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Extracting DNA from samples and creating a NGS library for metagenomics samples is a 

modern way of studying the genetic diversity within organisms and environments. Although 

the theoretical and practical details of these methods are well known, there is no single, 

standardized way to perform such a study. 

 

The purpose of this thesis was to create an NGS DNA metagenomics library for a Parkin-

son’s disease study. This thesis explains the theory behind the process and contemplates 

on the possible improvements that could be made to the laboratory protocols. 

 

The thesis project started by extracting stool DNA, after which the NGS library was created 

and analysed. Concentration values gained from DNA extractions, PCR and Illumina se-

quencing were documented and reviewed in the results section of this thesis. 

  

The DNA extraction concentration values were distributed normally when looked at statisti-

cally. From 138 samples, only one failed to produce any results due to a small amount of 

DNA during the extractions. The Illumina reads obtained were suitable for further analysis, 

although the quality of the reads could have been better. 

 

By studying the results, it can be concluded that the creation of the DNA metagenomics 

library was a success although some of the samples in the pool were present in greater 

proportions than others. The standard deviation for all reads was ≈ ± 3 611 000 reads, and 

the average was ≈ 5 055 000 reads. 
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DNA:n eristäminen ja NGS metagenomiikkakirjaston luominen on moderni tapa tutkia 

geneettisen materiaalin monimuotoisuutta ympäristönäytteissä sekä kudosnäytteissä. 

Vaikka näiden menetelmien teoria ja käytäntö ovat yleisesti ottaen selvitettyjä, ei 

kokonaisprosessille ole yhtä ja oikeata tapaa suorittaa. 

 

Opinnäytetyön tavoite oli luoda metagenomisia DNA kirjastoja osana Parkinsonin taudin 

tutkimusta. Tekstissä käsitellään myös menetelmiin pohjautuvaa teoriaa ja pohditaan 

mahdollisia parannuksia, joita niihin voisi soveltaa. 

 

Työ aloitettiin eristämällä ja puhdistamalla ulostenäytteiden DNA, jonka jälkeen niistä 

muokattiin DNA kirjasto, joka analysoitiin Illuminan sekvensaattorilla. DNA eristyksistä sekä 

PCR ja Illumina ajoista saadut arvot kirjattiin ylös ja niitä tarkastellaan tämän opinnäytetyön 

tuloksissa. 

 

Näytteiden eristyksien pitoisuudet olivat normaalijakautuneita. 138 näytteestä ainoastaan 

yksi ei tuottanut tulosta vähäisen DNA määränsä takia. Illuminan sekvensointi onnistui, 

vaikkakin sekvensoinnin laatu olisi voinut olla parempi. 

 

Tuloksista voitiin päätellä, että metagenomisen DNA kirjaston luominen onnistui, vaikkakin 

jotkin näytteistä tuottivat enemmän sekvenssejä kuin toiset. Illumina ajon keskihajonta 

kaikille näytteille oli ≈ ± 3 611 000 sekvenssilukua ja keskiarvo ≈ 5 055 000 sekvenssilukua. 

Avainsanat Parkinsonin tauti, metagenominen, DNA kirjasto, Illumina, 
sekvensointi, uloste, DNA:n eristäminen, DNA 
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1 Introduction 

 

This thesis is based on previous findings which suggest that there is an association be-

tween certain gut bacteria and the Parkinson’s disease. The Thesis is part of a meta-

genomics study conducted by the DNA sequencing and genomics laboratory at Institute 

of Biotechnology of Helsinki University. 

 

The purpose of this thesis was to create a metagenomics DNA library from PD stool 

samples for the Parkinson’s disease study, and to describe in theory and practice the 

methods used when creating a metagenomics library. In addition, some of the working 

methods and their effects on the DNA products have been reviewed through scientific 

literature and personal observations. Metagenomics studies the genetic material found 

in an environment or in other genetically complex systems. 

 

The protocols and other methods used during the laboratory work were either provided 

by the laboratory staff or came with the kits and they can be found in the appendix. 

 

2 Parkinson’s disease 

 

Parkinson’s disease is a slowly proceeding movement disorder typically diagnosed be-

tween ages 50 to 70. The difficulties in movement are caused by the loss of dopaminergic 

neurons in the substantia nigra. The effects of the disease are better described in Figure 

1. Even though scientists have managed to connect Parkinson’s disease with genetic 

changes, environmental factors and heredity, the major cause for losing the dopaminer-

gic neurons remains unknown [1, 2]. This could be one of the reasons why non-motor 

symptoms of the Parkinson’s disease are increasingly more studied. 
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Figure 1. Figure on the left shows the differences in brain structure between a healthy person 

and a person who suffers from Parkinson’s disease [3]. Figure on the right is a sketch 

of a person who has Parkinson’s. It depicts the poor posture, slowed movements and 

tremor contained by pinching the fingers together [4]. 

 

2.1 Connection with gut microbiota  

 

Only recently has the correlation between gut microbiota and the central nervous system 

been studied. These studies have found that gut microbiota could play a major role in 

how certain disorders such as IBS, depression, anxiety and chronic pain form, all of 

which have relations to the CNS. In nature, there are even some examples where small 

parasites have taken control over the entire nervous system of a simple organism [5]. 

 

 

 

Figure 2. Parasitic fungi, ophiocordyceps unilateralis, infested dead ant. The fungi controls the 

ant and forces it to move into higher grounds. There it makes the ant to strike its jaws 

deep into a plant and remain there until dead [6]. 
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2.1.1 Previous research 

 

Many observations have concluded that gastrointestinal dysfunction is common in Par-

kinson’s disease. As a non-motor feature, this connection has not been studied as much 

as the primary symptoms of Parkinson’s, even though the interaction between the gut 

and the central nervous system has been suggested to exist before [7]. 

 

Bulding on these previous studies, researchers [8] have found a connection between the 

gut microbiota and Parkinson’s disease. In the study, gut microbiota of 72 PD- and 72 

control patients were compared through high-throughput sequencing of 16S rRNA genes 

for phylogenetic marker analysis. The results suggest that the patients who have Parkin-

son’s, tend to lack at least one family of bacteria that is commonly present in control 

subjects, and that some of the motor phenotypes could be related to the abundances of 

specific bacterial species within the gut [8]. 

 

3 Researching the gut microbiota from stool samples 

 

The gut microbiota varies with the hosts genetic background, living environment and 

lifestyle. These micro-organisms work in a symbiotic way within the intestinal track of the 

host, which is beneficial for the host and the microorganism [9]. They are a part of the so 

called normal flora which includes all of the symbiotic micro-organisms in the human 

body.  

 

Human stool is ideal for metagenomics study since it consists of as [9] describes, “nearly 

200 prevalent bacterial species and approximately 1000 uncommon species”. It is also 

a good way to study human diseases since every person, sick or healthy, produces it, 

and since it contains so much information on how the human body is functioning. 

 

3.1 Metagenomics 

 

Metagenomics, also known as environmental genomics, studies the genetic material 

found in an environment. Rather than researching a single microbe, it involves studying 
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the whole community of microbes found for example in water, soil or stool. The method 

is to extract the whole community DNA from an environmental sample, purify it and cre-

ate a DNA library from it. The libraries are then used to study the variations in microbial 

communities or to study the genomic structures of individual species [10]. 

 

 

 

Figure 3. A protocol for executing a metagenomics study [11]. 

 

As [9] describes, gut microbiota can be studied in different ways such as descriptive 

metagenomics and functional metagenomics. The first concentrates on studying the 

community’s structure, microbial variation and amount. The latter concentrates on stud-

ying the interactions between host/microbe and microbe/microbe functions. 

 

Many microbes cannot be cultured under standard laboratory conditions. Even if they 

could be cultured, studying the interactions between all the micro-organisms would be 

impossible due to the technical constraints involved and the time consumed during the 

process. This is why the metagenomics approach works better when studying complex 

relations between microbes. 

 

The metagenomics approach has been successful in generating large numbers of met-

agenomics sequence datasets that help us to understand the functions and relations of 

gut microbiota better [9]. 
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3.2 Processes 

 

Collecting a stool sample is fairly easy due to the abundance and composition of the 

sample material. However, the sample handling protocols vary depending on the study. 

For example a medical stool sample might require a certain diet before sampling and 

has to be delivered to medical staff within days of the collection [12], whereas with met-

agenomics samples the diet is normal, stool is homogenized in a preserving buffer and 

can be stored in a freezer for days or months before actually being studied. [13] 

 

Sampling, storing and processing has been found to have an effect on the results of DNA 

sequencing [14, 15]. For example, in a study conducted by [14], a stool sample that had 

been left in room temperature for 2 weeks before freezing it at -80 °C had lost nearly all 

high-molecular weight fragments. This type of fragmenting also occurred while unfreez-

ing the samples from -20 °C in 1 h prior to freezing them again in -80 °C. The best con-

ditions for high-molecular weight fragments were when the sample was frozen immedi-

ately after sampling in -20 °C and then transferred to -80 °C, or when the samples were 

kept in room temperature after sampling for 3 h before freezing at -80 °C [14]. Although 

storage conditions prior to DNA isolation might affect the DNA fragment size, they do not 

affect the variation of bacterial species significantly unless the sample has been left in 

room temperature for a time period of 2 weeks or more prior to freezing. The thawing of 

the samples at the beginning of the DNA extractions has an impact on the taxonomic 

composition of the samples at the genus and species level [14]. 
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Table1. [14] Changes in the composition of the bacterial taxa in the studied stool samples. The 

values on the table represent the percentage of each major taxon out of the total num-

ber of sequences. 

 

 

 

Table 1 shows that the samples that had been unfrozen before the extractions for a 

longer time, had differences between their major bacterial taxa. 

 

 

 

Figure 4.  “The % change in bacterial community composition in the stool samples compared to 

samples frozen immediately. Each point is the mean of samples from four individuals 

with the bars representing the standard error about the mean.” [15] 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2681173_TOMICROJ-3-40_F1.jpg
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Figure 4 shows that if the samples are not frozen immediately after the sampling, their 

bacterial community composition will change gradually, the more time it stays in a room 

temperature. 

 

3.2.1 DNA extraction 

 

DNA extraction is a crucial step when studying the gut microbiota since it has a direct 

effect on the outcome of the downstream analysis. There are many ready to go protocols 

for extracting the DNA. Choosing the right protocol is essential since choosing the wrong 

method could have a great impact on the purity and amount of the DNA gained. A higher 

yield and a better quality of DNA will give more accurate results [16, 17]. Many of the 

protocols, if not all, follow the same principle: break the cell wall and liberate the DNA, 

remove PCR inhibitors and proteins and elute the DNA. 

 

Stool sample cell lysis, as described by [16], can be done either mechanically, chemically 

or enzymatically. Mechanical bead lysing is one of the most efficient ways of cell lysing 

since it not only breaks the cell wall but homogenizes the sample even further. The lysing 

and homogenization effect of the beads give the reagents in the next step an ideal envi-

ronment for removing PCR inhibitors from the sample. Although bead lysis provides an 

efficient way of exposing the DNA, it is considered to be too destructive for chromosomal 

DNA studies [16]. 

 

Stool samples contain many inhibitors that consist mostly of bile salts and complex pol-

ysaccharides [18, 19]. Bile salts are conjugated bile acids and form approximately 0.7 % 

of the total bile secreted from the liver. If not removed properly from the sample, they can 

inhibit the functioning of DNA polymerase or other reagents, depending on cofactors, in 

the PCR reaction. [18] Complex polysaccharides, at least in plant DNA preparations, can 

contaminate and inhibit both the restriction enzyme treatments and the PCR [19]. The 

removal of these inhibitors is done with bile salt binding chemicals. Shown by [20], bile 

salts can be inhibited by binding them to molecules such as cholestyramine, meciadanol, 

sucralfate or aluminium hydroxide and magnesium hydroxide [20]. Since the binding re-

moves most of the inhibitors from the samples, the remaining inhibitors can be removed 

through a simple washing step. For example, in [21] a silica membrane type of DNA 

binding and washing step reduced the amount of PCR inhibitors from 12.5 % to 1.1 %. 
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Commonly, the removal of inhibitors is done by binding the DNA molecule into another 

molecule and washing its surroundings or by pelleting the inhibitors via centrifugation 

step and removing the supernatant. 

 

 

 

Figure 5. Inhibitor inhibiting the functioning of an enzyme at the top. Enzyme helping in the pro-

duction of a molecule at the bottom [22]. 

 

Stool samples contain many proteins that need to be removed since excess amounts of 

protein can inhibit the PCR or damage the DNA. One of the most commonly used pro-

teinases is proteinase K. As described by the manual [23], it cleaves peptide bonds at 

the carboxylic sides of aliphatic, aromatic or hydrophobic amino acids. In [24] it was ob-

served that proteinase K together with dodecylsulfate would provide complete protection 

from ribonuclease to the tested polysomal RNA. It was also noted that in addition to 

dodecylsulfate, urea stimulates the activity of proteinase K as well. In [24] the sample 

that had been treated with only proteinase k, liberated only 7 % of the total amount of 

aromatic aminoacids, whereas, with dodecylsulfate it was as high as 93 %. Many of the 

manufacturers take this factor into account and for example [23] manual says “The ac-

tivity of the enzyme is stimulated by 0.2 - 1 % SDS or by 1 - 4 M urea” [23, 24]. 
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Figure 6.  An example of the chemical reaction for the activity of proteinase K on polypeptides 

[25]. 

 

The washing and elution steps are the final steps when processing the DNA. Washing 

step purifies the DNA from most of the remaining contaminant proteins and PCR inhibi-

tors. The washing step can be performed, for example, with the help of a silicate filter. 

Silicate binds to the DNA in the presence of strong salts. This is possible due to the 

negative charge of both, DNA and silica. The positively charged ionised salt molecules 

set between these negative charges and form a hydrogen bond. This bond will not break 

as long as the amount of salt stays high and pH stays stable. This allows for the DNA to 

be washed with salts and ethanol, removing impurities even further from the sample [26]. 

However, a study conducted by [16] notes that the efficiency of the DNA binding with 

silica based elution can be as little as 21 % of the initial amount of DNA. 

 

 

 

Figure 7. Principle behind the silicate membrane binding of the DNA. In the presence of cha-

otropic salt, the DNA molecule binds to the hydrolysed Na+  with hydrogen bonds [27]. 
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The DNA, bound on the silicate filter, is eluted when the concentration of the binding salt 

is diluted enough. The dilutant is called elution buffer and is a substance designed for 

storing the samples and the elution of DNA. The DNA is eluted through the filter with a 

centrifuge. 

 

3.2.2 DNA sequencing library 

 

A DNA sequencing library consists of fragments of DNA that represent the genetic diver-

sity of the environment or a single organism. The creation of these libraries can vary 

since there are different protocols for cDNA libraries and DNA libraries. The principle 

behind the workflow is: fragment the DNA, size select the appropriate fragments, repair 

the ends of the fragments, attach adapters and amplify the fragments with PCR [28]. 

 

Fragmenting the DNA can be done enzymatically, chemically or mechanically. Mechan-

ical fragmentation can be done acoustically by concentrating highly dense soundwaves 

at the DNA, to break the structure vertically. The breaking is done by cavitation bubbles 

formed by the soundwaves. Cavitation bubbles are formed when soundwaves separate 

and form a gap in between the water molecules. The gap absorbs energy until it implodes 

and shears anything around it. The efficiency of the fragmentation depends on the purity 

of the DNA, the fragmentation on / off time, the concentration of the sample, temperature 

and purity of the water, the intensity of the soundwaves etc. [28, 29]. The cavitation pro-

cess is depicted in Figure 8. The length of the resulting DNA fragments is determined by 

the wanted library size and the limitations of the sequencing equipment [28].  
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Figure 8. Sonication forms cavitation bubbles that implode and damage the surrounding DNA 

and other material [29]. 

 

The fragmentation of the dsDNA creates fragments that can be partially double stranded 

(ds) and partially single stranded (ss). This type of broken DNA is not compatible with 

the adapter ligation step and will cause an insufficient library dataset for the extracted 

samples. The ends of the fragments are repaired by using several DNA building rea-

gents: T4 polynucleotide kinase, T4 DNA polymerase, Taq DNA polymerase, BSA, ATP 

and dNTP. In this process, ATP and dNTP work as building blocks for the DNA synthesis 

[Appendix 4, Norppa-library protocol]. 

 

T4 DNA polymerase catalyses 5’ → 3’ nucleotide synthesis on a DNA template. It also 

has 3’ → 5’ exonuclease activity which removes the hanging nucleotides from the 3’ end. 

These qualities produce blunt dsDNA strands. BSA works to stabilize the exonuclease 

activity of the T4 DNA polymerase. At the same time it also inactivates the contaminating 

nucleases and proteases and prevents the DNA from binding on the sides of the testing 

tube, keeping the reagents separated from the wall [30-32]. At the same time as the T4 

DNA polymerase repairs or cleaves the strands at 5’ or 3’ end, the T4 polynucleotide 

kinase catalyses a transfer reaction of phosphate from ATP to the 5’ end of the DNA 

strand. T4 polynucleotide kinase also works as 3’ phosphatase, preventing the addition 

of more nucleobases at the 3’ end of the fragments. The phosphorylation modification 

allows for the DNA to be ligated later with another nucleotide sequence [33]. Since the 
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T4 DNA polymerase works as 3’ → 5’ exonuclease for ssDNA and dsDNA, it needs to 

be inactivated. Both of the T4 enzymes are inactivated by placing the samples in 75 °C 

for 10 min. During the inactivation, it is probable that the DNA fragments will sustain 

some damage done by the T4 DNA polymerase at the 3’ ends. If the strands get dam-

aged, they are repaired in 5’ → 3’ direction by the Taq DNA polymerase which stays 

active on high temperatures. The correct function of the Taq DNA polymerase in this 

reaction however is to add an A-overhang onto the 3’ end of the DNA fragment. The end 

repair product is a double stranded, blunt ended, 5’ phosphorylated and 3’ A-tailed DNA 

fragment [Appendix 4, Norppa-library protocol], [30, 32-36]. 

 

 

 

Figure 9. End repair process explained on the molecular level. The effect of two enzymes on 

the DNA fragments in the presence of ATP, dNTP, BSA and the reaction buffers. 
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Figure 10. The function of Taq DNA Polymerase enzyme on the DNA fragment in the presence 

of ATP, dNTP, BSA and the reaction buffers during end repair process. 

 

For the sequencer to be able to differentiate the fragmented sequences from each other, 

the fragments need to be labelled. The first step is to ligate an adapter to the phosphor-

ylated and A-tailed fragments. The adapter consists of dsDNA with a blunt end and a 

sticky end. The blunt end will be ligated with phosphorylated and A-tailed dsDNA, and 

the sticky part will be ligated with label. T4 DNA ligase catalyses this reaction and unites 

the blunt dsDNA with the blunt part of the adapter. In addition, it also ligates missing 

nucleobases onto the DNA strand if provided with additional dNTPs. After the adapter 

ligation, the DNA is ready for the PCR and the adding of indexes [37] [Appendix 4, Nor-

ppa-library protocol]. 
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Figure 11. An example of the Adapter ligation reaction with T4 DNA ligase. At the top, the Y. 

adapter is on the right and the product from the end repair is on the left.  

 

The DNA index complex consists of a primer, n amount of bp indexes and a universal 

complementary sequence used by the Illumina sequencer. During the PCR, the comple-

mentary primer binding site of the DNA index complex will attach to the complementary 

adapter primer binding site B. The DNA polymerase then copies the strand once. After 

the first copy, another primer, consisting of the primer and a universal sequence, at-

taches itself to the adapter primer binding site cA. The DNA strand is now attached with 

both primers and will copy itself for additional rounds of PCR cycles. The final product 

consists of the primers, index bp and universal sequences and the insert [38] [Appendix 

4, Norppa-library protocol]. 
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Figure 12. Binding of the index primers into a Y- adapter ligated DNA insert. For Illumina reads 

there are also two individual universal sequences ligated at the end of both primers 

next to the indexes with names U- strand A, UA and U-strand B, UB. 
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3.2.3 Illumina sequencing 

 

The final library will be analysed with a sequencing machine. For Illumina machines, the 

protocol is such: the library is clustered, amplified and analysed in three or four sessions 

of DNA synthesis. The sample attaches to the bottom of the flow cell which has comple-

mentary universal sequences attached on it. First the forward sequence is read, then the 

index sequence and then the reverse sequence. If there are two indexes, there will be 

an additional read between the second and the third read. 

 

In clustering, DNA strands are copied isothermally through bridge amplification. The in-

dividually marked DNA fragments have two universal sequences attached that are com-

plementary to the probes attached on the Illumina flow cells. The DNA fragment bends 

on the flow cell and forms a bridge with the other complementary probe. The DNA strand 

is then copied while attached to both probes. When denatured, it leaves us with two 

copies of the DNA strands that are then amplified in the same method prior to the reads 

[39]. 

 

 

 

Figure 13. The bridge amplification done by the Illumina machine. The probes are attached to the 

bottom. DNA strands attach and build up on these probes [40]. 

 

Reverse strands are washed, leaving the forward strands on the flow cells. Sequencing 

primer is then added, followed by the adding of fluorescent marked nucleotides. The 

clusters are bombarded with a light source that reacts every time a new complementary 
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nucleotide is added to the DNA strand. Fluorescent marked nucleotides have a termi-

nated 3’ end which means that they lack the 3’ OH group needed for the adding of the 

next base. The next nucleotide can be added after the OH group has been attached to 

the terminated nucleotide. Unattached nucleotides are washed from the flowcell before 

the adding of OH group. For this reason fluorescent marked terminated nucleotides get 

added one by one to the DNA strand. When bound to the strand, they emit an individual 

light signal that is registered on the sequencer thus giving the order of the complimentary 

nucleotides on the DNA strand. The registered base is determined by the average of all 

strands in the cluster. The more strands there are amplified within the cluster, the more 

accurate the signal becomes. After the insert has been read, another sequencing primer 

is attached to the index primer and the fluorescent nucleotides are analysed. After this, 

the DNA strand is bent again to form a bridge with the reverse probe. The ssDNA strand 

is then copied, denatured and the forward strand washed away. Reverse strand is then 

read with the same principle as the forward strand [39]. 

 

3.3 Contamination 

 

When dealing with samples that are going to be processed with PCR, it is important to 

understand all the sources of possible contaminants. As the research on intensive care 

unit bacterial communities [41] shows, even the places deemed to be most clean may 

contain a complex bacterial community. In addition, other studies prove that microbial 

activity can occur even in altitudes as high as the upper troposphere 15 km [42]. So if 

microbes can rise to altitudes as high as this, they surely have no trouble reaching the 3 

m altitudes represented by a common laboratory. As [43] shows, contaminating microbes 

can also be found within reagents. This is especially difficult when dealing with samples 

that have a low amount of DNA [41-43]. 

 

The spreading of bacteria through surfaces and room air is noted in today’s laboratories 

by using aseptic techniques. All the handling of the reagents and samples can be done 

inside a laminar which filters the air very clean. In addition, the laminar can be cleaned 

with 80 % ethanol after every task. Combined with the use of proper laboratory equip-

ment such as laboratory jacket, rubber gloves, sterile pipet heads and tubes, many of 

the contaminants can be countered. 
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3.4 Batch effects 

 

During a metagenomics study, a large number of samples are processed. Most of the 

time these samples arrive to laboratories in batches. Because of tight schedules within 

the laboratories, these batches are commonly processed separately. For assessing the 

working methods, the order in which samples are handled, has to be randomised. Ran-

domization is done to minimize the so called batch effects.  

 

Batch effects are caused by unknown technical variables present in the study. Such a 

variable can have an effect on the results and distort them. The distorting variable can 

be from simple source, such as damaged laboratory equipment, or as complex as a 

variable created by the combined effect of ten other variables [44]. These combined var-

iables are common in biological studies where multiple reagents and conditions are pre-

sent. 

 

Batch effects have been studied for a long time through various standardised mathemat-

ical methods such as the ANOVA tests. Studying the results enable us to specify the 

distorting variables and to narrow down the possible contaminants. These types of stud-

ies are also crucial when optimizing laboratory methods.  

 

4 DNA extractions of PD stool samples 

 

Gut microbiota DNA extractions were done to 138 samples and X lambda DNA controls. 

The extractions were done in 2 batches, first with 119 samples and the second with 19 

samples. 11 extractions were repeated due to low amounts of DNA. The first batch was 

done 17.3 - 2.4 and the second batch 29.4 - 4.5. The average amount of DNA extractions 

done daily was 10 samples, starting with 2 and 5 samples and finishing up with 15 sam-

ples a day. The stool samples were collected from Parkinson’s disease patients, their 

spouses and control patients in Finland. Samples were stored in PSP kit’s buffer after 

sampling, frozen and shipped to the laboratory in dry ice. They were then moved into a 

-80 °C freezer to await for the extractions [13]. 

 

Most of the stool samples were processed accordingly to the same protocol during the 

stool extractions. Only one of them, P_41, failed to give a sufficient amount of DNA for 
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making a library. The protocol for the extractions was carried out accordingly to the pro-

tocol depicted in the appendix [Appendix 5, PSP spin stool DNA plus kit protocol]. 

 

4.1 Extraction order and thawing of the samples 

 

The extraction order for the samples was determined by randomizing the previous listing 

order of the samples with an excel function. The correct samples could be picked with 

the help of the box coordinates sheet provided by the sampling laboratory. Samples were 

then moved into a laminar in a room temperature and thawed. The thawing usually took 

approximately 1 h. 

 

Most of the times the samples would thaw equally. Some samples, however, would melt 

more rapidly than others. This type of unequal melting would happen each time the sam-

ples were thawed. Though as [14] and [15] suggests, there is no significant additional 

damage done to the DNA fragments or variation of bacterial species, unless the samples 

would be kept melted for extra hours or days. 

 

4.2 Sample homogenization and prelysis 

 

After thawing, each sample was transferred into a 2.0 ml safe lock tube. This would be 

done in 2 portions. First portion would take 1.0 ml and the second 0.4 ml of sample. The 

samples were then moved into a thermomixer to maximize the amount of bacterial DNA. 

Meanwhile the laminar was cleaned and the stool moved back into the freezer. After the 

thermomixer, 5 zirconia beads were added manually to each sample tube and the tubes 

were vortexed, two at a time, with a table vortex for 2 minutes. After this, the solids were 

pelleted with a centrifuge. 

 

The order of the sampling would be determined by the order in which the samples were 

taken from the freezer. Since some of the samples would have solid stool in them, it was 

better to take 1.0 ml first to ensure that there was enough of the sample for the next 

steps. Adding the zirconia beads manually was sometimes difficult since they would drop 

from the tubes in clusters. It would also take some time to get used to mixing the tubes 

for 2 minutes with a table vortex.  
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4.3 Removal of PCR inhibitors and the second sample clean-up 

 

The supernatants were moved into Inviadsorb tubes which bind the inhibitors in faeces 

efficiently [13]. After mixing and incubating at room temperature, the solids were pelleted 

to the bottom. After the centrifugation, supernatant was transferred into a 1.5 ml Eppen-

dorf and the centrifugation from the previous step repeated. Meanwhile, 25 µl of the pro-

teinase K was pipetted into a new set of 1.5 ml Eppendorf tubes. 

 

When transferring the supernatant from previous samples, it is important to not suspend 

the pellet by acting too hastily. It is also good to set the tubes in the centrifuge so that 

the pellet will appear on a certain side. When the stool is pelleted for the first time, it 

sometimes creates a sticky layer on top of the supernatant. This makes it more difficult 

to get the clear supernatant below it. This sticky substance often appears if there is too 

much solid particles in the samples. In some cases, the sticky substance would not pellet 

even after recentrifugation. 

 

Another factor that affects the difficulty of transferring the supernatant is the colour of the 

samples. The Inviadsorb tube is full of black powder. When the sample, that is dark-

brown, is added to the tube, the border between supernatant and the pellet becomes 

unclear. The suspension of the pellet with the supernatant can be avoided by placing the 

sample between a source of light or by pipetting the supernatant slowly. 

 

4.4 Proteinase K digestion 

 

The previous supernatant was transferred to the tubes containing the proteinase K. They 

were then thermomixed for 10 minutes. 

 

Some of the samples had less supernatant during this step than required. This is why 

it’s important to have enough of liquid sample in the beginning of the extractions. Since 

the samples were no longer inside safe locked tubes, they would often burst open or leak 

while being moved from the thermomixer to the laminar. The leaks were absorbed with 

paper and the bursting avoided by letting the samples stand for a minute or two before 

lifting them from the thermomixer.  
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4.5 Binding of the DNA 

 

After the digestion, the binding buffer was added and the mixture vortexed for 15 sec-

onds. The mixture was then transferred onto the spin filter in two batches, 700 µl batch 

and 300 µl batch. Both of the batches were incubated at room temperature for 2 minutes 

before centrifuging. 

 

The samples need to be vortexed separately to avoid any leakage. Even then it was 

important to keep the tube caps tightly closed with your hands since the samples were 

mixed with runny isopropanol. Although vortexing would be faster, it often causes a mess 

that needs to be cleaned afterwards. The mixture needs to be moved onto the spin filter 

in two batches since it can only contain 700 µl of sample by each centrifugation. 

 

4.6 Washing steps and ethanol removal 

 

When all the sample was bound to the filter membrane, the filter was first washed with 

washing buffer 1 and centrifuged. Receiver tube was changed and filter filled with wash-

ing buffer 2 and centrifuged. Receiver tube was emptied and re-used in ethanol removal. 

Ethanol was removed by centrifuging the sample at full speed for 4 minutes. Meanwhile 

the elution buffer was retrieved from the incubator. 

 

Both of the washing buffers are runny due to alcohol. This leads to dripping when pipet-

ting. Ethanol can dissolve the markings on the test tubes, thus you need to be careful 

when pipetting. Sometimes all the sample would not centrifuge properly on the filter. This 

might be due to solids clogging the filter. Eventually the liquid will get centrifuged but the 

DNA will not be as pure as it should.  

 

4.7 DNA elution 

 

Preheated elution buffer is added on the spin filter and incubated for 5 minutes. Mean-

while, an ice bath is prepared. After incubation, the samples are centrifuged into 1.5 ml 

receiver tube. After centrifugation, they are transferred to better tubes that are more ideal 

for longer times of freezing. The tubes are then put on ice and placed near the nanodrop 

machine. Samples are then measured with nanodrop and the results printed out. After 
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this, the laminar is and the used equipment are cleaned and the equipments moved back 

to their original places. 

5 DNA libraries of PD stool samples 

 

A protocol constructed by the DNA laboratory staff [Appendix 4 , Norppa-library protocol] 

was used, The process was done for the previously extracted 137 DNA samples. Alt-

hough most of the washing steps were done with a pipetting machine, Magnatrix, some 

were purified manually with the same reagents and protocol [Appendix 3, Clean up pro-

tocol]. 

 

5.1 Cutting the DNA with Bioruptor 

 

The sample DNA was added into Bioruptor tubes so that the concentration would be 1 

ug [DNA] / 100 µl [H2O]. The fragmented DNA was washed with Magnatrix or manually 

accordingly to the washing protocol [Appendix 3, Clean up protocol]. 

 

Magnatrix machinery is isolated by a plastic cover but it contains no air filtration system. 

The possibility for a contamination is, however, faint since the DNA is being purified in 

the process. 

 

5.2 End-repair, adapter ligation, PCR and size separation 

 

All the reagents that require thawing were thawed and placed on an ice bath. While the 

DNA was being purified, the master mix for end repair was prepared. The sample plate 

was moved on the ice bath and the required enzymes, T4 polynucleotide kinase, T4 DNA 

polymerase and DreamTaq polymerase were added to the cooled master-mix. Master-

mix was homogenized by pipetting and a portion of the mix was added to each of the 

wells containing the samples. The 96 well plate was moved into a PCR machine and an 

end repair program was performed accordingly to [Appendix 4, Norppa-library protocol]. 

When the program had finished, the samples were purified with Magnatrix or manually 

[Appendix 3, Clean up protocol]. 
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A master-mix containing the T4 DNA ligase buffer and the Y- adapter was prepared for 

the adapter ligation step and put on an ice bath. The samples were then placed on the 

ice bath and the enzyme T4 DNA ligase was added to the master-mix. Master-mix was 

then added to every well and the plate containing the samples was moved into a PCR 

machine. An adapter ligation program was used [Appendix 4, Norppa-library protocol]. 

After adapter ligation, another DNA purification step was performed with Magnatrix or 

manually [Appendix 3, Clean up protocol]. 

 

The primer indexes were pipetted individually to the bottom of the wells and a master-

mix containing MQ water, 5x phusion HF buffer, dNTP and PCR_Truseq_A was pre-

pared and placed on an ice bath. The Magnatrix plate was placed on the ice bath and 

the enzyme Phusion HotStart II was added to the master-mix. The samples were trans-

ferred to the wells containing the indexes, and the master-mix was added to these wells. 

The mixture was homogenized and divided so that each well would have 50 µl of sample 

in them. Samples were then vortexed and centrifuged briefly and moved into a PCR 

machine. A PCR program with 18 cycles was performed [Appendix 4, Norppa-library 

protocol]. After the run, the size separation program was performed with Magnatrix or 

manually [Appendix 2, DNA size separation step protocol]. 

 

Doing the washing steps manually has its’ problems. The manual aspect is a variable 

that creates variations between the samples. It would be more difficult to transfer the 

DNA into small strip tubes than it was to add the DNA into a Magnatrix well plate. 

 

6 Sequencing 

 

Preparing the Illumina sequencer is done accordingly to the protocol. This step reveals 

if there has been any mistakes during previous experiments. 

 

6.1 Pooling and purifying the samples and concentrating the pool 

 

The index labelled DNA samples were pooled together in an amount of 13.8 ng / sample. 

The total volume of the pool would be then ≈ 850 µl and the concentration ≈ 2.2 ng / µl. 

The pool would then be concentrated with a special filter column a few times, reducing 
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the volume to ≈ 20.0 µl and rising the concentration up to ≈ 67.0 ng / µl. A manual wash-

ing step was then performed two times, selecting the appropriate base size for the Illu-

minaNextSeq500. 

 

6.2 Sequencing the DNA library with IlluminaNextSeq500 

 

A part of the concentrated sample was pipetted and diluted. Part of this diluted sample 

was then pipetted into a new tube, which would then be optimized for the Illumina ma-

chine. After pooling the samples together, the optimized pool was transferred to a fully 

prepared Illumina reagent plate, the plate inserted into the Illumina machine and the se-

quencing program started. 

 

7 Results 

 

The result focus on the values measured from the DNA extractions and PCR products 

since they offer the best view on how the creation of the library succeeded. The Fragment 

Analyzer, AATI, report shows the quality of the DNA and the Illumina sequencing results 

the functioning of the DNA library. 

 

7.1 DNA extractions, nanodrop and values 

 

DNA extractions were done in a randomised order in a period of 16 days. The results are 

shown in table 1.  

 

Table 1. Concentrations, dates and sample names of all the DNA extractions in a chronological 

order 17.3 - 4.5.2015, excluding the repeated samples. Nanodrop measures the purity 

and amount of the DNA and Qubit measures the amount of the DNA. 

 

Sample ID 
Extraction date DNA µg / mL Nanodrop 

DNA µg / ml 
Qubit 

C_99 17.3.2015 169.71 56.1 

CS_119 17.3.2015 50.49 17.7 

CS_47 18.3.2015 22.54 5.48 

P_51 18.3.2015 8.72 3.51 

C_103 19.3.2015 664.73 120 
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PS_15 19.3.2015 5.49 2.79 

CS_73 20.3.2015 70.85 65.7 

C_137 20.3.2015 267.71 71.2 

P_60 20.3.2015 416.84 120 

C_69 20.3.2015 166.78 92.1 

P_119 23.3.2015 77.23 37.3 

C_95 23.3.2015 330.69 120 

P_58 23.3.2015 27.42 9.75 

CS_71 23.3.2015 139.51 19.8 

P_50 23.3.2015 159.37 92.5 

P_16 23.3.2015 43.6 21.7 

CS_114 23.3.2015 9.38 3.5 

CS_100 23.3.2015 118.12 35.2 

C_75 23.3.2015 91.11 45 

P_105 23.3.2015 64.8 43.4 

C_30 24.3.2015 24.19 12 

C_35 24.3.2015 266.32 99.6 

C_136 24.3.2015 12.2 3.5 

P_71 24.3.2015 21.4 9.58 

CS_107 24.3.2015 223.42 74 

C_102 24.3.2015 15.6 6.55 

C_74 24.3.2015 18.63 7.57 

C_116 24.3.2015 16.55 5.96 

P_77 24.3.2015 167.03 80.3 

CS_68 24.3.2015 227.27 92.1 

C_119 25.3.2015 1.31 0.3 

C_147 25.3.2015 117.49 36.6 

P_63 25.3.2015 121.63 52.7 

C_47 25.3.2015 64.31 35.8 

P_59 25.3.2015 35.05 14 

C_48 25.3.2015 235.65 94.4 

P_48 25.3.2015 102.76 51.1 

P_114 25.3.2015 105.83 52.5 

P_107 25.3.2015 25.24 14.4 

P_100 25.3.2015 41.44 9.44 

P_31 26.3.2015 170.96 76.4 

C_49 26.3.2015 404.21 120 

CS_65 26.3.2015 508.35 120 

C_23 26.3.2015 25.07 6.83 

C_8 26.3.2015 181.07 97.9 

C_86 26.3.2015 52 15.7 

C_90 26.3.2015 27.33 9.14 

C_80 26.3.2015 333.42 120 

C_96 26.3.2015 205.95 98.6 

P_53 26.3.2015 93.54 30.6 

P_61 27.3.2015 145.78 63.7 

P_57 27.3.2015 40.8 14.6 

P_42 27.3.2015 224.75 74.2 

P_69 27.3.2015 113.04 100 
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C_59 27.3.2015 68.31 32.2 

C_68 27.3.2015 190.95 40.9 

P_87 27.3.2015 66.32 22 

P_66 27.3.2015 24.32 19.1 

P_56 27.3.2015 166.85 62 

CS_41 27.3.2015 125.29 56.3 

P_126 27.3.2015 316.4 120 

P_68 27.3.2015 375.72 120 

C_146 27.3.2015 199.45 68.6 

C_118 27.3.2015 48.42 31 

P_65 27.3.2015 44.53 13.1 

P_99 30.3.2015 51.57 19.5 

P_79 30.3.2015 71.05 33.1 

CS_103 30.3.2015 179.22 63.8 

C_105 30.3.2015 78.3 47.1 

C_89 30.3.2015 79.6 84.1 

C_15 30.3.2015 239.94 97.5 

C_82 30.3.2015 127.37 43.1 

C_142 30.3.2015 6.46 2.7 

CS_87 30.3.2015 383.65 120 

C_135 30.3.2015 174.9 85.4 

P_94 30.3.2015 23.18 8.95 

P_120 30.3.2015 92.47 47.4 

P_83 30.3.2015 16.73 3.8 

P_47 30.3.2015 166.46 61 

P_8 30.3.2015 21.89 4.6 

C_19 31.3.2015 98.5 78.6 

C_88 31.3.2015 26.02 8.9 

C_33 31.3.2015 133.87 28.9 

C_104 31.3.2015 94.52 34.3 

CS_116 31.3.2015 39.26 11 

C_20 31.3.2015 36.86 14.7 

CS_66 31.3.2015 54.17 23.5 

C_65 31.3.2015 309.85 120 

P_88 31.3.2015 57.1 24.1 

CS_74 31.3.2015 45.08 18.6 

P_103 31.3.2015 94.65 35.5 

C_107 31.3.2015 152.93 56.3 

P_115 31.3.2015 366.96 120 

P_43 31.3.2015 54.08 19.9 

C_98 31.3.2015 12.9 1.9 

C_51 1.4.2015 67.62 16 

P_74 1.4.2015 68.69 20.8 

C_123 1.4.2015 423.33 120 

P_116 1.4.2015 198.26 96.4 

C_84_P 1.4.2015 20.23 5.89 

C_131_P 1.4.2015 505.06 120 

C_121_P 1.4.2015 44.58 14.2 

C_60_P 1.4.2015 591.64 120 
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C_10_P 1.4.2015 524.51 120 

P_21_P 1.4.2015 124.82 60.3 

P_104_II_P 1.4.2015 61.47 19.9 

C_115_P 1.4.2015 142.69 32.7 

C_125_II_P 1.4.2015 109.04 33.9 

C_152_II_P 1.4.2015 42.83 12 

C_109_P 1.4.2015 350.07 120 

C_8_P 2.4.2015 78.52 29.4 

C_127_P 2.4.2015 60.91 10.9 

P_62_P 2.4.2015 70.45 25.4 

C_56_P 2.4.2015 63.21 32 

C_93_P 2.4.2015 136.68 48.9 

P_110_P 2.4.2015 71.23 46.9 

C_99_II_P 2.4.2015 9.43 1.9 

C_106_P 2.4.2015 136.91 39.1 

CS_62 29.4.2015 315.6 120 

P_118 29.4.2015 251.9 94.1 

P_85 29.4.2015 57.68 100 

C_148 29.4.2015 487.7 120 

P_52 30.4.2015 350.51 120 

C_10 30.4.2015 86.4 120 

C_131 30.4.2015 27.64 68.5 

C_85 30.4.2015 31.87 56.2 

C_87 30.4.2015 344.08 120 

C_84 30.4.2015 79.46 110 

C_127 30.4.2015 8.72 42.8 

P_104 30.4.2015 39.34 22.4 

C_111 30.4.2015 140.96 99.1 

C_110 4.5.2015 316.72 120 

C_93 4.5.2015 139.4 120 

C_152 4.5.2015 626.01 120 

C_140 4.5.2015 103.99 46.7 

P_62 4.5.2015 388.02 120 

CS_31 4.5.2015 115.73 120 
 

DNA extractions were done in two batches. This was due to the samples arriving at dif-

ferent times to the laboratory. Figure 14 shows the amount of the samples processed 

each day and the time gap between the batches. 
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Figure 14. The amount of samples processed daily and the time between the two batches. The 

work was not continued during the weekends and had to be halted when waiting for 

more samples to arrive. Repeated samples excluded. 

 

From the raw values presented here, it is possible to evaluate the working process 

through the methods of standard variation. Since the samples were processed in two 

separate batches and were not randomised together, they are looked at separately. 
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Figure 15. Nanodrop values of the Batch 1 DNA extractions done chronologically. Y-axis shows 

the amount of DNA measured by the nanodrop and the X-axis shows the extraction 

order of the Batch 1 stool samples listed in Table 1. Repeated samples excluded. 

 

 

 

Figure 16. Qubit values of the Batch 1 DNA extractions done chronologically. Samples that were 

too high in DNA amount, are marked on the chart as 120 µg / ml. The Y-axis shows 

the amount of DNA measured by the Qubit and the X-axis shows the extraction order 

of the Batch 1 stool samples listed in Table 1. Repeated samples excluded. 
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The figures for Batch 1 show us that the experiments obey the standard variation as they 

should. The slight rise in Nanodrop values and the decrease in DNA amounts is not 

significant enough to suggest any worrying trends. If the trend lines would be steeper, 

you could say that the quality of the extracted samples are decreasing as the experi-

ments are executed. 

 

The second Batch was not as big as the first one. From the figures 17 and 18, it can be 

observed that the amount of DNA is greater in these samples. 

 

 

 

Figure 17. Nanodrop values of the Batch 2 DNA extractions done chronologically. Y-axis shows 

the amount of DNA measured by the nanodrop and the X-axis shows the extraction 

order of the stool samples listed in Table 1. Repeated samples excluded. 
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Figure 18. Qubit values of the Batch 2 DNA extractions done chronologically. Samples that were 

too high in DNA amount, were marked on the chart as 120 µg / ml. The Y-axis shows 

the amount of DNA measured with the Qubit and the X-axis shows the extraction order 

of the Batch 2 stool samples listed in Table 1. Repeated samples excluded. 

 

Similarly the extracted samples from Batch 2 show that the samples are standardly var-

iated and that the trend lines either rise or decrease slightly. From this we can conclude 

that the experiments were carried out in a similar manner and that the samples in Batch 

2 consisted of more DNA enriched samples than Batch 1. 
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Figure 19. Qubit values of the DNA extractions done chronologically. Samples that were too high 

in DNA amount, were marked on the chart as 120 µg / ml. The Y-axis shows the 

amount of DNA measured with the Qubit and the X-axis shows the extraction order of 

the stool samples listed in Table 1. Repeated samples excluded. 

 

If both of the batches were fitted into the same pictures, it would not be possible to ana-

lyse the laboratory work properly since the variances would not be accurate. Figure 19 

shows that randomising the samples prior to the tests is essential for analysing the work-

ing methods.  

 

7.2 DNA amount after PCR 
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Table 2. DNA amounts of PCR products of the PD stool samples in a chronological order. The 

table also shows in which method the washing steps were done during Bioruptor, end 

repair, adapter ligation and the PCR. The samples were processed from the largest 

amounts to the smallest amounts of starting DNA. High amounts of DNA are shown 

with green colours and low amounts are shown with red colours. 

 

Sample Index PCR Date 
DNA Concentration µg 

/ mL 
Washing Steps 

Done 

C_103 9.4.2015 4.95 Manually 

C_95 9.4.2015 3.90   

P_60 9.4.2015 4.99   

C_80 15.4.2015 9.99 Manually 

CS_65 15.4.2015 15.90   

C_49 15.4.2015 12.30   

P_68 15.4.2015 13.70   

CS_87 15.4.2015 11.40   

C_123 15.4.2015 9.67   

C_109_P 15.4.2015 10.50   

C_131_P 15.4.2015 8.30   

C_60_P 15.4.2015 7.55   

C_10_P 15.4.2015 8.17   

C_99 24.4.2015 4.84 Manually 

C_137 24.4.2015 7.10   

C_69 24.4.2015 10.60   

CS_73 24.4.2015 10.90   

C_75 24.4.2015 11.80   

CS_100 24.4.2015 13.60   

P_50 24.4.2015 11.40   

CS_68 24.4.2015 3.98   

CS_107 24.4.2015 3.30   

C_35 24.4.2015 4.17   

C_65 24.4.2015 3.94   

P_115 24.4.2015 4.83   

P_119 6.5.2015 3.37 Manually 

P_105 6.5.2015 5.92   

P_77 6.5.2015 7.06   

C_147 6.5.2015 6.47   

C_48 6.5.2015 3.87   

P_114 6.5.2015 4.11   

C_47 6.5.2015 3.71   

P_48 6.5.2015 6.45   

P_63 6.5.2015 4.01   

P_53 6.5.2015 3.91   

C_96 6.5.2015 5.17   

P_31 6.5.2015 5.16   

C_8 11.5.2015 1.87 Magnatrix 

P_61 11.5.2015 2.58   
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P_42 11.5.2015 1.97   

P_69 11.5.2015 3.49   

C_59 11.5.2015 3.14   

P_56 11.5.2015 3.12   

P_87 11.5.2015 2.33   

C_68 11.5.2015 2.06   

P_126 11.5.2015 3.18   

CS_41 11.5.2015 5.92   

C_118 11.5.2015 2.74   

C_146 11.5.2015 3.07   

P_120 18.5.2015 1.38 Magnatrix 

C_135 18.5.2015 2.57   

C_89 18.5.2015 1.14   

CS_103 18.5.2015 1.54   

C_105 18.5.2015 1.30   

P_79 18.5.2015 1.31   

P_47 18.5.2015 1.50   

C_15 18.5.2015 1.46   

C_33 18.5.2015 4.98   

C_107 18.5.2015 1.38   

P_103 18.5.2015 1.67   

P_88 21.5.2015 1.70 Magnatrix 

C_19 21.5.2015 1.74   

C_104 21.5.2015 2.28   

CS_66 21.5.2015 2.46   

P_74 21.5.2015 1.52   

P_116 21.5.2015 2.92   

C_125_II_P 21.5.2015 1.88   

C_115_P 21.5.2015 1.80   

P_21_P 21.5.2015 1.87   

C_106_P 21.5.2015 1.48   

P_110_P 21.5.2015 2.01   

C_93_P 21.5.2015 1.55   

CS_47 25.5.2015 1.63 Magnatrix 

P_58 25.5.2015 2.25   

C_116 25.5.2015 1.65   

C_102 25.5.2015 3.09   

C_74 25.5.2015 1.63   

P_71 25.5.2015 1.90   

P_100 25.5.2015 1.82   

C_86 25.5.2015 1.85   

C_90 25.5.2015 2.23   

P_62_P 25.5.2015 2.41   

C_8_P 25.5.2015 2.29   

C_56_P 25.5.2015 2.57   

C_23 27.5.2015 1.61 Magnatrix 

P_57 27.5.2015 3.21   

P_65 27.5.2015 2.25   

P_66 27.5.2015 1.95   
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P_94 27.5.2015 1.70   

P_99 27.5.2015 1.84   

CS_74 27.5.2015 2.40   

P_43 27.5.2015 1.48   

C_88 27.5.2015 2.06   

C_20 27.5.2015 2.33   

CS_116 27.5.2015 2.88   

C_51 27.5.2015 2.72   

C_148 1.6.2015 3.96 Magnatrix 

P_52 1.6.2015 1.13   

C_127 1.6.2015 1.65   

C_111 1.6.2015 1.14   

C_110 1.6.2015 1.52   

C_93 1.6.2015 2.44   

C_152 1.6.2015 1.31   

P_62 1.6.2015 1.47   

CS_31 1.6.2015 1.10   

C_82 1.6.2015 1.09   

C_152_II_P 3.6.2015 2.23 Magnatrix 

C_84_P 3.6.2015 2.15   

C_121_P 3.6.2015 2.30   

P_104_II_P 3.6.2015 2.16   

C_127_P 3.6.2015 2.30   

CS_62 3.6.2015 1.80   

P_118 3.6.2015 2.00   

P_85 3.6.2015 4.92   

C_10 3.6.2015 1.98   

C_131 3.6.2015 1.66   

C_87 3.6.2015 2.73   

C_84 3.6.2015 2.15   

P_8 11.6.2015 2.12 Magnatrix 

PS_15 11.6.2015 1.70   

CS_114 11.6.2015 1.78   

C_98 11.6.2015 5.94   

C_119 11.6.2015 3.83   

P_83 11.6.2015 8.41   

P_51 11.6.2015 2.51   

C_142 11.6.2015 1.40   

C_136 11.6.2015 2.38   

C_99_II_P 11.6.2015 2.67   

C_85 11.6.2015 2.23   

P_104 11.6.2015 1.90   

CS_119 15-16.6.2015 0.35 Magnatrix 

CS_71 15-16.6.2015 1.05   

P_16 15-16.6.2015 0.67   

C_30 15-16.6.2015 0.18   

P_107 15-16.6.2015 0.40   

P_59 15-16.6.2015 0.34   

C_140 17.6.2015 3.52 Manually 
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C_109_P 10.7.2015 3.26   

 

Most of the samples produced an sufficient amount of DNA during this step but some of 

them required additional PCR cycles. Although the order of execution was from the larg-

est to smallest amount of DNA, it seems that the samples which were processed with 

manual washing and size separation steps produced greater yields than the samples 

processed with a Magnatrix program.  

 

7.3 Fragment Analyzer 

 

The sample size was checked with Fragment Analyzer after every completed PCR pro-

gram. An ideal report has the fragment size centred near 400 base pairs. All of the Frag-

ment Analyzer results can be found in the appendix [Appendix 1, Fragment Analyzer 

figures]. An ideal report would look like the one depicted in Figure 20. 

 

 

 

Figure 20. Fragment Analyzer picture of the processed stool DNA sample C_87. The report 

shows the concentration of the sample and the size and amount of the DNA fragments. 
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Some of the samples ended up with a lower DNA concentration than others. These sam-

ples would have less DNA extracted during DNA extractions and would produce eventu-

ally less reads than others. Figure 21 shows one of these samples after the size sepa-

ration. 

 

 

 

Figure 21. Fragment Analyzer picture of the processed stool DNA sample C_30. The report 

shows the concentration of the sample and the size and amount of the DNA fragments. 

 

Most of the figures produced by Fragment Analyzer were good and within the expected 

fragment size. Some of the samples had a concentration that was below the average, 

but even they were all successfully sequenced with the Illumina sequencing machine. 

The difficult samples were P_16, C_30, P_59, P_107 and CS_119. 
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7.4 Sequencing quality 

 

Sequencing results can be evaluated by using a sequencing quality control software 

such as FastQC. By looking at the pictures and comparing them with the ideal control 

pictures, we can determine how successful the sequencing was. The per base sequence 

quality pictures and per tile sequence quality pictures were chosen to represent the Illu-

mina results. 

 

 

 

Figure 22.  Ideal Fast QC report for a sample sequenced on the Illumina nextseq 500 platform. 

Per tile sequence quality shows the results in tile colours from blue to red. The redder 

the tile is, the worse the quality of that base in comparison with the other tiles. Per 

base sequence quality shows the overview of the range of quality in the same posi-

tions as the per tile sequence quality picture. Information on Fast QC reports can be 

found in [45]. 
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Figure 23. Illumina Fast QC per tile sequence quality and per base sequence quality report for 

the forward reads of the pooled stool DNA samples. 
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Figure 24. Illumina fast QC per tile sequence quality and per base sequence quality report for the 

reverse reads of the pooled stool DNA sample. 

 

From these reports we can conclude that the quality of the reads was not as good as it 

should have been. Especially the tile qualities are far from optimal. 
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Figure 25. All of the reads produced by the DNA library. One dot represents the amount of reads 

produced by one sample. The closer to the trend line the dot is, the more evenly it has 

produced reads in comparison with the other samples. Undetermined fragments were 

excluded from the figure. They produced 31 457 834 reads which is 4 % from the total. 

 

By looking at Figure 25, we can see that some of the samples produced more reads than 

the others. This can be due to uneven amounts of DNA in the pool sample or due to 

reads with poor quality. On the basis of the Fast QC reports for the forward and reverse 

reads, the latter would seem more probable. This could have been caused by inserting 

too much of the sample inside the machine. 
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8 Conclusions 

 

The goal of the thesis was to create a DNA metagenomics library for the 138 PD stool 

samples and to provide a view on how it could be done. Although DNA could not be 

extracted from one of the samples, the majority of the samples were successfully se-

quenced with the Illumina platform. Since the amount of DNA did not correlate with the 

time parameter in either of the batches, the extractions can be reviewed as trustworthy. 

The quality of the sequence reads was not optimal. Both these measurements, however, 

show that the creation of the DNA library was a success, although the sequencing could 

have succeeded better. 

 

The practical side of the project was a success and there was plenty of useful information 

in other articles to help in understanding the library preparation process better. Some 

improvements could be made to the DNA plus kit protocol. At the moment, only the first 

thermomixer step is done with safe lock tubes. The second thermomixing causes the 

tubes to pop open randomly. This could lead to cross contamination. After the thesis, 

Harri Kangas had noticed that the product size from the Bioruptor step seemed to be 

smaller than it should have. This led to the small fragmented DNA to be washed away in 

the first washing step, reducing the DNA concentration. This observation was made 

when the DNA amount was reduced too much during the whole process. The program-

ming for the Bioruptor is being optimized for the next experiments. 
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Fragment Analyzer figures  

 

 

 

Figure 26. Fragment Analyzer figures for 35 samples compressed into one picture April 27th. The 

pictures show the amounts and overall distributions of different sized DNA fragments 

within the samples. 400 bp was the wanted size.  
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Figure 27. Fragment Analyzer figures for 35 samples compressed into one picture May 8th - May 

28th. The pictures show the amounts and overall distributions of different sized DNA 

fragments within the samples. 400 bp was the wanted size. 
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Figure 28. Fragment Analyzer figures for 35 samples compressed into one picture May 28th - 

June 5th. The pictures show the amounts and overall distributions of different sized 

DNA fragments within the samples. 400 bp was the wanted size. 
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Figure 29. Fragment Analyzer figures for 33 samples compressed into one picture June 23rd. The 

pictures show the amounts and overall distributions of different sized DNA fragments 

within the samples. 400 bp was the wanted size 
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Figure 30. Fragment Analyzer figures for the controls April 27th - June 23rd. 
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Appendix 2 

The size separation step protocol 

 

 

 

Protocol 1. Size separation and washing protocol for the PD stool sample DNA. 
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Appendix 3 

Clean up protocol. 

 

 

 

Protocol 2. Washing step protocol for the PD stool sample DNA. 
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Appendix 4 

Norppa PCR protocol for NGS library 

 

 

 

Protocol 3. Norppa PCR protocol for the PD stool sample DNA. 
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Appendix 5 

PSP spin stool DNA plus kit protocol 

 

 

 

Protocol 4. PSP spin stool DNA plus kit protocol scheme used for the extractions of the PD stool 

samples 


