

Statistical Analysis Of Malware Defence
Methods

Jarno Niemelä

Master’s thesis
May 2015

Degree programme in Information Technology
Cyber Security

Description

Author(s)

Niemelä, Jarno
Type of publication

Master’s thesis
Date

15.09.2015

Language of publication:
2015

Number of pages

27
Permission for web

publication: x

Title of publication

Statistical Analysis Of Malware Defence Methods

Degree programme

Degree programme in Information Technology Cyber Security

Tutor(s)

Rantonen Mika; Huotari, Jouni

Assigned by

FSecure Corporation

Abstract

The purpose of this thesis was to investigate effectiveness of selected malware defence
techniques. The goal of the research was to come up with tooling and instructions for
system administrators and security officers to protect against previously unknown
malware. This thesis is a compilation of two conference papers, each of which focuses on a
particular aspect of advanced malware defence, and a journal paper on using SSDEEP fuzzy
hash algorithm for whitelisting.

The first conference paper was named “Statistically effective protection against APT
attacks” and was published in a VirusBulletin 2013 conference and focuses on malware
protection methods that protect against document-based exploits. The aim of the research
was to identify methods that are effective in preventing attackers from establishing a
beachhead in a target organization. The first paper is listed as Appendix A of this
presentation.

The second conference paper was named “Improving whitelisting by using local system
analysis” and will be published in a law enforcement conference in 2015. This paper
focuses on using whitelisting and local system analysis methods to detect unknown
executable binaries that do not look like part of any software installation.

The third paper was named “Evaluating the usefulness of the ssdeep fuzzy hash algorithm
for whitelisting purposes” and will be submitted to a digital forensics journal. The paper
focuses on evaluating whether the SSDEEP hash algorithm can be reliably used for white
listing when doing forensic investigation.

Keywords/tags (subjects)

Malware, Forensics, Exploit, Mitigation, Hardening, Fuzzy hash, SSDEEP, Virus, Trojan

Miscellaneous

http://www.nelliportaali.fi/V/?institute=JAMK&portal=JAMK&new_lng=eng&force_login=Y&func=find-db-1-category&mode=category&restricted=all&sequence=000013943
http://www.nelliportaali.fi/V/?institute=JAMK&portal=JAMK&new_lng=eng&force_login=Y&func=find-db-1-category&mode=category&restricted=all&sequence=000013943

Kuvailulehti

Tekijä(t)

Niemelä, Jarno
Julkaisun laji

Opinnäytetyö
Päivämäärä

15.09.2015

Sivumäärä
27

Julkaisun kieli

Suomi

 Verkkojulkaisulupa

myönnetty: kyllä

Työn nimi

Statistical Analysis Of Malware Defence Methods

Koulutusohjelma

Degree programme in Information Technology Cyber Security

Työn ohjaaja(t)

Huotari, Jouni; Rantonen Mika

Toimeksiantaja(t)

F-Secure Corporation

Tiivistelmä

Opinnäytetyössä tutkittiin haittaohjelmatorjuntatekniikoiden toimivuutta. Tutkimuksen
tarkoituksena oli kehittää uusia työohjeistuksia ja työkaluja järjestelmäylläpitäjille
kyberhyökkäyksiltä suojautumiseen niin, että menetelmät toimivat myös tällä hetkellä
tuntemattomia hyökkäyksiä vastaan.

Opinnäytetyö koostuu kolmesta julkaisusta. ”Statistically effective protection against APT
attacks” ja ”Improving whitelisting by using local system analysis” ovat kaksi alan
tutkimuskonferensseissa julkaistua tutkimusta, ja “Evaluating the usefulness of the ssdeep
fuzzy hash algorithm for whitelisting purposes” on tutkimusjulkaisu.

“Statistically effective protection against APT attacks” julkaistiin Virus Bulletin 2013 kon-
ferenssissa. Tutkimus käsittelee dokumenttitiedostoissa olevien haavoittuvuuksien
hyödyntävien hyökkäysten torjumista. Tutkimuksen tavoitteena oli löytää ja mitata
menetelmiä, jotka ovat tehokkaita torjumaan dokumenttihyökkäyksiä ja siten estämään
hyökkääjää saamasta sillanpääasemaa kohdeorganisaatioon.

“Improving whitelisting by using local system analysis” julkaistaan
lainvalvontakonferenssissa vuoden 2015 aikana. Tutkimuksen luonteesta johtuen (TLP
AMBER) konferenssin tarkkaa nimeä ei määritetä. Tutkimus käsittelee paikallisen analyysin
hyödyntämistä luotettujen tiedostojen listan jatkamiseen niin, että järjestelmään
kuulumattomat tiedostot voidaan havaita helpommin.

“Evaluating the usefulness of the ssdeep fuzzy hash algorithm for whitelisting purposes”
lähetetään digitaalisen forensiikan journaliin. Tutkimus käsittelee SSDEEP sumean
tiivistefunktion käyttökelpoisuutta tunnettujen puhtaiden tiedostojen tunnistamisessa
forensisen analyysin nopeuttamiseksi.

Avainsanat (asiasanat)

Malware, Forensiikka, Exploit, Koventaminen, Sumea tiivistefunktio, SSDEEP

 Muut tiedot

http://vesa.lib.helsinki.fi/

1

Content

1 Introduction .. 5

2 Theoretical framework ... 7

2.1 Research method used .. 7

2.2 Document Exploits .. 8

2.3 Traditional methods to protect against document exploits 10

2.4 Microsoft Portable Executable (PE) .. 11

2.5 Microsoft .Net executables and native assemblies 12

2.6 Windows PE malware .. 13

2.7 Cryptographic hash-based whitelisting ... 14

2.8 Cryptographic signature-based whitelisting ... 15

3 Statistically effective protection against APT attacks....................................... 16

4 Improving whitelisting by using local system analysis 17

5 Evaluating the usefulness of the ssdeep fuzzy hash algorithm for whitelisting

purposes ... 17

6 Conclusions ... 18

6.1 Statistically effective protection against APT attacks 18

2

6.2 Improving whitelisting by using local system analysis 20

6.3 Evaluating the usefulness of the ssdeep fuzzy hash algorithm for

whitelisting purposes .. 22

Figures

Figure 1. A typical decoy document dropped by an exploit document in Adobe Acrobat
(sample SHA1 1ab997cc74ee33dd9100d28587a696ee8f44f3ed). 10

Figure 2 Diagram showing complexity of PE format (Carrera, 2007). 12

Tables

Table 1 Effectiveness of methods tested in this research ... 21

3

Terms

Advanced Persistent Threat (APT)

APT is a term used to describe espionage and cyber-attacks done by state-sponsored

or otherwise well-resourced attackers. In contrast to a 'regular' attack where the at-

tackers will move on to another target if they are unable to easily breach the defenses,

the attackers in an APT attack are persistent and will keep on trying to compromise the

target until they succeed, or the target becomes less interesting for some reason.

Cryptographic hash

A cryptographic hash function is a mathematical formula that converts input data to a

fixed-length alphanumeric string, known as a 'hash digest'. The hash digest is unique

for that particular input; even a single-bit change in the input would cause a total

change in the resultant hash digest. Cryptographic hash functions are designed to pro-

duce one-way output, so that it is impossible to determine anything about the original

input from its hash digest. This means that two cryptographic hash digests cannot be

compared to gauge the similarities or dissimilarities in their original input values. Ex-

ploit

In computer security, the term exploit is used to describe a file, network request, data

fragment or other object that is intentionally designed to cause the program pro-

cessing it to malfunction in such a way that the program's normal processes are mis-

used to run malicious code.

4

For example, an exploit can be an Adobe Acrobat document file that contains hidden

code; if the document is opened in Acrobat, the program will crash instead of display-

ing the document, then silently run the buried code.

Forensic investigator

A forensic investigator, also known as a forensic analyst, is a person tasked with ana-

lyzing a device that is suspected to contain malware or is otherwise compromised.

Fuzzy Hash

Unlike a cryptographic hash function, the hash digest produced from a fuzzy hash func-

tion allows determinations to be made about the original input. This means that two

fuzzy hash digests can be compared and a determination can be made about whether

the original inputs are similar to each other.

Malware

Malware (short for malicious software) is programming code that is deliberately de-

signed to cause some form of harm to the files or normal processes of a device. Typical

uses for malware are system takeover, information theft, unauthorized data manipula-

tion and sabotage.

Vulnerability

In computer security, the term vulnerability is used to describe an error in a program's

design or implementation that makes it possible for an attacker to gain control of the

software’s normal operations, or otherwise cause it to malfunction.

Mitigation

5

In computer security, the term mitigation is used to describe a workaround for a soft-

ware vulnerability to make an attack targeting it either more difficult or impossible to

execute. Mitigations are typically provided by the software vendor as a temporary so-

lution until a permanent fix for the vulnerability can be created and released.

Whitelisting

In computer security, whitelisting is a term used for collecting a list of files or other en-

tities known to be clean. The whitelist is usually formed by calculating the cryptograph-

ic hash values of the collected files. Whitelists are used in forensic investigation and

other tasks to identify and exclude known clean files, allowing the investigator to focus

on unknown, suspect files.

Blacklisting

In computer security, blacklisting is a term used for collecting a list of files or other en-

tities known to be malicious. Unlike whitelisting, blacklisting can be done using multi-

ple different methods. The most common implementation of a blacklist is an old-

fashioned signature-based anti-virus engine that uses a file's unique characteristics

(malware signatures) to identify and classify malicious files.

1 Introduction

The purpose of this thesis was to investigate the effectiveness of selected malware

defence techniques. The goal of the research was to come up with tooling and in-

structions for system administrators and security officers to proctect systems against

previously unknown malware. The methods are either based on preventing the initial

compromise or on improving methods of suspicious binary discovery to detect cases

where the preventative security controls have failed.

6

This thesis is a compilation of two conference papers, with both focusing on a partic-

ular aspect of advanced malware defence, and a journal paper on using ssdeep fuzzy

hash algorithm for whitelisting.

The first conference paper named “Statistically effective protection against APT at-

tacks” was published in VirusBulletin 2013 conference, and it focuses on malware

protection methods that protect against document-based exploits. The aim of the

research was to identify methods that are effective in preventing attackers from es-

tablishing a beachhead in a target organization. The first paper is listed as Appendix A

of this presentation.

The methods presented in the first paper have been designed specifically to protect

against corporate espionage attacks and other advanced persistent threat attacks

(APT); however, these methods also work very effectively against common malware.

Espionage attacks have been selected as a research target as they are typically tech-

nically more advanced and more difficult to protect against; thus, anything that

works against advanced corporate or governmental attackers is also going to be

more than sufficient to stop more common attackers.

The second conference paper named “Improving whitelisting by using local system

analysis” will be published in a law enforcement conference in 2015. This paper fo-

cuses on using whitelisting and local system analysis methods to detect unknown ex-

ecutable binaries that do not look like a part of any software installation. The aim of

the research has been to create a proof of concept tooling for system administrators

to easily inspect systems that are in an unknown state and gain reliable information

regarding if the system is likely to be clean or infected. The second paper is not listed

in the online version of this paper due to the effectiveness of the methods and the

fact that the methods rely on malware authors not knowing about the methods. A

paper copy is available for reading at the Jyväskylä University Of Applied Sciences

(JAMK) library.

7

For the second paper, no testing against corporate espionage attacks was performed

due to the difficulty of obtaining enough infection data to make a meaningful statis-

tical analysis. Judging from the effectiveness against general malware, however, it is

very likely that the methods are also very effective against APT attacks.

The third paper named “Evaluating the usefulness of the ssdeep fuzzy hash algorithm

for whitelisting purposes” the paper is to be submitted to a digital forensics journal.

The paper focuses on evaluating whether the ssdeep fuzzy hash algorithm can be re-

liably used for white listing when doing forensic investigation. Ssdeep is a fuzzy hash

algorithm, which means that unlike regular hash algorithms that match only if two

samples are binary identical, the ssdeep can give an estimation on how similar two

files are, and thus has promise in reducing forensic investigator workload by allowing

investigators to discard files that are a close match to known clean files.

2 Theoretical framework

2.1 Research method used

All three papers use Design Science Research method based on a pattern of explicat-

ing (analysing) a problem, defining and developing an artefact to solve the problem

and then evaluating the created artefact (Johannesson & Pejons, 2014).

Design Science Research method is well suited for the kind of research done in the

papers, as it focuses on measuring the effectiveness of artefacts, which in this case

are the security controls proposed and investigated in the papers.

Design Science Research was used by first defining and analysing the research prob-

lem at hand, a solution (artefact) or solutions for the problem were developed and

then it was tested the whether the solution was able to provide a satisfactory result

and its performance in solving the problem.

8

2.2 Document Exploits

The document exploits target vulnerabilities in document handling programs, such as

Microsoft Word and Microsoft PowerPoint or Adobe Acrobat (Zeltser, 2012). The

document exploits are embedded inside a document file and are crafted so that it

triggers a vulnerability in the program that tries to open and render the document

for viewing.

Technically, an exploit consists of two parts, intentionally corrupted document con-

tent that is broken in such a manner that it interrupts the execution flow of the ap-

plication reading the content, and transferring the program counter register of the

application process into payload code that is within the exploit. The program counter

register is the pointer within the application process space that defines which ma-

chine code instruction is executed next; when the attacker is able to control this reg-

ister, he is able to take over the control of the executed application. The payload

code is the code written by the attacker, which executes the actions that such an at-

tacker wants to perform in the target system (Anley et al., 2007).

When the vulnerability is triggered, the code embedded in the exploit is able to take

over the code execution of the exploited program, and thus the attacker now is able

to run code of his choosing inside the context of the exploited program. This kind of

vulnerability is called a code execution vulnerability. There are also other types of

vulnerabilities that allow, for example, an attacker to crash or otherwise damage the

process that is being exploited. However, within the scope of this thesis the focus is

only on exploits that allow the attacker to execute code.

When the attacker is able to execute code in the target process, the first thing s/he

usually does is write an executable file into the file system and execute it. This file is

typically some type of backdoor malware, which then either allows the attacker to

have direct command of the infected system, or, more typically, downloads addi-

tional components for further infection in the target system (Ming-chieh et al, 2011).

9

Theoretically, it is possible to operate within the scope of an exploited application,

however, this technique is rarely used, as it is technically very difficult to prevent the

exploited process from crashing. Also, the user is very likely to terminate the exploit-

ed application, which from his point of view does not respond.

This is why most document exploits carry a decoy document file inside them (Ming-

chieh et al, 2011), which is written to the file system and loaded immediately after

the exploited process crashes. Therefore, the typical chain of events of a document

exploit is:

1. User clicks on an exploit document either inside email reader or in file sys-

tem;

2. Operating system loads the application registered to handle that particular

document type, for example Adobe Acrobat;

3. The application loads the document, and the exploit in an associated docu-

ment triggers a vulnerability in the application;

4. The vulnerable application code is unable to process the corrupted data at

the beginning of an exploit and the exploit is able to move the program coun-

ter register to point into its own body, which contains the payload code;

5. The payload code writes the backdoor malware into the file system and exe-

cutes it;

6. The application crashes;

7. The backdoor malware writes a decoy document file in the file system; the

document file being created contains the actual content that user expected

to see. See Figure 1 for example of decoy document;

10

8. The clean and structurally intact decoy document file is loaded with the appli-

cation; and shown to user;

9. The user is now able to see the document that he was expecting.

So what happens from a user’s point of view is that s/he clicked on a document, and

the application flickered briefly before actually loading the document.

Figure 1. A typical decoy document dropped by an exploit document in Adobe Acro-

bat (sample SHA1 1ab997cc74ee33dd9100d28587a696ee8f44f3ed).

2.3 Traditional methods to protect against document exploits

Traditional methods that are being used against document based exploits are patch-

ing and using anti-virus.

Patching means installing software updates provided by the vendor of the affected

software, for example Adobe Acrobat vulnerability CVE-2014-0565 (US-CERT, 2014),

11

which allows code execution, is fixed by installing Adobe Acrobat version 11.0.9 or

newer. The problem with patching is that it cannot be done until the software ven-

dor provides the update, and the patch has to be installed on every single target sys-

tem to provide full cover.

Using anti-virus means using an anti-virus application that scans the document file

before the document handling application is allowed to open. The anti-virus applica-

tion uses a database of signatures or other methods in order to detect the exploit in

the document and to deny the application access to the document if an exploit is

found. The problem with anti-virus applications is that they need to have a detection

for the particular exploit. Additionally, since anti-virus detections are static, the at-

tacker can reverse engineer the anti-virus in order to figure out how the detection is

done and then circumvent it (Hasan, 2012). Some modern anti-virus implementa-

tions use behavioural detection in order to detect circumstances of an application

being exploited, which does provide significantly better protection.

2.4 Microsoft Portable Executable (PE)

The PE file format is used as the main executable file format in the Microsoft Win-

dows operating system. The first version of the PE file format was defined in 1992

(Pietrek,1992) for Microsoft Windows NT 3.1.

Unlike executable file formats used in other operating systems, such as Executable

and Linkable Format (ELF) used in Linux operating systems, the PE file format can be

considered more of a generic container than a simple executable format, a fact

which makes a PE very flexible and multi-purpose. In addition to simple executables,

a PE file format can be used for example dynamic linked libraries and to contain lan-

guage strings for user interface translations or other resources (Microsoft, 2015),

which makes PE files a great deal more laborious to process compared to simpler ex-

ecutables, where the simple fact that a file is of a given format is definite proof that

12

the file can be presumed to be executable. See Figure 2 for a visualization of the

complexity of PE file format.

Figure 2 Diagram showing complexity of PE format (Carrera, 2007).

Thus, for this research, the first problem was to identify which PE files contain exe-

cutable code and thus should be included in whitelist analysis, and which files are

just libraries that cannot be executed on their own or resource files that do not con-

tain any executable code.

2.5 Microsoft .Net executables and native assemblies

Microsoft .Net executables are considered partially out of scope for this research.

While the files have the PE file structure, they are interpreted Microsoft Intermediate

Language (MSIL), which is run by a .Net runtime interpreter (Microsoft, 2015). Some

of the methods covered in the research are effective for .Net without any special

considerations, while others would need to be adapted to parse .Net style import

format instead of standard PE import structures.

13

For a commercial forensic auditing tool support for .Net should be included, howev-

er, for the prototype version created for this research paper, any specific .Net sup-

port was left out of scope to prevent study bloat.

2.6 Windows PE malware

Malware is a common name for malicious programs, i.e.programs that have been

intentionally created with malicious intent (F-Secure, 2015). Malware based on Mi-

crosoft Portable Executable (PE) is the most common type of malicious binary.

Malware can either be a stand-alone binary or embedded inside a host file. Stand

alone malware are commonly classified as trojans, a term that generally means a ma-

licious application pretending to be a clean file, however, nowadays is used for eve-

rything which is not a worm or virus, does not self-propagate, and is not embedded

inside another file (F-Secure, 2015).

The most common types of malware embedded inside another file are exploit, file

infector, and trojanized application. Exploits have already been covered in chapter

2.2.

File infectors are commonly called viruses (F-Secure, 2015). They are malware which

propagate by infecting host files of some type and hook some part of host file code

so that the virus code gets executed when the host file is executed. File infectors are

problematic for forensic investigators, as they commonly infect operating systems or

other trusted files, and thus analysts cannot just look for unknown files in the file sys-

tem. Investigation instead requires an in-depth look at all operating system files to

ensure they are clean.

Trojanized applications are similar to file infectors in that there is an originally clean

application with malicious code embedded into it (F-Secure,2015). The main differ-

ence between a file infector and a trojanized application is that trojanized applica-

14

tions are created manually by an attacker by using backdoor injector (Pitts, 2014),

and thus the malicious code does not propagate to other files.

2.7 Cryptographic hash-based whitelisting

The most common type of whitelisting is based on the use of a cryptographic check-

sum hash, such as Secure Hash 1 (SHA1), SHA2, or SHA3. Some legacy applications

might use even Message Digest 5 (MD5)-based whitelisting, which is heavily discour-

aged nowadays.

In hash-based whitelisting, the forensic investigator has a database of hash values of

known good binaries, which is either gathered by the examiner himself or is obtained

from some source, such as a whitelist vendor or National Science Resource Library

(NSRL) clean file hash repository maintained by the U.S National Institute of Stand-

ards and Technology.

Equipped with the whitelist database, the forensic investigator calculates hash values

of all objects of interest found in the target system and compares the values against

the whitelist. All files which have hash values matching the whitelist database are

identified as clean and are therefore ignored by the whitelisting tool, while any files

which do not have a match in the whitelist are reported as potentially interesting

finds.

Nevertheless, even the best whitelists do not provide full coverage of a typical Win-

dows installation, especially when third-party applications have been installed. This

means that unless a forensic investigator has a whitelist which has been calculated

from a known clean identical system, there is a significant amount of work left even

with a high quality whitelist.

15

2.8 Cryptographic signature-based whitelisting

Another common way of implementing a whitelist check is to check whether the file

under investigation is signed with a code signing scheme, such as Microsoft Authen-

ticode which is used for PE signatures (Microsoft, 2015).

When using cryptographic signatures as the basis of whitelisting, the forensic investi-

gator will identify whether a file is signed with an embedded signature or is listed in a

signed code signing catalog. The most common tool used in verifying signatures for

Windows PE binaries is Sysinternals Sigheck.exe, available from Microsoft Technet

(Russinovich, 2014)

However, one has to be careful when using cryptographic signatures for verifying

whether file is clean, as there are several ways in which attackers try to abuse the

code signing scheme (Niemelä, 2010). For example, the attacker can try to obtain val-

id code signing certificate and signing private key by deceiving a certification authori-

ty or by theft. Several different malware families containing functionality for signing

certificate theft and stolen certificates used to sign malware are rather common

(CCSS forum, 2015).

Also, attackers may use self-signed certificates or simply copy a signature from an-

other file. Such techniques will not pass cryptographic verification, however, they

may be able to fool the careless examiner. However, the use of self-signed certifi-

cates becomes a very powerful method for hiding if the attacker adds his own certifi-

cate into the list of system certificates, which causes the infected system to report

fraudulent files as trusted (Niemelä, 2010). Thus, a forensic investigator should al-

ways use a separate database of verified and trusted certificates.

Even when avoiding all pitfalls of code signing systems, unfortunately, many non-

operating system executables the binaries found in a typical system are not signed

and thus cannot be verified.

16

3 Statistically effective protection against APT attacks

In this research protection methods were investigated which are available for any

experienced system administrator and tested against a collection of exploit docu-

ments that have been used in real life espionage attacks.

The exploit set consisted of 928 document files, verified to contain functional ex-

ploits both by an antivirus-scan engine detection and by behavioural analysis in a

sandboxed environment. The nature of exploit documents most likely used for cor-

porate or governmental espionage was verified by selecting only document files

which contained social engineering lure that would be interesting for the typical es-

pionage target.

Following protection methods were selected for the research.

 Microsoft Exploit Mitigation Experience Toolkit (EMET) exploit mitigation tool

 Third-party sandboxing using Sandboxie sandbox

 Hardening Microsoft Office and Adobe Acrobat settings

 Hardening system access policies

The hypothesis for the methods was that they would be effective in preventing cor-

porate espionage attacks from executing successfully and the research used the De-

sign Science Research method to evaluate the methods.

The protection methods were evaluated in a sandbox environment by applying pro-

tection methods one by one and testing against a full set of exploit documents. The

results were evaluated by comparing the unhardened baseline against each harden-

ing method.

17

4 Improving whitelisting by using local system analysis

This research investigated new methods for discovering whether a given binary is

clean and likely to be installed by the system administrator or the user, or the un-

known file likely to have been installed by the attacker.

As traditional binary trusted/unknown whitelisting is not able to provide a good

enough cover for practical use, the whitelist can be improved by investigating the

associations between clean and unknown files in the system. The hypothesis was

that an unknown file associated with clean files is very likely to be clean.

As with the Statistically effective protection against APT attacks research Design Sci-

ence Research method was used also for this research. In this research this assump-

tion was tested by selecting features common in clean files and assumed to be ab-

sent in malware.

5 Evaluating the usefulness of the ssdeep fuzzy hash algorithm for

whitelisting purposes

This research investigated the reliability of the ssdeep fuzzy hash algorithm for use in

whitelisting by forensic investigators when investigating suspected compromise.

Whitelisting is a commonly used to method to speed up forensic investigations by

excluding known clean files from the list of files that have to be identified and ana-

lysed.

Also this research was done using Design Science Research method. The ssdeep algo-

rithm was evaluated for reliability against anti-whitelisting attacks, specifically

whether it is possible to find a malicious file that has a full match against a known

clean file, and the speed of doing comparisons against a large database for ssdeep

hashes.

18

Doing a traditional match for a large number of ssdeep hashes would take weeks, so

methods for speeding up ssdeep hashing were investigated and the solution was

benchmarked against F2S2, which is an ssdeep indexing method developed by Win-

ter et al. (Winter, Schneider, Yannikos, 2013).

6 Conclusions

The design science research method used in all three papers proved to be well suited

for research where the goal is to develop practical algorithms and tooling to be used

in anti-malware and cyber defence applications.

In all three research papers the pattern is very similar, first a problem is defined, an

artefact is proposed that is a method or a tool to solve the problem, and a series of

tests are performed to evaluate the fitness of the selected artefact in solving the

problem.

6.1 Statistically effective protection against APT attacks

In the first paper, the fitness of commonly available hardening operations against

document-based espionage attacks was studied. Most of the selected methods

proved to be very effective.

The evaluated methods were surprisingly effective, and the hypothesis was that at-

tackers would not be expecting additional hardening operations, and thus 80% pro-

tection rate would have been a very good result; however, some of the methods

were much more effective than predicted.

Microsoft EMET was 100% effective, as it was not possible to get any of the exploits

to work when EMET was enabled.

Sandboxie did cause problems for the automatic evaluation system; however, it pro-

vided 100% protection in 530 cases where automatic analysis worked. In order to get

19

some estimate of total protection, 20 randomly selected samples were initially tested

manually out of remaining 397 samples. Sandboxie was able to provide full protec-

tion on all 20 manually tested samples. As 20 samples is rather low for a proper esti-

mate, a further 20 samples were tested, thus totalling the count of manually tested

samples to 40, of which Sandboxie provided full protection for all.

It was evaluated whether 40 passed samples present a sufficient sample size to draw

conclusions by calculating a confidence interval using the Adjusted Wald method

(Sauro, Lewis, 2005). The Adjusted Wald for 95% confidence level and 40 out of 40

passed samples produced a confidence interval between 0.9242 to 1 and margin of

error 0.0441, which gives an indication that Sandboxie is very likely to be effective for

most of the samples, and thus it will not be tested with a larger manual verification

than 40 samples.

For more reliable results, the problem which caused automatic analysis to fail and

automatically analysed the full set should have been identified and mitigated, or al-

ternatively all remaining samples analysed by hand.

Hardened document handling settings were 79, 5% effective, and RTF-based docu-

ments were not been taken into account. Thus, if the hardening set would have been

more complete, an even better result would have been obtained.

Hardened system access policies were almost useless, as they provided less than 10%

protection. The most likely cause for this is that a typical target of corporate espio-

nage is very likely to have a hardened environment, which an attacker has to take

into account.

The results indicate that application hardening methods are very effective against

exploit-based attacks, and this applies also to exploit documents used by corporate

espionage attacks. This means that the results of this research have been significant,

as it has allowed to provide information for system administrators for which harden-

ing operations should be considered.

20

Like with any other hardening operation it is important that the attacker does not

have knowledge of hardening methods in use, as any of the hardening methods can

be circumvented. This can be seen, for example, by research done by Jared DeMott

(DeMott, 2014), where the researcher proved that it is possible to circumvent all pro-

tections in Microsoft EMET 4.1.

DeMott’s research indicates that while the results were very impressive in a lab envi-

ronment, it is important to remember that the proposed methods rely heavily on the

fact that the attacker does not know about the additional references. If the attacker

was aware of additional protection methods, they could take steps to avoid them.

The research could be improved by including web-based attacks in the set of tested

attacks, as document attacks are not the only commonly used attack vector. Also, the

test should be repeated yearly against fresh attacks to see when attackers will start

taking EMET and other hardening operations into account.

6.2 Improving whitelisting by using local system analysis

In this paper the effectiveness of methods developed at F-Secure was studied, which

aims to speed up forensic investigation by allowing the investigator to extend the

coverage of whitelists by using local analysis.

The research found the methods to be very effective against general stand alone

malware; however, the methods are not effective against file-infecting viruses or tro-

janized files or malware that is specifically crafted to avoid detection by forensic in-

vestigators by pretending to be a clean application.

The analysis methods were evaluated by testing them against large sample popula-

tions, and depending on the availability of samples the test set was between 600,000

to 1 million samples. However it was not easy to produce a single test set of samples

for which all of the methods could be tested, so the test methods cannot be com-

pared against each other directly.

21

Also, the sample sets used in tests could be larger, as disingenuous as it might sound,

600,000 samples is a rather small amount in anti-malware research. To combat the

small sample sets, randomization was used in the sample selection. Thus, while the

sample sets are small, they are representative. Still, it would be interesting to per-

form the tests with sample sets of 10 to 50 million. Truly large sample sets would al-

so allow to be selective and select only samples for which all methods can be evalu-

ated.

Due to the effectiveness of researched methods, details are not presented in public

version of this thesis, so the names of the methods are retraced. In the following ta-

ble 1, the failure rate of each method is shown, failure rate meaning that in which

cases the particular property was found in a malicious sample, which would mean

that if only that particular method would be used, the sample would have been in-

correctly whitelisted.

Table 1 Effectiveness of methods tested in this research

Method Failure rate

A 1,3%

B 0,9%

C 0,3%

D 0,3%

E 0,2%

F 0,003%

G 0,02%

22

The test results for all of the methods are rather impressive; however, it has to be

remembered that they are not perfect and history has shown that whenever a new

security control is introduced against malware authors, the attackers will adapt.

Thus, any product using any of the methods presented in this paper should maintain

constant monitoring for malware trying to evade detection by mimicking clean file

properties.

The audit tool was used that was created during analysis on several real-life custom-

er infection cases, and it was possible to locate the malware very quickly in every

case. It can safely be said that the results of this research have been significant and

are in practical use at the F-Secure Corporation.

6.3 Evaluating the usefulness of the ssdeep fuzzy hash algorithm for whitelisting

purposes

In this research, the usefulness of fuzzy hashing algorithms for whitelisting purposes

was evaluated. The ssdeep algorithm was chosen as the artefact under evaluating

used the design science research method. The ssdeep was chosen because it is well-

known, and there are whitelists provided which are calculated with ssdeep, there-

fore, it is very likely that a forensic investigator would be using ssdeep for whitelist-

ing in his investigation.

In this research, it was possible to find multiple ssdeep collisions between virus in-

fected files and clean files. Thus, it can be concluded that ssdeep is not reliable as a

whitelisting method, however, it can be used in cases where the forensic investigator

is using anti-virus or other method to filter out any infected samples; however, even

then there is a chance that the system might be infected with a previously unknown

file infector.

The ssdeep indexing method, Imphash indexing, did not provide similar coverage,

however, it was able to provide significant speed gains compared to F2S2 indexing

with much lower memory overhead.

23

The Imphash function as an index provides a ~99,999985% operation reduction as

compared to a brute force ssdeep match, which equates to a speedup factor of ap-

proximately 6860000 compared to plain ssdeep.

While it could not be proved that ssdeep could be used in practical whitelisting appli-

cations, negative results are also important because they allow us to highlight the

problems upon which others can build instead of facing the same disappointment.

The research could be improved by evaluating other whitelisting algorithms as well,

for example BBHASH. In future research it might be worthwhile to investigate

whether there are supporting methods, which could be used to improve resistance

to anti-whitelisting attacks and, thus, make ssdeep or some other fuzzy hash algo-

rithm a more reliable whitelisting tool.

References

Anley, C. et al. The Shellcoders Handbook: Discovering and exploiting security holes,

Second Edition. ISBN 1118079124.

CCSS forum (2015). Digital Certificates Used by Malware. Accessed on 4.3.2015, re-

trieved from http://www.ccssforum.org/malware-certificates.php

DeMott, J. (2014). BYPASSING EMET 4.1. Accessed on 11.5.2015, retrieved from

https://bromiumlabs.files.wordpress.com/2014/02/bypassing-emet-4-1.pdf

Ero Carrera (2012). Portable Executable Format Layout. Accessed on 13.4.2015, re-

trieved from http://blog.dkbza.org/2012/08/pe-file-format-graphs.html

F-Secure, Classification (2015). Accessed on 4.5.2015, retrieved from https://www.f-

secure.com/en/web/labs_global/classification

http://www.ccssforum.org/malware-certificates.php
https://bromiumlabs.files.wordpress.com/2014/02/bypassing-emet-4-1.pdf
http://blog.dkbza.org/2012/08/pe-file-format-graphs.html
https://www.f-secure.com/en/web/labs_global/classification
https://www.f-secure.com/en/web/labs_global/classification

24

F-Secure (2015). Terminology. Accessed on 4.3.2015, retrieved from https://www.f-

secure.com/en/web/labs_global/terminology

Hasan, (2012). Bypassing antivirus with a sharp syringe. Accessed on 4.3.2015, re-

trieved from http://www.exploit-db.com/wp-

content/themes/exploit/docs/20420.pdf

Johannesson, P., Perjons, E. (2014). An Introduction to Design Science. ISBN 978-3-
319-10632-8.

Microsoft (2015). MUI Resource Management. Accessed on 13.2.2015, retrieved

from https://msdn.microsoft.com/en-

us/library/windows/desktop/dd319070(v=vs.85).aspx

Microsoft (2015). Native Image Generation. Accessed on 13.4.2015, retrieved from

https://msdn.microsoft.com/en-us/library/hh691757(v=vs.110).aspx

Microsoft (2015). Introduction to code signing. Accessed on 13.4.2015, retrieved

from https://msdn.microsoft.com/en-us/library/ie/ms537361(v=vs.85).aspx

Ming-chieh et al. Weapons of Targeted Attack Modern Document Exploit Tech-

niques. Accessed on 13.2.2015, retrieved from http://media.blackhat.com/bh-us-

11/Tsai/BH_US_11_TsaiPan_Weapons_Targeted_Attack_Slides.pdf

Niemelä, J. (2010). It's Signed, therefore it's Clean, right?. Accessed on 13.4.2015, re-

trieved from http://www.f-

secure.com/weblog/archives/Jarno_Niemela_its_signed.pdf

Pietrek, M. (1994). Peering Inside the PE: A Tour of the Win32 Portable Executable

File Format. Accessed on 13.2.2015, retrieved from https://msdn.microsoft.com/en-

us/library/ms809762.aspx, referred 13.2.2015.

https://www.f-secure.com/en/web/labs_global/terminology
https://www.f-secure.com/en/web/labs_global/terminology
http://www.exploit-db.com/wp-content/themes/exploit/docs/20420.pdf
http://www.exploit-db.com/wp-content/themes/exploit/docs/20420.pdf
https://msdn.microsoft.com/en-us/library/windows/desktop/dd319070(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd319070(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/hh691757(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ie/ms537361(v=vs.85).aspx
http://media.blackhat.com/bh-us-11/Tsai/BH_US_11_TsaiPan_Weapons_Targeted_Attack_Slides.pdf
http://media.blackhat.com/bh-us-11/Tsai/BH_US_11_TsaiPan_Weapons_Targeted_Attack_Slides.pdf
https://msdn.microsoft.com/en-us/library/ms809762.aspx
https://msdn.microsoft.com/en-us/library/ms809762.aspx

25

Pitts, J. (2014). Secret Squirrel Backdoor Factory. Accessed on 3.3.2015, retrieved

from https://github.com/secretsquirrel/the-backdoor-factory

Russinovich, M. (2014). Sigcheck v2.1. Accessed on 4.3.2015, retrieved from

https://technet.microsoft.com/en-us/sysinternals/bb897441

Sauro, J. & Lewis, J. (2005). ESTIMATING COMPLETION RATES FROM SMALL SAMPLES

USING BINOMIAL CONFIDENCE INTERVALS: COMPARISONS AND RECOMMENDA-

TIONS, PROCEEDINGS of the HUMAN FACTORS AND ERGONOMICS SOCIETY 49th

ANNUAL MEETING—2005. Accessed on 14.5.2015, retrieved from

http://www.measuringu.com/papers/sauro-lewisHFES.pdf

US-CERT. (2014). Vulnerability Summary for CVE-2014-0565. Accessed on 4.3.2015,

retrieved from http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0565

Winter, C., Schneider, M., & Yannikos, Y. (2013). F2S2: Fast forensic similarity search

through indexing piecewise hash signatures. Digital Investigation, 10 (2013) 361-371.

doi:10.1016/j.diin.2013.08.003.

Zeltser, L. (2012). How Malicious Code Can Run in Microsoft Office Documents. Ac-

cessed on 4.3.2015, retrieved from https://zeltser.com/malicious-code-inside-office-

documents/

Appendices

A. Statistically effective protection against APT attacks

B. Usefulness of ssdeep for whitelisting

C. Improving whitelisting by using local system analysis

https://github.com/secretsquirrel/the-backdoor-factory
https://technet.microsoft.com/en-us/sysinternals/bb897441
http://www.measuringu.com/papers/sauro-lewisHFES.pdf
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0565
https://zeltser.com/malicious-code-inside-office-documents/
https://zeltser.com/malicious-code-inside-office-documents/

Statistically effective protection against APT attacks

Jarno Niemelä

F-Secure Corporation,

Tammasaarenkatu 7, 00181, Helsinki, Finland

Tel +358 9 2520 0700 Fax +358 9 2520 5001

jarno.niemela@f-secure.com

1. Overview

The purpose of this research is to verify the effectiveness of system and application hardening methods
we at F-Secure have recommended against advanced persistent threat (APT) attacks. In this research,
we test exploit mitigation and system hardening techniques against a set of document-based exploits in
order to identify the effectiveness of the various methods and which measures should be first
implemented.

This research is intended to benefit information security and systems administration staff at large
companies, where modifications to existing systems require extensive - and usually, costly –testing, thus
requiring strong justification for why such measures should be taken.

2. Scope

This research focuses on testing methods that can be used against exploits which can be in: document
formats; embedded into document files, or executed by other vulnerable components (e.g. Flash
player). The methods tested try to prevent the exploit from achieving any or all of the following:
successful exploitation; dropping of ‘beachhead’ malware; execution of the malware binary; successful
infection of the system by the executed malware binary; and finally, communication with a command
and control (c&c) server.

While the methods tested focus on document-based exploits, it can be assumed that they would also be
effective against browser-based attacks. Verifying this assumption, however, falls out of the research
scope.

The exploits were tested on a VMWare-run virtual machine running an unpatched version of Windows
XP operating system (OS). The installation included Service Pack 3 (SP3) and unpatched versions of client
software. This particular platform was selected as it is considered the most vulnerable of all OS versions
widely deployed in the real world today, in order to simulate a victim organization that had failed to
keep its systems up-to-date and/or under a 0-day attack scenario. Using this platform during testing
would also allow as many exploits as possible to successfully run. As a result, any system or application
hardening method that proved to be effective in a Windows XP SP3 environment would be even more
effective in the more stringent Windows 7 and Windows 8 environments.

We had planned to repeat the tests in Windows 7 and Windows 8 environments, however, we were
unable to finish testing on these platforms before the VB2013 paper submission deadline.

mailto:jarno.niemela@f-secure.com

3. Exploits used in test set

The exploits chosen as the sample set were selected from F-Secure’s malware collections and represent
exploits that have been in use within the last 3 years, including ones currently being used in active
attacks.

Graph 1: Date first seen (month) by F-Secure for exploit files in test set

Graph 1: Chart of the month in which each exploit file in the test set was first seen by F-Secure.

Months in which more than 50 exploit files were discovered are listed on the secondary axis (orange)

The distribution of dates for when the exploit files in the test set were first seen by F-Secure is spread
quite evenly over time (Graph 1), with the exception of a peak in November 2011 caused by the CVE-
2010-0188 exploit files used by BlackHole campaigns. The sample files from the CVE-2010-0188 spike
were not filtered out of the test set, as from a mitigation point of view, these files are equally valid.
Additionally, removing them might have also unintentionally filtered out valid APT documents.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0

5

10

15

20

25

30

35

40

45

50

1
.1

.1
0

1
.2

.1
0

1
.3

.1
0

1
.4

.1
0

1
.5

.1
0

1
.6

.1
0

1
.7

.1
0

1
.8

.1
0

1
.9

.1
0

1
.1

0.
1

0

1
.1

1.
1

0

1
.1

2.
1

0

1
.1

.1
1

1
.2

.1
1

1
.3

.1
1

1
.4

.1
1

1
.5

.1
1

1
.6

.1
1

1
.7

.1
1

1
.8

.1
1

1
.9

.1
1

1
.1

0.
1

1

1
.1

1.
1

1

1
.1

2.
1

1

1
.1

.1
2

1
.2

.1
2

1
.3

.1
2

1
.4

.1
2

1
.5

.1
2

1
.6

.1
2

1
.7

.1
2

1
.8

.1
2

1
.9

.1
2

1
.1

0.
1

2

1
.1

1.
1

2

1
.1

2.
1

2

1
.1

.1
3

1
.2

.1
3

1
.3

.1
3

1
.4

.1
3

Timeline

C
o

u
n

t
o

f
fi

le
s

(>
5

0
)

C
o

u
n

t
o

f
fi

le
s

(<
5

0
)

Graph 2: Count of exploit files per CVE in the test set

Table 2: Count of exploit files per CVE in test set. CVEs with more than 50 exploit files
are listed on the secondary axis (orange)

The exploit files were identified using anti-virus scanning results from VirusTotal, as well our in-house
scanning frameworks. As a result, identification of each sample is not exact; some are identified with an
incorrect CVE name. Misidentifications have no effect on the testing results however as the goal was to
build as diverse a test set as possible and this method gives a good enough sample distribution,
particularly as we included several samples for each exploit CVE tested.

The count of files per exploit CVE (Graph 2) show two more significant spikes. While the large number of
CVE 2010-0188 exploit files is mostly due to BlackHole campaigns in November 2012, the abundance of
CVE 2009-3129 files is due to constant targeting of the vulnerability in various attacks from January 2010
to April 2013, the end of our collection period.

0

50

100

150

200

250

300

0

5

10

15

20

25

30

35

40

45

50

CVE

C
o

u
n

t o
f file

s (>5
0

)
C

o
u

n
t

o
f

fi
le

s
(<

5
0

)

Graph 3: Lifespan of exploit files in test set

Graph 3: Lifespan for exploit files in test set, from 1 January 2010 to 1 March 2013

As can be seen from graph of the lifespan for the exploit files in our test set (graph 3), these exploit files
have surprisingly long lifespans. Usually, exploit use peaks soon after their discovery and then subside,
however, for example in the case of CVE-2010-0188 exploit files, they have a very long active life.

Our initial collection of 1218 exploit documents was built using Windows XP SP2, but as it turns out,
simply running them on Windows XP SP3 was enough to break 291 of the samples, leaving 928 exploit
files in our test set. Our assumption is that the 291 broken files were either poorly coded, or were
targeted at victims the attacker knew were not using XP SP3 at the time of the attack.

In order to verify that most of the documents were APT documents and not just common malware
exploit documents, we extracted a screenshot of the document being opened in a virtual machine and
read the first page of its social engineering content (Table 1). Some documents contained no social
engineering content, indicating they were simply silent exploits and most likely general attacks. This
way, we verified that at least a large portion of the test set were APT documents.

Table 1: Characteristics of exploit document content in test set

4. Testing Methodology

After the exploit documents were confirmed to be viable in our testing environment, we tested each
hardening method individually. The hardening methods were tested by executing samples in the guest
operating system and performing automated forensics, during and after execution. The forensics
indicators observed were: file operations, process creations, network activity and changes in registry.

For each document type being investigated (DOCX, PDF, RTF, etc.), we generated clean comparison
information to filter out any normal system and application behavior, so that regular system operations
would not give any false positives.

For each sample, we first generated an ‘unprotected’ baseline, without any hardening methods being
applied. This was done to verify that the exploit in question was able to execute in our test environment;
subsequent failures for the exploit to successfully complete could then be credited to the hardening
method in use during the test. The test environment was reset between each sample so that each
sample had identical starting conditions. Results from each test were indexed and stored by SHA1 of the
sample file and identifier for each hardening method.

Exploit verification was done by comparing behavior event information between executions of a clean
document and an exploit document. If the exploit document was able to drop and execute an EXE file or
another form of payload, the exploit was considered successful. Also, if the exploit document did not
drop an EXE but caused the system to create network traffic that was out of bounds for normal
document execution or doing any changes to system such as registry modifications, the exploit was
considered successful.

After testing was completed, the results of the various hardening methods were compared against the
unprotected baseline. The results of the comparison were used to build a table indicating the presence
or absence of forensic indicators, allowing us to see whether the method was able to fully prevent an
attack, or if it was able to prevent malware execution but could not remove the malware from the
system.

Document Topics Document Language

The documents contained topics related to:

 Industry press events

 Conference proceedings

 Current political events, particularly in South-
East Asia

 Political scandals, real or fake

 Business related mails from various fields,
including CVs

 Diplomatic briefs

 Counter terrorism

Documents were in following languages:

 English

 Korean

 Russian

 Chinese

 Arabic

The hardening methods were evaluated based on their effectiveness, specifically on how early in the
attack chain the method was able to break the attack process. Any failure to fully prevent the exploit’s
execution was categorized (Table 2) by which point of the attack process the mitigation method
reaching before failing – or put another way, based on which indicator of compromise was present in
the infected system. The more severe compromise indicators were present, the more severe the
infection, and hence the lower the hardening method’s effectiveness.

This categorization mechanism emphasizing early exploit blocking is based on the rationale that even if a
hostile binary is never executed, its presence would still require either an (expensive) forensic
investigation to determine whether the system is clean, or more likely a full system reinstall, as it is
difficult if not impossible to prove the system is clean with 100% accuracy.

Table 2: Types of Compromise

Severity Type of failure Reason

3 Network communication Sample was able to communicate to C&C

2 Process created Sample was able to execute in the system

1 File created Sample was not executed, but system still
required verification

Table 2: The three types of application hardening method failure based on the presence of
indicators of compromise, in order of severity

5. Hardening methods tested

5.a Enhanced Mitigation Experience Toolkit (EMET)

EMET is an external memory handling hardening tool that allows system administrators to apply
hardened memory handling behavior restrictions to any application. This means that if an application
performs a memory operation that is allowed by operating system but considered suspicious by EMET,
the operation is interrupted. Thus, if an application running under EMET is loading exploit content, it is
expected that EMET will halt the operation – or the application will crash - before the exploit can
successfully complete.

EMET can cause stability problems for some applications, but for most programs it can be enabled
relatively safely. Microsoft has three default configurations [1] that can facilitate EMET use for all
common applications that process data from external sources.

In this research, we used EMET version 4.0 Beta [1] with predefined maximum security settings and have
enabled EMET for Microsoft Office executables, Adobe Acrobat acrord.exe, Java and Flash player
executables. This EMET version [2] offers the following memory hardening protections:

 Structured Exception Handler Overwrite Protection (SEHOP)

 Data Execution Prevention (DEP)

 Heapspray Allocations

 Null page allocation

 Mandatory Address Space Layout Randomization (ASLR)

 Export Address Table Access Filtering (EAF)

 Bottom-up randomization

 ROP mitigations

 Advanced Mitigations

5.b Application sandboxing using Sandboxie

Application-level sandboxing is a very popular security method implemented by application developers
in the past few years. For example, the latest versions of Adobe Acrobat [3] and Google Chrome use built-
in sandboxing as one of their security layers [4]. Application sandboxing is based on the principle of
isolating the application so that even if it is exploited, the program is unable to create and execute files
outside its isolated container.

In order to use a vulnerability to exploit a sandboxed application, the attacker has to be able to break
through the sandbox first. One problem with built-in sandboxes is that it is the same for every
installation of that particular program; which means if an exploit can successfully breach one instance of
that sandboxed application, it can compromise any other installation.

Thus application sandboxing is used as an additional layer of sandbox protection one which the attacker
has most likely not taken into account. As application-level sandboxes work based on different principles
from other mitigation methods we are testing, dropping an EXE or other component inside the sandbox
was not considered a failure for the sandbox. If the EXE was dropped outside of the sandbox however,
or if the EXE dropped inside is able to execute without being halted by the sandbox, it was considered as
a failure for the protection method.

Third-party sandboxes are commonly recommended as a protection against malware attack, for even an
exploit that successfully takes over an application-level sandbox would then still be restricted by the
third-party sandbox. Even though the exploited application is able to drop and execute its payload, it
only affects the special isolated area; the actual system is not harmed. Many sandboxes also provide
additional functionality to restrict the kinds of operations the contained applications can perform, for
example, disallowing any network connections or preventing execution of any file dropped into the
sandbox.

In our research, we chose to use Sandboxie as a representative example of a third-party sandbox, due to
its popularity. The test system used had Sandboxie Pro 3.76 [5] installed and configured (Table 3) based
on the realistic assumption that the end user does not want it to be obvious that some of his
applications were running in a sandbox. This means that applications that are only supposed to be able
to read documents, such as Acrobat Reader, are very strictly limited, while Microsoft Office applications
are granted read and write access to users %documents% folder, %recent% folder and network shares.

Table 3: Sandboxie configuration on the test system

Adobe Acrobat Microsoft Office and Outlook

 Created own sandbox for Adobe Acrobat with
following the configuration:

o File execution denied for anything
dropped into the sandbox

o Network access denied

o No access to document files outside the
sandbox

 Created common sandbox for Microsoft Office
and Outlook with the following configuration

o File execution denied for anything
dropped into the sandbox

o Network access denied

o Direct access to files in %documents%,
%recent% and document folder in
network share

Table 3: Details of the Sandboxie configuration for client applications on the test system

As application sandboxes work based on different principles from the other mitigation methods we are
testing, dropping an EXE or other component inside the sandbox was not considered as a failure for
sandbox. If the EXE was dropped outside of the sandbox however, or if the dropped EXE was able to
execute inside the sandbox without being prevented or halted by sandbox, it was considered as a failure
for the protection method.

As Sandboxie was configured to prevent network traffic, any network traffic that was not part of clean
system operation was treated as a sandbox failure.

5.c Hardened security settings for client applications

Vulnerability announcements from security vendors commonly contain mitigation methods offered as a
protective measure until a patch can be made available for that particular vulnerability. We wanted to
test some of the most commonly recommended application hardening operations against our exploit
test set to see how effective these measures would be if done beforehand by forward thinking system
administrators.

The hardening operations tested here do not necessarily apply to the latest versions of software, or are
already built into the latest versions. The purpose of this test is to find out how effective protection
measure hardened application settings are generally, rather than individual hardening operations.
Which is also why we are not doing breakdown for each hardening operation.

5.c.1 Hardening operations for Microsoft Office software

We used the following hardening methods for Microsoft Word, Excel, PowerPoint and other applications
in the Microsoft Office suite.

5.c.1.a Office File Validation for Office 2003 and Office 2007(OFV)

“To validate files, Office File Validation compares a file’s structure to a predefined file schema, which is a set of
rules that determine what a readable file resembles. The file does not pass validation if Office File Validation

determines that a file’s structure does not follow all rules that are described in the schema.” [6]

This add-on for Office 2003 and 2007 tightens validity checking for Office documents before the Office
program is allowed to open them. According to Microsoft, the purpose of OFV is to prevent exploits
reaching the actual parser code. OFV functionality is built in into Office 2010.

5.c.1.b Microsoft Office Isolated Conversion Environment (MOICE)

“The Microsoft Office Isolated Conversion Environment (MOICE) uses the 2007 Microsoft Office system converters

to convert Office 2003 binary documents to the newer Office open XML format. The Conversion process helps
protect customers by converting the Office 2003 binary file format to the Office open XML format in an isolated
environment. In summary, MOICE provides a mechanism for customers to pre-process potentially unsafe Office

2003 binary documents, by virtue of the conversions process it provides customers with a greater degree of
certainty that the document can be considered safe.”[7]

This add-on for Microsoft Office 2003 and 2007 is intended to protect against vulnerabilities in code that
processes older Microsoft document formats such as DOC, PPT and XLS. To do so, MOICE converts older
document format files into newer formats on-the-fly before the document is given to the actual Office
application. This conversion is done in tightly limited environment. Office 2010 had a built-in protected
view [8] which works on the same principle.

According to Microsoft’s official documentation, MOICE can only be installed by installing all security
updates. As this would patch existing vulnerabilities and thus invalidate the testing environment, we
opted to manually install the Compatibility Pack for Word, Excel, and PowerPoint 2007 File Formats,
then search the Microsoft knowledge base to find and install only the update [9] that contains the
necessary OICE.EXE file to implement MOICE, thus leaving vulnerabilities [10] intact. After installing
OICE.EXE we manually implemented [10] MOICE bindings. Our installation of MOICE is highly unorthodox;
it is likely that a conventional MOICE environment, which is installed together with all security updates,
will work even better than in our test.

5.c.2 Additional hardening operations

In addition to enabling OFV and MOICE, we did what any competent administrator would do and went
through security-related settings in Microsoft Office and Acrobat Reader and set them to maximum
security (Table 4).

Table 4: Client application security settings hardening

Application security hardening for
Microsoft Office

Application security hardening for
Acrobat Reader

 Set macro security level High

 Disabled ‘trust add-ons and templates’

 Prevented opening of non-PDF attachments

 Disabled multimedia trust

 Disabled multimedia player

 Disabled Acrobat JavaScript

Table 4: Changes made to the security settings for client applications commonly targeted by APT attacks

5.d Hardened system access policies

In research presented at T2 2011 and later in a BlackHat webinar webcast, Jarno Niemelä [11] had come
into conclusion concluded that most malware of that time was written for a ‘standard’ environment and
would not be able to execute in an environment where user file write and execution access was limited.

As APT targets are commonly expected to address basic operating system security precautions,
however, there is doubt whether such methods would be effective against APT attacks.

5.d.1 File write access control

This method is based on research conducted by Jarno Niemelä for T2 2011 in which he identified file
locations that were common among malware, however, not needed by the typical user. Preventing user
level write access to these locations was able to break a significant portion of malware infections. In this
research, we test this method against exploit documents to see if it would still be effective.

 Create files/Write data and Create Folders/Append data to folders

 C:\, %localsettings%, %appdata% not inherited, user allowed to write to folders under localsettings
but not to directory root

 C:\windows, %programfiles% inherited, user is not allowed to create new files, all installations are
done with admin account

5.d.2 File execution control

One commonly recommended hardening method is file execution whitelisting, in which only
executables allowed by the system administrator, or third-party whitelist providers, are allowed to
execute; all other executables are blocked.

The most commonly recommended file execution whitelisting tool is Microsoft AppLocker, which is
available for Windows Vista and later operating systems. Since AppLocker is not available for Windows
XP SP3, we used Microsoft’s Software Restriction Policies (SRP), as per its documentation [12], to gain a
similar effect. We used the SRP in blacklisting mode so that applications are freely allowed to execute
unless they are in locations known to be commonly used by malware, which replicates the setup used in
the 2011 T2 research.

We blocked execution from the following locations:

 %documents%

 c:\RECYCLER

 %temp%

 %APPDATA%,

 %localsettings%

 C:\

6. Results

6.a Application hardening using EMET

We had expected EMET to be rather effective against all types of exploits, as its memory handling
mitigations are general purpose. The end result came as a surprise to us; however, as EMET
prevented successful exploitation in all cases.

Table 5: Results of application hardening using EMET

CVE Success Grand Total

CVE-2004-0210 1 1

CVE-2006-2492 1 1

CVE-2006-3590 3 3

CVE-2007-5659 21 21

CVE-2008-4841 1 1

CVE-2009-0927 1 1

CVE-2009-3129 219 219

CVE-2009-4324 9 9

CVE-2010-0188 296 296

CVE-2010-0806 8 8

CVE-2010-1297 5 5

CVE-2010-2572 17 17

CVE-2010-2883 82 82

CVE-2010-3333 98 98

CVE-2010-3654 29 29

CVE-2011-0097 1 1

CVE-2011-0101 68 68

CVE-2011-0611 21 21

CVE-2011-1269 1 1

CVE-2012-0158 43 43

CVE-2012-0779 2 2

Grand Total 927 927

Table 5: The results of application hardening using EMET showed it was an effective method

to successfully prevent exploitation in all cases

6.b Application sandboxing using Sandboxie

After deploying Sandboxie onto the automated analysis system, we had difficulty getting the sample
files to execute in the test environment. With Sandboxie enabled, we were only able to produce results
for 530 out of 978 samples. As there is a possibility that some of the samples we could not analyze might
have been failed mitigations, the results for application hardening using Sandboxie on the automated
analysis system are not as conclusive as the other methods tested.

We did run a retest on a standalone analysis system using a random sample of 20 exploit files that had
failed on our automated analysis machine. In the retest, every single sample was successfully mitigated
by Sandboxie, leading us to assume that the samples we were unable to verify using automated analysis
would most likely have been successfully mitigated.

Based on the results from the automated analysis however, we are able to see that using Sandboxie for
application sandboxing is as universally effective an application hardening method as EMET.

As Sandboxie is a sandbox, it did not directly prevent the target application from being exploited but it
was able to prevent the exploit from successfully executing its payload.

cropped_sandboxie_success_execution_halted_by_sandboxie_0a3d87e3f118a37dc7be313f57e463b84df
18043.png

Image 1: Sandboxie successfully halts execution

Image 1: Sandboxie prevents the dropped file from executing

The most typical mitigation scenario would be that the exploit was able to drop a file to a disk, however,
the write operation was hijacked by Sandboxie and directed to the Sandbox container. As Sandboxie is
also set to prevent execution of anything dropped to the Sandbox, it was able to prevent exploit payload
from being executed successfully (Image 1).

cropped_sandboxie_internet_access_blocked_0bd9d8acad12c6a1655bcd569c69df11b8a15d44.png

Image 2: Sandboxie successfully blocks Internet access

Image 2: Sandboxie prevents the exploit from loading a payload from an external source

In samples which relied on being able to load their payload from an external source, the Sandboxie
Internet access control was able to prevent the exploited application from downloading further payload
components (Image 2), stopping the attack process before the first payload execution attempt.

cropped_sandboxie_execution_failed_1b8845c5f8daf2c852028891636505cf91ae363d.png

Image 3: Exploit tried to execute failed payload download

Image 3: Exploit code fails to execute its missing payload

In some cases, the exploit code was resilient enough to try execution even though Sandboxie had
prevented the exploited process from downloading a payload, however, as no intact payload was
available the exploit failed (Image 3).

All in all, using Sandboxie-style application isolation seems to be a rather effective method of mitigating
exploits. The user interface of Sandboxie itself is not suited for normal users, as one careless click can
whitelist the exploit payload and allow it to execute. The technology itself, nevertheless, seems sound.

Table 6: Results for application isolation using Sandboxie

CVE
Automatic analysis
failed

Automatic analysis
succeeded Grand Total

CVE-2004-0210 1 1

CVE-2006-2492 1 1

CVE-2006-3590 3 3

CVE-2007-5659 7 14 21

CVE-2008-4841 1 1

CVE-2009-0927 1 1

CVE-2009-3129 51 168 219

CVE-2009-4324 5 4 9

CVE-2010-0188 126 170 296

CVE-2010-0806 2 6 8

CVE-2010-1297 1 4 5

CVE-2010-2572 8 9 17

CVE-2010-2883 7 75 82

CVE-2010-3333 61 37 98

CVE-2010-3654 23 6 29

CVE-2011-0097 1 1

CVE-2011-0101 55 13 68

CVE-2011-0611 21 21

CVE-2011-1269 1 1

CVE-2012-0158 25 18 43

CVE-2012-0779 1 1 2

Grand Total 397 530 927

Table 6: The results of application isolation using Sandboxie showed that though automated analysis
failed in many test instances, of the instances in which automated analysis succeeded, Sandboxie

successfully prevented system compromise

6.c Hardened security settings for client applications

Hardening security-related settings and installing vendor-recommended security add-ons seem to be
just as effective against APT attacks as they are against regular malware.

A combination of OFV, MOICE and security-related settings provided ~80% protection ratio against
attacks. The hardened settings provided a partial protection against CVE-2010-0188, CVE-2010-3333 and
CVE-2012-0158.

CVE-2010-0188 is a TIFF image format vulnerability that allows an attacker to take over Acrobat by stack
smashing. In most CVE-2010-0188 samples, JavaScript embedded in PDF does most of the work; the

exploit can therefore be mitigated by disabling JavaScript in Acrobat’s settings, as recommended by
Fortinet [13]. By doing this, we were able to mitigate 235 of 301 CVE-2010-0188 samples. This application
hardening method failed to mitigate the remaining 65 samples however, as a skilled attacker can run the
full payload in x86, which bypasses the JavaScript [14] disabling mitigation.

hardened_acrobat_successful_28224b17a5903445cb19fd242e413f44af67aa60.png

Image 4: Disabled JavaScript in Acrobat exploit

Image 4: Disabling JavaScript prevented PDF-related exploits, but still prompted the user to enable the feature

Hardened Acrobat settings were able to prevent all other PDF-related exploit documents. In practice,
however, disabling JavaScript may be less effective as a form of protection, as Acrobat still asks the user
whether JavaScript should be enabled. This functionality is fixed in later versions, however, and the user
is not prompted.

Hardening the application’s security settings was a total failure for preventing CVE -2010-3333 [15]

exploitation, as this is a RTF parsing vulnerability and none of the hardening methods took RTF files into
account. CVE-2010-3333 could be mitigated by implementing MOICE-style limited privileges converter
for RTF files, or by simply blocking RTF files completely, as they are very unlikely to have any recent
business use.

CVE-2012-0158 [16] is an arbitrary code execution vulnerability in MSCOMCTL.OCX which can be
exploited either via the web browser, DOC file or RTF file. The samples that were prevented from
executing by hardened application security settings were XLS or DOC files, while all exploit documents
that were RTF and used CVE-2012-0158 were able to successfully exploit our test system.

moice_successful_6889ef4fda939608d03988895e5a576a045d12a9.png

Image 5: MOICE blocked CVE-2011-0101

Image 4: MOICE blocks exploit code from executing its payload

In other cases, hardened Office settings were effective against exploit documents, on visual
investigation it seems that MOICE provided the most significant part of the protection against Office-
related exploits.

In conclusion, it can be said that while application hardening by increasing the security settings of the
client application is not as effective as the other methods tested during this research, it is still relatively
powerful. If we would have taken the RTF files into account and added mitigation for them, this method
would have been very powerful and only CVE-2010-0188 would have been a problem.

The security settings the hardening methods tested during this section of the research are of direct use
only for organizations which have not moved away from Office 2003 or 2007 to Office 2010. In the light
of our research, upgrading to Office 2010 is highly advisable as the program has built-in OFV and MOICE-
style features.

Our research indicates, however, that hardening the security settings of client applications is a very
effective technique even with newer clients. The operations done are of course different for new
application versions, but the conclusion is clear: attackers do not take modified application
configurations into account in their exploit development, thus application hardening will break a large
portion of attacks. It is highly recommended to tweak all security-related options in Microsoft Office and
other document handling operations, and pay close attention to the add-ons the Microsoft Office
security team is currently offering as added security options.

While writing this paper, we did not have time to test Office 2010 mitigations, but using these Office
2007 results as a guide, we would recommend the following mitigations as they are based on OFV and
MOICE technologies or disable commonly attacked functionalities that are not in regular use:

 Disable trusted documents

 Disable all application add-ins

 Disable all ActiveX controls

 Enable protected view for all document types

 Disable all macros with notification

In addition, enable file block settings for all legacy document types, especially RTF and older than Office
2007 documents, and set the block action to “Open selected documents in Protected View”. This means
user can read the documents, however, they are opened with very restricted permissions that mitigate
possible exploits.

For Acrobat applications, the hardening methods used here will be effective against current and most
likely future exploits, as almost all Acrobat exploit documents rely on the availability of JavaScript (with
some exceptions, like some 2010-0188 samples). New security enhancements, such as the Protected
Mode in Acrobat Reader 10 and later versions, also give a significant boost to security.

Table 7: Results for hardened client application security settings

CVE
Failed:
file event

Failed:
network event

Failed:
process event Success Grand Total

CVE-2004-0210 1 1

CVE-2006-2492 1 1

CVE-2006-3590 3 3

CVE-2007-5659 21 21

CVE-2008-4841 1 1

CVE-2009-0927 1 1

CVE-2009-3129 219 219

CVE-2009-4324 9 9

CVE-2010-0188 2 62 1 231 296

CVE-2010-0806 8 8

CVE-2010-1297 5 5

CVE-2010-2572 17 17

CVE-2010-2883 82 82

CVE-2010-3333 39 13 46 98

CVE-2010-3654 29 29

CVE-2011-0097 1 1

CVE-2011-0101 68 68

CVE-2011-0611 21 21

CVE-2011-1269 1 1

CVE-2012-0158 4 14 9 16 43

CVE-2012-0779 2 2

Grand Total 45 89 56 737 927

Table 7: Results for hardened client application security settings indicate that this application hardening method
generally had a high success rate, but failed against RTF document file-based attacks

6.d Hardened system access policies

Hardened file access and execution privileges had surprisingly little impact on blocking the exploit files in
our testing set. The mitigations we tried were effective in 95 samples, which is less than 10% of the
samples.

The most common paths for dropping exploits were %cwd% and %temp%. The former location is the
current working directory, which is the location the initial document is executed from and thus has to be
a location to which the user already has write access. The latter location is the system temporary
directory, for which user has to have write access but have file execution prohibited.

This means that as the user needs to have write access to locations that are also used by exploit
documents, write access controls give additional protection against 53 exploit documents. Restricting
execution access gave additional protection against 42 exploit documents.

Limiting execution rights gave partial mitigation against 63 additional samples, where the exploit
payload was dropped to disk but was not executed. This is only a partial victory, as the system would still
require investigation and possible reinstall due to corporate policies, but at least the attackers would
not have gained accessed to corporate systems.

Table 8: Results for hardened system access policies

CVE
Failed:
file event

Failed:
network event

Failed:
process event Success Grand Total

CVE-2004-0210 1 1

CVE-2006-2492 1 1

CVE-2006-3590 3 3

CVE-2007-5659 20 1 21

CVE-2008-4841 1 1

CVE-2009-0927 1 1

CVE-2009-3129 159 52 8 219

CVE-2009-4324 2 3 4 9

CVE-2010-0188 2 294 296

CVE-2010-0806 1 7 8

CVE-2010-1297 5 5

CVE-2010-2572 2 8 7 17

CVE-2010-2883 27 3 2 50 82

CVE-2010-3333 82 1 14 1 98

CVE-2010-3654 11 12 6 29

CVE-2011-0097 1 1

CVE-2011-0101 4 51 13 68

CVE-2011-0611 19 2 21

CVE-2011-1269 1 1

CVE-2012-0158 21 15 7 43

CVE-2012-0779 2 2

Grand Total 341 346 151 89 927

Table 8: The results for hardened system access policies showed an indifferent success rate
in protecting against document file-based exploit attacks

7. Conclusions and further research

Three out of the four mitigation methods we tested in this research seem to be surprisingly powerful
against the exploits files we used in our testing. Assuming that we succeeded in selecting a
representative set of real-world attacks, it seems that a well-chosen hardening operation will break the
majority of document file-based exploit attacks.

Microsoft’s EMET had a 100% success rate against exploit documents in our test set. While we were not
able to get results for all samples using Sandboxie on our automated analysis system, we can say with
some certainty that using Sandboxie as an application hardening method also most likely has a near
100% success rate. Hardening applications by increasing their security settings provided an 80% success
rate, and if we had also included mitigation for RTF documents, we would have reached a ~93% success
rate. Hardening operation system settings no longer provides significant protection however, which is
most likely due to such operations already being in use at victim organizations. In addition, Windows 7
and Windows 8 have brought in new restrictions which guide the locations that attackers have to use to
bypass basic operating system security.

Due to its ease of deployment, EMET is the most cost-effective method as it was able to mitigate all
exploits in our test set. Sandboxie was equally effective and proves the effectiveness of third-party
application sandboxing, as the attacker would have to knowingly take third-party sandboxing into
account during exploit development, and in addition would have to know a method to escape the
particular sandbox being used. The user interface for the Sandboxie application in particular cannot be
recommended for anyone except a skilled user, however, as it is very easy to accidentally whitelist
malware operations. As Sandboxie is not the only application of its kind, there may a similar product
available with a more corporate-friendly user interface.

Simple security precautions, such as disabling JavaScript and media player support in Adobe Reader, and
adjusting Office application security settings, are highly recommended basic operations. While tweaking
the application security settings was also an effective application hardening method, total success at
exploit mitigation would require the defender to be able to cover all avenues of attack, and as can be
seen by our failure to mitigate RTF document handling, a single mistake can open the system for
exploitation.

In light of our results, and taking into account the ease of implementation, we would recommend a
combination of EMET and client application hardening. The current versions of EMET can be deployed
relatively easily, and combined with basic client application security setting adjustments can give very
strong security.

In this research we concentrated on testing applications in the Windows XP SP3 environment due to it
being the most vulnerable of widely deployed operating system versions. As most organizations are
moving to Windows 7, we had intended to try to reproduce our results with Windows 7 and Windows 8,
however, we were unable to complete the analysis on these platforms before the paper submission
deadline.

8. Bibliography

1. Suha Can. Introducing EMET v3. Technet. [Online] 15 May 2012.
http://blogs.technet.com/b/srd/archive/2012/05/15/introducing-emet-v3.aspx.

2. Microsoft. EMET User’s guide.pdf: EMET 4.0b

3. Adobe. Protected Mode. Adobe. [Online] 29 March 2013. http://www.adobe.com/devnet-
docs/acrobatetk/tools/AppSec/protectedmode.html.

4. The Chromium Projects. Sandbox. The Chromium Projects. [Online]
http://www.chromium.org/developers/design-documents/sandbox.

5. Sandboxie. Sandboxie. Sandboxie. [Online] http://www.sandboxie.com/.

6. Microsoft. Office File Validation for Office 2003 and Office 2007. Technet. [Online] 28 July 2011.
http://technet.microsoft.com/en-us/library/gg985445 (v=office.12).aspx.

7. Malhotra, Vikas. Microsoft Office 2010 Engineering: Protected View in Office 2010. Technet. [Online]
http://blogs.technet.com/b/office2010/archive/2009/08/13/protected-view-in-office-2010.aspx.

8. Microsoft. Description of the update for the 2007 Office programs: May 18, 2007. Microsoft
Support. [Online] 18 May 2007. http://support.microsoft.com/kb/934390/en-us.

9. Microsoft. Description of the Microsoft Office Isolated Conversion Environment update for the
Compatibility Pack for Word, Excel, and PowerPoint 2007 File Formats. Microsoft Support. [Online]
http://support.microsoft.com/kb/935865.

10. Microsoft. Microsoft Security Bulletin MS12-076 - Important: Vulnerabilities in Microsoft Excel Could
Allow Remote Code Execution (2720184). Security TechCenter. [Online] 13 November 2012.
http://technet.microsoft.com/en-us/security/bulletin/ms12-076?altTemplate=SecurityBulletin.

11. Niemela, Jarno. Making Life Difficult for Malware. Blackhat. [Online] 17 May 2012.
http://www.blackhat.com/docs/webcast/bh-wb-May12-Making_Life_Difficult_for_Malware.pdf.

12. Gubarevich, Peter. Preventing computer malware by using Software Restriction Policies. Peter
Gubarevich. [Online] http://blog.windowsnt.lv/2011/06/01/preventing-malware-with-srp-english/.

13. Liu, Bing. CVE-2010-0188: Exploit in the wild. Fortinet. [Online] 24 March 2010.
http://blog.fortinet.com/cve-2010-0188-exploit-in-the-wild/.

14. Bugix. CVE-2010-0188 Adobe Working Exploit. Bugix Security Research. [Online] 13 March 2010.
http://bugix-security.blogspot.fi/2010/03/adobe-pdf-libtiff-working-exploitcve.html.

15. CVE. CVE-2010-3333. Common Vulnerabilities and Exposure (CVE). [Online]
 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3333.

16. CVE. CVE-2012-0158. Common Vulnerabilities and Exposures (CVE). [Online]
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158.

Thanks to: Timo Hirvonen, Elia Florio and Ahmad Anuar, Alia Hilyati

EVALUATING THE USEFULNESS OF
THE SSDEEP FUZZY HASH

ALGORITHM
FOR WHITELISTING PURPOSES

Jarno Niemelä

Jarno.niemela@f-secure.com

F-Secure Corporation, Tammasaarenkatu 7, 00101 Helsinki, Finland

JAMK University of Applied Sciences, Jyväskylä

Abstract

Fuzzy hashing has been proposed as a method of reducing the time spent on digital

investigations, by allowing forensic analysts to exclude files from investigation based

on close similarity to known clean files. Fuzzy hashing would have an advantage

over traditional cryptographic hashing in that the examiner does not require the exact

same version of the clean file; having the hash of a closely similar version would be

enough. In order to be reliable however, the proposed fuzzy hashing method would

have to be resistant against the kind of file changes made by malware. In this

research paper, we evaluate the reliability of the fuzzy hash algorithm found in the

SSDEEP program to determine if it can distinguish between a clean file and a

malware-infected copy of a clean file.

Acknowlegements

Ahmad Anuar, Alia Hilyati for help with language and grammar.

F-Secure Corporation for use of malware and clean file database.

JAMK University of Applied Sciences

VirusTotal for use of large volume Imphash database

mailto:Jarno.niemela@f-secure.com

2

J. Niemelä | Evaluating the usefulness of the SSDEEP fuzzy hash algorithm for whitelisting

purposes

Contents

1. Introduction .. 2

2. SSDEEP fuzzy hash algorithm ... 4

3. SSDEEP matching ... 5

3.1. SSDEEP matching performance and use of indexing to speed up matching

 6

4. Alternative strategy for SSDEEP indexing.. 6

5. SSDEEP resistance to attacks ... 8

6. Verifying SSDEEP fuzzy hashing results ... 10

6.1. Verifying Imphash indexed SSDEEP true positive coverage 10

6.2. Verifying SSDEEP anti-whitelisting resistance 11

7. Verifying Imphash SSDEEP indexing performance 14

8. Conclusions .. 15

1. Introduction

Maintaining a complete whitelist of known good (clean) binaries is a very resource

consuming task, thus it is very typical that even high-quality whitelists contain only a

fraction of the different versions of any given clean file. This means that a local

system is very likely to have files that are clean but are not on any whitelist available

for to a forensic examiner.

This is a rather frustrating situation for the examiner, as the unknown files are

typically very similar to known files - a typical file size difference between the two

clean file versions can easily be as small as a couple of kilobytes. Thus, comparing

files under investigation to known clean copies is a very common method to exclude

files from investigation. In order to do that however, one has to have the actual file at

one’s disposal, and not just the SHA1, SHA2 or SHA3 hash in the clean file whitelist.

This means that maintaining an extensive collection of clean files is beyond most

forensic examiners’ reach.

3

J. Niemelä | Evaluating the usefulness of the SSDEEP fuzzy hash algorithm for whitelisting

purposes

To solve this problem, a new type of hash functions has been developed. Unlike the

traditional cryptographic hash function, in which the hash values cannot be used to

analyze file similarity (as a single bit change in the file will result to a totally different

hash value), a fuzzy hash function produces hash values in such a way that similar

files have values which are very close to each other, and can even be used to

estimate the difference between these files. Thus one would assume that fuzzy

hashing would be of significant benefit in excluding files from detailed analysis. Fuzzy

hashing and SSDEEP in particular is being proposed as a method for whitelisting

(Dunham, 2013) (Chawathe, 2009). However, there are also doubts whether

malware would be able to fool whitelisting based on Fuzzy hash method.

In this research, we evaluate the effectiveness and reliability of the fuzzy hash

algorithm used in the SSDEEP program as a tool for potential use as a whitelisting

method to assist a forensic examiner.

4

J. Niemelä | Evaluating the usefulness of the SSDEEP fuzzy hash algorithm for whitelisting

purposes

2. SSDEEP fuzzy hash algorithm

In our research, we used the SSDEEP algorithm created by Jesse Kornblum

(Kornblum, 2006). SSDEEP is a piecewise hash signature function based on the

SpamSum algorithm created by Dr. Andrew Trigdell. SSDEEP produces hash values

in which the hashes for similar files are themselves similar and comparable to each

other.

The hash values produced by traditional cryptographic hash functions are

significantly different even if one bit in the file content has been changed, thus the

hash values cannot be used to deduce anything about the file’s content or its

similarity to other files. For example, two files with only a single bit difference in the

content had the following hash values produced with the sha1sum SHA1 calculation

tool, which generated in totally different SHA1 hash values for the two files:

Files tested SHA1 hash value

*fast_forensic_hashing.pdf 119cee8e717d95bad7acef584b26d43569e5469

0 *fast_forensic_hashing_mod.pd

f

c477072ed22f6aaa395d5a6bb10363735a6df3d0

Table 1: Comparison of hash values for two files as generated by sha1sum SHA1 calculation

tool

In contrast, the same two files had the following SSDEEP hash values:

Files tested SHA1 hash value

“fast_forensic_hashing.pdf”
6144:ydpP6MVpbx8VcxxgwLx+gGnHIejBWFSw
jyKTc73jCvIPJi2C+9AwSLxF:MpbYcxxrLx+THI+
njg6eF

“fast_forensic_hashing_mod.pdf
”

6144:FdpP6MVpbx8VcxxgwLx+gGnHIejBWFSw
jyKTc73jCvIPJi2C+9AwSLxF:rpbYcxxrLx+THI+n
jg6eF

Table 2: Comparison of hash values for two files as generated by SSDEEP

Notice that these SSDEEP-generated hash values are very similar to each other.

SSDEEP is able to produce similar hash values for similar files as it does not

5

J. Niemelä | Evaluating the usefulness of the SSDEEP fuzzy hash algorithm for whitelisting

purposes

calculate a hash for the whole file at once; instead, it uses the piecewise method in

which the file is split into pieces and a hash value is calculated for each piece

separately (Winter, Schneider, Yannikos, 2013, page 2). Of course, just splitting the

file into pieces would fail when there are bytes inserted or deleted from the file, so

Kornblum implemented a version of the piecewise hash signature (PHS) in which the

start location and size of the pieces is determined by the content of the file being

hashed. Kornblum calls this method context sensitive piecewise hashing (CTPH).

Using the CTPH approach, the SSDEEP algorithm is resistant against both minor

changes in file content and sections being added or removed from the file.

3. SSDEEP matching

Using edit distance calculation, SSDEEP can provide a measure of similarity

between two hash values as a ‘similarity score’ that ranges between 0-100. SSDEEP

calculates the similarity score by comparing the size of the pieces used in the

hashes; if the piece sizes are equal or differ from each other by a factor of two, the

hashes can be compared. If the piece sizes are too different, the comparison is not

possible and the similarity score is set to 0 (Winter, Schneider, Yannikos, 2013, page

362).

SSDEEP also contains an additional precheck which verifies if at least two hash

pieces have a match of at least 7 characters in a substring. If this check fails, the

similarity score is also set to 0.

Once the prechecks have been successfully passed, the similarity score is calculated

as the normalized sum of the edit distances for the hash pieces. For our purposes, a

similarity score of 90 or above is treated as a ‘strong match’, and the two files are

likely to be very close versions of each other. A similarity score of 80 or above is

treated as a ‘weak match’, and files may be distant versions of each other. We

noticed several cases where unrelated files received a similarity score of 70.

6

J. Niemelä | Evaluating the usefulness of the SSDEEP fuzzy hash algorithm for whitelisting

purposes

3.1. SSDEEP matching performance and use of indexing to speed up matching

By default, SSDEEP uses a brute force method in finding similarity matches between

hash values, which means that matching against any size of extensive whitelist is

computationally very expensive.

Winter et al evaluated that on their testing framework, it took 442 hours to match

hashes between a ~200K hash list obtained from a typical installation of Windows XP

and a SSDEEP hash version of the NRSL whitelist containing 580M SSDEEP hash

values. (Winter, Schneider, Yannikos, 2013), which is clearly too long a time for any

kind of practical purpose.

Winter et al proposed (2013) an indexing strategy for SSDEEP and other hashes,

which by their evaluation provides 2000 times increase in the speed of SSDEEP

hash comparison. Their implementation (F2S2) was able to process their XP versus

NSRL test in 12 minutes 42 seconds, which is a 99.5% increase in speed compared

to the brute force SSDEEP match done by the original SSDEEP.

However, the index structure used by Winter et al is rather memory intensive, as they

estimate that their index consumes about 7-8 times the memory of the original hash

data. So one should investigate whether there are other indexing strategies which

would consume less memory and still provide a good enough indexing performance.

4. Alternative strategy for SSDEEP indexing

As F2S2 is rather memory heavy, we needed a more efficient way of performing

indexing that would be memory efficient and still provide a good enough speed

increase to compete with F2S2.

We tested the PE Imphash algorithm developed by Manidiant (Mandiant, 2014),

which makes use of the specific way different compilers order PE import libraries and

functions. The Imphash algorithm was developed for locating and matching similar

malware samples, and our assumption is that if it can match malware in which the

7

J. Niemelä | Evaluating the usefulness of the SSDEEP fuzzy hash algorithm for whitelisting

purposes

creator is trying to evade matching, it should be rather useful for matching clean files

and thus serve as an efficient index.

However, the Imphash is very selective and limits the possible samples for SSDEEP

too much. For example, for the Firefox.exe binary

(001b6f8fdfabcf8285580dc5d6c0f5026bc33360), which has 2583 SSDEEP matches

which a similarity score of 90 or above, the Imphash provides only 285 files. There

are files for which SSDEEP has better coverage but in general, Imphash-based

indexing is rather restrictive.

To get broader coverage compared to the standard Imphash, we created a modified

Imphash function called Sorted Imphash, which sorts the imports in order to avoid

being sensitive to the order of imports. This modification makes Sorted Imphash

worse for Mandiants original purpose of matching closely related malware samples,

but does make it more useful for matching clean files. The sorted Imphash provided

431 matches for the same file.

Since we did not have a large database of precalculated Sorted Imphash values

however, this research has been conducted using the regular Imphash. The Sorted

Imphash has been submitted as a patch to Ero Carrera, the maintainer of the Python

pefile that is the most common library used to calculate Imphash (Carrera, 2015).

Original get_imphash function in pefile.py
 def get_imphash(self):

 … code removed for brevity

 impstrs.append('%s.%s' % (libname.lower(),funcname.lower()))

 return hashlib.md5(','.join(impstrs)).hexdigest()

Modified version as new function
 def get_imphash(self):

 … code removed for brevity

 impstrs.append('%s.%s' % (libname.lower(),funcname.lower()))

8

J. Niemelä | Evaluating the usefulness of the SSDEEP fuzzy hash algorithm for whitelisting

purposes

 impstrs.sort() #Added sort operation to negate import order changes

 return hashlib.md5(','.join(impstrs)).hexdigest()

5. SSDEEP resistance to attacks

There are two types of attacks which an attacker can perform against SSDEEP or

any other fuzzy hash algorithm: anti-blacklisting and anti-whitelisting (Breitinger,

Baier, page 12).

Anti-blacklisting is a type of attack in which the attacker tries to evade a fuzzy hash-

based malware detection. Evading SSDEEP or another fuzzy hash is trivial by using

code obfuscation or packing techniques (Szor, 2006, page 225). This means that for

malware detection, fuzzy hashing is of little use or interest.

Anti-whitelisting is a type of attack in which an attacker tries to make a malicious file

mimic the structure of a clean file closely enough that SSDEEP or another fuzzy hash

algorithm would produce a strong match in hash values. This type of an attack is

relevant to our use of fuzzy hashing, and can either be done unintentionally by file

infecting viruses or by an attacker deliberately injecting malicious code into a clean

binary so that the resulting file will have similar enough structure for SSDEEP to

produce a strong match.

Breitinger and Baier propose a different hash algorithm they have named BBHash,

which is more resistant to an anti-whitelisting attack. Its drawback however, when

compared to SSDEEP, is that the BBHash checksum is typically 5% of the original

file size, which means that it would be prohibitively expensive to keep a large number

of BBHash values in memory for rapid matching. As such, we chose to use SSDEEP

in our research instead of BBHash.

As anti-blacklisting attacks are based on injecting code into a clean binary, one has

to look for a method that would make such injections unfeasible or at least raise the

difficulty of performing successful injections that would escape detection.

9

J. Niemelä | Evaluating the usefulness of the SSDEEP fuzzy hash algorithm for whitelisting

purposes

The PE file format contains checksum values which are intended to alert the

operating system loader that the content of a section has changed - but since the

implementation of the checksum PE algorithm is known, it is trivial for an attacker to

recalculate checksums after injection.

A large fraction of PE binaries in current operating systems and applications are

signed, so a broken digital signature is an obvious sign that the file has been

modified. However, since verifying against a database of trusted signers is already a

whitelisting technique on its own, this is outside our current area of interest.

In order to find an effective method, one has to look at the process of code injection –

in particular, whether it is being made by a human or by a file-infecting virus.

In order to infect a file, the attacker must accomplish three things (Szor, 2005, page

129):

1. Find or make empty space inside the target file

2. Write code into the target file

3. Place a hook into the target file’s entry point, thread local
storage, or other place in which the execution of a host program
jumps to the malicious code in order for the malicious code to
take control.

Infection steps 1 and 2 are difficult to guard against as the attacker can distribute his

code in very small pieces around the target binary and thus avoid causing a

significant change in the binary, allowing it to avoid making a noticeable impact on

fuzzy hashing (Szor, 2005, page 142) and (Hyppönen, 1993).

In step 3, the attacker has more limited options. Most simple viruses use entry point

replacement, in which they replace the entry point pointer in the PE header to point to

the virus’ entry point; when the virus code has done its work, it will jump to the

original clean binary entry point (Bania, 2005).

10

J. Niemelä | Evaluating the usefulness of the SSDEEP fuzzy hash algorithm for whitelisting

purposes

But since scanning for unusual entry points is an easy task for an Anti-Virus program,

file infectors started to use entry point obfuscation techniques: for example, the API

call injection used by Win32.CTX.Phage (Bania, 2005); or the MZ header injection

discovered by Florensik, in which the malware makes the PE entry point to the MZ

header and then writes an JMP call directly after ‘MZ’ (“deb ebp”, “pop edx” in ASM)

instructions, thus allowing it to jump to the virus code (Florensik, 2010).

Another common tactic is to not touch the entry point at all: in TLS obfuscation, the

virus modifies the PE header’s Thread Local Storage (TLS) entry so that it will be

loaded even before entry point is evaluated (Szor, 2005) and (Carrera, 2007).

As SSDEEP is used for matching the whole binary, our hypothesis is it should be

relatively immune to most kinds of code injection and entry point obfuscation

techniques, provided that the code changes done by malware are significant enough

to produce a notably dissimilar SSDEEP hash.

6. Verifying SSDEEP fuzzy hashing results

6.1. Verifying Imphash indexed SSDEEP true positive coverage

In order to verify that Imphash-indexed SSDEEP results are useful in identifying

clean files, we calculated SSDEEP hashes for a set of executable files which are

assumed to be close versions of each other. The files were collected from F-Secure’s

clean file collection by searching by file name.

Filename Samples Strong
matches

Weak
matches

Average
score

Median
score

Total
Matches

igfxpers.exe 2769 96.79 % 0.04 % 94.24 96.00 54

mstime.dll 15110 96.51 % 0.54 % 92.49 93.00 1166

nssckbi.dll 5069 95.64 % 2.13 % 90.44 91.00 112

iepeers.dll 14166 95.52 % 2.75 % 88.12 90.00 198

Firefox.exe 5586 94.15 % 0.95 % 96.52 97.00 1924

11

J. Niemelä | Evaluating the usefulness of the SSDEEP fuzzy hash algorithm for whitelisting

purposes

wininet.dll 18359 85.45 % 2.96 % 92.51 93.00 70

libglesv2.dll 6230 83.02 % 7.19 % 91.98 91.00 26

libegl.dll 6288 57.78 % 36.43 % 87.44 86.00 6

utorrent.exe 2703 55.90 % 4.00 % 97.82 99.00 3122

Chrome.exe 2435 25.01 % 24.02 % 89.70 90.00 12

Table 3: SSDEEP true positives. Strong and weak matches are counted separately.

The results of comparing the hashes indicate that even when indexed with Imphash,

SSDEEP is useful in finding similarities in the versions of clean software. On most

files, the count of strong matches (that is, matches where at least one other file had a

higher than 90 similarity score SSDEEP match) is very high. Also, from the results

we can see that as SSDEEP compares raw binary structures, its effectiveness is very

dependent on the compiler settings used. For most files, where the developer is not

intentionally trying to make change tracking difficult, SSDEEP shows very good

performance.

But SSDEEP has problems with files such as Google Chrome.exe, where Google

intentionally tries to make patch diffing as difficult as possible. Patch diffing is a

process where attacker or a security researcher compares two versions of a

program, one containing a vulnerability and another where the vulnerability has been

fixed (Oh, 2009). We can conclude from this that even as Imphash does significantly

restrict the number of samples available for SSDEEP match between given binaries,

there are still enough samples to get useful results.

There are methods which are more effective against code rearranging, and other

tricks used to frustrate patch diffing, but as they are far more time consuming

compared to simple SSDEEP, they are considered out of scope for this research

(Oh, 2009).

6.2. Verifying SSDEEP anti-whitelisting resistance

In order to be safe for use, SSDEEP also has to be resistant to typical modifications

done by malware. In order to test this, we collected a set of files infected with known

12

J. Niemelä | Evaluating the usefulness of the SSDEEP fuzzy hash algorithm for whitelisting

purposes

file-infecting viruses and compared their match scores against clean versions of the

infected file.

SSDEEP is not a cryptographically strong algorithm, so it is obvious that attacker can

craft malicious files which have a high SSDEEP match. Is it, however, not known

whether these collisions can occur without intentionally trying to create them.

In order to find malware which would be likely to cause collisions, we searched F-

Secure’s malware database for files which had a filename match with a clean file and

a calculated SSDEEP comparison. Using this method, we are very likely to find files

which are either infected by a file-infecting virus, or is an intentionally trojanized file.

As it is possible that files discovered are anti-virus false alarms, we verified a set of

full matches by hand. Unfortunately, we could not find enough infected files to fully

replicate the same set used in our previous verification test (6.1), but we found

enough infected files to provide a comprehensive result.

Comparing against the clean files from 6.1, we were able to find several samples

which are infected by a file-infecting virus, however, still have high SSDEEP match.

Filename Samples Strong
matches

Weak
matches

Average Median 100
matches

firefox.exe 14526 21.31 % 8.52 % 89.99 90.00 114

winword.exe 23185 29.62 % 1.14 % 93.08 97.00 29

utorrent.exe 7857 18.19 % 7.69 % 90.51 91.00 19

winmine.exe 13220 25.90 % 15.49 % 86.31 83.00 2

jusched.exe 11763 2.72 % 5.48 % 84.90 83.00 1

chrome.exe 10166 6.73 % 2.17 % 88.71 90.00 1

Table 4: SSDEEP collisions with malware and clean files

For each of the clean files we selected for comparison, we found an alarming amount

of strong matches - that is, files with more than 90 SSDEEP match score to a clean

file. Also, each of the files had at least one 100 SSDEEP match score between the

13

J. Niemelä | Evaluating the usefulness of the SSDEEP fuzzy hash algorithm for whitelisting

purposes

clean and the infected file. And the larger the file is, the greater the likelihood of 100

score SSDEEP matches.

For example, file f197dcb796089379a6a92148d8744626413842ea is a winmine.exe

infected with a variant of Win32/Sality virus, but it still has a SSDEEP match score of

100 to its clean original 79d03b17ce9e7ff9595253a402efb856b0888ea0.

For winword.exe, 121bd2a7af2b2d9523a08c049117de437aec96a6 is infected with

variant of Win32/Virtob and yet has a SSDEEP match of 100 to its clean file,

d91c23507af737619a8d295084fca959c310d0ab.

From the above examples we can conclude that SSDEEP is not reliable for

determining that a sample is clean. If a file is infected by a sophisticated file-infecting

virus, or it has been trojanized so that the changes done are very small, it is very

likely that SSDEEP will give a strong match with a clean file. This does not mean that

SSDEEP is useless, but one has to be careful when interpreting the results.

14

J. Niemelä | Evaluating the usefulness of the SSDEEP fuzzy hash algorithm for whitelisting

purposes

7. Verifying Imphash SSDEEP indexing performance

Winter et al tested their F2S2 algorithm by comparing the NSRL SSDEEP database

calculated from RDS 2.27 against a set of hashes calculated from an installation of

Windows XP. They were able to obtain a speedup factor of 2000 in their test (Winter,

Schneider, Yannikos, 2013, page 7). As we do not have the exact set of files Winter

et al used for comparison, and our indexing method works only for PE files, we have

to use a different evaluation method.

In order to get a fair comparison, we are calculating the speedup provided by

Imphash-based indexing by dividing the number of hits provided for a given sample

against the total volume of the database. For our test, we used Virustotal’s sample

database, which contains approximately 180 million PE files which have the Imphash

value calculated and available for search (Virustotal, 2015). The total count of PE

files in Virustotal database is significantly higher, so in time as files get rescanned

Virustotal will have even more impressive Imphash based index to use for searches.

As Virustotal limits the number of searches to 50 000 per day and we had no desire

to cause unnecessary load to their systems, we limited our search comparisons to

8824 samples from Windows 7. While this is not as extensive as the search

performed by Winter et al, it is sufficient to provide reliable results of the Imphash

indexing’s performance. The samples were selected on the basis that they can be

executed and have at least one Imphash search result in VirusTotal’s database; thus,

we can compare the difference between searching the SSDEEP match candidates

from VirusTotal versus doing the search by brute force SSDEEP match.

The Imphash function as index provides a ~99,999985% operation reduction as

compared to a brute force SSDEEP match, which equates to a speedup factor of

approximately 6860000 compared to plain SSDEEP.

Winter et al, claim that their F2S2 algorithm provides a speedup factor of 2000 and

covers all possible matches, but their index implementation consumes significant

amounts of memory. Winters et al estimate that their index payload size is 7.25 times

15

J. Niemelä | Evaluating the usefulness of the SSDEEP fuzzy hash algorithm for whitelisting

purposes

the size of the SSDEEP hash data indexed (Winter, Schneider, Yannikos, 2013,

page 369).

The Imphash payload size is a static 32 bytes per indexed hash, which when

calculated with the average SSDEEP hash size of 130 bytes can be roughly

estimated to be ~0.25 times the memory consumed by SSDEEP hashes themselves.

Thus Imphash-based indexing has far superior indexing speed and significantly

better memory performance, but at the cost of index coverage.

F2S2 has the benefits of total index coverage; of being able to work with any files;

and of requiring only SSDEEP hash data; thus, it can make use of previously built

hash databases. For our purpose of finding at least one true positive or false positive

match per file however, Imphash is clearly superior.

8. Conclusions

In conclusion, SSDEEP fuzzy hashing cannot be fully depended on as a sole method

for determining whether a file is clean. As it is possible for file-infecting malware to

have a SSDEEP fuzzy hash that is nearly identical to a clean file (either intentionally

or accidentally), this means that for file-infecting viruses, traditional Anti-Virus

scanners are generally more reliable than fuzzy or partial-matching techniques.

Theoretically, it might be possible to combine cryptographic hashing and fuzzy

hashing so that there would be additional SHA256 or other hashes calculated from all

possible entry points that could be hooked by the malware. Verifying how effective

such a method might be however would be a topic for another paper.

We have also proved that while Imphash-based indexing done prior to SSDEEP

matching does cause a significant drop in match coverage, using a simple index like

Imphash still provides enough samples for useful research, with far reduced demand

on calculation time spent in analysis.

16

J. Niemelä | Evaluating the usefulness of the SSDEEP fuzzy hash algorithm for whitelisting

purposes

References

1. Ken Dunham, 2013, A Fuzzy Future in Malware Research,
https://c.ymcdn.com/sites/www.issa.org/resource/resmgr/journalpdfs/fuzzyhash-
issa-journal0813.pdf, referred 13.2.2015

2. Sudarshan S. Chawathe, 2009 , Effective Whitelisting for Filesystem Forensics,
http://www.umcs.maine.edu/~chaw/pubs/fflh.pdf, referred 13.2.2015

3. Jesse Kornblum,2006, Context triggered piecewise hashes,
http://dfrws.org/2006/proceedings/12-Kornblum.pdf, referred 15.2.2015

4. Frank Breitinger and Harald Baier,2012, A Fuzzy Hashing Approach based on
Random Sequences and Hamming Distance, https://www.dasec.h-da.de/wp-
content/uploads/2012/06/adfsl-bbhash.pdf, referred 15.2.1025

5. Christian Winter, Markus Schneider and York Yannikos, 2013, F2S2: Fast
forensic similarity search through indexing piecewise hash signatures, Digital
Investigation, 10 (2013) 361-371. doi:10.1016/j.diin.2013.08.003

6. Ero Carrera, 2015, pefile, https://code.google.com/p/pefile/, referred 13.2.2015

7. Mandiant, 2014, Tracking malware with import hashing,
https://www.mandiant.com/blog/tracking-malware-import-hashing/, referred
13.3.2015

8. Peter Szor, 2005, The art of computer virus research and defence, ISBN-10:
0321304543

9. Piotr Bania,2005, Fighting EPO Viruses,
http://www.symantec.com/connect/articles/fighting-epo-viruses, referred
14.10.2014

10. Florensik,2010, Interesting PE Entry Point Obfuscation,
http://florensik.wordpress.com/2010/04/04/interesting-pe-entry-point-obfuscation/,
referred 14.10.2014

11. Mikko Hyppönen,1993, Commander Bomber virus description, http://www.f-
secure.com/v-descs/bomber.shtml, referred 14.10.2014

12. Ero Carrera,2007, A PE Trick, the Thread Local Storage,
http://blog.dkbza.org/2007/03/pe-trick-thread-local-storage.html

13. Jeongwook Oh, 2009, Fight against 1-day exploits: Diffing Binaries vs Anti-diffing
Binaries, http://www.blackhat.com/presentations/bh-usa-09/OH/BHUSA09-Oh-
DiffingBinaries-PAPER.pdf, referred 28.2.2015

14. National Institute Of Standards And Technology, 2014, National Software
Reference Library, http://www.nsrl.nist.gov/, referred 14.3.2015

15. Virustotal, 2015, VirusTotal Private API v2.0,
https://www.virustotal.com/en/documentation/private-api/, referred 14.3.2015

https://c.ymcdn.com/sites/www.issa.org/resource/resmgr/journalpdfs/fuzzyhash-issa-journal0813.pdf
https://c.ymcdn.com/sites/www.issa.org/resource/resmgr/journalpdfs/fuzzyhash-issa-journal0813.pdf
http://www.umcs.maine.edu/~chaw/pubs/fflh.pdf
http://dfrws.org/2006/proceedings/12-Kornblum.pdf
https://www.dasec.h-da.de/wp-content/uploads/2012/06/adfsl-bbhash.pdf
https://www.dasec.h-da.de/wp-content/uploads/2012/06/adfsl-bbhash.pdf
https://code.google.com/p/pefile/
https://www.mandiant.com/blog/tracking-malware-import-hashing/
http://www.symantec.com/connect/articles/fighting-epo-viruses
http://florensik.wordpress.com/2010/04/04/interesting-pe-entry-point-obfuscation/
http://www.f-secure.com/v-descs/bomber.shtml
http://www.f-secure.com/v-descs/bomber.shtml
http://blog.dkbza.org/2007/03/pe-trick-thread-local-storage.html
http://www.blackhat.com/presentations/bh-usa-09/OH/BHUSA09-Oh-DiffingBinaries-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/OH/BHUSA09-Oh-DiffingBinaries-PAPER.pdf
http://www.nsrl.nist.gov/
https://www.virustotal.com/en/documentation/private-api/

