
 

 

 

 

 

SELECTING TOOL FOR AUTOMATED    

TESTING OF USER INTERFACE 

 

Petri Pokela 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Opinnäytetyö 

Huhtikuu 2016 

Tietotekniikka 

Ohjelmistotekniikka 

 



 

 

TIIVISTELMÄ 

Tampereen ammattikorkeakoulu 

Tietotekniikka 

Ohjelmistotekniikka 

 

PETRI POKELA: 

Selecting tool for automated testing of user interface  

 

Opinnäytetyö 29 sivua, joista liitteitä 0 sivua 

Huhtikuu 2016 

Tässä työssä käsitellään regressiotestauksen automatisoinnin aloittamista yrityksessä 

sekä kuvataan yleisesti testauksen ja Scrum-menetelmän teoriaa. Tämä työ toteutettiin 

Youredi Oy:lle uuden käyttöliittymän testauksen tehostamiseksi.  

 

Opinnäytetyössä käydään läpi yleistä ohjelmistotestauksen teoriaa ja kuvataan eri testaus-

menetelmiä ja testaustasoja. Ohjelmistoprojektien nykyaikainen ketterä kehitysmene-

telmä Scrum ja siihen liittyvät nopeat julkaisuvälit luovat tarpeen myös jatkuvaan ohjel-

mistotestaukseen. Se on mahdollista testausautomaation avulla. 

 

Tässä työssä vertaillaan neljää markkinoilla olevaa testausautomaatio työkalua Youredin 

määrittelemiä vaatimuksia vasten. Vertailu tehdään painoarvotaulukon avulla. Eniten pis-

teitä saadulla työkalulla toteutetaan automaattitestitapauksia. 

 

Jotta testitapauksia voidaan toteuttaa, tehdään ensin testisuunnitelmat, jotka toteutetaan 

valitulla työkalulla. Testiajojen raportti toimii apuvälineenä näyttämään ohjelmiston toi-

minnan ja virheen sattuessa raportti auttaa paikallistamaan virheen sijainnin.  

Asiasanat: testaus, testausautomaatio, Scrum, työkalun valinta 



 

 

ABSTRACT 

Tampereen ammattikorkeakoulu 

Tampere University of Applied Sciences 

ICT Engineering 

Software engineering 

 

PETRI POKELA:  

Selecting tool for automated testing of user interface 

 

Bachelor's thesis 29 pages, appendices 0 pages 

April 2016 

This thesis handles starting of regression test automation in a company and also describes 

overall testing theory and Scrum method. This thesis is made for company Youredi Ltd 

to make user interface testing more efficient.  

 

Software testing theory is introduced and different testing methods and testing types are 

described in this thesis. Nowadays the modern way to develop software projects is Scrum 

method, which makes frequent software releases possible. That is why software testing 

needs to be continuous and it is possible by automating software testing. 

 

Four commercial test automation tools are compared against Youredi’s requirements. 

Comparison is made by using weightage table. Tool with the best points is used to imple-

ment some automated test cases. 

 

Test plan with defined test cases needs first to be written to be able to implement test 

cases with the selected tool. Test run report indicates if the software is working correctly 

and in case of an error the report helps to locate where the error occurred. 

Key words: testing, test automation, Scrum, tool selection 



4 

 

SISÄLLYS 

1 INTRODUCTION ............................................................................................. 6 

2 GENERAL TESTING THEORY...................................................................... 7 

2.1 Basics of software testing .......................................................................... 7 

2.1.1 Blackbox testing .............................................................................. 7 

2.1.2 Whitebox testing ............................................................................. 8 

2.1.3 Greybox testing ............................................................................... 8 

2.2 Testing types .............................................................................................. 8 

2.2.1 Unit Testing ..................................................................................... 8 

2.2.2 Integration Testing .......................................................................... 9 

2.2.3 System Testing ................................................................................ 9 

2.2.4 Acceptance Testing ......................................................................... 9 

2.2.5 Regression Testing .......................................................................... 9 

3 TESTING PROCESS IN PROJECTS ............................................................. 10 

3.1 Scrum method .......................................................................................... 10 

3.2 Continuous integration ............................................................................. 11 

3.3 Automated testing .................................................................................... 11 

3.4 Continuous delivery ................................................................................. 12 

4 TOOL SELECTION METHOD ..................................................................... 13 

5 AUTOMATED TESTING TOOL COMPARISON ....................................... 14 

5.1 Tool requirements .................................................................................... 14 

5.2 Compared tools ........................................................................................ 15 

5.2.1 Telerik Test Studio ........................................................................ 16 

5.2.2 Ranorex ......................................................................................... 16 

5.2.3 Selenium ........................................................................................ 16 

5.2.4 TestComplete ................................................................................ 17 

5.3 Tool selection ........................................................................................... 17 

6 TEST PLANNING .......................................................................................... 20 

6.1 Test cases ................................................................................................. 20 

7 TEST SCRIPT IMPLEMENTATION ............................................................ 22 

7.1 Test case recording .................................................................................. 22 

7.2 Test case programming ............................................................................ 23 

7.3 Test script running ................................................................................... 23 

7.4 Test run reporting ..................................................................................... 24 

8 CONCLUSION ............................................................................................... 28 

REFERENCES ...................................................................................................... 29 

 



5 

 

ABBREVIATIONS AND TERMS 

 

 

AJAX Asynchronous JavaScript and XML 

AJAX-call Asynchronous HTTP-request 

ASP.NET Web framework for building Web applications and Web sites 

by Microsoft 

GUI Graphical user interface 

MVC Software architectural pattern called model-view-controller 

PHP Server scripting language 

 

 

 

 



6 

 

1 INTRODUCTION 

 

 

This thesis is made for company Youredi Ltd and consists of selecting and evaluating test 

automation tool for user interface testing. Youredi Ltd is an international software com-

pany offering advanced cloud-based integrated data exchange services. 

 

Youredi software's user interface rewriting was started in autumn 2015 and it arose also 

a need to make GUI testing more efficient. The software is developed by using Scrum 

method, which means that new features are included in the software all the time. Fast 

development cycles require efficient way to make sure that all existing features are still 

working correctly. Test automation tool was decided to be taken in use to help continuous 

software validation. 

 

This thesis describes shortly testing methods, testing types, Scrum method, continuous 

integration, continuous delivery and automated testing. Among plenty of available com-

mercial test automation tools, most suitable tools are searched and selected for test auto-

mation tool comparison. 

 

In this thesis evaluation test scripts are created with the most suitable test automation tool. 

Test scripts are implemented according to the test plans and test cases. When test script 

run is completed, the test automation tool creates a detailed test run report, which helps 

developers quickly to indicate, locate and solve the found problems. 



7 

 

2 GENERAL TESTING THEORY 

 

 

Software testing is one entity of software engineering. Software tester’s job is varied de-

pending on the task he is doing. Tester might have to write code, write documentation or 

interview test users depending what is happening at the moment. That is why professional 

software tester’s job might have different tasks at different software company. (Kasurinen 

J. P. 2013.) 

 

Testing is done to ensure that the developed product is working as it is defined and meant 

to work. Testing is continuous comparing against the specification and should be part of 

each product development phase, not only at the end of the project. The earlier the design 

and implementation can be verified to be correct, the less work later in development is 

needed to correct the mistakes. 

 

 

2.1 Basics of software testing 

 

Some of basic software testing methods are blackbox testing, whitebox testing and grey-

box testing. 

 

 

2.1.1 Blackbox testing 

 

Black box testing is a testing technique that focuses on the execution of the system and 

output is generated against any input. In black box testing system gets input and informs 

the output results, but it ignores the internal mechanism inside the system. Black box 

testing is a simple mechanism and it can be used at any point of software testing if there 

is a system that is performing some kind of functionality. (Kasurinen J. P. 2013.) 



8 

 

 

2.1.2 Whitebox testing 

 

White box testing is a testing technique that focuses on the internal mechanism of the 

system. System gets inputs and tester can see and knows what happens inside of the sys-

tem and can track down error information back to its source. White box tests are more 

deep and accurate than black box tests. (Kasurinen J. P. 2013.) 

 

 

2.1.3 Greybox testing 

 

Grey box testing technique is a combination of black box and white box testing tech-

niques. Grey box testing can focus on the execution of the system, but its user also sees 

what happens inside of the system. Basically this is a technique that can check that re-

quirements are filled (model coverage) and also that source code branches have been 

checked (code coverage). (Kasurinen J. P. 2013.) 

 

 

2.2 Testing types 

 

There are several testing types like: 

 Unit Testing 

 Integration Testing 

 System Testing 

 Acceptance Testing 

 Regression Testing 

 

 

2.2.1 Unit Testing 

 

Unit testing is the testing of an individual module, unit, function or group of related units. 

Unit testing makes sure that implemented change works as part of the system. Unit testing 

is usually done by the programmer to test that implementation works as expected with all 

possible input values. Unit tests can be run automatically after every source code change.  

(Kasurinen J. P. 2013.) 



9 

 

2.2.2 Integration Testing 

 

Integration testing is testing of combined components which produce output. In integra-

tion testing a new component is added to pretested system. If the new component includes 

couplings that do not yet exist, tester have to build a group of stubs to start the system 

even the system does not have all the function implementations yet.  The main purpose 

for integration testing is to test that components work together as a system. (Kasurinen J. 

P. 2013.) 

 

 

2.2.3 System Testing 

 

System testing ensures that the whole system is working in different environments with 

real data. System testing is done after all of the components are implemented together at 

integration testing phase. System testing is done in the testing environment and the main 

purpose is to find all possible errors before moving to Acceptance testing phase. 

(Kasurinen J. P. 2013.) 

 

 

2.2.4 Acceptance Testing 

 

Acceptance testing is done to ensure customer that the delivered product meets the re-

quirements and work as they expected. Acceptance testing is often done and officially 

accepted as a working product by customer. After acceptance testing product is officially 

delivered to customer. (Kasurinen J. P. 2013.) 

 

 

2.2.5 Regression Testing 

 

Regression testing is basically continuously retesting the system. Regression testing is 

done after modification of the system, component or group of related units to ensure that 

the product is still working correctly after modifications. The most important part of re-

gression testing is to ensure that there are no errors that have already been fixed before 

modification, and that the modification does not encounter any new errors on the build. 

Regression testing is suitable to be automated. (Kasurinen J. P. 2013.) 



10 

 

3 TESTING PROCESS IN PROJECTS 

 

 

3.1 Scrum method 

 

Scrum is agile method to develop software in smaller steps. The features are incremented 

one at a time to the application. This makes possible to release application version fre-

quently. Product owner defines the features to be done in one sprint, which is typically 2 

weeks to 1 month long. The development team implements the agreed features. Scrum 

master controls that everything goes smoothly. Following picture describes Scrum 

method. 

 

 

PICTURE 1. Scrum method (Scrum picture 2016.) 

 

The Scrum team consists of a Scrum master, a Product Owner and the Development 

Team. Scrum team is self-organized team working independently by making their own 

decisions and taking the responsibility of the work. Scrum team is also cross-functional 

team knowing exactly how to work and do not depend on other teams. “The team model 

in Scrum is designed to optimize flexibility, creativity, and productivity.” (Scrum Guide 

2014.) 

 

 



11 

 

3.2 Continuous integration 

 

Different software parts are developed by multiple developers and teams at the same time. 

To make sure that the whole software is always possible to build and run, the source code 

should be often saved to source code version controlling system. From there, after every 

saving, build server verifies the compilation and software package creation. This is called 

continuous integration. In case of error developer gets immediate feedback from build 

server and can quickly correct the problem.  This technique minimizes integration prob-

lems and allows teams to focus producing common source code faster. (Fowler Martin 

2006.) 

 

 

3.3 Automated testing 

 

“Test Automation software is the best way to increase the effectiveness, efficiency and 

coverage of your software testing.” (SmartBear 2016.) Test automation is test method 

where application testing is done by using test automation tool. Test automation goal is 

instead of manual testing to run automatically test cases which needs to be repeated con-

tinuously. This leaves more time for software engineers to concentrate to the application 

development. Test automation also helps to verify that source code changes do not affect 

to already verified existing software functionality. 

 

Automated test scripts can be created for regression tests, which are needed to run repeat-

edly. Simplest way to do scripts is recording software using and then run tests at any time. 

Software input value entering can be recorded and the desired output after software func-

tion execution can be validated. Scripts are created according to the carefully written test 

cases, which is also as demanding development work as the software development work 

itself. Automated test scripts for the GUI can be finalized after the correct product func-

tionality is first verified manually. 

 

When test run is completed, test automation tool generates a test report containing de-

tailed status of the test run. Test report helps developer to locate the malfunction and it is 

quicker to correct the error. Test report is also an evidence that testing is done. 

 



12 

 

When same tests are run always automatically, developer/tester can create new test cases 

instead of manually testing the same things. In the long run this leads to better test cover-

age of the software. 

 

 

3.4 Continuous delivery 

 

“Continuous Delivery is a software development discipline where you build software in 

such a way that the software can be released to production at any time.” (Fowler Martin 

2013.) Continuous delivery is achieved by continuously integrating the software, building 

executables, and running automated tests on product to detect problems. There is always 

a production-like environment where executables are pushed to ensure that the software 

will work in production. 

 

Doing continuous delivery means that software is always deployable throughout its 

lifecycle and team prioritizes keeping the software deployable all the time. Build server 

informs developers in case saved source code change makes system unable to build itself. 

Everyone on the team also has a push-button that performs deployment to any version of 

the software to any environment on demand. 

 

 

 

 



13 

 

4 TOOL SELECTION METHOD 

 

 

To find the best suitable automated testing tool for Youredi needs was done by using a 

selection process. First of all the thesis team decided what requirements were needed for 

automated testing tool and how important each requirement is (weightage). After listing 

the requirements begun the research of the right automated testing tools. At the selection 

process thesis team decided that four tools will be compared to each other. 

 

Every requirement is given a percentage weightage and the total percentage is 100%. All 

of the selected tools get points from 1 to 5 depending how well it fills the listed require-

ment. After every tool has a points in in every cell, the point value is multiplied with the 

percentage that the requirement has. Finally all multiplied points are summed together to 

get the total score for each automated testing tool. 

 

Requirements and tool estimation are entered in table structure described in following 

table.  

 

 TABLE 1. Selection table example. 

Requirements Weightage (%) Tool 1 Tool 2 Tool 3 Tool 4 

Reg 1          

Reg 2          

Reg 3          

Total score 100         

 

  



14 

 

5 AUTOMATED TESTING TOOL COMPARISON 

 

 

There are a lot of tools available for automated testing on the market. Internet searches 

were initially used to find most suitable automated testing tool for Youredi Ltd. The 

amount of tools to be compared was limited to four tools from different manufacturers. 

Each tool was evaluated against the requirement specified with the thesis team. Selected 

tools for comparison: 

 Test Studio from Telerik 

 Ranorex from Ranorex 

 Selenium from Selenium contributors 

 TestComplete from SmartBear 

 

 

5.1 Tool requirements 

 

Thesis team was specifying following requirements for automated testing tool in meet-

ings: 

 Cross browser support 

o Firefox, Chrome etc… 

 Possible to record script 

o Recording when manually using the software 

 Possible to program scripts 

o Software using is implemented by using programming language 

 Possibility to use templates 

o Reusable modules created by programming 

 Possibility to control execution according user selections 

o Recognition and execution according to user actions  

 Possibility to use object instead of image or coordinates 

o Recognize named object from UI 

 Possibility to define generic tests 

o Dynamic using of software by programming automatic inputs 

 Possibility to use known starting state 

o Testing is always started at same state for example login page 



15 

 

 Possibility to scale according to browser size (tablet, mobile) 

o UI works on different display sizes without modifications 

 Possibility to validate document properties (size, content, visibility) 

o Label, text box, combo box etc. content can be validated 

 Possible to validate data-object in memory 

o Variable and data-object content can be validated 

 Possibility to validate AJAX-calls (erroneous calls) 

o AJAX-calls content can be validated 

 Possible to get test run report 

o Report containing test run result with details 

 Deliverer documentation/Help 

o Proper documentation to help user to use the tool 

 Deliverer support 

o How easy it is to get support from manufacturer 

 Free trial version 

o Possibility to evaluate tool before purchasing it 

 Price 

o Purchasing price for the first time 

 Annual Price 

o Continuous annual pricing  

 Deliverer reliability 

o Company history and references 

o What are the future developing plans of the tool 

o How well known the tool is 

Weightage percentage was defined separately for each requirement totally summing to 

100 percent.  

 

 

5.2 Compared tools 

 

This section goes briefly through the selected tools. Section also gives information on 

how well tool matches with requirements. 

 

 



16 

 

5.2.1 Telerik Test Studio 

 

Test Studio is easy-to-use tool for web, desktop and mobile application testing including 

load testing possibilities. Test Studio makes it possible to test applications on various 

platforms using different frameworks and tools. It supports following technologies: 

ASP.NET, AJAX, Silverlight, PHP and MVC. Tests can be recorded and it also allows 

using programming language to create test scripts. (Telerik Test Studio website 2016.) 

 

Finding detailed information from Telerik Test Studio web pages is not easy. Telerik is 

not focusing only on test automation tool, which made me wondering if this company 

concentrates enough on this tool. 

 

 

5.2.2 Ranorex 

 

Ranorex allows automating web, desktop and mobile application testing. Ranorex sup-

ports many browsers and combines different technologies, platforms and devices. 

Ranorex both records user interactions and plays them back to execute tests. Tests can be 

recorded and played back. After test run detailed test run report is generated. Ranorex has 

advanced GUI object recognition, which makes test maintaining easier when object loca-

tion on UI is moved. Ranorex allows using an API for C# and VB.NET to program own 

reusable test modules. Ranorex is well known commercial tool to build and run automated 

web and GUI tests. (Ranorex website 2016.) 

 

Ranorex web pages give professional feeling about the product. On the web pages is test-

ing theory and tips how to start building test automation. Ranorex is fully concentrating 

on test automation. They also have a large group of big companies using it. 

 

 

5.2.3 Selenium 

 

Selenium is testing tool to automate web application testing in different browsers. With 

Selenium tests can be recorded and tests can be run with playback function. It is also 

possible to write tests by programming them by using languages like Java, C#, etc. The 

tests can then be run in many web browsers. Test run reports can be built by user itself. 



17 

 

Selenium is open-source software and it is released under the Apache 2.0 license. It can 

be downloaded and used for free. (Selenium website 2016.) 

 

Selenium seems to be efficient tool but requires advanced software developer skills. There 

might be longer learning curve to take it in use. There is no official support for the tool, 

it is based on user groups and chat rooms, which might be a threshold for a new user. 

 

 

5.2.4 TestComplete 

 

TestComplete can be used to create test automation for web, desktop and mobile applic-

tations. Most popular web browsers are supported. Tests can be recorded and played back. 

After test run detailed test run report is generated. TestComplete supports multiple script-

ing languages like C#, VisualBasic and JavaScript, etc. AJAX, HTML forms, Javascript, 

and Flash content can be tested with different browsers and operating systems. Objects 

inside web applications can be identified and validated. (TestComplete website 2016.) 

 

TestComplete is professional tool for building software test automation. They have well 

organized web pages containing online help. Each module must be separately purchased, 

so the pricing is confusing.  

 

 

5.3 Tool selection 

 

Following table contains real information like described earlier in table 1. 

 

TABLE 2. Tool comparison 

Requirements Weightage 
(%) 

Ranorex Telerik Test 
Studio 

Selenium Test Com-
plete 

Possible to test Web 
applications 

6,25 5 5 5 5 

Cross browser support 3,33 5 5 4 5 

Possible to record 
scripts 

2,51 5 5 5 5 

Possible to program 
scripts 

2,51 5 5 4 3 



18 

 

Possibility to use tem-
plates 

3,33 3 3 3 3 

Possibility to control 
execution according 
user selections 

6,25 4 3 2 4 

Possibility to use ob-
ject instead of image 
or coordinates 

6,25 5 5 5 5 

Possibility to define 
generic tests 

6,25 3 3 3 2 

Possibility to use 
known starting state 

6,25 5 3 2 5 

Possibility to scale ac-
cording to browser 
size (tablet, mobile) 

6,25 4 4 3 4 

Possibility to validate 
document properties 
(Size, content, visibil-
ity) 

6,25 5 5 5 5 

Possible to validate 
data-object in 
memory 

6,25         

Possibility to validate 
AJAX-calls (errorneus 
calls) 

3,33 5 4 4 3 

Possible to get test 
run report 

6,25 5 5 3 5 

Deliverer documenta-
tion/Help 

3,33 5 5 3 5 

Deliverer support 3,33 5 5 4 5 

Free trial version 6,25 5 5 3 5 

Price 6,25 4 3 5 4 

Annual Price 6,25 4 4 5 5 

Deliverer reliability 
(History, references, 
future, well known) 

3,33 5 5 4 5 

Total score 100 424,59 396,26 352,1 412,91 

 

Currently the development team is small in Youredi and it is enough to purchase one test 

automation license. That is why pricing points do not have more differences between 

tools. Deliverer support points do not either have more differences, because Selenium 

was given good points due to their online user group chat rooms even they don’t have 

support service. 

 



19 

 

All chosen tools in principle could have been selected. Differences were minor and all 

chosen tools filled Youredi’s needs. Selected tool for Youredi test automation is Ranorex, 

because it got highest scores during the comparison in table 2.  

 

Original plan was to evaluate two tools with the best total score, but due to organizational 

reasons only tool with the best total score was evaluated. If the chosen tool does not pass 

testing phase, then tool with second highest total score can be evaluated. Second tool 

evaluation is not included in this thesis.  



20 

 

6 TEST PLANNING 

 

 

Test cases and planning is documented so testing can be repeated any time. Each test case 

must fulfill following criteria: 

 Repeatability: test can any time be similarly repeated. 

 Unambiguous: test can be interpreted only one way. 

 Traceability: test environment and configuration are traceable. 

 

Each test case contains only one operation to be verified. Test case needs a short, concise 

title and description. Test case clearly defines the purpose and scope of its operation. Use 

simple language, so anyone understands it, do not use unnecessary steps or words. Use 

rather imperative. Test case describes what to do and what is the expected result. There 

must be enough description about the system behavior, so tester understands it. There 

must be positive test cases to confirm that software works as it is supposed to work and 

negative test cases to confirm that software does not do things it shouldn’t. Test plan 

contains initial setup to start the test. 

 

Test cases are created by developer, tester and product owner. They will always be im-

proved and created more whenever some new case appears. Tests used with automated 

test scripts contain following chain: known start state → setup → test execution including 

validation → restore to known state. It is important to return to the known state after the 

test execution. 

 

 

6.1 Test cases 

 

This thesis is about selecting and evaluating automated testing tool so only few test cases 

were created. All of the test cases follow same pattern in documentation. All test cases 

must have 

 ID 

 Title 

 Pre-Conditions 

 Test steps 

 Expected results 



21 

 

First test case is called “Login Fail” which basically tests all options how user can fail to 

login to the system. In the table 3 there are multiple test steps, which are executed sepa-

rately, but all having same expected result.  

 

TABLE 3. Login Fail 

ID 1 

Title Login Fail 

Pre-Conditions Open Youredi Web page 

Test Steps 

1. Enter incorrect Login ID 
2. Enter password 
3. Click "Login"  

Test Steps 

1. Enter correct Login ID 
 2. Enter incorrect password 
 3. Click Login 

Test Steps 

1. Enter empty Login ID 
2. Enter password 
3. Click Login 

Test Steps 

1. Enter correct Login ID 
2. Enter empty password 
3. Click Login 

Test Steps 

1. Enter empty Login ID 
2. Enter empty password 
3. Click Login 

Test Steps 

1. Enter incorrect Login ID 
2. Enter empty password 
3. Click "Login"  

Expected results 
Page informs about login 
failure 

 

When test case should success, it is enough to have one test step. Like in table 4 there is 

only one test step with several actions and expected result tells user what is going to 

happen. 

 

TABLE 4. Login Success 

ID 2 

Title Login Success 

Pre-Conditions Open Youredi Web page 

Test Steps 

1. Enter correct Login ID 
2. Enter correct password 
3. Click "Login" 

Expected results 
User is transferred to main 
page with his user 



22 

 

7 TEST SCRIPT IMPLEMENTATION 

 

 

7.1 Test case recording 

 

Simplest way to start doing automated test scripts is to record software using. Ranorex 

saves all user actions and expected result validation can also be recorded. 

 

 

PICTURE 2. Login Succeeded Recording 

 

Picture 2 contains login succeeded recording. Each mouse click, data entering is indicated 

as own row in the script. User name is entered here as plain text. 

 

Picture 3 contains login failed recording. Here the user name and the password is entered 

as variables. This is more flexible way to enter data to test scripts. 

 

 

PICTURE 3. Login Failed Recording 

 

 



23 

 

7.2 Test case programming 

 

In this thesis setup and teardown sections were implemented by coding. Setup section 

prepares software for using. Teardown finalizes and closes software in controlled way, so 

next test can be started from known state. Picture 4 shows the test case tree containing 

setup and teardown section details.  

 

 

PICTURE 4. Setup and teardown sections 

 

 

7.3 Test script running 

 

Picture 5 has screen capture of expected result described in table 3. It also contains 

Ranorex command prompt running at background.  

 



24 

 

 

PICTURE 5. Login fail run and Ranorex command prompt 

 

When test script is running it starts Ranorex command prompt from where it is possible 

to follow the test run progress. Also the recorded or scripted software using is played back 

and real UI progress can be followed. This is the part where the savings of automated 

testing are earned compared to manual testing. 

 

 

7.4 Test run reporting 

 

When test run is ready, Ranorex creates detailed test report of the test run. Every test case 

success is separately indicated. Report contains test run time stamp, test environment, test 

duration and other informative data. When viewing the test run report in Ranorex devel-

opment environment, from each step user can easily jump to corresponding test step in 

Ranorex recording or source code. 

 



25 

 

 

PICTURE 6. Succeeded test run 

 

Picture 6 contains fully succeeded test run report. The big green circle on the top of the 

test report indicates that all test cases are passed. Each test case recording is indicated 

with icon having small red circle and the small green circle in front of test case indi-

cates, that the test case is passed. Each test case is processed and reported separately. In 

the beginning of the test setup section is run and at the end teardown section is run. 

 



26 

 

 

PICTURE 7. Failed test run 

 

If some of the test cases fail during test run, test report will have big red circle on the 

top of the test report indicating failed test run. Small red circle in front of the test case 

indicates failed test case. Even test case fails somewhere, teardown section makes sure 

that software is left to known state after test run like seen in picture 7. 

 

 



27 

 

 

PICTURE 8. Failed test run expanded 

 

Picture 8 contains expanded failed test case. Ranorex contains error details and also in-

dicates the error location in the test case recording. Now the developer can locate the 

reason and solve the problem. 

 

  



28 

 

8 CONCLUSION 

 

 

At the moment software solutions are developed by Scrum method, which makes it pos-

sible to produce continuous releases, so software must be tested efficiently. Efficiency is 

possible to achieve only by automating the software testing. During this thesis selecting 

right tools for automated testing of user interface was complicated task, because currently 

there are plenty of tools available for automated software testing.  

 

First of all the requirements for automated testing tool were defined so right automated 

testing tool meeting the requirements was even possible to select. In my opinion the 

method used to compare the tools against the requirements was excellent. In this thesis 

Ranorex was calculated to be most suitable tool for Youredi Ltd needs according to the 

requirement comparison table. According to made evaluation it was a good choice. 

 

Test automation should be a parallel development phase with the software development 

phase itself. Testing must be carefully planned and test cases according to software re-

quirement should be written. If tests are just recorded without any plan, it will very soon 

lead to unmaintainable test scripts.  

 

Originally it was meant to evaluate at least two automated testing tools in this thesis, but 

because of the employment changes done in Youredi Ltd, I had time and possibility to 

make only basic test scripts with one tool. That's why in this thesis more weight was put 

on describing software testing and tool selection than implementing the test scripts. Dur-

ing my Ranorex tool trial period there were not yet that much new user interface ready in 

Youredi’s software. 

 

 

 



29 

 

REFERENCES 

Fowler Martin. 2006. Continuous Integration. Read: 10.03.2016. http://www.martin-

fowler.com/articles/continuousIntegration.html 

 

Fowler Martin. 2013. ContinuousDelivery. Read: 07.03.2016. http://martin-

fowler.com/bliki/ContinuousDelivery.html 

 

Kasurinen Jussi Pekka. 2013. Ohjelmistotestauksen käsikirja. Jyväskylä: Docendo. 

 

Telerik Test Studio. Telerik Test Studio website. Read: 03.03.2016. http://www.tele-

rik.com/teststudio 

 

Ranorex. Ranorex website. Read: 03.03.2016. http://www.ranorex.com/ 

 

Selenium. Selenium website. Read: 03.03.2016. http://docs.seleniumhq.org/ 

 

TestComplete. TestComplete website. Read: 03.03.2016. https://smartbear.com/prod-

uct/testcomplete/web-module/overview/ 

 

Scrum picture. 2016. Wikipedia. Read: 07.03.2016. https://fi.wikipe-

dia.org/wiki/Scrum#/media/File:Scrum_process.svg 

 

Scrum Guide. 2014. ScrumGuides. Read: 07.03.2016. http://www.Scrum-

guides.org/Scrum-guide.html 

 

SmartBear. 2016. Why Automated Testing?. Read 11.3.2016. https://smart-

bear.com/learn/automated-testing/ 

 

 

 

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/bliki/ContinuousDelivery.html
http://martinfowler.com/bliki/ContinuousDelivery.html
http://www.telerik.com/teststudio
http://www.telerik.com/teststudio
http://www.ranorex.com/
http://docs.seleniumhq.org/
https://smartbear.com/product/testcomplete/web-module/overview/
https://smartbear.com/product/testcomplete/web-module/overview/
https://fi.wikipedia.org/wiki/Scrum#/media/File:Scrum_process.svg
https://fi.wikipedia.org/wiki/Scrum#/media/File:Scrum_process.svg
http://www.scrumguides.org/scrum-guide.html
http://www.scrumguides.org/scrum-guide.html
https://smartbear.com/learn/automated-testing/
https://smartbear.com/learn/automated-testing/

