

Govinda Shrestha

Web Application in Java for Tour Enrolment

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

2nd February 2016

 Abstract

Author(s)
Title

Number of Pages
Date

Govinda Shrestha
Web Application in Java for Tour Enrolment

34 pages +2 appendices
2nd February 2016

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s)

Olli Hämäläinen , Senior Lecturer

The objective of the project was to develop a web application based on the Java platform
for students to send an enrolment request for the course called Study tour to St.
Petersburg and for teachers to process the request on similar web interfaces.

The course Study Tour to St Petersburg is a course offered by Helsinki Metropolia
University of Applied Sciences in which student can get an opportunity to travel to the city
of St. Petersburg in Russia. At present, a student willing to be a participant in the course
needs to send an email to the teacher and the teacher confirms the request. The goal of
the project was to make this request and response for an enrolment easier and organised
by using a web application where the students can submit their request with their details in
one side, while on the other the teacher can have easier view of the requests of the
students and process them.

The development of the project was carried out in various steps. The steps included
analysing the requirements followed by application design based on the requirements and
then the development of the system afterwards. Finally, the project was made ready with
the targeted goals.

The result of the project was the website which meets the targeted objectives of this
project. The website is fully functional and currently being hosted by a cloud service
provider called OpenShift Red Hat.

Keywords Java EE, JavaServer Faces, JasperReport, iReport, JDBC,
Servlet

Contents

1 Introduction 1

2 Theoretical Background 2

2.1 Java Enterprise Edition 2

2.1.1 J2EE Architecture 3

2.1.2 J2EE Containers 4

2.2 Java Server Faces 6

2.2.1 JavaServer Faces Application 7

2.2.2 Facelets 8

2.2.3 ManagedBeans 9

2.3 Jaspersoft Studio (Report Designer) 12

2.3.1 JasperReports 12

2.3.2 iReport Designer 13

2.3.3 Report Life Cycle 15

3 Development and Deployment 17

3.1 Requirement Analysis 17

3.2 Application Design 18

3.3 Development Tools and System Development 19

3.3.1 Tools and Development Environment Set-up 19

3.3.2 Web Filter 22

3.3.3 Database Tables and the View Controller 24

3.4 Deployment 26

4 Results 29

5 Evaluation 32

5.1 Benefits 32

5.2 Challenges 32

6 Conclusion 34

References 35

Appendices

Appendix 1. Implementation of Servlet Filter

Appendix 2. Maven Project Object Model

List of Abbreviations

API Application Programming Interface

CSV Comma Separated Values

EJB Enterprise Java Bean

EL Expression Language

GUI Graphical User Interface

HTML Hypertext Mark-up Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JDBC Java Database Connectivity

JDK Java Development Kit

JNDI Java Naming and Directory Interface

J2EE Java Enterprise Edition

JRE Java Runtime Environment

JRXML JasperReport file format in XML

JSF Java Server Faces

JSP Java Server Pages

JSTL JSP Standard Tag Library

JVM Java Virtual Machine

LGPL Lesser General Public License

POJO Plain Old Java Object

POM Project Object Model

SQL Sequential Query Language

SSH Secure Shell

URL Uniform Resource Locator

XHTML Extensible Hypertext Mark-up Language

XML Extensible Mark-up Language

1

1 Introduction

There are many different ways of learning. Among the different ways of learning,

international study, tour is an opportunity for students and learners to travel different

countries and experience the cultures, peoples and their lifestyles. The students get

chance to see and experience what they have learned from books about the people

and culture. For these reasons, Helsinki Metropolia University of Applied Sciences

offers a course named “Study Tour to St. Petersburg” in which students get opportunity

to travel St. Petersburg in Russia.

For a student willing to be a participant of the course, s/he has to send an email

request to the teacher with personal details like name, nationality, passport number,

student number, email address, date of birth and other contact details. The teacher on

the other hand, has to go through all the emails and process the enrolment requests,

which is somehow difficult work since there is no organised view of all the students

applying for the course. Therefore, for this reason, some system was required, which

would make the work of sending and receiving the enrolment application easier and

more organised.

The main goal of this project was to develop a simple web application that would help

teachers for the process of enrolling the students to the course. In addition, this project

would help students to send their enrolment requests easily with the help of a form

available in the application. Additionally, this project would help teachers to keep the

records of the students in managed way.

2

2 Theoretical Background

The application has mainly two parts: JSF, at the front-end and the back-end handled

by J2EE. A web application is a dynamic extension of the web server. Web applications

are of the following types:

1. Presentation-oriented: A presentation-oriented web application generates web

pages with various mark-up languages such as HTML, XHTML, and XML and

dynamic content in response to requests.

2. Service-oriented: A service-oriented web application implements the endpoint

of the web service. Presentation-oriented applications are often the clients of

service-oriented web applications.

The web application developed during this project is a presentation-oriented web

application as well as service-oriented. The application has various web pages created

using HTML and XHTML on the one hand while on the other the application has the

implementation of web services.

2.1 Java Enterprise Edition

J2EE is an acronym for Java 2 Enterprise Edition, which is a collection of APIs that can

be used to build large-scaled, distributed, component-based, multi-tier applications.

The J2EE platform is a set of standard specifications that describe application

components, APIs, and the runtime containers and services of an application server

[9].

J2EE comprises of many APIs some of which are used by the J2EE environment while

some provide application-specific services. A list of the most used technologies in

J2EE application is as follows:

 Java Servlet

 Java Server Pages (JSPs)

 Enterprise Java Beans(EJBs)

 Java Naming and Directory Interface(JNDI)

 Java Database Connectivity (JDBC)

 Java Mail

3

 Java Transaction Service

 Java Transaction API

 J2EE Connector Architecture

Depending upon the requirements, developers may use different technologies during

application development. For the purpose of our application, several technologies listed

above have been used, including Java Servlet, JDBC, JSP and EJBs.

2.1.1 J2EE Architecture

The J2EE uses a multi-tiered application architecture and divides the application into

multiple logical parts which are often on different servers. The J2EE applications are

made up of different components like JSP, Java Servlet, and EJB modules [10]. The

J2EE specification defines the following J2EE components:

Client Components

Client components or the client-tier consist of application clients that access the Java

EE server and are usually located on different machines from the server [11].They can

be both web-based or non-web-based. The clients can be a web-browser, a standalone

application, or other services.

Web Components

Web components are responsible for handling the communication between the clients

and the business tier. In addition, they collect user input from the client interface and

return the results provided by the business-tier. They maintain the state and generate

various dynamic contents as per client requests, and hold some data temporarily in

JavaBeans. Servlet, JSF, JSP, JSTL, Java Beans Components are used in the web tier

in Java EE applications. [12]

Business Components

Business components being part of the business tier provide the business logic for the

application. A business logic is the functionality specific to the business domain, like

the financial industry, or an e-commerce site. The business logics are contained in

4

different enterprise beans. An enterprise bean receives data from a client, processes it,

retrieves data from the database, processes it and sends the results to the client. JAX-

RS, JAX-WS, Java Persistence API entities, and Enterprise JavaBeans are the

technologies used in the Business Tier. [13]

Figure 1 J2EE Multi-Tier Application Models. Reprinted from J2EE Tutorials [14]

Figure 1 is an example of a multi-tier J2EE application model. The figure consists of

four different layers, namely client-tier, web-tier, business-tier and Enterprise

Information System-tier. The client-tier runs on the client machine whereas the web-tier

and the business-tier run on the Java EE server. Similarly, EIS-tier runs on the EIS

server.

2.1.2 J2EE Containers

A container is a runtime environment that provides support for the J2EE components. A

container provides methods and protocols for J2EE application components to interact

with other components along with services such as security and transaction

management. There are three server-side and two client-side containers. These are

listed below:

5

 The server itself is a container providing a J2EE runtime environment.

 The Web container that hosts web applications and extends the web server

functionality by providing developers with the environment to run servlets and

JSPs

 The EJB Container that provides local and remote access to enterprise beans.

It is also responsible for creating enterprise beans and binding to the naming

service, ensuring the authorized access to the bean‟s methods and managing

the EJB components.

 The application container on the client side is responsible for providing

runtime environment for GUIs, consoles and batch-type programs. It is a

combination of Java classes, libraries and other files. It is used to distribute

along with Java client programs that execute on their own JVM [14].

 The applet container, a client side container, specifically is a browser with

Java Plug-in. An applet can be embedded in a HTML page by using the

tags<APPLET>and</APPLET>.They are used to indicate the browser that it

should load the Java applet [14].

Figure 2 J2EE Server and Containers. Reprinted from pawlan.com [16]

Figure 2 shows the types of containers in the J2EE application. The EJB and the EJB

container run on the J2EE server .The EJB Container manages the execution of the

enterprise beans for the J2EE application. Similarly, the web container is responsible

6

for the execution of the JSP pages and servlet components whereas the application

client container manages the execution of all application client components for the

J2EE application. The application clients and the containers run the client machine.

The applet container resides in the client machine and is the web browser and Java

Plug-in combined. [16]

2.2 Java Server Faces

JavaServer Faces is a web-based server-side application framework intended to

simplify the development integration of web-based user interfaces. This MVC-based

web framework defines a set of standard UI components and provides the Application

Programming Interface (API) for developing components. [5]

Benefits of JSF technology include the following:

 One of the most important advantages of JSF is that it offers clean separation

of logic and presentation for web applications and hence allows the developers

to focus on a single piece during the development process and provides an

easy way to link them programmatically.

 JSF technology APIs are layered directly on top of the Servlet API which

enables the developers to create their own custom components directly from

the component classes and generating output for various client devices.[5]

Figure 3 Layering of Java Web Application Technologies [5].

 With the release of JSF 2.0, third-party libraries like PrimeFace and OpenFaces

supporting JSF 2.0 have been released; they enable developers to have more

flexible tools in web development.

7

 JSF provides a rich architecture for managing and processing component data,

validating user inputs, and handling events.

 JSF allows custom UI components to be easily built and re-used [6].

JSF contains all the necessary code for event handling and component organisation.

JSF is the view layer in the Java EE standard and is included in every Java EE

application server. Unlike most web frameworks, JSF is one of the most popular

frameworks for Java web applications with multiple implementations. [3]

2.2.1 JavaServer Faces Application

A JSF application is similar to other Java based web applications. A JSF application

basically consists of Java beans. A Java bean is a serializable Java class having no

argument constructor with getter and setter methods for its properties and coded

according to the JavaBeans API specifications. Moreover, a JSF application consists of

the following elements:

 a set of backing beans also called managed beans, acting as controllers which

are basically Java classes containing application specific functions

 a set of tag libraries which may be customised for representing event handlers

 UI components

 validators, event handlers, navigation handlers

 a web deployment descriptor (web.xml file)

 a set of custom tags for custom objects representation

 optionally, one or more application configuration resource files, like faces-

config.xml file, which can be used to define page navigation rules and configure

beans and other custom components.

The development of web applications using the JavaServer Faces technology is easy

since the technology is easy and user-friendly. The process of the development is very

straight forward and involves the following tasks:

 Developing the managed beans

 Creating the web interfaces using the component tags and tag libraries

 Mapping the javax.faces.webapp.FacesServlet instance.

8

2.2.2 Facelets

The term Facelets refers to a powerful lightweight page declaration language for

building JSF views. The facelets also uses simple HTML and XHTML style templates to

create a JSF view. It supports Facelets tag libraries along with JSF and JSTL tag

libraries, also the Expression Language (EL). The tag library refers to the set of tags

used for defining the UI Component which get rendered into corresponding html output.

One of the most important feature of Facelets is it allows the reuse of components. It

uses JSF custom components natively and hence it becomes easier to combine JSF

and Facelets. In other words, Facelets is declaration of JSF components in a Facelets

tag library. [26]

As JSF has great support to various tag libraries to be implemented in a web page,

Facelets uses XML namespace declarations to support JSF. Table 1 shows different

tag libraries supported by the Facelets: [26]

Table 1 Tag Libraries Supported by Facelets. Reprinted from The Java EE 6 Tutorial

(2013) [26]

Tag
Library

URI Prefix Example Contents

JavaServer
Faces
Facelets

Tag Library

http://java.sun.com/jsf/

facelets

ui: ui:component

ui:insert

Tags for templating

JavaServer

Faces
HTML Tag
Library

http://java.sun.com/jsf/

html

h: h:head

h:body

h:outputText

h:inputText

JavaServer Faces

component tags for
all UI Component
objects

JavaServer
Faces Core
Tag Library

http://java.sun.com/jsf/

core

f: f:actionListe

ner

f:attribute

Tags for JavaServer
Faces custom actions
that are independent

of any particular
render kit

JSTL Core
Tag Library

http://java.sun.com/jsp/

jstl/core

c: c:forEach

c:catch

JSTL 1.2 Core Tags

JSTL
Functions
Tag Library

http://java.sun.com/jsp/

jstl/functions

fn: fn:toUpperCas

e

fn:toLowerCas

e

JSTL 1.2 Functions
Tags

9

Facelets makes the web application development easier and faster. Some of other

features of Facelets are listed below:

 uses HTML style templates and XHTML for web pages

 supports Facelets tag libraries along with JSTL

 supports EL

2.2.3 ManagedBeans

JavaServer Faces managed beans are Java Bean classes that store the application

data and are managed by the container. They are registered with the JSF runtime via

an XML file and are initialized during runtime when they are needed by the application.

[4]

A JSF ManagedBean, generally annoted as @ManagedBean, is a regular Java Bean

Class associated with components and is used to manage the components used in a

particular page. It contains the getter and setter methods, business logic of the

application or even a bean containing the HTML form values, a backing bean. Hence, a

managed bean works as a model for the UI component and is easily accessed from a

JSF page. A managed bean can have several functions like validating a component‟s

data, handling an event called by a component and navigating between the pages and.

[8]

JavaServer Faces support bean annotations for configuring JSF applications. The

scope annotations set the scope where the managed bean will be used. There are

various scopes to which a bean can be configured. The managed bean types and their

scopes are listed in table below:

10

Table 2 Managed Bean annotation and Scope description [9]

Managed Bean with

annotation

Scope description

@RequestScoped

A bean without a specified scope is by default request scope. A
bean with a request scope is created by a HTTP request and
destroyed after the HTTP response.

@NoneScoped

 A bean annoted with none scope is created by an EL
evaluation and destroyed immediately after evaluation.

@ViewScoped

A bean annoted with a view scope lasts until the user interacts
with the same JSF view in the browser. It is created upon a
HTTP request and destroyed whenever user moves to a
different view.

@SessionScoped

A session scoped bean is created with the first HTTP request
involving the bean and is destroyed after end of session.

@ApplicationScoped

An application scoped bean is created with the first HTTP
request involving the bean and is destroyed after the web
application shuts down.

@CustomScoped

A custom scoped bean lives as long as the bean‟s entry in the
custom Map created for this scope.

JSF 2.0 has annotation to register the managed bean as @ManagedBean

(name=”beanName”) or simply @ManagedBean. There are two ways of configuring a

managed bean, listed below:

1. Configuring Managed Beans with scope annotation: The managed beans can

be configured with the help of annotation. A managed bean can be annoted by

writing @ManagedBean in the bean class just before the class definitions as

shown in the listing below. The managed bean can be given a name which will

afterwards be used to access the bean and its properties from the JSF pages.

Also, the session of the bean can be defined in the class file as shown in the

listing below:

11

package example;

import javax.faces.bean.ManagedBean;

import javax.faces.bean.SessionScoped;

import java.io.Serializable;

@ManagedBean(name=”helloBean”)

@SessionScoped

public class HelloBean implements Serializable {

 private static final long serialVersionUID = 1L;

 private String name;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name; }

public HelloBean(){

}

}

Listing 1. Configuring managed bean and session in class file

2. Configuring Managed Beans with faces-config.xml file:The managed beans can

be configured in the faces-config.xml file as well as the session can be

defined in the same file. The application scans the configuration file at the start-

up for managed beans and their scopes. The listing 2 shows the configuration

of managed bean in configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<faces-config

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-

facesconfig_2_0.xsd"

 version="2.0">

<managed-bean>

 <managed-bean-name>helloBean</managed-bean-name>

12

 <managed-bean-class>com.package.HelloBean</managed-

bean-class>

 <managed-bean-scope>session</managed-bean-scope>

</managed-bean>

</faces-config>

Listing 2. Configuring managed bean and session in config.xml file

Listing 2 is an example of config.xml file. The tag<managed-bean-

name></managed-bean-name> includes the name of the managed bean

being used in the application.

2.3 Jaspersoft Studio (Report Designer)

Jaspersoft Studio (JSS) is an Eclipse-based stand-alone report designer application for

JasperReports and JasperReports Sever which can be used to create and design

sophisticated layouts containing charts, images, sub reports, crosstabs, and other

features. This application can access data and database using JDBC, TableModels,

JavaBeans, XML, Hibernate, and CSV along with custom sources and is able to print

the report in a variety of formats like PDF, RTF, CSV, XLS, DOCX, HTML, XHTML and

OpenOffice. JSS has developed APIs like iReports and JasperReports for designing

and publishing such reports.

2.3.1 JasperReports

JaspertReports, an API developed by JSS, is the world‟s most popular open-source

reporting engine entirely based on Java. It can use data from any kind of source and

process to produce pixel perfect documents that can easily be viewed and printed or

exported to various formats like HTML, PDF, Excel and Word. JasperReports is

distributed under two licenses: Apache-style and the LGPL license.

JasperReports Library contains all the required library files for the JasperReports and

offers an interface to the reporting engine. The library requires the Java JDK or 1.6 or

higher and also JDBC 2.1 driver. The JasperReports is basically a jar file which can

be installed by adding the jar file to the Java classpath along with other required jar

files supporting the library. [17]

13

Features of JasperReports are listed below:

 Pixel-perfect page-oriented output for print or web

 Textual or graphical presentation of data

 Possibility of generating sub reports

 Possibility of exporting reports to variety of formats like PDF,HTML,DOCX,XLS

etc

 Dashboards, tables, crosstabs, charts, gauges, and widgets

 Interactive table elements and sub-reports for interactive and complex layouts

 Possibility of any data source connectivity like JDBC, XML file, JavaBeans,

Hibernate connection, EJBQL connection

 Possibility of parsing parameters from the application to the JasperReports[18].

2.3.2 iReport Designer

iReport is a Java-based, open-source report designing application using JasperReports

Library which allows visual designing of reports. With iReport and its simple yet rich

GUI, graphical reports can be designed easily without having to know about the

JasperReports library.

iReport provides a wide range of connectivity to different data sources: relational

database being the most common one. It provides the JDBC driver for the SQL-

compliant database systems like MySQL, PostgreSQL, HSQL, Oracle 10g/XE,

Microsoft SQL, and JavaDB.

Features of iReport are listed below:

 Support for wide range of JasperReports tags

 Support for visual designer with tools like rectangles, ellipses, text fields, charts

etc

 Support for Unicode and non-Latin language

 Built-in editor with syntax highlighting for write expression

 Support for all JDBC complaint databases and JRDataSource

 Support for sub reports and templates [19].

14

User Interface

iReport Designer has a well-equipped powerful design environment for designing

reports. Reports can be designed from scratch or also from various templates. The

user interface environment is very simple and user friendly and has different sections

for easy work flow. The figure 4 shows the user interface of iReport Designer with

different sections. The UI has Report Designer section where a report can be designed

visually by dragging and positioning the report elements. The Report Inspector contains

the structure of the report while the Element Palette contains drag gable elements for

easy report designing. Likewise, the Property Sheet allows to set the properties of the

currently selected components in the report like field, element, and band. [20]

Figure 4 UI of iReport Designer with different sections.

The Figure 4 shows the main UI of the iReport Designer. The UI has three different

tabs: Design, Source, and Preview. The Design tab is the tab that is active when a

report is opened to be designed while the Source tab contains the JRXML source code

15

of the report being created or opened. Likewise, the Preview tab lets the user to

preview the actual output of the design with the data. The UI window has different

sections such as the Report Inspector for viewing the outline of the report, the Services

palette for establishing new database connections for the data source to be used in the

report, the Report Designer window to design the report, the Problems and Output list

section for providing the views of problems incurred during compiling the report, and

the Elements palette for providing the information about the elements being used.

2.3.3 Report Life Cycle

iReport makes the work of designing and publishing a report very easy and

understandable. The report generation takes place in various steps. Firstly, the report

is designed in iReport using different elements, like draggable elements, graphics as

per requirement which will create a JRXML file, an XML document containing the

definition of the report layout. In short, to design a report is creating a JRXML file. In

iReport Designer, the designing of a report is completely visual.

Next, the JRXML file should be compiled into a binary object called Jasper file

(*.jasper).The report execution is done by passing a Jasper file and a data source to

JasperReports. The data source can be a SQL query, XML file, a file, CSV file, an HQL

query, collection of JavaBeans, etc. or a custom data source.

The configuration of a data source and filling the data in the report can be easily done

in iReport. After the data source has been configured, the final report can be generated

in the desired format like PDF, CSV, DOCX, XLX, etc.

16

Figure 5 Report Life Cycle. Reprinted from TIBCO Software, Inc. [20]

The step-wise process of a report life cycle is shown in Figure 5. First, the report is

designed using various tools as per requirement and saved with file extension .jrxml.

Once the design is ready, it is then compiled by the jasper compiler and produces a

compiled file with an extension .jasper. During execution phase, the data required are

fed into the jasper file by the JasperFillManager from the specified data source. Once

the JasperFillManager feeds the jasper file with the data, a printable format of the

report becomes ready. The report can be exported to PDF, DOCX, XLS, RTF or CSV

as per the user requirement.

17

3 Development and Deployment

3.1 Requirement Analysis

As mentioned in section 1, the main purpose of the project was to develop a simple

and systematic web application for students to enrol for the course by filling in an

application form online rather than sending an email request to the teacher. The

request sent by the student then can be processed by the teacher afterwards. The

student data is collected by the web-based form filled up by the student at the time of

the enrolment application which can later be used by the teacher for visa procedures.

Hence, analysing the requirements, the basic requirements can be listed as:

 A web-based interface where a student can request for an enrolment request

with a form containing their details

 A web interface where the teacher can view the requests of the students with

their detailed information and respond afterwards

 A web interface where a teacher can add and edit student information

 A web interface to generate a report about the students who have been

enrolled along with their other details

 To provide views of a managed dimensional data.

Analysing the requirements, the application required two basic interfaces: first, a client-

side interface for students where they can fill in a form and submit the request for

enrolment and secondly an admin side interface where a teacher can view the details

of the requests and, add and edit the information about the student and other data

regarding the visa procedures. The admin side has to be secured with a login form.

The other requirement of generating the report about the student can be done by

creating a template which will afterwards dynamically create the report of the student.

The template can be created by using the iReport Designer. The designer will create

the report template in .jrxml format which after compiling will be in .jasper format so

that the student data during the runtime can be easily used to generate the report in the

required format.

The web application developed for this project cannot only be used to enrol for this

course but can also be used to keep the records of students in a systematic way. On

18

the other hand, the application also simplifies the job of a teacher to keep track of

students who have requested for enrolment and the process of visa application.

3.2 Application Design

After analysing the requirements of the application, the following application

components needed to be designed:

 MVC module with different web interfaces based on the requirements

 HTTP form for authentication of admin login

 Controller classes for database handling, report generating and other utility

classes.

Figure 6 Application Architecture

Based on the required components and features, the overall application architecture

was designed as shown in Figure 6. The architecture has a web browser at the client

side which is used by both the student and the teachers for submitting and processing

19

the request of the enrolment. The users in the client side send their requests to the

application via an HTTP request. The HTTP request is handled by the JSF Servlet. The

Servlet then routes the request to the requested pages which are managed by the

managed beans. Finally, the response is sent to the client as an HTTP response. All

the servlets, managed beans and the pages reside in the application server which

provides the runtime environment for the application.

3.3 Development Tools and System Development

After the application requirements had been analysed and the overall design was done

the next step in the project development was the development environment set up.

This was done in two phases: At first, development and deployment was done on a

local machine and secondly, the same project was deployed in a public cloud service.

3.3.1 Tools and Development Environment Set-up

For the project environment set up, different tools were used and programs had to be

installed. The following programs were installed in order to carry out the development

of the application on a local machine:

 Java Development Kit (JDK)

 NetBeans 7.3.1IDE for Java EE Developers

 GlassFish Server

 JSF Framework

 JasperReports/ iReport Designer

 Derby Database.

After the development environment had been set up with installation of the required

programs, a new web project for the application was created in NetBeans IDE as

shown in the figure 7 and 8:

20

Figure 7 Creating a new JSF Application in NetBeans

Figure 8 Configuring the Sever and Settings of the new project.

The web project was built under the JSF Framework and the Glass Fish Server was

used. Next, web pages were created with component tags. The application has two

targeted user groups: students and teachers, so different web interfaces were created

for both user groups having different features.

21

The web interface for students was kept inside „/www’ folder so that the web page is

easily accessible to all students. The interfaces for the admin/teachers were kept inside

„/securedPages‟ folder for blocking unauthorized access.

Figure 9Folder structure of the application

After the project had been developed and deployed on the local machine, it was

deployed in a cloud service provided by OpenShift Red Hat Cloud. For the purpose of

cloud deployment different tools and environment had to be used. Eclipse for Java

Enterprise Edition was used as IDE whereas MySQL was used as the database.

22

Similarly, Tomcat 7 was used as the application container. The development of the

project was done in the cloud by using an open-source plugin for Eclipse IDE called

OpenShift Eclipse plugin which was downloaded from Eclipse Marketplace. This tool

uses JBoss tools to create a Maven application. Maven is a project management and

comprehension tool. It describes how software is built and the dependencies of the

project. The Maven application generates a pom.xml which contains the Project

Object Model (POM) for the project. This file contains all the information about the

project and a list of all the external dependencies the project needs. Maven

dynamically downloads Java libraries from different repositories. The pom.xml of the

project is listed in Appendix 2.

3.3.2 Web Filter

Since access to web interfaces for both the student and teacher can be done from a

web browser, there had to be some mechanism in order to control unauthorized access

to the admin web interfaces. Hence, in order to access the secured pages a Servlet

Filter was used. The servlet filters are pluggable Java components that can be used to

intercept and process requests before they are sent to servlets, and responses after

the servlet code is finished and before the container sends the responses back to the

clients[22].The Servlet Filter can be created by implementing

javax.servlet.Filter interface. The filters can perform the following functions:

 Authentication : Blocking requests based on the user identity

 Logging and auditing : Tracking users of a web application

 Image conversation: Scaling maps

 Localization: Targeting the request and response to a particular locale.[21]

Implementation of a Filter

Filter API consists of three different interfaces: Filter, FilterChain and

FilterConfig. The javax.servlet.Filter is the interface that was used to

implement the filter. It has three methods:

 void init(FilterConfig filterConfig):Called by the web container to

indicate to a filter that is being placed into service.

 void doFilter(ServletRequestrequest,ServletResponse

respone,FilterChain chain):Called by the container each time a

23

request/response pair is passed through the chain due to a client request for a

resource at the end of the chain.

 void destroy():Called by the web container to indicate to a filter that is

being taken out of service.

When the filter is created, the init() method is called by the container in which

parameters are passed through the FilterConfig interface. The container calls

doFilter() method for the service requests and the destroy() method is used to

end the filter lifecycle.[10]

A Servlet Filter with annotation was used by implementing

javax.servlet.annotation.WebFilter. By the use of this annotation, init

parameters, filter name and description, servlets, url patterns and dispatcher types to

apply the filter can be defined. Any changes to the filter configuration can be done by

using the web.xml file.

Listing 3 Implementation of servlet filter in web.xml file.

Listing 3 shows the actual implementation of servlet filter configuration in the web.xml

file. The filter uses the controller.UserFilter to configure the web filter. The filter

mapping restricts the filter to URLs that start with /securedPages/.Alternatively, it

could have been done by the use of annotation in the filter class.

24

@WebFilter(filterName = "UserFilter1z", urlPatterns =

{"/faces/securedPages/*"})

public class UserFilter implements Filter {

 private static final boolean debug = true;

 private FilterConfig filterConfig = null;

 public UserFilter() {

 }

 private void doBeforeProcessing(ServletRequest request,

ServletResponse response)

 throws IOException, ServletException {

 }

Listing 4Implementing filter in filter class

The listing 4 shows the implementation of the filter by the use of annotation in the filter

class. The filter name specifies the name of the filter to be implemented and the

urlPatterns refers to the urls requested by the client to be filtered for. Furthermore,

a detailed view of the filter can be found in Appendix 1.

3.3.3 Database Tables and the View Controller

A database named tourManager was created with a number of tables for students and

the admin, however all being handled by the administrator. The database was created

using the Derby Database system provided by the Net Beans during the time of

development in the local machine whereas MySQL database was used during

development in the cloud. The Derby consists of a database engine and a JDBC driver.

Applications use JDBC to interact with the database. The Derby driver class name is

“org.apache.derby.jdbc.ClientDriver” and the driver class name for MySQL

is “com.mysql.jdbc.Driver”. In a Java application, initially the driver with a static

Class.forName method is loaded [7]. The following tables were created under the

database:

 Participant : holds the basic information about the students

 Admin : holds the admin username and password which is in due course of

time used for authenticating the admin user login

 ContactDetails : contains the contact details of the student.

25

 StudyPrograms: contains the study programs a student is admitted to.

 Visa: holds the information about visa fee for different nations.

 Room: holds the information about the rooms like type of room and its virtual id.

 Course: holds a list of the names of the courses.

 Country: holds a list of the names of the countries.

The basic Entity Relationship Diagram (ERD) for the system is shown below in Figure

10 in a simple form. The tables-Participant, Course and Admin are the basic entities of

the system whose consecutive attributes have been listed below along with other

functional entities of the system. The figure 10 also shows the relationship between

these entities.

Figure 10 Basic ER-diagram of the system

The JSF views are controlled by backing beans, each of which is a JSF managed bean

that is associated with the UI components used on a particular page. The backing bean

supports the logic with the particular JSF view. The JSF views were made with specific

26

functionalities backed up by specific backing beans. The JSF views were created to

perform following tasks:

 User Authentication for Admin users

 A web form for students to send enrolment requests

 Enrolling students directly by teacher for admin

 Updating student records

 Viewing records of students

 Creating reports of students.

In addition, the database-related activities are controlled by the bean classes specific to

the database controller. The beans were developed for the following database

activities:

 Add, edit and update student information

 Add records of student nationalities for visa processing

 Add, edit and update information about visa.

3.4 Deployment

The deployment of the project was done in two phases. At first it was developed and

deployed on the local machine and then it was hosted using some public cloud so that

it can be viewed by everyone.

Deployment in localhost

The application was developed using the NetBeans7.3.1 and Glass Fish Server. It was

deployed using the Glass Fish Server 4.0.For the deployment in Glass Fish Server,

however needs some basic requirement for deployment. In the local server, the

application is available at http://localhost:8080/WebApplication1/faces/ in

local server. Depending upon the operating system being deployed the hardware and

software requirement for the server differs. Since the deployment was done in

Windows 7 Professional OS, the server had the minimum memory requirement of 1GB

but 2GB is recommended. Likewise, the minimum hard disk space requirement is

250MB; however 500MB is recommended. Similarly, the GlassFish Server requires

JDK version 7 or higher Java Virtual Machine version in both 32-and 64-bit of system.

In addition, the installation of the server automatically detects the free ports. However,

27

three main ports commonly used for the system are 4848 for Administrative Console of

Glassfish, 8080 for HTTP requests and 8081 for handling HTTPS.

Deployment in a public cloud

The deployment of the system over the web-server was done using OpenShift, which is

a Linux-based public cloud application development and hosting service easily

integrated with an Eclipse environment. This freeware is provided by OpenShift RedHat

Online. A new OpenShift application was created using JBoss Tools OpenShift support

which needed account credentials. Then, a new OpenShift domain was created, which

is a unique namespace, and all the user application exists under the namespace. The

domain name forms a part of the application url. Next, it rendered a view which

required to upload the SSH keys to OpenShift so that OpenShift can perform Git

operations and access the application gear remotely.

Next, the name of the key and the name of the private and public key file name was

provided which directed to application creation wizard. The wizard needed details

about the application. The application details include the name of the application, the

type of the application, gear profile, scalability of the application, and option to embed

cartridges like MySQL, PostgreSQL, MongoDB, phpMyAdmin and others. For the

purpose of deployment, phpMyAdmin and MySQL were embedded as cartridges. Then

server adapter settings configuration was done and the location to clone the git

repository was specified. With this the application was configured and the application

container was ready to deploy the application.

A private git repository was setup and cloned to the local system by OpenShift. After

this, the project can be accessed with its DNS from any part of the world. The original

project files were copied to this project location. The database credentials of the

application were changed with the OpenShift database credentials. Similarly, the

changes to the code were committed and pushed to the cloud. [24]

Openshift uses JBoss EWS 2.0 for Tomcat 7. The Java web applications created using

OpenShift uses Maven to download dependencies and build/deploy. The dependencies

of the application were added to the OpenShift Java web application by modifying the

pom.xml and performing git commit. The required dependency can be found in the

28

Maven Central Repository. The dependencies are included inside the

<dependencies></dependencies> of the pom.xml file. [25]

The project is created with the name studentmgmt and namespace

studentenrolment. The project can be accessed on the server at the url

http://studentmgmt-studentenrolment.rhcloud.com. Similarly, the

database can be found at http://studentmgmt-

studentenrolment.rhcloud.com/phpmyadmin which prompts for the database

credentials generated by OpenShift during the project setup. The same credentials

have been used to commit the database transactions of the project.

29

4 Results

The main objective of the project was to develop a web platform through which a

student can request a teacher for enrolment for a course. This objective was met.

Likewise, the other objective to enable the teacher who is also the admin of the system,

to view, process and update the request was also fulfilled. Similarly, the other task to

allow the admin to generate a report of the student data was also achieved.

Figure 11 UI showing enrolment form for students

Figure 11 is a snapshot of the web interface where a student can make a request for

enrolment for the course. The student has to fill in the form as in the illustration, and

then submit it. The student has to provide the personal details, contact details, student

ID and program, name of the program and other details.

30

After the form, shown in the Figure 11, is submitted by the student with the information

required, the information is inserted into the database. The teacher can view the

information of the student and then process the request after logging into the system.

There is a mandatory login whenever the pages on the admin side are requested.

Once the login is successful the admin has the access to those resources. The admin

has to enter the username and password at the time of login. The login credentials are

stored in the database. With a successful login, the teacher can have access to the

resources shown in Figure 12 and 13.

Figure 12 List of enrolment request

Figure 12 is a snapshot of the web interface where the admin can view the list of

enrolment requests from students in tabular form. Furthermore, the table has options

allowing the admin to update and delete the requests of the students. The Edit option

allows the admin to update the request whereas the link next to it Delete allows to

delete the request.

31

Figure 13 Link to generate report

Figure 13 is a snapshot of the interface which appears when the admin mouse pointer

hovers over the Generate Report menu. This menu allows the admin to generate

various reports of the students in a printable format. The reports are the templates

designed in iReport Designer, then compiled such that whenever the admin requests

for the report, the data of the students are compiled as per the design of the report. A

demo of the report containing the name of students participating in the tour is shown in

Figure 14. The report in the figure is generated in the .pdf format and it contains a list

of students data received from the database.

Figure 14 A demo report of student generated by the system

Similarly, Figure 15 is a snapshot of the interface which asks for the admin credentials

for authentication whenever the admin controlled resources are tried to be accessed.

The resources illustrated in Figure 12-14 can only be accessed if this authentication is

successful.

32

5 Evaluation

5.1 Benefits

Although the project was a simple web application based on Java platform, with the

completion of the project the targeted goals were achieved. As the project has the web

interface for submitting enrolment requests, one of the benefits of the project is that it

makes the process of enrolling easier for students by just filling in an enrolment form

and submitting it using the web interface. Likewise, it becomes easier for teachers to

view the list of enrolment requests and process the requests. Furthermore, the

teachers can easily edit and save the student data.

In addition, the project was an opportunity to become more familiar with my field of

study. The project offered me a chance to use the theoretical studies in the practical

implementation. With this practical implementation, I got chance to understand the

various aspects of Java programming, various development tools used in programming

and I had a close look at the real-world software development. Also, by carrying out the

project I learned trouble shooting faced during the development of the project. Overall,

the project helped me learn more about Java programming and move one step further

in the field of programming.

5.2 Challenges

Although the project was completed and the targeted goals were met, there were

several challenges and problems faced during the process of the project development.

The first challenge was to use the right framework for the project since there are

several frameworks in Java for web development. Since the project was simple and

small, the JSF framework was used. Similarly, during the time of development there

were several errors faced which took some time to be fixed and delayed the process of

development. The solutions for most of the problems were found on the web portals

and forums like stackoverflow.com, coderanch.com and also youtube.com helped to

solve several problems.

The theoretical studies did seem to be enough for the project hence it needed self-

studies in different new topics within Java programming. Since, I did not have

33

knowledge about report generating in Java programming, I had to go through a number

of tutorials about iReport Designer. There were many reporting tools available for the

purpose of report designing, which caused some confusion. However learning about

the iReport Designer tool seemed to be easy and useful for the project. I found that this

tool was easy to integrate with NetBeans IDE. However, going through the tutorials and

documentation and solving the errors occurring during the time of development took

more time than expected, which somehow delayed the process of development.

Furthermore, several problems were faced during the time of hosting the application in

the cloud. Though I had done web hosting for normal php/html based websites, I had

not hosted a Java web application. So, the deployment in cloud took more time than

expected as I had to go through documentations and tutorials of OpenShift. Moreover,

some further problems occurred during the time of hosting as the development

environment was different than that of localhost hosting in terms of IDE, servers and

database. So, I had to make many changes to the original project so that it could run

on a different server.

34

6 Conclusion

The main objectives of the project were to develop a web-based platform based on

Java, enabling students to send enrolment requests for a course to the teacher and

enabling the teacher to accept or reject the requests along with enabling the teacher to

update the student information. Lastly, to enable the teacher to generate a report of the

student information using the application was another requirement.

With the requirements focused, the project was carried out stepwise. First, the

requirements were analysed and a study was carried out for the methods and

technology to be used. Then the basic architecture was discussed several times and

designed. Then for the development of the project, a development platform was

chosen. Next, the web interfaces were designed and developed along with their back-

ends. The database-related activities were also carried out side by side yet following

the MVC architecture. At several points of the project development, a study was carried

out on different technologies as per the requirements of the system. The application

development progressed along with testing and changes were done wherever needed,

thus resulting in the final product.

The final product hence achieved the targeted goals on the one hand, while on the

other hand different ideas regarding software development and techniques in problem

solving were learnt. The project provides an easy way for students and teachers for the

process of enrolment. Likewise, it provides an easy way for the teachers to store the

student data in an organised way.

35

References

1 Oracle Corporation. Sun GlassFish Enterprise Server v3 Release

Notes[online].2010

URL:https://docs.oracle.com/cd/E19226-01/820-7688/abpaj/index.html.

Accessed: 29 September 2015.

2 Beal Vangie. J2EE- Java 2 Platform Enterprise Edition [online].

URL:http://www.saint-petersburg.com/. Accessed: 29 September 2015.

3 David Geary, Cay Horstmann. Core JavaServer Faces. January 2012.

Prentice Hall, New Jersey, United States. Third Edition. Ch-1 Getting

Started.p.4

4 Chris Schalk, Ed Burns, James Holmes. Java ServerFaces: TheComplete

Reference.2007. The Mc Graw Hill Companies. United States. Ch-4 Managed

Beans and the JSF Expression Language.p.53-54.

5 docs.oracle.com. JavaServer Faces Technology Benefits[online]. 2013.

URL:https://docs.oracle.com/javaee/6/tutorial/doc/bnapj.html. Accessed: 30

September 2015.

6 Oracle Corporation. Introduction to JavaServer Faces 2.x[online]. 2015.

URL:https://netbeans.org/kb/docs/web/jsf20-intro.html. Accessed: 30

September 2015.

7 db.apache.org. Derby JDBC Driver[online].

URL:http://db.apache.org/derby/docs/10.4/devguide/cdevdvlp40653.html.

Accessed: 1 October 2015.

8 docs.oacle.com. Managed Beans in JavaServer Faces Technology[online].

2013.

URL:http://docs.oracle.com/javaee/6/tutorial/doc/bnaqm.html. Accessed: 4

October 2015.

9 Tutorialspoint.com. JSF- Managed Bean[online]. 2015.

URL:www.tutorialspoint,com/jsf/jsf_managed_beans.htm Accessed: 9 October

2015.

10 Mukhar Kevin, Zelenak Chirs,Weaver James L. and Crume Jim. Beginning

Java EE 5 Platform From Novice to Professional. Apress, 2855 Telegraph

Avenue, Suite 600, Berkeley, CA 94705, United States. 2006. Ch-6

Servlets:p.281-282.

11 Oracle Corporation. The Client Tier -Your First Cup: An Introduction to the

Java EE Platform [online].2010.

36

URL:https://docs.oracle.com/cd/E19798-01/821-1770/gcrla/index.html.

Accessed: 12 October 2015.

12 Oracle Corporation. The Web Tier -Your First Cup: An Introduction to the Java

EE Platform [online].2010.

URL:https://docs.oracle.com/cd/E19798-01/821-1770/gcrla/index.html.

Accessed: 22 October 2015.

13 Oracle Corporation. The Business Tier -Your First Cup: An Introduction to the

Java EE Platform [online].2010.

URL:https://docs.oracle.com/cd/E19798-01/821-1770/gcrla/index.html.

Accessed: 15 October 2015.

14 Oracle. Distributed Multitiered Applications [online].2010.

URL:http://docs.oracle.com/javaee/5/tutorial/doc/bnaay.html. Accessed: 2

October 2015.

15 careerride.com.J2EE Architecture [online].2008.

URL:http://www.careerride.com/J2EE-Architecture.aspx. Accessed: 20

October 2015.

16 Pawlan, Monica. Introduction to the J2EE Architecture [online].March

23,2001..

URL:http://pawlan.com/monica/articles/j2eearch/. Accessed: 16 October 2015.

17 TIBCO Software Inc, Getting Started with JasperReports Library[online].2015..

URL:http://community.jaspersoft.com/wiki/getting-started-jasperreports-library.

Accessed: 19 October 2015.

18 TIBCO Software Inc, JasperReports Library-Features and Highlights

[online].2015.

URL:http://community.jaspersoft.com/wiki/getting-started-jasperreports-library

-features-and-highlights. Accessed: 21 October 2015.

19 Toffoli, Giulio, JasperReports A design too iReport for JasperReports:

Dcoumentation and tutorials [online].2015..

URL:http://ireport.sourceforge.net/manual0.2.0.html#1.1. Accessed: 22

October 2015.

20 Toffoli, Giulio, iReport Designer Getting Started[online].2015..

URL:http://community.jaspersoft.com/wiki/ireport-designer-getting-started.

Accessed: 22 October 2015.

21 Integrated Cloud Applications & Platform Services. The Essentials of Filters

[online].

URL:http://www.oracle.com/technetwork/java/filters-137243.html. Accessed:

20 October 2015.

37

22 Pankaj, Journal Dev. Java Servlet Filter Example Tutorial[online].2015.

URL:http://www.journaldev.com/1933/java-servlet-filter-example-tutorial.

Accessed: 20 October 2015.

23 Oracle Corporation. Sun Java System Application Server Enterprise Edition

8.2 Administration Guide. Application Server Architecture [online].2015.

URL:https://docs.oracle.com/cd/E19900-01/819-4733/ablat/index.html.

Accessed: 22 October 2015.

24 Gulati Shekhar, OpenShift.com. Day 28: OpenShift Eclipse Integration for

Java Developers [online].November 25, 2013.

URL: https://blog.openshift.com/day-28-openshift-eclipse-integration-for-java-

developers/. Accessed: 27November 2015.

25 OpenShift Developers, OpenShift.com. Tomcat Dependencies [online].

URL:https://developers.openshift.com/en/tomcat-dependencies.html.

Accessed: 27 November 2015.

26 Oracle Corporation. Sun Java System Application Server Enterprise Edition

8.2 Administration Guide. Application Server Architecture [online].2015.

URL:https://docs.oracle.com/javaee/6/tutorial/doc/gijtu.html Accessed: 22

October 2015.

Appendix 1

1 (3)

Appendix 1: Implementation of Servlet Filter

package controller;

import java.io.IOException;

import java.io.PrintStream;

import java.io.PrintWriter;

import java.io.StringWriter;

import javax.servlet.Filter;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.annotation.WebFilter;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

//@WebFilter(filterName = "UserFilter1z", urlPatterns =

{"/faces/securedPages/*"})

@WebFilter(filterName = "UserFilter1z", urlPatterns =

{"/faces/securedPages/*"})

public class UserFilter implements Filter {

 private static final boolean debug = true;

 private FilterConfig filterConfig = null;

 public UserFilter() {

 }

 private void doBeforeProcessing(ServletRequest request,

ServletResponse response)

 throws IOException, ServletException {

 }

 private void doAfterProcessing(ServletRequest request,

ServletResponse response)

 throws IOException, ServletException {

 }

 @Override

 public void doFilter(ServletRequest request, ServletResponse

response,

Appendix 1

2 (3)

 FilterChain chain)

 throws IOException, ServletException {

 System.out.println("Filter Initiated");

 HttpServletRequest req = (HttpServletRequest) request;

 HttpServletResponse resp = (HttpServletResponse) response;

 HttpSession session = (HttpSession) req.getSession(false);

 if (session==null || session.getAttribute("username") == null)

{

 resp.sendRedirect(req.getContextPath() +

"/faces/login.xhtml");

 System.out.println(" context path = " +

req.getContextPath());

 } else {

 System.out.println(" request = " + request + " and

response = " + response);

 chain.doFilter(request, response);

 }

 }

 public FilterConfig getFilterConfig() {

 return (this.filterConfig);

 }

 public void setFilterConfig(FilterConfig filterConfig) {

 this.filterConfig = filterConfig;

 }

 public void destroy() {

 }

 public void init(FilterConfig filterConfig) {

 this.filterConfig = filterConfig;

 if (filterConfig != null) {

 }

 }

 @Override

 public String toString() {

 if (filterConfig == null) {

 return ("UserFilter()");

 }

 StringBuffer sb = new StringBuffer("UserFilter(");

 sb.append(filterConfig);

 sb.append(")");

Appendix 1

3 (3)

 return (sb.toString());

 }

 private void log(String userFilterInitializing_filter) {

 throw new UnsupportedOperationException("Not supported yet.");

//To change body of generated methods, choose Tools | Templates.

 }

Appendix 2

1 (2)

Appendix 2: Maven Project Object Model pom.xml

<projectxmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001
/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>studentmgmt</groupId>
 <artifactId>studentmgmt</artifactId>
 <packaging>war</packaging>
 <version>1.0</version>
 <name>studentmgmt</name>
 <repositories>
 <repository>
 <id>eap</id>
 <url>http://maven.repository.redhat.com/techpreview/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>eap</id>

 <url>http://maven.repository.redhat.com/techpreview/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots> <enabled>true</enabled>

</snapshots>
 </pluginRepository>
 </pluginRepositories>

 <properties>
 <project.build.sourceEncoding>UTF-
8</project.build.sourceEncoding>
 <maven.compiler.source>1.6</maven.compiler.source>
 <maven.compiler.target>1.6</maven.compiler.target>
 </properties>
 <dependencies>
 <dependency>
 <groupId>com.sun.faces</groupId>
 <artifactId>jsf-api</artifactId>
 <version>2.2.2</version>
 </dependency>
 <dependency>
 <groupId>com.sun.faces</groupId>
 <artifactId>jsf-impl</artifactId>
 <version>2.2.2</version>
 </dependency>
 <dependency>
 <groupId>javax.servlet</groupId>

Appendix 2

2 (2)

 <artifactId>javax.servlet-api</artifactId>
 <version>3.0.1</version>
 </dependency>

 <dependency>
 <groupId>org.postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <version>9.2-1003-jdbc4</version>
 </dependency>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.25</version>
 </dependency>
 <dependency>
 <groupId>net.sf.jasperreports</groupId>
 <artifactId>jasperreports</artifactId>
 <version>6.1.0</version>
 </dependency>
 </dependencies>
 <profiles>
 <profile>
<!-- When built in OpenShift the 'openshift' profile will be used when
 invoking mvn. -->
<!-- Use this profile for any OpenShift specific customization your app
 will need. -->
<!-- By default that is to put the resulting archive into the 'webapps'
 folder. -->
<!-- http://maven.apache.org/guides/mini/guide-building-for-different-
environments.html -->
<id>openshift</id>
 <build>
 <finalName>studentmgmt</finalName>
 <plugins>
 <plugin>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.1.1</version>
 <configuration>

 <outputDirectory>webapps</outputDirectory>

 <warName>ROOT</warName>

 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>
</project>

