 VT1O :REAL; (*Value Tank 1 OUT*)
0023 MVT1O :REAL:= 150; (*MAX Value Tank 1 OUT*)
0024 VT2O :REAL:= 10; (*Value Tank 2 OUT*)
0025 PO:REAL:=0; (*PUMP ON = Flow increase*)
0026
0027
0028 VR: REAL;(*Relative tank volume*)
0029 IVR: REAL;
0030 END_VAR
0001 (*-----------------------------------INFLOW CALCULATIONS FOR TANK 1-- -*)
0002
0003 IF AT1V < 10000 AND AT1V > 0 THEN
0004
0005 VT1I := (Valve.so_position/100) * CIF; (*Regulated inflow based on constant inflow of 150litres*)
0006
0007 ELSIF AT1V > 10000 THEN
0008 REPEAT AT1V:=AT1V+CV1; UNTIL AT1V < 5000 END_REPEAT; (*correct value if it floats past limits. IN CASE SYNC IS DISRUPTED*)
0009 ELSIF at1v <0 THEN
0010 REPEAT AT1V:=AT1V+CV2; UNTIL AT1V > 5000 END_REPEAT; (*correct value if it floats past limits. IN CASE SYNC IS DISRUPTED*)
0011 ELSE;
0012
0013 END_IF;
0014 VR:= (AT1V/MT1V);
0015 IVR := (1-VR);
0016 VT1O := MVT1O * (1-(IVR*IVR));
0017
0018 AT1V := AT1V + VT1I - VT1O;
0019
0020
0021 value_outword1.parameters:=ADR(AnalogSignal_par);
0022 value_outword1.Value:=AT1V*0.01;
0023
0024 (*-----------------------------------INFLOW CALCULATIONS FOR TANK 2-- -*)
0025
0026 IF AT2V <= 10000 AND AT2V >= 0 THEN
0027
0028 VT2I := VT1O;
0029
0030
0031
0032 ELSIF AT2V > 10000 THEN
0033 REPEAT AT2V:=AT2V+CV1; UNTIL AT2V < 5000 END_REPEAT; (*correct value if it floats past limits. IN CASE SYNC IS DISRUPTED*)
0034 ELSIF at2v <0 THEN
0035 REPEAT AT2V:=AT2V+CV2; UNTIL AT2V > 5000 END_REPEAT; (*correct value if it floats past limits. IN CASE SYNC IS DISRUPTED*)
0036
0037 ELSE;
0038 END_IF;
0039
0040 IF pump.so_answeron = TRUE AND digvalve.so_answeropen = TRUE THEN
0041 PO:= 100;
0042 VT2O:=100;
0043 ELSIF pump.so_answeron = FALSE AND digvalve.so_answeropen = TRUE THEN
0044 VT2O:=100;

APPENDIX 2
Page 14 of 27

0045 PO:=0;
0046 ELSE
0047 VT2O:=0;
0048 PO:=0;
0049 END_IF;
0050
0051 AT2V := AT2V + VT2I - VT2O - PO;
0052 value_outword2.parameters:=ADR(AnalogSignal_par);
0053 value_outword2.Value:=AT2V * 0.01;
0054
0055
0056 (*--------------------------------LEVEL MANIPULATION--*)
0057 (* These are set to manipulate values and keep the level moving*)
0058
0059 (*Limitcontroller on Tank 1*)
0060 tankcritical(
0061 SO_Level:=AT1V/100 ,
0062 ControlType:=FALSE ,
0063 CONF:= conf.tankcritical,
0064 SO_ActivateOrder=>);
0065 (*Limitcontroller on Tank 2*)
0066 tankcritical2(
0067 SO_Level:=AT2V/100 ,
0068 ControlType:=FALSE ,
0069 CONF:= conf.tankcritical,
0070 SO_ActivateOrder=>);

APPENDIX 2
Page 15 of 27

Conf_app

0001 TYPE Conf_app :
0002 STRUCT
0003
0004
0005
0006 GlobalAlarmBlockResetHour: UINT:=24; (* Hour for resetting GlobalAlarmBlock, <0 AND >23 turns off automatic disabling *)
0007 END_STRUCT
0008 END_TYPE

CONF_var

0001 TYPE CONF_var :
0002 STRUCT
0003 App:CONF_App;
0004 pump:CONF_Motor1_1;
0005 level:CONF_Transmitter1_1;
0006 level2:CONF_Transmitter1_1;
0007 motor_data:CONF_operatingdata1_1;
0008 timedata:CONF_TimeData1;
0009 controller:CONF_PID1_1;
0010 digvalve:CONF_Valve1_1;
0011 valve:CONF_Valve2_1;
0012 SystemClock:CONF_timedata1;
0013 tankcritical:CONF_LimitControl2_1;
0014 Waterout: CONF_Accumulator1_1;
0015 END_STRUCT
0016 END_TYPE

HMI_Var

0001 TYPE HMI_Var :
0002 STRUCT
0003 App:CONF_App;
0004 IP_CmdGlobalAlarmBlock: BOOL; (* Global blocking of alarms *)
0005 IP_CmdGlobalReset: BOOL; (* Global reset of latched alarms *)
0006 IP_CmdAckPresence: BOOL; (* Acknowledge station presence *)
0007 END_STRUCT
0008 END_TYPE

IO_Var

0001 TYPE IO_Var :
0002 STRUCT
0003 GlobalResetButton: BoolIO; (* Global reset of latched alarms *)
0004 END_STRUCT
0005 END_TYPE

REC_buffer

0001 TYPE REC_buffer :
0002 STRUCT
0003 DATArecieved:INT;
0004 END_STRUCT
0005 END_TYPE

SEND_buffer

0001 TYPE SEND_buffer :
0002 STRUCT
0003 Value: INT;
0004 END_STRUCT
0005 END_TYPE

SO_var

0001 TYPE SO_var :
0002 STRUCT
0003 GlobalReset:BOOL;
0004 GlobalAlarmBlock:BOOL;
0005 END_STRUCT
0006 END_TYPE

APPENDIX 2
Page 16 of 27

module1_Module_Mapping

0001 VAR_GLOBAL
0002 in0 AT %IW502 : INT; (* Analog input 0 *)
0003 in1 AT %IW503 : INT; (* Analog input 1 *)
0004 in2 AT %IW504 : INT; (* Analog input 2 *)
0005 in3 AT %IW505 : INT; (* Analog input 3 *)
0006 in4 AT %IW506 : INT; (* Analog input 4 *)
0007 in5 AT %IW507 : INT; (* Analog input 5 *)
0008 in6 AT %IW508 : INT; (* Analog input 6 *)
0009 in7 AT %IW509 : INT; (* Analog input 7 *)
0010 out0 AT %QW502 : INT; (* Analog output 0 *)
0011 out1 AT %QW503 : INT; (* Analog output 1 *)
0012 END_VAR

module1_Module_Mapping_1

0001 VAR_GLOBAL
0002 in0 AT %IW502 : INT; (* Analog input 0 *)
0003 in1 AT %IW503 : INT; (* Analog input 1 *)
0004 in2 AT %IW504 : INT; (* Analog input 2 *)
0005 in3 AT %IW505 : INT; (* Analog input 3 *)
0006 in4 AT %IW506 : INT; (* Analog input 4 *)
0007 in5 AT %IW507 : INT; (* Analog input 5 *)
0008 in6 AT %IW508 : INT; (* Analog input 6 *)
0009 in7 AT %IW509 : INT; (* Analog input 7 *)
0010 out0 AT %QW502 : INT; (* Analog output 0 *)
0011 out1 AT %QW503 : INT; (* Analog output 1 *)
0012 END_VAR

module2_Module_Mapping

0001 VAR_GLOBAL
0002 in2_1 AT %IW510 : INT; (* Analog input 0 *)
0003 END_VAR

module2_Module_Mapping_1

0001 VAR_GLOBAL
0002 in2_1 AT %IW510 : INT; (* Analog input 0 *)
0003 END_VAR

Global_Variables

0001 VAR_GLOBAL
0002
0003 (* MOVING_OBJECTS *)
0004 pump:FB_Motor1_1; (*Starts pump in Tank 2*)
0005 digvalve:FB_Valve1_1; (*outflow valve tank2*)
0006 valve:FB_Valve2_1; (*inflow valve Tank 1*)
0007
0008
0009 (*CONTROLLER*)
0010 controller:FB_PID1_1; (*PID, valve*)
0011
0012 (*OPERATINGDATA*)
0013 motor_data:FB_OperatingData1_1; (*run time counter for pump*)
0014 timedata:FB_TimeData1; (*TIME*)
0015 Waterout: FB_Accumulator1_1; (*waterquantity*)
0016 (* ANALOG *)
0017 level:FB_Transmitter1_1; (*Level In Tank*)
0018 level2:FB_Transmitter1_1; (*Level In Tank2*)
0019
0020
0021 (* PLC_PRG *)
0022 SystemClock:FB_TimeData1; (*Timedata*)
0023
0024
0025 (*TIMESTAMPING*)
0026 timestamp:TS_EVENT_STR; (*Timestamping*)
0027
0028 (*watertank*)
0029 tankcritical:FB_LimitControl2_1; (**)
0030 tankcritical2:FB_LimitControl2_1; (**)
0031 Value_outWord: INT; (**)

APPENDIX 2
Page 17 of 27

0032 Value_outWord2: INT; (**)
0033
0034 dwEvent: DINT;
0035 dwFilter: DINT;
0036 dwOwner: DINT;
0037
0038 DATA AT %MW0.0 : DWORD;
0039 OPClive AT %MW1.0: DWORD;
0040 AT1V: REAL;
0041 AT2V: REAL;
0042
0043
0044
0045 END_VAR

Global_Variables_CONF

0001 VAR_GLOBAL
0002 SO:SO_var;
0003
0004 END_VAR
0005
0006 VAR_GLOBAL RETAIN PERSISTENT
0007
0008 CONF:CONF_var:=(
0009
0010
0011
0012
0013
0014 Level:=((* Level in the tank *)
0015 IP_LimAHH:=80, (* Limit HH-Alarm *)
0016 IP_LimAH:=60, (* Limit H-Alarm *)
0017 IP_LimAL:=40, (* Limit L-Alarm *)
0018 IP_LimALL:=20, (* Limit LL-Alarm *)
0019 IP_Hysteresis:=0.2, (* Hysteresis in measuring unit *)
0020
0021
0022
0023 IO_Value_par:=((* Signal parameters for analog input *)
0024 MaxVal:=100.0, (*Max value*)
0025 MinVal:=0.0, (*Min Value*)
0026 Unit:='m')), (*Unit of the signal*)
0027
0028 tankcritical:=(
0029 IP_LimStart:=65.0,
0030 IP_Hysteresis:=0),
0031
0032
0033
0034 motor_data:=(
0035 (*IP_CmdManResRnt:= FALSE, Reset accumulated runtime *)
0036 (*IP_CmdManResCnt:=FALSE, Reset accumulated number of activations *)
0037 (*IP_CmdManResSrv:=FALSE, Reset service required and time before service*)
0038 IP_AccRntTot:=1000, (*Acc. time total *)
0039 IP_AccCntTot:=1000), (*Acc. activations total *)
0040
0041 controller:=(
0042 IP_Out:= 20, (*REAL; PID output, can be changed in manual out mode *)
0043 IP_SP:=50, (* SetPoint, sent to the PID *)
0044 IP_Gain:=0.75, (* Gain coefficient for the PID *)
0045 IP_TI:=1, (* Integral coefficient for the PID [sec] *)
0046 IP_TD:=0, (* Differential coefficient for the PID [sec] *)
0047 IP_MaxDeviation:=0, (* Alarm if SP and PV differ more than this value; 0=disable alarm *)
0048 IP_MinDerivative:=0, (* Alarm if PV derivative is less than th is value; 0=ignore this condition *)
0049 IP_AFilterTime:=5, (* Timeout before alarm is raised *)
0050 IP_CmdManOut:=FALSE, (* Activate output manual override *)
0051 IP_CmdManSP:=FALSE, (* Activate SP manual override *)
0052 IP_CmdOutLim:=FALSE), (* Limit Out change rate in ManOut and Track modes *)
0053
0054
0055 valve:=(
0056 IP_TravelTime:=10,
0057 IP_CmdManMode:=FALSE), (* Command Auto (0) / Manuell (1) *)
0058

APPENDIX 2
Page 18 of 27

0059 digvalve:=(
0060 IP_AcofTime:=10, (* Limit switch timeout *)
0061 IP_TravelTime:=10, (* Open<>Close travel time *)
0062 IP_CmdManMode:=FALSE, (* Command Auto (0) / Manuell (1) *)
0063 IP_CmdManBlock:=FALSE) (* Command manual blocking valve *)
0064
0065);
0066
0067
0068
0069 END_VAR
0070
0071
0072
0073
0074

Variable_Configuration

0001 VAR_CONFIG
0002 END_VAR

SPC_Bit_Enum

0001 VAR_GLOBAL CONSTANT
0002 {flag noread, nowrite on}
0003 (*Configuration bit enumeration*)
0004
0005 Force:INT:= 0; (* Stop copy form Value to ValueIO *)
0006 Fault:INT:= 1; (* Module fault, copy stopped *)
0007 Value: INT:= 2; (* Value to application *)
0008 ValueIO:INT:= 3; (* Value in hardware *)
0009
0010 Overflow:INT:= 2; (* ValueIO above max *)
0011 Underflow:INT:= 3; (* ValueIO below max *)
0012
0013 isBoolIO:INT:= 5; (*true=This variable is BoolIO type*)
0014 isRealIO:INT:= 6; (*true=This variable is RealIO type*)
0015 isIntIO:INT:= 7; (*true=This variable is IntIO type*)
0016
0017 (* HW_Diag bit enumerations *)
0018 IOBusFail: INT:= 0; (* General I/O bus error *)
0019 IOBusWarn: INT:= 1; (* I/O bus subunit error *)
0020 IntEthFail: INT:= 2; (* General Internal Ethernet error *)
0021 IntEthWarn: INT:= 3; (* Internal Ethernet subunit error *)
0022 IntCOM1Fail: INT:= 4; (* General Internal COM port 1 error *)
0023 IntCOM1Warn: INT:= 5; (* Internal COM port 1 subunit error *)
0024 IntCOM2Fail: INT:= 6; (* General Internal COM port 2 error *)
0025 IntCOM2Warn: INT:= 7; (* Internal COM port 2 subunit error *)
0026 ExtCI1Fail: INT:= 8; (* General External Communications Interface 1 error *)
0027 ExtCI1Warn: INT:= 9; (* External Communications Interface 1 subunit error *)
0028 ExtCI2Fail: INT:= 10; (* General External Communications Interface 2 error *)
0029 ExtCI2Warn: INT:= 11; (* External Communications Interface 2 subunit error *)
0030 ExtCI3Fail: INT:= 12; (* General External Communications Interface 3 error *)
0031 ExtCI3Warn: INT:= 13; (* External Communications Interface 3 subunit error *)
0032 ExtCI4Fail: INT:= 14; (* General External Communications Interface 4 error *)
0033 ExtCI4Warn: INT:= 15; (* External Communications Interface 4 subunit error *)
0034 SO_BatteryAlarm:INT:= 16; (* PLC CPU Battery is not OK *)
0035 {flag off}
0036 END_VAR

SPC_Global_Constant

0001 VAR_GLOBAL CONSTANT
0002 (***Visualization constants***)
0003 SecondToHourFactor: REAL := 0.000277777777777778;
0004
0005 (***Visualization color constants***)
0006 VisuColorBackground: DINT:= 16#FFFFFF;
0007 VisuColorAlarmMain: DINT:= 16#0000C8;
0008 VisuColorAlarmAux: DINT:= 16#80FFFF;
0009 VisuColorActiveMain: DINT:= 16#004000;
0010 VisuColorActiveAux: DINT:= 16#008000;
0011 VisuColorInactive: DINT:= 16#C0C0C0;
0012 VisuColorForce: DINT:= 16#00FFFF;

APPENDIX 2
Page 19 of 27

0013 VisuColorOPMode: DINT:= 16#0000FF;
0014 VisuColorNavButton: DINT:= 16#C0C0C0;
0015 VisuColorButton: DINT:= 16#F0F0F0;
0016 VisuColorButtonPressed: DINT:= 16#F3F3F3;
0017 VisuColorFont: DINT:= 16#000000;
0018 VisuColorFrame: DINT:= 16#000000;
0019
0020 (***Time constants***)
0021 TimeConfTimeZone: SINT:= 1; (* Local timezone (1 = GMT+01:00) *)
0022 TimeConfDSTMode: USINT:= 1; (* Daylight saving mode: 0=no DST; 1=European DST; 2=North American DST; 3=Custom Table*)
0023 (* EU GMT+1 Table *)
0024 TimeConfDSTStart1: DT:= DT#2014-03-30-02:00:00; (* Custom Daylight saving period start, local time *)
0025 TimeConfDSTEnd1: DT:= DT#2014-10-26-03:00:00; (* Custom Daylight saving period end, local time, including DST *)
0026 TimeConfDSTStart2: DT:= DT#2015-03-29-02:00:00; (* Custom Daylight saving period start, local time *)
0027 TimeConfDSTEnd2: DT:= DT#2015-10-25-03:00:00; (* Custom Daylight saving period end, local time, including DST *)
0028 TimeConfDSTStart3: DT:= DT#2016-03-27-02:00:00; (* Custom Daylight saving period start, local time *)
0029 TimeConfDSTEnd3: DT:= DT#2016-10-30-03:00:00; (* Custom Daylight saving period end, local time, including DST *)
0030 TimeConfDSTStart4: DT:= DT#2017-03-26-02:00:00; (* Custom Daylight saving period start, local time *)
0031 TimeConfDSTEnd4: DT:= DT#2017-10-29-03:00:00; (* Custom Daylight saving period end, local time, including DST *)
0032 TimeConfDSTStart5: DT:= DT#2018-03-25-02:00:00; (* Custom Daylight saving period start, local time *)
0033 TimeConfDSTEnd5: DT:= DT#2018-10-28-03:00:00; (* Custom Daylight saving period end, local time, including DST *)
0034 TimeConfDSTStart6: DT:= DT#2019-03-31-02:00:00; (* Custom Daylight saving period start, local time *)
0035 TimeConfDSTEnd6: DT:= DT#2019-10-27-03:00:00; (* Custom Daylight saving period end, local time, including DST *)
0036 TimeConfDSTStart7: DT:= DT#2020-03-29-02:00:00; (* Custom Daylight saving period start, local time *)
0037 TimeConfDSTEnd7: DT:= DT#2020-10-25-03:00:00; (* Custom Daylight saving period end, local time, including DST *)
0038 TimeConfDSTStart8: DT:= DT#2021-03-28-02:00:00; (* Custom Daylight saving period start, local time *)
0039 TimeConfDSTEnd8: DT:= DT#2021-10-31-03:00:00; (* Custom Daylight saving period end, local time, including DST *)
0040 TimeConfDSTStart9: DT:= DT#2022-03-27-02:00:00; (* Custom Daylight saving period start, local time *)
0041 TimeConfDSTEnd9: DT:= DT#2022-10-30-03:00:00; (* Custom Daylight saving period end, local time, including DST *)
0042 TimeConfDSTStart10: DT:=DT#2023-03-26-02:00:00; (* Custom Daylight saving period start, local time *)
0043 TimeConfDSTEnd10: DT:= DT#2023-10-29-03:00:00; (* Custom Daylight saving period end, local time, including DST *)
0044 TimeConfDSTStart11: DT:=DT#2024-03-31-02:00:00; (* Custom Daylight saving period start, local time *)
0045 TimeConfDSTEnd11: DT:=DT#2024-10-27-03:00:00; (* Custom Daylight saving period end, local time, including DST *)
0046 TimeConfDSTStart12: DT:=DT#2025-03-30-02:00:00; (* Custom Daylight saving period start, local time *)
0047 TimeConfDSTEnd12: DT:= DT#2025-10-26-03:00:00; (* Custom Daylight saving period end, local time, including DST *)
0048 TimeConfDSTStart13: DT:=DT#2026-03-29-02:00:00; (* Custom Daylight saving period start, local time *)
0049 TimeConfDSTEnd13: DT:= DT#2026-10-25-03:00:00; (* Custom Daylight saving period end, local time, including DST *)
0050 TimeConfDSTStart14: DT:=DT#2027-03-28-02:00:00; (* Custom Daylight saving period start, local time *)
0051 TimeConfDSTEnd14: DT:= DT#2027-10-31-03:00:00; (* Custom Daylight saving period end, local time, including DST *)
0052 TimeConfDSTStart15: DT:=DT#2028-03-26-02:00:00; (* Custom Daylight saving period start, local time *)
0053 TimeConfDSTEnd15: DT:= DT#2028-10-29-03:00:00; (* Custom Daylight saving period end, local time, including DST *)
0054 TimeConfDSTStart16: DT:=DT#2029-03-25-02:00:00; (* Custom Daylight saving period start, local time *)
0055 TimeConfDSTEnd16: DT:= DT#2029-10-28-03:00:00; (* Custom Daylight saving period end, local time, including DST *)
0056 {library private}
0057 TimeConfDSTNoEntries: USINT :=16; (* Number of entr ies in DST table *)
0058 {library public}
0059
0060 (***Signal limit constants***)
0061 OverflowLimit: INT:=31795; (* Overflow warning limit for analog signals *)
0062 UnderflowNorm: INT:=-3456; (* Underflow warning limit for analog signals *)
0063 UnderflowExt: INT:=-31795; (* Underflow warning limit for analog signals *)
0064
0065 (* Since signal limits are digital, they correspond to different actual measured values, depending on the selected signal range.
0066 The following table is for reference only, consult specific I/O module documentation for precise range data.
0067
0068 Value 4..20mA 0..20mA 0..10V -10..10V
0069 OverflowLimit 31795 22.5mA 23mA 11.5V 11.5V
0070 UnderflowNorm -3456 2mA - -1.25V -1.25V
0071 UnderflowExt -31795 - - - -11.5V
0072 *)
0073 END_VAR

SPC_Global_Persist_Var

0001 VAR_GLOBAL PERSISTENT
0002 HWEnableSimulation:BOOL:=FALSE; (* Swithes all blocks to FBMode=0 *)
0003 END_VAR

SPC_Global_Var

0001 {nonpersistent}
0002 {library public}
0003 VAR_GLOBAL
0004
0005 HWOnlineChangeCount:USINT:=10; (* Increased +10 with each online change *)

APPENDIX 2
Page 20 of 27

0006 HWOnlineChangeCallbackRunning:BOOL:=FALSE; (*Online change callback has been started*)
0007
0008 HWInputCallbackWatchdog:USINT:=0; (*0:Stopped, 1:Set by Callback, 2:Set by SPCControl*)
0009 HWOutputCallbackWatchdog:USINT:=0; (*0:Stopped, 1:Set by Callback, 2:Set by SPCControl*)
0010
0011 {library private}{flag noread, nowrite on}
0012 (* 0-100% RealIO parameters, normal range, available for signals that do not require scaling *)
0013 ZeroHundredNormFixedPar:SignalParReal:=(MaxVal:=100, MinVal:=0, Unit:='%', ExtendedRange:=FALSE);
0014 (* 0-100% RealIO parameters, extended range, available for signals that do not require scaling *)
0015 ZeroHundredExtFixedPar:SignalParReal:=(MaxVal:=100, MinVal:=0, Unit:='%', ExtendedRange:=TRUE);
0016 {flag off}
0017 END_VAR

Global_Variables

0001 VAR_GLOBAL
0002 END_VAR

Globale_Variablen

0001 VAR_GLOBAL
0002 END_VAR

GL_AC500_Diagnosis

0001 VAR_GLOBAL
0002 CPU : CPU_LOAD; (* structure of CPU load variables *)
0003 diagCPU : CPU_DIAG; (* structure of CPU diagnosis variables *)
0004 diagCS31 : CS31_DIAG; (* structure of CS31 diagnosis variables *)
0005 diagFBP : FBP_DIAG; (* structure of FBP diagnosis variables *)
0006
0007 END_VAR

GL_Diag_Constant

0001 VAR_GLOBAL CONSTANT
0002 (* Error numbers for all diag function blocks *)
0003 wERNO_SIMULATION_MODE : WORD := 16#50FF;
0004
0005 END_VAR

Globale_Variablen

0001 VAR_GLOBAL
0002 END_VAR

GL_Diag_Constant

0001 VAR_GLOBAL CONSTANT
0002 (* Error numbers for all diag function blocks *)
0003 wERNO_SIMULATION_MODE_EXT : WORD := 16#50FF;
0004 END_VAR

Globale_Variablen

0001 VAR_GLOBAL
0002 END_VAR

LIBRARY_VERSION_INFORMATION

0001 VAR_GLOBAL
0002 (**
0003 * We reserve all rights in these programs and the information therein. Re-
0004 * production, use or disclosure to third parties without express authority
0005 * is strictly forbidden. (c) ABB Automation Products GmbH
0006 ***
0007
0008 LIBRARY: Ethernet_AC500_V10
0009
0010 DESCRIPTION:
0011
0012 FBs to use Ethernet on AC500
0013

APPENDIX 2
Page 21 of 27

0014 RESTRICTIONS: Just be used in ABB AC500-PLCs
0015
0016 ***
0017 DATE: 2012-03-08
0018 MODIFIED:
0019 2012-03-08 Added datatype ETH_MOD_FCT22 and ETH_MOD_FCT23
0020
0021 ***)
0022 END_VAR

Global_Variables

0001 VAR_GLOBAL
0002
0003 END_VAR

HA_Global

0001 VAR_GLOBAL CONSTANT
0002 (* HA specific err or codes*)
0003 wHA_ER_WRONG_COM: WORD := 16#2001; (* Wrong COM Number at the COM Input *)
0004 wHA_ER_WRONG_NO_CS31_PROTOCOL: WORD := 16#3003; (* No CS31 Protocol on COM *)
0005 wHA_ER_CI590_CFG_NOT_COMPLETE: WORD := 16#3029; (* CI590 Slave configuration not complete *)
0006 wHA_ER_ALL_CI590_NOT_ACTIVE: WORD := 16#1021; (* All the CI590 configured are not active *)
0007 wHA_ER_CI590_Cross_Wiring: WORD := 16#2029; (* CI590 Slaves in Bus1 and Bus2 are Mix wired *)
0008 wHA_ER_CS31_CI590_CFG_ERROR: WORD := 16#201C; (* The number CI590 Configured on both CPUs are not same *)
0009 wHA_ER_REMOTE_CI590_FAILURE: WORD := 16#1029; (*Remote CI590 Failure*)
0010 wHA_ER_OWN_CI590_FAILURE: WORD := 16#1021; (*CI590 Failure is own bus*)
0011 wHA_ER_NO_ETHERNET_LINK: WORD := 16#2013; (*No Ethernet Link*)
0012 wHA_ER_CS31_MASTER_CROSS_WIRE: WORD := 16#2029; (* CS31 Master Cross Wired *)
0013 wHA_ER_CS31_BUS_FAILURE: WORD := 16#2005; (* CS31 BUS Faliure *)
0014 wHA_ER_Remote_CPU_Failure: WORD := 16#101B; (*Remote CPU Failure*)
0015 wHA_ER_Remote_CS31_BUS_Failure: WORD := 16#201B; (*Remote CS31 Bus (Master) Failure*)
0016 wHA_ERNO_COUPLER_CONFI: WORD := 16#6076; (* coupler configuration for the sync connection is invalid *)
0017 wHA_ERNO_TBL_OVERFLOW: WORD := 16#2022; (* HA data reference table is full *)
0018 wHA_ERNO_TBL_DIFFERENT: WORD :=16#2022; (* HA data reference tables are different *)
0019 (* HA specific constants*)
0020 bHA_FRAME_TYPE_STATUS: BYTE := 16#42; (* HA status farme *)
0021 bHA_FRAME_TYPE_STATUS_DATA: BYTE := 16#DD; (* HA status and data farme *)
0022 uiHA_MaxBufferSize: UINT := 1400; (* HA Sync max Frame size *)
0023 uiHA_MaxSyncEntries: UINT := 256; (* Total size of the sync entry array NoSyncFBPins* MaxSyncFBs *)
0024 HA_MAX_DATA_IN_ETH_FRAME: UINT := 1336; (* Ethernet Frame Length - Size of Header *)
0025 uiDelay_LineB_init_Prim: UINT := 1500; (*Number of cycle delay before declaring the Line B as Primary during CPU startup*)
0026 uiDelay_CI590_err: UINT := 25; (*Number of cycle delay before declaring the CI590 Failure error*)
0027 MaxDelayData: BYTE := 5; (*Max number of cycles for data update*)
0028 uiSync_Cycle: UINT := 6; (* Number of cycle delay before acknowledge signal is reset *)
0029 (* FRABB - A.M - HA_SyncArray control Items*)
0030 uiFilterTimeHASyncArrayInit: UINT := 200; (*Number of cycles to wait before calculating HA_SyncArray ptrData CS*)
0031 END_VAR

APPENDIX 2
Page 22 of 27

HA_Global_Variables

0001 VAR_GLOBAL
0002 fG_HA_PRIMARY: BOOL := 0; (* State of the AC500 CPU (FALSE -> PM acts as Secondary, TRUE-> PM acts as PRIMARY) *)
0003 fG_HA_PM1_PRIMARY: BOOL := FALSE; (* Indication of primary PM, TRUE -> PM1 / IP1 acts as PRIMARY *)
0004 fG_HA_CPU_STOP: BOOL :=FALSE; (*IF TRUE -> Indicates the CPU in STOP MODE*)
0005 (* HA error infomation *)
0006 fG_HA_Err: BOOL := FALSE; (* HA error state *)
0007 wG_HA_ErNo: WORD := 0; (* HA error code *)
0008 bitG_Data_ERR: BOOL := FALSE; (* HA data sync error state *)
0009 wG_Data_ERNO: WORD := 0; (* HA data error sync code *)
0010 (* HA synchronization link configuration *)
0011 dwG_HA_OwnIP: DWORD := 0; (* own IP address on sync link connection *)
0012 dwG_HA_OtherIP: DWORD := 0; (* other PMs IP address on sync link connection *)
0013 bG_HA_Slot: BYTE := 0; (* slot of interface to sync link connection *)
0014 (*OPC Server connection check*)
0015 dwG_HA_ServerAlive: DWORD:=0; (* Life counter incremented by OPC server *)
0016 byLastDataDelay: BYTE :=0;
0017 bitRefreshDataDelay: BOOL := FALSE;
0018 byCntDataDelay: BYTE :=0;
0019 wETH_Life: WORD; (* Ethernet Life Count *)
0020 dwHATimersBaseTime : DWORD;
0021 END_VAR

APPENDIX 2
Page 23 of 27

0001 {library private}
0002
0003 VAR_GLOBAL
0004 uiHASyncArrayIndex: UINT := 0;
0005 HASyncArray: ARRAY[0..uiHA_MaxSyncEntries] OF strHA_SYNC_DATA;
0006 stHA_CS31_State: strHA_CS31_STATE;
0007 stHA_VISU_DATA: strHA_VISU_DATA;
0008 END_VAR

HA_VERSION_INFORMATION

0001 VAR_GLOBAL
0002 (**
0003 * We reserve all rights in these programs and the information therein. Re-
0004 * production, use or disclosure to third parties without express authority
0005 * is strictly forbidden. (c) Copyright 2006-2012 ABB. All rights reserved
0006 ***
0007 *
0008 * DESCRIPTION:
0009 *
0010 * BASIC FBs, structures and visualizations for AC500 PLCs
0011 *
0012 * RESTRICTIONS: may just be used in ABB AC500-PLCs
0013 *
0014 *
0015 ***
0016 * AUTHOR: ABB Automation Products GmbH
0017 * DATE: 2009-06-09
0018 * MODIFIED: 2009-06-09 V1.3 Released
0019 2010-10-27 V2.0 Released
0020 2013-04-12 V2.3 Updated 'CS31_AC500_V10' library reference to 'CS31_AC500_V20' in library manager
0021
0022 **)
0023
0024 {library private}
0025 (* detailed history for internal use *)
0026 (* -- *)
0027
0028 (* MODIFIED: 2009-06-09 V1.3 released
0029 2010-10-27 V2.0 Updated HA_CS31_CONTROL block
0030 -Added new variables and logic for common base time management
0031 2012-07-31 V2.2 HA_CS31_CALLBACK_STOP is updated as a Function with below input variables
0032 -dwEvent,dwFilter,dwOwner.;
0033 -Program is added with a line, 'fG_HA_PM1_PRIMARY := FALSE;'
0034 Updated HA_Global_Variables by removing flag no write
0035 Updated HA_CS31_CONTROL block by below change
0036 -Removed logic to enable function block DIAG_EVENT and changed to EN = TRUE.
0037 2013-04-12 V2.3 Updated 'CS31_AC500_V10' library reference to 'CS31_AC500_V20' in library manager
0038 Added global variable for HA version infor mation
0039 Added project information in project Info.
0040
0041
0042
0043
0044
0045 ***)
0046
0047 END_VAR

Globale_Variablen

0001 VAR_GLOBAL
0002 END_VAR

LIBRARY_VERSION_INFORMATION

0001 VAR_GLOBAL
0002 (**
0003 * We reserve all rights in these programs and the information therein. Re-
0004 * production, use or disclosure to third parties without express authority
0005 * is strictly forbidden. (c) 2006-2013 ABB, all rights reserved
0006 ***
0007
0008 LIBRARY: SysInt_AC500_V10

APPENDIX 2
Page 24 of 27

0009
0010 DESCRIPTION:
0011
0012 Common library for the AC500 system
0013
0014 RESTRICTIONS: Just be used in ABB AC500-PLCs
0015
0016 ***
0017 DATE: 2012-03-20
0018 MODIFIED:
0019 2012-03-20 V1.0.0 Added function block IO_PROD_ENTRY_READ
0020 and a datatype for internal use only zSYSINT_IO_PROD_DATA_TYPE
0021 2012-04-04 V1.1.0 Added function block PM_INFO, IO_MODULE_INFO_EXT, a datatype for internal use only zRTS_VERSION_INFO_TYPE
0022 and done some error correction of IO_MODULE_INFO
0023 2012-06-22 V1.2.0 Added function blocks DPRAM_SM5XX_REC and DPRAM_SM5XX_SEND
0024 2013-04-09 V1.3.0 Added function block BOOTPRG_HASH_INFO
0025
0026 ***)
0027 END_VAR

APPENDIX 2
Page 25 of 27

Globale_Variablen

0001 VAR_GLOBAL
0002 END_VAR

Globale_Variablen

0001 VAR_GLOBAL
0002 END_VAR

Globale_Variablen

0001 VAR_GLOBAL
0002 END_VAR

Globale_Variablen

0001 VAR_GLOBAL
0002 END_VAR

Globale_Variablen

0001 VAR_GLOBAL
0002 END_VAR

Globale_Variablen

0001 VAR_GLOBAL
0002 END_VAR

Globale_Variablen

0001 VAR_GLOBAL
0002 END_VAR

Globale_Variablen

0001 VAR_GLOBAL
0002 END_VAR

Globale_Variablen

0001 VAR_GLOBAL
0002 END_VAR

Alarm configuration

Alarm configuration
Alarm classes
System

PLC Configuration

APPENDIX 2
Page 26 of 27

*AC500 CPU (Id.: 5107)
Node number: -1
Input address: %IB0
Output address: %QB0
Diagnostic address: %MB0
Download: 1
AutoAdr: 1
Parameter:

Datei: FlexConf.ini

Sampling Trace

No trace loaded

Task configuration

Task configuration
System events
 Main (PRIORITY := 10, INTERVAL := T#500ms)

 PLC_PRG();
 CONTROLLERS();
 ANALOG();
 OPERATINGDATA();
 MOVING_OBJECTS();
 watertank();

 UDP (PRIORITY := 10, INTERVAL := T#1s0ms)
 UDP();

 MODBUS (PRIORITY := 10, INTERVAL := T#500ms)
 MODBUS();

 Timestamping (PRIORITY := 10, INTERVAL := T#500ms)
 TIMESTAMPING();

 HAtask (PRIORITY := 10, INTERVAL := T#20ms)
 HA_PRG();

Notepad

Watch- and Recipe Manager

Standard
Watch0
0001 MODBUS.errnumber
0002

Workspace

Parameter Manager

0001 Parameter-Manager
0002 ===============

APPENDIX 2
Page 27 of 27

	Introduction
	Target

	ABB
	In Finland
	Power Generation

	 Programmable Logic Controllers
	History
	Functionality

	CS31
	Technical data
	In practice
	Restrictions

	AC500
	Introduction
	Overview
	Technical data and features
	References
	Sewage Treatment Plant, China
	Desalination Plant, Israel
	Water Reuse Treatment Plant, China

	Summary

	PS501 Engineering Tool
	Control Builder Plus
	Hardware configuration
	Parametrization
	Diagnostics

	CoDeSys
	Languages
	Programming

	CoDeSys with other brands

	Water & Wastewater
	Functionality
	Function blocks
	Hardware interface
	Application interface
	HMI interface
	FB_Motor1_1
	FB_Motor2_1
	FB_Valve1_1
	FB_Valve2_1
	FB_Transmitter1_1
	FB_Alarm1_1
	FB_AlternationTime1
	FB_AlterationPri2_1
	FB_LimitControl1_1
	FB_LimitControl2_1
	FB_Actuator1_1
	FB_TimeData1
	FB_OperatingData1_1
	FB_Accumulator1_1
	FB_Weir1_1
	FB_Inflow1_1

	Implementation

	Project X - Using AC500
	Introduction
	Communication
	Siemens
	ABB

	Common Control Panel
	Siemens
	ABB

	Generator Control Panel 1-5
	Siemens
	ABB

	HMI
	Siemens
	ABB

	Summary

	Creating a Project
	Project
	Overview
	Hardware installation
	Communication protocols
	Hardware configuration
	Software Configuration
	Summary

	Results
	Discussion
	Bibliography
	Appendices

