
VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES

Xiaoling Yu

IMPLEMENTATION OF A SECURE
SHELL FILE TRANSFER PROGRAM IN

JAVA

Information Technology
2010

2

FOREWORD

First of all, I would like to give big appreciation to my supervisor Dr. Ghodrat

Moghadampour who has been patiently giving me valuable suggestions and big

support whenever needed. In addition, I really appreciate my language teacher Dr.

Ritva Rapila for guiding me with my communication skills from the moment I

came to study in VAMK. I would also like to thank my boyfriend Olli Keskinen

for personal support and technical advice in my thesis.

Moreover, I want to thank other teachers, especially Gao Chao, Antti Virtanen

and Smail Menani for the quality education I have received. Finally I would like

to thank all the people whose names are not mentioned here for their kindness

which makes my stay in Vaasa so pleasant. I will definitely miss the precious time

in the future.

I am honoured to graduate from VAMK as an Engineer.

Yu Xiaoling

19.02.2010

3

ABBREVIATIONS

API Application Programming Interface

JVM Java Virtual Machine

MVC Model–View–Controller

SCP Secure Copy

SFTP SSH File Transfer Protocol

SSH Secure Shell

FTP File Transfer Protocol

IDE Integrated Development Environment

4

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Degree Programme of Information Technology

ABSTRACT

Author Xiaoling Yu

Title Implementation of a Secure Shell File Transfer Program in

Java

Year 2010

Language English

Pages 48

Supervisor Ghodrat Moghadampour

With the popularity of secure shell (SSH) protocol, as well as the need of
transferring files between a local computer and a remote computer, a simple and
user friendly software is required to satisfy this need. Programs for SSH file
transfer already exist, but they are often complex to use and are developed for
single operating system.

Hence, the idea to develop such a software in Java resulted in this project of SSH
File Transfer Program. By using SSH File Transfer Program user is able to
transfer files from local computer to a server, and vice versa, with SSH protocol.
Simple and user friendly interface allows user to do this easily. Java technology
makes it possible to use this program on virtually any operating system that
supports Java.

This application was developed with Java Swing technology and for the
implementation of this project, Eclipse was chosen as the IDE (Integrated
Development Environment). An open source SSH package, SSHTools (J2SSH),
was used for the implementation of the SSH part of the program.

Keywords SSH, SFTP, SCP, File Transfer, Java, Java Swing

5

CONTENTS

FOREWORD...2
ABBREVIATIONS..3
ABSTRACT ..4
CONTENTS...5
1 INTRODUCTION...6

1.2 Technologies..6
1.2.1 Java Language...6
1.2.2 Java Swing..7
1.2.3 SSH ..8
1.2.4 SSH File Transfer Protocol (SFTP)..8
1.2.5 SSHTools (J2SSH)..8

2 APPLICATION DESCRIPTION..9
2.1 Requirement Analysis..9
2.2 Accessing the functions..9
2.3 User Interface...10

3 ANALYSIS AND DESIGN ...12
3.1 UML Diagrams ...12

3.1.1 Main Functions ...12
3.1.2 Application Main Modules...13
3.1.3 Class Relationships...13
3.1.4 Class Diagrams..14
3.1.5 Detailed Descriptions of Main Functions...20

4 IMPLEMENTATION...28
4.1 Coding..28

4.1.1 Login Function..28
4.1.2 Download and Upload Function...30
4.1.3 Rename Function..35
4.1.4 Delete..37
4.1.5 Testing...39

4.2 Results..39
4.2.1 Login Window..40
4.2.2 Main Window..40
4.2.3 Popup Menu..42
4.2.4 Show Hidden Files..42
4.2.5 Deleting Files..43
4.2.6 Renaming Files..43
4.2.8 Downloading and Uploading..44
4.2.9 About Window..45

5 CONCLUSIONS...46
6 SUMMARY..47
LIST OF REFERENCES...48

6

1 INTRODUCTION

This project started as just an idea to have easy and secure way to transfer files

between school and home. There are existing programs for transferring files

through SSH protocol, such as WinSCP and SSH Secure Shell. Although they are

secure as they use SSH protocol, they have functionalities that most people do not

really use, and are complex to use because of this.

1.1 Rationale for This Project

The existing programs mentioned above are also made for a single operating

systems, but a program made in Java can work on any operating system that

supports Java. Even though the initial purpose for this project is to transfer files

between school and home, there is no need to limit the usage only for that. This

program is supposed to be a program that can be used for transferring files from

and to any server that supports SSH file transfer.

The purpose of the project is to develop an SCP (Secure Copy Program) program

that is used to transfer files from local computer to a server, and vice versa, with

SSH protocol. Simple use friendly interface will allow user to transfer files easily

between local and remote computer. Since the program is done in Java language,

user is also able to manipulate files in other operating systems like Linux / MAC.

1.2 Technologies

This project uses number of technologies which are important to understand in

order to be able to understand this thesis fully.

1.2.1 Java Language

Java is an object oriented programming language. Due to Java interpreters and

runtime environments, known as Java Virtual Machines(VMs), compiled Java

code can run on most different operating systems including Windows PCs,

Macintoshes, and Unix computers.

7

There are many advantages why the software developers choose Java. Once Java

software is written on one platform and it is possible for users to run it on virtually

any other platform. This proves the idea “write once, run everywhere”. With the

popularity of World Wide Web, Java language is well suited for the use on the

World Wide Web since programs are created in Java can run within a Web

browser and web services.

Besides, Java language can be used to develop server-side applications for online

forums, stores, polls, HTML forms processing, and more. Using Java language to

combine applications or services, it is possible to create highly customized

applications or services. More important, Java language can offer the powerful

and efficient applications for many digital devices, for example, most common

used mobile phones, low-cost consumer products, and remote processors etc. [1]

1.2.2 Java Swing

Swing is used to build a Java program with a graphical user interface (GUI).

Swing is part of Java Foundation Class (JFC). Swing is not a replacement for

Abstract Window Toolkit (AWT), actually it is built on top of the core AWT

libraries to provide a more sophisticated set of GUI components. [2]

Swing has two key features: Lightweight Components and Pluggable Look and

Feel. Lightweight component feature makes it more efficient use of resources

since a lightweight component does not depend on any native system classes

(commonly called as “peer” classes). Java Look- and-Feel classes support most of

components to have their own view in Swing.

Swing's pluggable Look- and-Feel feature makes it so that the user does not need

to restart the application in order to switch the Look- and-Feel of Swing

components. For Swing library supports a cross-platform look and feel so that no

matter where the program runs, it keeps the same across all platforms. [3]

8

1.2.3 SSH

SSH (Secure Shell) is a network protocol used to create a secure connection. SSH

is mostly used on Linux and Unix based systems. However, SSH is also available

for Windows, Macintosh, and OS/2. SSH uses public-key to authenticate the

remote computer and allow the remote computer to authenticate the user, if

necessary. Hence, SSH has strong authentication and secure communications over

insecure channels. Besides, SSH provides encryption so that it is almost

impossible for an outsider to steal passwords when using SSH to log in session.

SSH protocol can be used for many applications. Here are some examples that

show the uses of SSH, to login to a shell on a remote host , to execute a single

command on a remote host, to copy files from a local server to a remote host, etc.

[4]

1.2.4 SSH File Transfer Protocol (SFTP)

SSH File Transfer Protocol, sometimes called Secure File Transfer Protocol or

SFTP, is a secure protocol and it uses an encrypted network connection provided

by Secure Shell (SSH). SFTP is a replacement for the original SCP(Secure Copy)

and it was designed to provide file transfer and manipulation functionality over

any reliable data stream. [5]

SFTP is functionally prior to FTP, also, it is more platform independent than FTP.

However, compared with File Transfer Protocol (FTP), SFTP has lower speed

since it has encryption and necessity to wait for packet confirmations. [6]

1.2.5 SSHTools (J2SSH)

SSHTools (J2SSH) is a suite of Java SSH applications providing a Java SSH API,

SSH Terminal, SSH secured VNC client, SFTP client and SSH Daemon. It offers

a cross platform toolkit for all areas of SSH development. With J2SSH it is

possible to create both client and server applications as well as develop extensions

for J2SSH enabled applications. [7]

9

2 APPLICATION DESCRIPTION

The main functionalities of this program of course are the download and upload,

but other functionalities are critical for this kind of program to be usable as well.

2.1 Requirement Analysis

 Here is a list of functions which the program must include:

 Browse the local and remote folders

 Download files: download files from a server to local computer

 Upload files: upload files to a server from local computer

The program should have the following functions:

 Cancel transferring files: cancel the transferring action when a file is being

transferred

 Delete files: delete local and remote files and folders

 Rename file: rename local and remote file and folder

 Create new directory: Create new directory in local computer or remote

server

Nice to have functions:

 Change permissions: change the permissions to specify who and what can

be read, write, modify and access different files and directories in remote

file system.

 Drag & Drop functionality

2.2 Accessing the functions

The functions should be accessed easily in the normal way in which functions are

usually accessed in programs. Changing to a folder should work by double

clicking the folder, or by using arrow keys to go over the folder and pressing enter

10

key. Going to the parent folder should work with a tool bar button and also with

backspace key. There should be a tool bar button for a quick way to change to

default home folder.

Creating new folder should work through menu and through a button on the tool

bar. Renaming should work through menu and through the F2 key which normally

is used for renaming. Deleting should work through menu and through delete key.

Uploading and downloading should be accessed through menu and there should

also be tool bar buttons for them.

In addition to the methods mentioned above, there should also be a popup menu

which appears when right mouse button is clicked. This menu should include

functions like create new folder, rename, delete, upload, download and edit

permissions.

2.3 User Interface

There should be a login window that user can input server address, server port,

user name and password If the given information are not valid, an error message

should be shown telling what information is invalid. If all of the information is

valid, the connection should be established and main window opened.

The main window should be divided in two parts. On the left side, there should be

the list of local files. On the right side, there should be the list of remote files.

There should be tool bar above both of the file lists, to access some of the above

mentioned functions. The main window should also have menu bar from where all

functions can be accessed.

If rename or new folder function is started, there should be a small window which

has a text field where user can type the new name of the file or folder. If delete is

pressed, there should be a confirmation where user is asked whether he/she is sure

that he/she wants to delete the selected files. If user presses yes, the files are

deleted. If user presses no, the program should continue in the normal way

without any operation.

11

If user selects download or upload, a window should appear showing the progress

of the download or upload. The name of the current file or folder that is being

uploaded or downloaded should be shown. There should be also information of

how many files or folders are still waiting to be downloaded or uploaded. There

should be a cancel button from where the user can cancel the download or upload,

and this should stop the process immediately. The files that are already

downloaded or uploaded so far should remain and not be deleted when cancel is

pressed.

If user wants to look at file properties, a new window should again appear

showing the detailed information about the file. If the file is in remote file system,

this window should also include an option to change the permissions of the file.

12

3 ANALYSIS AND DESIGN

For software applications, the first and the most important thing is to analyse and

design the program before implementation. It is important to have well-designed

system since it benefits any program and makes the implementation easier.

3.1 UML Diagrams

The UML design of this program is done with Borland Together.

3.1.1 Main Functions

From the following figure, which is a use case diagram, we can see the main

functions of the application.

We can see there is only one actor which is user self. User is able to login to the

program, upload files, download files, cancel the transfer, delete files, rename file,

change file permissions as well as create new directory. All of these cases also

apply for folders.

Figure 1: Use Case Diagram

13

3.1.2 Application Main Modules

Application is divided into three packages: ui , util and filemanipulation. Ui

package is for all graphical user interface files and the filemanipulation package is

for classes that work between UI and files, especially manipulate them and get the

file lists etc. The package util has all the remaining classes, that are used in

support of ui and filemanipulation.

3.1.3 Class Relationships

In UI package, all window classes, except the DownloadUploadWindow, is called

by MainWindow. Constants is used by MainWindow and LoginWindow.

DownloadUploadWindow is called by RemoteFileSystem when download or

upload is started. In FileManipulation package, there are no class relationships

besides the already mentioned DownloadUploadWindow.

In Util package, all renderers and models are used by MainWindow of UI

package. IconCatcher is used by all renderers to get file icons. SpringUtilities is

used by LoginWindow to create the layout. TransferProgress is used by

DownloadUploadWindow, to show the progress of the transfer.

Figure 2: Component diagram

14

3.1.4 Class Diagrams

Here we take a more detailed look at the classes and roles of each class.

Figure 3 shows the class diagram in package filemanipulation. There are two

classes: RemoteFileSystem and LocalFileSystem. One method contained in both

of these classes is listFiles. This is the method which retrieves the list of files in

the current working directory so that they can be shown on the screen. Other

methods that both of these classes contain are the methods used for file

manipulation, such as deleteFiles, renameFile, createNewFolder.

In addition to these methods, RemoteFileSystem also has important role in

creating the connection to the remote server. This is done using the

Figure 3: Class diagram of filemanipulation package

15

createConnection method. After connection is created, the object of SftpClient is

stored in the instance of RemoteFileSystem and used in all other operations that

involve the remote system.

Shown in Figure 4 is the class diagram in package ui. There are 8 classes in this

package. Most of these classes represent a window in the graphical user interface.

The class called MainClass starts the program and it will launch LoginWindow.

Class LoginWindow takes care of the valid connection. MainWindow is the

window which shows the local and remote files, and includes menu, tool bar and

status bar.

MainWindow consists of mainly listener methods which are launched when user

interacts with the graphical user interface. These listener methods, such as

actionPerformed and keyPressed then call another method, such as download,

which in turn calls the appropriate method from the RemoteFileSystem. The

reason why methods such as download are not directly called from

RemoteFileSystem from actionPerformed is to avoid having to code same part

multiple times. Many actions can be accessed through many places (clicking from

menu, using keyboard), so it is sensible to create one method for one action,

which is then called from the listener.

RenameWindow is a very simple window having only one text field and two

buttons (OK and Cancel). CreateNewFolderWindow has same outlook as

RenameWindow but is used for the user to give the name of new folder instead of

renaming an existing file or folder. FilePropertiesWindow creates a window that

shows the properties of a file or folder. It has labels for file name, size, etc. For

remote file, it also has checkboxes for permissions.

16

Figure 4: Class diagram of ui package

17

DownloadUploadWindow is a window that shows the progress of an ongoing

download or upload. In addition to having a progress bar that shows the

percentage of current upload, it also shows the name of the file that is being

downloaded or uploaded, and number of remaining files or folders.

DownloadUploadWindow also contains two inner classes: DownloadTask and

UploadTask. These classes extend SwingWorker, which allows the download

and upload progress to operate in a separate thread. This allows the GUI to

operate, and user to press cancel button, while the progress is going on in the

background.

Constants is a class which holds some constant text values that are used by some

windows. It for example holds the name and version of the program, and is used

by LoginWindow and MainWindow to display this information. These texts are

placed in this Constants class so that changing of some of the texts can be made

easily just in one class instead of having to modify same text in each class one by

one.

Util package has also 8 classes. Class RemoteFileListModel extends

AbstractListModel and acts as a model for JList component. The responsibilty of

a this model is to store the list of objects, in this case SftpFile objects (SftpFile is a

class in J2SSH), for the JList component that shows the list of remote files. Class

RemoteFileListRenderer is responsible to render the components of the JList to

the screen. Without this renderer, JList would not show the files correctly (their

names), and there would not be icons for each file.

LocalFileListModel and LocalFileListRenderer are doing the same thing for the

JList component of the local file list. Instead of having the objects of SftpFile

class, the LocalFileListModel stores instances of java.ui.File class. Both of the

renderers, RemoteFileListRenderer and LocalFileListRenderer use the

IconCatcher to get the icon from the user's local icons. Each file type has their

own icon that represents the type of file (or folder). IconCatcher is also used by

the LocalDriveSelectionComboBoxRenderer, which is responsible for

rendering the elements inside the JComboBox which is used for selecting the local

drive.

18

TransferProgress class is an implementation of FileTransferProgress interface,

provided by J2SSH package. This class is used to get the information about the

progress of an upload or download. An instance of this class is given as a

parameter to the methods in one of the J2SSH classes for uploading and

downloading. That then automatically uses the methods in TransferProgress to

update the information about the progress, and can be then used by the graphical

user interface to show the progress.

SpringUtilities is a class made by Sun Microsystem, the producer of Java, and is

used by SpringLayout which is one of the default layouts in Java. Sometimes Sun

Microsystem provides implementation of some classes that are not provided

readily in Java's default classes. These classes complement the default Java

classes. This class has not been modified by me at all. [8]

To get a better idea of the renderers and models, it can be understood as model-

view-controller architecture. In model-view-controller architecture, the system is

divided into three parts. Model represents the data, view represents the

presentation (graphical user interface), and controller is the part which controls

Figure 5: Class diagram of util package

19

everything Controller decides what is shown to the user through view, and

controller receives the input from user and communicates with controller on

necessary changes. Figure 6 illustrates the architecture of model-view-controller.

In Java, JList component uses a design that represents model-view-controller

architecture. JList itself is the controller, while it has a separate model-object

which stores the actual data, and renderer object which is used to draw the data to

graphical user interface. In my case, the model and renderer have been replaced

by non-default classes. LocalFileListModel and RemoteFileListModel are the

models, which are holding the data, and LocalFileListRenderer and

RemoteFileListRenderer represent the view, which are responsible for rendering

the data.

All of these classes extend a default Java classes and overwrite a method:

getListCellRenderer-method for renderers, and getElementAt for models. JList

uses these classes by calling the overwritten methods.

[9]

Figure 6: Model-View-Controller architectural pattern

20

3.1.5 Detailed Descriptions of Main Functions

Here are are the sequence diagrams for main operations in my application From

Figure 7-Login Sequence Diagram, we can see how login method is implemented.

MainClass starts the LoginWindow constructor. When OkButton is pressed(action

is performed) in LoginWindow, it will launch RemoteFileSystem constructor. The

information of server address, port, username and password are taken from the

LoginWindow's textfields and passed on to the instance of RemoteFileSystem in

the constructor call.

After this, createConnection-method is called with the instance of

RemoteFileSystem that was just created. It tries to establish the connection, using

a method in a class of J2SSH. This method returns the result of the attempt of

connection and this result is used to create an error string, or in case of successful

connection, a “connectionOk” string is passed to the string. This string is then

returned to the LoginWindow.

Figure 7: Sequence diagram of login function

21

If the returned string contains “connectionOk”, LoginWindow creates an instance

of MainWindow and hides itself. If returned string was something else, it means it

contains the error message and it is shown on a label in LoginWindow.

Figure 8 shows how “create new folder” function is implemented. MainWindow

starts the CreateNewFolderWindow constructor. When OkButton is pressed

(action is performed) in CreateNewFolderWindow, it will first check that the new

folder's name is not empty, and then it checks if the selected system is local or

remote.

If selected system is local, createNewFolder method from myLocalFileSystem

(instance of LocalFileSystem) will be called, and then it checks if the folder with

same name exists or not. If such folder already exists, error message will be

shown, otherwise a new folder will be created. If the selected system is remote, it

works in the same way as local system. createNewFolder method from

Figure 8: Sequence diagram of create new folder function

22

myRemoteFileSystem (instance of RemoteFileSystem) will be called, and then it

checks if the folder with same name exists or not. If yes, error message will be

shown, otherwise a new folder will be created.

Figure 9 shows how “Rename” function is implemented. MainWindow starts the

RenameWindow constructor. When OkButton is pressed (action is performed) in

RenameWindow, it will first check the inputted new name is not empty, and then

it checks if the selected system is local or remote.

If selected system is local, renameFile method from myLocalFileSystem will be

called, and then it checks if the file/folder with same name exists or not. If there is

problem with name overlapping, error message will be shown, otherwise a

file's/folder's name will be changed.

If the selected system is remote, it works in the same way as local system.

renameFile method from myRemoteFileSystem will be called, and then it checks

Figure 9: Sequence diagram of rename function

23

if the file/folder with same name exists or not. If there is problem with name

overlapping, error message will be shown, else a file's/folder's name will be

changed.

Figure 10 shows how “Delete” function is implemented. When delete method is

called in MainWindow, it checks if the selected system is local or remote. Next a

dialog made with JOptionPane with delete confirmation is shown to user. If

selected system is local, and user selected yes option, deleteFiles method with

parameters “getSelectedLocalFiles” (a method that returns the files/folders that

are selected in the file list as array of File objects) will be called from

myLocalFileSystem. Inside delete method all files/folders are for-looped through

and each is passed to a method which deletes them recursively.

Figure 10: Sequence diagram of delete function

24

If selected system is remote, and user selects yes from the dialog, deleteFiles

method with parameters “getSelectedRemoteFiles” will be called from

myRemoteFileSystem. J2SSH has ready method for deleting folders recursively,

so special method for recursive deletion is not needed.

Figure 11 shows how “Download” method is implemented. When download

method is called in MainWindow, a confirmation window to ask if user is sure is

shown. If user selects yes, download method from RemoteFileSystem is called.

Selected files (array of SftpFiles) are given as parameter. RemoteFileSystem then

starts the DownloadUploadWindow. First the window is initiated, and instance of

TransferProgress is created.

Next one instance of DownloadTask, which is an inner class of

DownloadUploadWindow, is started. DownloadTask is a class which keeps the

download process in a separate thread, so that window can still be updated and

cancel button can be pressed while download is going on. Inside DownloadTask, a

method from J2SSH is used for downloading. This method is given the instance of

Figure 11: Sequence diagram of download function

25

TransferProgress as parameter, so it then updates the attributes inside the

TransferProgress. Every time attribute has changed in the TransferProgress,

PropertyChangedListener launches method in the DownloadUploadWindow.

Progress bar and other information about the download are then updated in GUI.

Figure 11 shows how “Upload” function is implemented. When upload method is

called in MainWindow, a confirmation window to ask if user is sure is shown. If

user selects yes, upload method from RemoteFileSystem is called. Selected files

(array of Files) are given as parameter. RemoteFileSystem then starts the

DownloadUploadWindow. First the window is initiated, and instance of

TransferProgress is created.

Next one instance of UploadTask, which is an inner class of

DownloadUploadWindow, is started. UploadTask is a class which keeps the

upload process in a separate thread, so that window can still be updated and cancel

button can be pressed while uploading is going on. Inside DownloadTask, a

method from J2SSH is used for uploading. This method is given the instance of

TransferProgress as parameter, so it then updates the attributes inside the

Figure 12: Sequence diagram of upload function

26

TransferProgress. Every time attribute has changed in the TransferProgress,

PropertyChangedListener launches method in the DownloadUploadWindow.

Progress bar and other information about the upload are then updated in GUI.

Figure 12 shows how “Change file permissions” function is implemented.

MainWindow starts the FilePropertiesWindow constructor. When OkButton is

pressed (action is performed) in FilePropertiesWindow, the program checks the

permission checkboxes in the getPermissions method, and returns an integer

representation of the permissions.

Next this integer is compared with another integer which has been initiated at the

beginning when the window was created, which represents the original

permissions. When at least one of the permissions have changed,

Figure 13: Sequence diagram of change file permissions function

27

changePermissions method of the RemoteFileSystem is called. In there, a method

from J2SSH is used to change the permissions.

28

4 IMPLEMENTATION

In this chapter I will show how some functions are implemented.

4.1 Coding

From the beginning, the design of this program has been done around J2SSH, also

known as SSHTools, which is an open source package for Java which provides

Java SSH application programming interface (API). It has some ready-made

classes and methods which can be used for creating SSH connections and

manipulating files through this connection.

4.1.1 Login Function

Snippet 1 has the okButtonPressed method from LoginWindow. At first the values

from the GUI text fields are read into variables. A new instance of

RemoteFileSystem is then started and these variables are given in as parameters.

Next createConnection method is called from the RemoteFileSystem, and the

result is saved as String variable. If the result is “connectionOK” string, then main

window is opened. Otherwise error is shown.

Snippet 2 has the constructor of RemoteFileSystem. All of the login information

are saved in variables.

Snippet 1: LoginWindow okButtonPressed method

29

Snippet 3 has the createConnection method. This is where the connection is

created. At first the username and password are placed inside pwd which is an

instance of PasswordAuthenticationClient (part of J2SSH). A String called

connectionResult is created. Next, inside try-block, the connection is created using

ssh object which is an instance of SshClient class, also a part of J2SSH. Server

address and port is given here as parameters. The third parameter is for the key

verification. If some problem happens at this method, an exception is thrown and

program jumps to catch-block where proper message is placed in the result string.

Snippet 2: RemoteFileSystem constructor

Snippet 3: RemoteFileSystem createConnection method

30

Normally in SSH, the server's key is saved in local drive and user is required to

verify if the key if it has changed. J2SSH unfortunately does not have proper

implementation for this functionality, so the verification is ignored and server key

is automatically accepted. Next authenticate method of the ssh object is called, to

authenticate username and password. This method returns int value which

indicates the result. The variable connectionResult is then given a proper text to

indicate how the connection went, so the possible error can be shown in

LoginWindow or new instance of MainWindow can be opened if connection is

ok. In the end, the result string is returned to the LoginWindow where it is used.

4.1.2 Download and Upload Function

As download and upload are very similar, I will only explain download function

here.

Snippet 4 shows the download method of MainWindow. In the first line, program

calls showConfirmDialog of JOptionPane. The parameters given for this method

are parent window (this means MainWindow), the message, the title, and last is

the options (buttons) shown to user. In this case, yes and no. This method returns

the result as integer, and next the program checks if the result is yes. If it is yes,

then download method of RemoteFileSystem is called, and the parameter is a

vector of SftpFile objects returned by getSelectedRemoteFiles method of

MainWindow. I will show the contents of this method next.

Snippet 5 shows the getSelectedRemoteFiles method of MainWindow. In first line

a new Vector is created. Next an array of integers is received from the

myRemoteFileList (JList). This list represents the indices of each selected file in

Snippet 4: MainWindow download method

31

remote file list. This array is for-looped, and for each index, the SftpFile is fetched

from the myRemoteFileListModel. It is casted to SftpFile because model returns it

as Object. The SftpFile objects are placed to the vector and in the end vector is

returned. Now I will show you the download method in RemoteFileSystem.

Snippet 6 shows the download method of RemoteFileSystem. In here, a new

instance of DownloadUploadWindow is created. The parameters given into the

constructor of DownloadUploadWindow are mainWindow (an instance of

MainWindow), sftp (instance of SftpClient, for processing the download), the

vector of files, and a boolean true indicating that it is download and not upload.

Snippet 7 shows the constructor of DownloadUploadWindow. Program saves the

parameters to local variables. Then it calls init() method to initialize window.

Next title and icon are set, and window is made visible, and finally startDownload

method is called.Snippet 8 shows the startDownload method. In this method,

program creates a new instance of DownloadTask and calls the execute method of

it. Parameters of SftpClient, vector of files and instance of TransferProgress is

given in. DownloadTask is a class which extends SwingWorker class. This is used

to keep the download process in a separate thread.

Snippet 5: MainWindow getSelectedRemoteFiles method

Snippet 6: RemoteFileSystem download method

32

Snippet 8 shows the startDownload method. In this method, program creates a

new instance of DownloadTask and calls the execute method of it. Parameters of

SftpClient, vector of files and instance of TransferProgress is given in.

DownloadTask is a class which extends SwingWorker class. This is used to keep

the download process in a separate thread.

Snippet 9 shows doInBackground method of DownloadTask. This is a method

where the actual task of SwingWorker should be placed. In this method, program

for-loops through the vector of files. For each file, it is checked if it is a directory

or a file. If it is a directory, then copyRemoteDirectory method of SftpClient is

used. If it is a file, then get method is used. The instance of TransferProgress is

given here as parameter. As TransferProgress implements a J2SSH interface, it

can be used here. PropertyChangeListener listens the changes of variables in

Snippet 7: DownloadUploadWindow constructor

Snippet 8: DownloadUploadWindow startDownload method

33

TransferProgress and whenever change is made by the J2SSH to the

TransferProgress, a propertyChange method is called in

DownloadUploadWindow.

Snippet 10 shows the propertyChange method of DownloadUploadWindow. At

first, it is checked that the source is equal to the instance of TransferProgress. It

actually always is, as the listener is only placed on it. The second if checks if the

progress has not still started, and makes the progress bar to be in intermediate

mode. This makes a small bar to go from left to right, to indicate that it is waiting

for progress to start.

Snippet 9: DownloadTask doInBackground method

34

If the progress has started, the information is updated in the GUI. File name, size,

and progress so far are all variables in the TransferProgress and are fetched using

methods inside it.

Snippet 11 shows the done method of DownloadTask. SwingWorker goes to this

method after the task of doInBackground method has finished. In this method,

Progress bar is set to 100%, program sets the cancel button disabled and ok button

enabled. The other labels are cleared and “Download Complete!” text is shown in

one of them.

Snippet 10: DownloadUploadWindow propertyChange method

Snippet 11: DownloadTask done method

35

4.1.3 Rename Function

Snippet 12 shows the rename method of MainWindow. In this method, program

first checks if the local or remote is selected (LOCAL and REMOTE are constant

integer variables), and then starts a new instance of RenameWindow. After the

RenameWindow has been closed, refresh method, which updates the file lists

shown in main window, is called. The parameters given in each case are different

so they both use different constructors of RenameWindow.

Snippet 13 shows the constructor of RenameWindow which is used when

renaming remote files. Parameters are instance of MainWindow, instance of

RemoteFileSystem and instance of SftpFile which represents the file or folder that

is going to be renamed. RenameWindow extends JDialog class, so the constructor

of super is called. The name of the file is placed into a text field in the window,

where user can change it.

When user presses OK, program starts okButtonPressed method from

actionPerformed. The first “if” is just checking that the text field is not empty.

Snippet 12: MainWindow rename method

Snippet 13: RenameWindow constructor (remote)

36

Next, the renameFile method of LocalFileSystem or RemoteFileSystem is called

depending on if the file was local or remote.

Snippet 15 shows the LocalFileSystem's renameFile method. At first, an instance

of File is created with the new name that is given to the method as parameter. If

this file exists, a message is shown to the user. If not, then renameTo method from

an instance of File, which represents the original file and was passed to this

method as parameter, is called. This method requires parameter that is an instance

of File that represents the new name.

Snippet 14: RenameWindow okButtonPressed method

Snippet 15: LocalFileSystem renameFile method

37

Snippet 16 shows the rename method of RemoteFileSystem. This differs

somewhat from the LocalFileSystem, as this one uses J2SSH and not classes from

java.util package. Parameters for this method are just the old and new file name.

A rename method from SftpClient is called and old name and new name are also

given as parameters to it. If there is problem with renaming, exception is thrown

and message dialog in catch-block informs the user about it.

4.1.4 Delete

Snippet 17 shows the delete function of MainWindow. This is very similar to the

download function. At first, user is asked a confirmation through JOptionPane's

showConfirmationDialog method. Then deleteFiles method is started from

LocalFileSystem or RemoteFileSystem (depending on which is selected). Next the

file lists are refreshed.

Snippet 16: RemoteFileSystem rename method

Snippet 17: MainWindow delete function

38

For remote system, deleting is quite straightforward. At first, the vector of

selected files is for-looped through, and rm method of SftpClient is called. The

parameters given are the path of the file, and one of the booleans that is true

means that it should delete recursively (all files and folders under one folder). If

problem appears, the user is informed with message dialog.

For local system, deleting is not as easy, because Java does not include methods

for deleting folders recursively. While the files are for-looped, another method

deleteRecursively is called. This deleteRecursively method takes care of deleting

all subfolders and files in case it is a folder.

Snippet 20 shows deleteRecursively method, which is a recursive method

(meaning that this method itself is called inside of it). At first it checks if the file

exists. If it does not exist, it returns true, meaning delete successful (as file does

not exists.

Snippet 18: RemoteFileSystem deleteFiles method

Snippet 19: LocalFileSystem deleteFiles method

39

Next, it checks if the file is directory or not. If it is a directory, the files/folders

under this directory are fetched into array of File objects, and each of them is

deleted using the method itself. After the for loop, the folder itself is deleted. If it

is not a directory, file is simply deleted with delete method of Java's File class.

4.1.5 Testing

Testing is an important part of implementation of any software. With testing, all

possible errors in logic and bugs can be found. Testing of this program was done

with two different operating systems: Windows and Linux. In addition to my

personal testing during the coding of this program, I also sent versions of it to my

friends who were testing with their own computers and gave me feedback which I

then used to improve the application.

4.2 Results

In the results and conclusions of this project, I show you how the program works

and looks like, and I also give some personal opinions and conclusions about it. I

also explain something about the future work that can be done with this project. In

this chapter, I show and explain how each function of this program works.

Snippet 20: LocalFileSystem deleteRecursively method

40

4.2.1 Login Window

Figure 14 shows the login window. In the title, it has the name of the program and

version. Below there are 4 labels and 4 text fields. This is where the user gives in

the information about login. If one of the text fields are empty, OK button

becomes disabled and can not be pressed. If user presses OK button, or presses

enter in one of the text fields, the connection is established and main window

opened. If there is problem in the connection, error message is shown above the

buttons, below the text fields, and main window is not opened.

4.2.2 Main Window

Figure 14: Login window

41

Main window, as seen in Figure 15, is divided from middle in two main parts. The

local file list is on the left side and remote file list is on the right side. Above each

file list there is tool bar for each list. The buttons in the tool bar are Home, Parent

Folder, New Folder and Upload/Download. On the local file list, there is also

selection for drive.

Above the tool bar there is menu, which has following items. File (Create New

Folder, Properties, Exit), Edit (Rename, Delete), Transfer (Upload, Download),

View (Show Hidden Files, Refresh), Help (About). Most of these menu items are

self-explanatory. At the bottom of the window, there is status bar which shows the

selected file system (local or remote) and number of selected objects and their

size. Size is only shown for files, as looking inside folders for size would take too

long in some cases.

Figure 15: Main Window

42

4.2.3 Popup Menu

There is also a popup menu, which appears when right mouse button is clicked.

This menu has following items: Create New Folder, Rename, Delete,

Upload/Download, Properties. These items, apart from Create New Folder, are

only available when file(s) or folder(s) are selected. Figure 16 shows how the

popup menu looks like.

4.2.4 Show Hidden Files

Figure 16: Popup menu

Figure 17: Show hidden files

43

When Show Hidden Files menu item has been selected from the View menu, files

that are normally hidden are also visible. These files are shown with grey color

instead of black, to let the user see which files are hidden and which are not

hidden.

4.2.5 Deleting Files

Deleting files can be done through menu items or with delete key. When deleting

files, a confirmation dialog appears. This window is not created from a class in the

ui package, but is instead created using Java's default JOptionPane. Many other

confirmations, such as confirmation for downloading and uploading files are done

with the same way.

4.2.6 Renaming Files

When choosing rename from the menu, or by pressing F2, a rename window will

appear. This window has a text field for the user to give the new name for the file,

and OK and Cancel buttons for actions. When the window opens at first, the

current name for the file or folder is shown in the text field. When user is satisfied

for the new name, he or she can press OK button. If he or she wants to cancel, it

can be done easily with Cancel button.

Figure 18: Delete confirmation

Figure 19: Rename window

44

4.2.7 Creating New Folders

Creating new folders, which can be done through menu or through the button on

tool bar, is as simple as renaming files or folders. User simply needs to give the

name for the new folder and click OK. Cancelling the operation can again be

easily done with Cancel button.

4.2.8 Downloading and Uploading

When the user initiates download through the tool bar button or menus, a

confirmation dialog appears first to make sure that user really wants to download

the selected files or folders. If user presses Yes, the download is started and

progress window is shown.

Figure 20: Create New Folder window

Figure 21: Download confirmation

Figure 22: Download progress window

45

In the Download progress window (Figure 22), user can see the name and location

of the current file, the size of the current file and number of remaining files or

folders. The progress is shown with a progress bar and user can cancel the

download at any moment with Cancel button.

Uploading is done in the same way as downloading. When the process has

finished, a text shows that download/upload has completed and OK button

becomes active. When user presses OK button, the window closes.

4.2.9 About Window

When user selects About from the Help menu, About window is shown. About

window has the program's name, version and author. This window has also been

implemented with JOptionPane (as are the confirmations), since it is just used to

show text.

Figure 23: Upload progress window - upload completed

Figure 24: About window

46

5 CONCLUSIONS

This project has carried out the purpose to transfer files from local system to

remote system with SSH connection, and vice versa. The project work has

fulfilled all of the requirements. It works well so that all the functions are

implemented and also it offers user-friendliness which makes it easier for users to

use compared with more complex programs.

It will definitely help users to transfer files easily with the SSH connection. For

most of the functions, users have multiple ways to access them. Take download

and upload as example: User can access them from menu, tool bar and right-click

popup menu. Hence, users can choose the way they like to approach their goal.

From my point of view, this project has been very beneficial for me. The project

has been very challenging, but it has also helped me to learn a lot more about Java

programming. One of the biggest challenge has been the fact that SSHTools did

not include proper documentation. The in-code documentation (javadoc) was

completely missing, and even the separate documentation was incomplete. This

forced me to look more deeply inside the source code of SSHTools, which gave

me deeper knowledge of how it works.

Besides, I have also seen how powerful the internet search engines are. Whenever

I meet problems or challenges, I search the relevant topics from the search engine

and it always finds me pages from where I can find the way towards the solution.

In fact, sometimes I can see others having similar questions and good answers for

them by experienced users, which is important and beneficial for me as well.

For the future, there are still some fields that can be improved in this program.

Some of them are implementation of "drag and drop", where user could be able to

just drag the files or folders between local and remote and initiate upload or

download in that way. The properties for local file system could also be more

versatile, including the read-only option and selecting the hidden status.

47

As a conclusion, the project has benefited me since it has developed my

programming skills, as well as other people who will be users of this program in

the future.

6 SUMMARY

The aim of my final thesis project work was to develop a program with which

user is able to transfer files from local computer to a server, and vice versa, with

SSH protocol. Moreover, it offers simple and user friendly interface so that user

can use this program easily. This project was done in these phases: information

gathering, analysis, design and implementation.

I have used Java Swing technology to code my project. Besides, an open source

SSH package, SSHTools (J2SSH) was used for the implementation of the SSH

part of this program. I have chosen Eclipse as the IDE (Integrated Development

Environment) to create the application, as a fact, I have found that Eclipse is a

powerful tool to develop Java application.

To develop this project was a big challenge for me. Although, I am still happy to

see how the project meets my expectations. Most important is that this project will

benefit potential future users. If possible, I would like to continue to study more

about Java Swing so that “drag and drop” function would work.

48

LIST OF REFERENCES

[1] Learn About Java Technology http://www.java.com/en/about/

[2] What is Swing? http://java.sun.com/docs/books/tutorial/ui/overview/intro.html

[3] Java Look and Feel Guidelines http://java.sun.com/products/jlf/ed2/book/

[4] Webopedia – What is SSH? http://www.webopedia.com/TERM/S/SSH.html

[5] Wikipedia – SSH File Transfer Protocol

http://en.wikipedia.org/wiki/SSH_file_transfer_protocol

[6] WinSCP - SFTP http://winscp.net/eng/docs/protocols#sftp

[7] SSHTools http://sourceforge.net/projects/sshtools

[8] The Java Tutorials – How to Use SpringLayout

http://java.sun.com/docs/books/tutorial/uiswing/layout/spring.html

[9] Sun Microsystems - Model-View-Controller Image

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/im

ages/app-archa2.gif

	FOREWORD
	ABBREVIATIONS
	ABSTRACT
	CONTENTS
	1 INTRODUCTION
	1.2 Technologies
	1.2.1 Java Language
	1.2.2 Java Swing
	1.2.3 SSH
	1.2.4 SSH File Transfer Protocol (SFTP)
	1.2.5 SSHTools (J2SSH)

	2 APPLICATION DESCRIPTION
	2.1 Requirement Analysis
	2.2 Accessing the functions
	2.3 User Interface

	3 ANALYSIS AND DESIGN	
	3.1 UML Diagrams
	3.1.1 Main Functions
	3.1.2 Application Main Modules
	3.1.3 Class Relationships
	3.1.4 Class Diagrams
	3.1.5 Detailed Descriptions of Main Functions

	4 IMPLEMENTATION
	4.1 Coding
	4.1.1 Login Function
	4.1.2 Download and Upload Function
	4.1.3 Rename Function
	4.1.4 Delete
	4.1.5 Testing

	4.2 Results
	4.2.1 Login Window
	4.2.2 Main Window
	4.2.3 Popup Menu
	4.2.4 Show Hidden Files
	4.2.5 Deleting Files
	4.2.6 Renaming Files
	4.2.8 Downloading and Uploading
	4.2.9 About Window

	5 CONCLUSIONS
	6 SUMMARY
	LIST OF REFERENCES

