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The traffic volume in mobile networks is estimated to grow more than 100 times in the next 
10 years. Mobile network operators are expanding their networks to respond to the demand 
and network vendors constantly improve their processes to address the growth. Long Term 
Evolution (LTE) technology is the leading technology to build the fourth generation (4G) 
mobile networks. The LTE base station is referred as evolved NodeB (eNB). The number of 
eNBs as compared to other network elements is large. The large number of eNBs together 
with the large number of parameters per eNB increase the requirement for efficient               
parameter planning process in LTE network roll-out projects. The goal of this study was to 
improve the eNB transport parameter planning process efficiency by developing a parameter 
model with defined parameter interrelations.  
 
First the current practises in selected roll-out projects were analysed. The project data were             
collected applying a questionnaire sent to the network planners. The data were analysed to 
have an understanding of the current practices. 
 
The study identifies two main parameter areas which benefit most of the parameter model 
and the defined interrelations. The first area is the eNB capacity related parameters including 
traffic engineering parameters and the second area is the Internet Protocol (IP) addressing 
related parameters. This study introduces a set of typical network scenarios and defines the 
interrelations between the eNB transport parameters in these scenarios. 
 
The developed model and the defined parameter interrelations reduce the number of       
manual entries in the planning phase. In the introduced scenarios one manual entry defines 
five to eleven case specific parameters in eNB configuration. This introduces 80% to 90% 
direct work effort savings and reduces the human errors and thus the non-quality cost as 
well. 
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1 Introduction 

 

The traffic in mobile networks in terms of bytes per day is estimated to grow more than 

a hundred times in the time period from 2015 to 2025. Even the conservative estimate 

predicts 61 time higher traffic volumes in 2025 compared to 2015. [1.] Mobile network 

operators need to expand their networks to respond to the demand. Also mobile network 

vendors need constantly to improve the processes in their delivery chain to address the 

new challenges in a cost efficient way. The traffic growth forecast prepared by Bell Labs 

is shown in Figure 1. 

 

Mobile broadband networks are expanding and new technologies are taken in use to 

fulfil the capacity and throughput needs. Long Term Evolution (LTE) technology is one 

of the leading technologies to build fourth generation (4G) mobile networks. These high 

speed LTE networks are becoming available for even larger populations and are solving 

the capacity and speed bottlenecks that users are currently experiencing. The LTE      

network base station is referred as evolved NodeB, eNodeB, shortly eNB. [2.] 

 

 

Figure 1. Bell Labs estimated traffic growth from 2015 to 2025. Even the conservative view shows 
growth of 61 time and aggressive view 115 times in ten years. Copied from [1]. 

 

The number of eNBs compared to other network elements is LTE network is large and 

the new capacity solutions are even increasing the eNB density in hot spot areas in near 

future [3 chapter 4].  The large number of eNBs together with the large number of            
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parameters per eNB increases the requirement for efficient parameter planning for LTE 

network. Managing high number of parameters in network roll-out project is time           

consuming and error prone task. Network operators are looking for easier ways to      

manage complex networks.  

 

One concept to minimize human effort is a frame work called Self Organized Networks 

(SON) [4 chapter 25.1]. The concept was introduced by the Next Generation Mobile   

Networks (NGMN) alliance in 2007 and it aims to minimize the operational effort and 

cost. This is achieved by applying automated mechanisms such as self-configuration, 

self-optimization and self-healing. The aim of these functions is to simplify the network 

operation [3 preface]. Even the self-configuration and self-optimizing functions minimizes 

the required human effort to configure network nodes they do not remove totally the need 

to plan the eNB parameters. Self-configuration of parameters such as neighbour             

relations is defined in 3rd Generation Partnership Program (3GPP) technical                

specifications, but vast number of parameters still requires manual planning. 

 

The aim of this study was to develop an eNB parameter model for network planning 

purposes. The eNB parameter model was to streamline the eNB parameter planning 

task and thus not only to minimize the direct effort required to produce the eNB                

parameter plan but also to improve the quality of the plan. Improved quality has a positive 

impact on the non-quality cost burn for error fixing and delays on eNB roll out schedule. 

The goal is to minimize the required human entries required to define the values for the 

eNB parameters during the roll-out planning phase. This is essential to minimize the 

network roll-out and in particular the network planning cost.  

 

This study focuses on the eNB transport parameters. The aim is to identify the most 

typical scenarios and for those scenarios to define interrelation rules between the           

parameters in different managed objects in the eNB configuration file. The identified       

interrelation rules can further be implemented in the planning tools to speed up the      

planning phase. 

 

The eNB radio parameters are not within the scope of this study. Also this study focuses 

on one selected eNB software release (RL70). The goal of the eNB parameter model for 

network planning is to enhance the automation in early steps in eNB planning and            

integration process. The study is part of the larger program aiming to automate the eNB 

integration and operation steps.  
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This paper starts by introducing the mobile broadband network architecture and goes on 

by explaining the network functionalities, which are relevant from the eNB transport       

parameter planning point of view. Then, the current transport parameter planning        

practises are discussed and results of the studied cases are summarised. Next, the      

developed eNB transport parameter model and the eNB transport parameter interrelation 

rules are introduced in chapter 4 and further analysed in chapter 5 after which the critical 

discussion is held in chapter 6. And finally the last chapter summarises the findings and 

conclusions on the present study. 
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2 Mobile Broadband Network Planning 

 

The objective of mobile broadband network planning is to dimension the network             

resources and to provide a cost efficient network design which scales well when the 

network capacity needs to be upgraded or new functionalities are taken in use. The      

design is a compromise between coverage, quality and cost. [5 section 6.2.]  

 

Furthermore, the detailed design defines the parameters for network elements so that 

they can be integrated to each other. This study focuses on the eNB parameters for 

interfaces and processes towards adjacent eNBs and Evolved Packet Core (EPC)       

network. The network architecture and protocol stacks are summarized first after which 

the planning aspects are discussed more deeply. 

 

2.1 Mobile Broadband Network Architecture 

 

Mobile broadband network consists of radio network and core network. In LTE the radio 

network specified by 3rd Generation Partnership Project (3GPP) is referred as an Evolved 

Universal Terrestrial Radio Access Network (E-UTRAN) and 3GPP core network is 

called Evolved Packet Core (EPC). [6.]  

 

In addition to 3GPP defined elements a real mobile broadband network consists of 

transport and IP backbone elements which are mainly based on the Internet Engineering 

Task Force (IETF) definitions. These transport and Internet Protocol (IP) backbone      

networks used to connect E-UTRAN and EPC are called Mobile Backhaul Networks 

(MBH). [7.] The E-UTRAN architecture is discussed briefly in subsection 2.1.1 then      

mobile backhaul architecture is summarised in 2.1.2 and the interface concept between 

the eNB and the mobile backhaul is elaborated in 2.1.3 after which the protocol stacks 

are introduced in section 2.1.4.  

 

2.1.1 Evolved Universal Terrestrial Radio Access Network Architecture 

 

An Evolved Universal Terrestrial Radio Access Network (E-UTRAN) consists of several 

radio base stations called evolved NodeB (eNB). An eNBs provides air interface (Um) 

for the user equipment and terminates user plane and control plane protocols towards 

the User Equipment (UE). The eNB has logical interfaces towards core network and    
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adjacent eNBs. The logical interface towards core elements is called S1 interface. Each 

eNB is interfacing to two types of core network elements, the signalling function inter-

faces to a Mobility Management Entity (MME) and user the plane traffic to a Serving 

Gateway (S-GW). The interface towards the MME is called S1-MME and the interface 

towards the S-GW is S1-U interface respectively. The logical interface towards adjacent 

eNBs is called X2 interface. The E-UTRAN architecture is illustrated in Figure 2. [6.] 

 

eNB

MME / S-GW MME / S-GW

eNB

eNB
S

1

S
1

S
1

S
1

X2

X
2

X
2

E-UTRAN

 

 

Figure 2.  The E-UTRAN Architecture, LTE radio base stations (eNB) and core network elements; 

Mobility Management Entity (MME) and Serving Gateway (S-GW). Copied from [6]. 

 

 

Like the S1 interface also the X2 interface consists of user plane and control plane      

functionalities. The control plane of X2 interface is used for procedures between adjacent 

eNBs required to hand a UE over from one eNB to another eNB. The X2 user plane is 

required to forward the user IP packets already received by the old eNB but not yet 

transmitted successfully over the air interface before the UE was handed over the new 

eNB. In case the X2 interface is not defined between the adjacent eNBs the handover 

takes place in S1 interface instead. [8,170-173.] 
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2.1.2 Mobile Backhaul Network Architecture 

 

The transport and packet networks providing connectivity between the eNB and the     

Mobility Management Entity (MME) and the Serving Gateway (S-GW) in S1 interface 

and between adjacent eNBs in X2 interface are called Mobile Backhaul Networks (MBH) 

or shortly mobile backhaul. Mobile backhaul networks connect large number of eNBs to 

relatively small number of core network elements. The structure of mobile backhaul     

network is shown in Figure 3. [7;8 subsection 12.5.1.] In addition to the tree topology 

shown in Figure 3 also the point to point and the ring topologies are seen at access layer 

section of the mobile backhaul networks [9;2,138]. 

 

 

Figure 3.  Access layer and aggregation layer of the mobile backhaul network. Access layer relays 

typically on fibre and microwave radio based physical media while aggregation layer is fibre based 

network. Adapted from [9;2]. 

 

 

Mobile backhaul network connects the eNBs to the IP backbone network, which in turn 

provides connectivity to the core network elements. Mobile backhaul network can be 

divided into two sections; access layer and aggregation layer. The access layer is also 

called a last mile or a first mile depending on the perspective. The access layer may be 

pure layer 2 network or pure layer 3 network or mix of them. Layer 2 network is typically 

Ethernet switching network and layer 3 is IP based network. [7 section 1.2.] 

 

The media used in access network includes wireline copper cable-based and fibre based 

technologies and wireless microwave radio based technologies [10,22]. Due to high data 

rate targets the fibre-based and microware are the most common access media used in 
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mobile backhaul while the copper based connection may be seen on limited capacity 

sites. 

 

The interface between an eNB and the mobile backhaul network can be considered to 

be a User Network Interface (UNI) in the Metro Ethernet Forum terminology [11]. The 

concept of UNI is discussed in the next section. 

2.1.3 User Network Interface 

 

Metro Ethernet Forum defines specifications for carrier class Ethernet services. Metro 

Ethernet Forum focuses on four key specification work areas which are: services,            

architecture, management and test & measurement. The aim is to improve interopera-

bility and accelerate deployment of Carrier Ethernet worldwide. An Ethernet service is 

defined as a connection between two or more User Network Interfaces (UNI). Service 

attributes are used to define the properties of the User Network Interfaces. 

 

The interface between a user equipment, referred to as Customer Edge (CE) (in this 

case eNB) and the provider’s network (in this case mobile backhaul network) is referred 

to as a User Network Interface (UNI). Connection between User Network Interfaces 

cross the providers network is defined by the Ethernet Virtual Connection (EVC). An EVC 

is an association of two or more UNIs. The concept of the Ethernet service model is 

shown in Figure 4. [12.]  

 

 

 

 

Figure 4. Ethernet service model according to Metro Ethernet Forum. Customer Edge is an   

equipment interfacing to the provider’s network. User Network Interface (UNI) is a physical          

demarcation point between the responsivities of the subscriber and the service responsibilities of 

the provider. Copied from [12]. 
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Each User Network Interface has a set of attributes which describe the characteristics of 

the given UNI. The most relevant attributes for this study are the bandwidth profile related 

attributes. The bandwidth profile may be defined per User Network Interface (UNI), per 

Ethernet Virtual Connection (EVC) or per Class of Service (CoS). The standard band-

width profile attributes are listed in Table 1. [13.] 

  

 

Table 1. User network interface (UNI) bandwidth profile attributes. Data gathered from [13]. 

Attribute name Unit Purpose 

Committed information 

rate (CIR) 

bit/s The average bitrate at the ingress UNI the provider’s network 

commits to transfer the data to egress UNI fulfilling the 

agreed quality targets. 

Committed burst size 

(CBS) 

bytes Amount of data arriving in the network in one go as a single 

burst at the ingress interface the provider’s network commits 

to transfer according the agreed quality targets. 

Excess information 

rate (EIR)  

bit/s The average bitrate exceeding the committed bitrate at the 

ingress UNI the provider’s network transfer the data to 

egress UNI if network capacity is available, no quality targets 

are committed for the excess amount of data 

Excess burst size 

(EBS)  

bytes Amount of data arriving in the network in one go in addition 

to the committed burst size at the ingress interface the       

provider’s network transfers if network capacity is available, 

no quality targets are committed for the excess amount of 

data 

Coupling flag (CF)  The coupling flag controls the choice how the bandwidth   

profile algorithm threats the service frames declared yellow. 

Colour mode (CM)  Colour mode parameter defines whether the bandwidth    

profile algorithm operates in colour-aware or colour-blind 

mode. Colour-aware mode considers colour marking on ser-

vice frames at ingress interface. 

 

The colour mode parameter defines if the Ethernet virtual connection (EVC) service is 

colour aware or colour blind. Colour aware mode takes the traffic marking into account 

in bandwidth profile algorithm thus is able to selectively drop packets in case of conges-

tion in the network. In colour aware mode traffic is classified in three classes identify be 

colours. Traffic not exceeding the Committed Information Rate (CIR) is considered to be 

green, traffic exceeding the CIR but not exceeding the sum of CIR and EIR is considered 

to be yellow and traffic exceeding the sum of CIR and EIR is considered to be red. The 
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green traffic is not dropped, the yellow traffic may be dropped in an event of network 

congestion and the red traffic is dropped at the ingress UNI to protect the provider’s 

network. The colour blind profile does not consider traffic marking and thus it may end 

up dropping also the high priority packets in case of network congestion. [13.] 

 

 

2.1.4 S1 and X2 Interface Protocol Stacks 

 

The applications for signalling, S1-AP for S1 interface and X2-AP for X2 interface, are 

defined by the 3GPP. The S1 application protocol terminates the control plane between 

the eNB and the Mobility Management Entity (MME) and the X2 application protocol 

terminates the control plane between adjacent eNBs. Note that signalling message flows 

between the User Equipment (UE) and the Mobility Management Entity are considered 

to be user plane traffic in an eNB point of view. The application protocols S1-AP and X2-

AP are running on top of well-known Stream Control Transmission Protocol (SCTP) and 

Internet Protocol (IP) defined by the Internet Engineering Task Force (IETF). The S1-AP 

protocol stack is shown in Figure 5.  [14.] 

 

 

   

Figure 5. The protocol stack used for S1 interface application protocol (S1-AP) signalling. Stream 

Control Transmission Protocol (SCTP) provides reliable transport for signalling messages. 

Adapted from [14]. 

 

 

The X2 interface application protocol has an important role in a hand over process where 

a User Equipment is handed over to new serving cell. The X2 interface enables eNBs to 
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perform the hand over without core network involvement. This reduces the signalling 

load at the Mobility Management Entity (MME). The X2-AP protocol stack is very similar 

as the only difference is the application layer where instead of S1-AP the X2-AP is used. 

S1-AP protocol stack is shown in Figure 6. [15.] 

 

 

Figure 6. The protocol stack used for X2 interface application protocol (X2-AP) signalling. Adapted 

from [15]. 

 

 

The 3GPP does not limit the protocols used in data link and physical layer but in practical 

implementations the most common technology used for these layers is Ethernet.      

Ethernet scales well for bursty data traffic. [16 section 15.7.] The corresponding protocol 

stack to carry user data is illustrated in Figure 7. The same stack is applied both for S1 

and X2 interface. [17;18.] 

 

    

Figure 7. U-plane protocol stack used for S1 and X2 interfaces. The GTP-U is used to encapsulate 

the user IP packets.  Adapted from [17;18] 
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The GPRS tunnelling protocol for user plane (GTPv1-U) is used to encapsulate the user 

plane data in E-UTRAN. The GTP-U is running on top of user datagram protocol (UDP) 

which in turn running of top of IPv4 or IPv6 network layer protocol. The GPRS Tunnelling 

Protocol (GTP-U) and User Datagram Protocol (UDP) relies on upper layer protocols for 

example User TCP for possible retransmission.  

 

The use of particular data link layer and physical layer protocols is not specified by the 

3GPP [14;15;18]. Ethernet is typically used as data link and physical layer protocol as it 

is widely adopted by mobile backhaul networks especially for high capacity links [7]. 

 

The eNB transport parameters discussed in this study are related to transport network 

layer shown in Figure 5 and Figure 6 and to parameters required for processes which 

are used to monitor the user plane path availability and quality. The parameters related 

to application layers S1-AP and X2-AP are not in the scope of this study. 

 

2.2 Planning Problems 

 

The problem to solve in IP network planning is to provide a network that scales well and 

is easy to maintain. The IP backbone is designed to be robust and fault tolerant and able 

to forward huge amount of data. [19.] 

 

The problem to solve in access layer planning is to provide a cost efficient access        

connection to large number of sites which do not necessary have fibre connections   

available. The access network technology and access network planning has not been 

discussed much in literature as a technology providing connections for mobile broadband 

network elements. [7.] 

 

Further, discussion about 3GPP radio technologies and eNB especially in literature, are 

mainly focused on the air interface problems but the transport interfaces S1 and X2 has 

been included as low focus areas. The S1 and X2 interfaces are typically discussed in 

the 3GPP scope point of view leaving the IETF based protocols and processes in lower 

attention or totally out of discussion. [7.] 
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2.3 High Level Design 

 

A high level design defines the overall technical solution, design rules, technologies and 

concepts to be used in the given network. The high level design does not touch network 

element parameters in detail since that is addressed in detailed design phase. [2,131;20.] 

 

The high level design consists of for example connectivity diagram showing the main 

network elements and the interfaces between them, synchronization and resilience    

principles, the use of virtual local area networks (VLAN) and Internet protocol (IP) sub-

nets. High level design also addresses the quality of service (QoS) strategy to be applied. 

[2,131;20.] 

 

2.4 eNB Transport Interface Dimensioning 

 

There are two main approaches to perform the eNB transport interface capacity                

dimensioning. The first approach is to use the accurate traffic figures and calculate the 

transport overhead on top of those [2]. The second approach is to use the air interface 

capacity as a reference for the transport capacity calculations [21]. This approach can 

also be followed in case the accurate traffic estimations are not available.  

 

For each cell a peak rate and an average data rate can be defined. Peak rate is achieved 

when all radio resources are used for transmission or reception with the highest          

modulation and coding scheme. Adding the transport protocol header over head the 

transport capacity to support the given cell configuration peak rate can be defined. The 

cell average throughput in this context refers to the situation where all the eNB radio 

resources are used but the user equipment (UE) are distributed evenly over the cell   

coverage area and thus only small share of user equipment have a possibility to benefit 

the highest modulation and coding schemes.  

 

The air interface capacity based approach can be further divided into variants based on 

the weight of the peak and average cell throughputs. The typical approach is to assume 

single peak and sum of cell averages and pick the one which requires the highest 

transport capacity. Other options includes sum of all averages, single peak and all but 

one average and sum of peaks. [8 subsection12.4.1.] The air interface capacity based 

approach is further discussed in the Guidelines for LTE Backhaul Traffic Estimation and 

the Backhaul Provisioning for LTE-Advanced & Small Cells. [21;22.] 
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2.5 Detailed Planning 

 

In the detailed planning phase the eNB parameters are defined. An eNB configuration 

may have more than 1600 parameters, most of them related to air interface processes 

[23]. In eNB transport area, covering interfaces S1 and X2, there are several hundred 

parameters. Due to high number of eNBs compared to other network elements in the 

mobile broadband network the efficient parameter planning and handling in general is 

essential for cost efficient roll-out.  

 

The eNB transport parameters can be categorized in many ways. In this chapter the eNB 

transport parameters are divided into categories based on the location of the process, 

the parameters are controlling. First the processes close to eNB are discussed. This 

covers functionalities typically limited to access layer of the mobile backhaul network 

structure shown in Figure 3. In this study these processes are referred as near reaching 

processes.  

 

As a second step the focus is in functionalities having eNB counterpart further in the 

backhaul network either in aggregation layer or in IP backbone. In this study these        

processes are called far reaching processes. As a third step the processes having the 

eNB peer at core or network management site are covered. In this study these processes 

are referred as end-to-end processes. 

 

2.5.1 Near Reaching Processes 

 

In this document the access process refers a process which has limited geographical 

significance and can be located close to eNB and typically is limited to the access section 

of the mobile backhaul as shown in Figure 3.  This section discusses the access              

processes which parameters need to be planned case by case. The processes               

discussed in this section include IP addressing, traffic separation, traffic path supervision 

and fast traffic rerouting, Quality of Service (QoS) aware Ethernet switching and 

Transport Admission Control (TAC). 
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2.5.1.1 IP Addressing 

 

The eNB IP addressing options in release RL70 are illustrated in Figure 8. The scenario 

a)  shows a case where user plane (U), control plane (C), synchronization plane (S) and 

management plane (M) applications share the same IP address as the VLAN interface. 

In the scenario b) each application plane has an IP address of its own and the address 

is shared with the VLAN interface the application plane is associated with. The scenario 

c) assumes unique loopback IP address for each application plane and separate IP       

address for the VLAN interface (T).  

 

These are the basic IP addressing scenarios and the actual configurations may have 

combinations of these. One typical practical case is to assign S-plane IP address to 

transport interface and the others to have loopback address as application IP address. 

Some features such as symmetric Stream Control Transmission Protocol (SCTP) multi-

homing and transport separation for Radio Access Network (RAN) sharing introduce   

additional IP addresses to be considered. [8 subsection 12.2.6.] 

 

    

Figure 8. The basic eNB IP addressing options: a) single VLAN and single IP address shared for 

all applications, b) dedicated VLAN for each application, c) Single VLAN and dedicated applica-

tion IP address defined as loopback address for each application. Adapted from [8]. 

 

 

This subsection concludes the discussion of the eNB IP addressing modes. The next 

subsection discussed the traffic separation.  
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2.5.1.2 Traffic Separation 

 

This subsection discusses the traffic separation functionality. The traffic separation on 

an eNB transport interface is based on the Virtual Local Area Networks (VLAN). The 

VLAN tagging is based on the IEEE 802.1Q standard. The drivers for the traffic separa-

tion includes the operator’s security policies, the backhaul node traffic treatment capa-

bilities and the network monitoring requirements. The operator may want to separate the 

management plane from the other traffic planes. Having dedicated management network 

domain reduces the risk of impacting the remote management connection when modify-

ing the parameters related to the other traffic planes.  

 

Traffic classification in a backhaul node operating at layer 2 may be based on the source 

Media Access Control (MAC) address, the destination MAC address, the Virtual Local 

Area Network Identifier (VLAN ID) or the VLAN priority [24]. Modern layer 2 nodes are 

also able to use the layer 3 differentiated services code point (DSCP) marking as a base 

for traffic classification. In earlier eNB releases traffic monitoring was possible on VLAN 

level and thus in order to monitor traffic volumes per traffic plane a dedicated VLAN was 

defined for each traffic plane. The eNB traffic monitoring capabilities have evolved since 

and thus traffic monitoring is less likely the driver for traffic separation any longer. 

 

The VLAN ID is the most relevant eNB parameter for traffic separation. The related        

parameters include the IP subnet assigned for the VLAN and the IP address to be applied 

as VLAN interface IP address in the given eNB. The VLAN ID and subnet may be        

common for a few to dozens of eNBs while the VLAN interface IP address must be 

unique for each eNB within a mobility management entity (MME) area. An example of 

eNB VLAN termination is illustrated in Figure 9. In this example three VLANs are defined 

for the eNB. The green, red and blue dotted lines in the figure illustrate the configured 

VLANs; VLAN 100, VLAN 200 and VLAN300 respectively. The VLANs are terminated at 

the first router the eNB is connected to. 
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Figure 9. An example of traffic separation based on VLAN configuration. Each VLAN carries    

specific type of traffic for example the VLAN 100 synchronisation plane traffic, VLAN 200          

management plane and VLAN 300 control plane and user plane traffic. The VLANs are terminated 

at the eNB and at the first hop router. 

 

The parameters defined for VLAN managed object in the eNB configuration file are 

shown in Listing 1. In addition to VLAN ID and the IP address also the traffic shaping 

limits relevant to the given VLAN are defined. Shaping information rate (sir) and shaping 

burst size (sbs) are used to control average data rate and the maximum number of octets 

which can be sent as a one burst. Shaping is used to avoid violating the capabilities limits 

of the mobile backhaul nodes and agreed capacity usage. 

 

managedObject class="IVIF" distName="MRBTS-xxx666/LNBTS-

xxx666/FTM-1/IPNO-1/IEIF-1/IVIF-2" operation="create"     

version="LN5.0"> 

<p name="vlanId">3300</p> 

<p name="localIpAddr">10.225.10.33</p> 

<p name="netmask">255.255.255.248</p> 

<p name="sir">150000</p> 

<p name="sbs">4000</p> 

<p name="qosEnabled">false</p> 

<p name="wfqSchedQueueWeight">1000</p> 

</managedObject> 

Listing 1. An example of VLAN managed object and related parameters in an eNB XML               

configuration file. In addition to VLAN interface IP address the VLAN ID (vlanId), shaping                

information rate (sir) and shaping burst size are to be considered case by case. 
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The traffic separation using VLANs can be used to direct the traffic to desired interface 

or towards the desired node. One use case is to connect eNB to Mobile-Edge Computing 

(MEC) system. Mobile-edge computing refers the case where Information Technology 

(IT) and cloud computing capabilities are located close to mobile subscribes and thus 

close to the eNBs. Figure 10 shows an example network with Mobile-Edge Computing 

(MEC) server. In this example eNBs in the grey area are served by the applications   

running on the mobile-edge computing server. [25.]  

 

The introduction of the mobile-edge computing server to existing network is transparent 

to 3GPP network architecture and existing interfaces. The mobile-edge computing server 

as well the applications running on it do not require any changes in the user equipment 

(UE) or mobile core network elements.  

 

   

Figure 10. An example deployment scenario of the Mobile-Edge Computing (MEC) server. The 

user equipment (UE) under eNB-1 and eNB-2 coverage area may access the local content in 

Mobile-Edge Computing (MEC) server next to the First Hop Router (FHR). 

 

The mobile-edge computing platform must not affect the availability of the network even 

it is out of service and thus resilience features are applied in the eNB to fulfil this require-

ment. In normal condition the S1 traffic is traversing the mobile-edge computing server. 

In case the server becomes unavailable the S1 traffic is redirected to a secondary path 

which bypasses the server. [25.] The resilience features are discussed next.  
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2.5.1.3 Traffic Path Supervision and Fast Traffic Rerouting 

 

The way people communicate has changed a lot in past decades. Today people are 

expecting seamless service, always being connected to network. On the other hand   

businesses have been moved to network or at least heavily depend on the network     

connectivity. The traditional customer interaction changes to online interaction. This   

phenomena is called Hyper-connectivity.  Hyper-connectivity has revolutionised the way 

the business is conducted.  

 

As businesses relay more and more on the network connectivity the service and network 

availability is a key target for many network operators. For these reasons a good network 

design considers various resilience methods. Relying routing protocol updates in many 

cases is no longer fast enough and thus alternative options are made available to reduce 

the network outage times from a few second ranges to less than 100 millisecond ranges. 

To design a resilient networks several aspects needs to be considered. Common resili-

ency methods include the ones listed in Table 2. [26.] 

 

Table 2. Common resilience methods. Data gathered from [26]. 

Common resilience methods 

Multiple connections between the critical network nodes 

Redundant critical network nodes and devices 

Quality of service monitoring to react to service shutdowns 

Redirection to avoid congestion 

Analysis of the most efficient use of active connections 

 

 

To increase the resiliency in the mobile network the connection between the eNB and 

the core network can be implemented using redundant links on chain or ring topology. 

The ring topology provides additional geographical redundancy and is helpful in case of 

for example in natural disasters causing damages on the whole site the node is installed. 

These provides additional traffic path in case one path has a link or node failure.  

 

One approach to monitor the availability of a traffic path between two systems              

communicating with IPv4 or IPv6 is to apply the Bidirectional Forwarding Detection (BFD) 

process. In this contexts the link between the eNB and the gateway router can be super-

vised using eNB feature link supervision with BFD [27].  



19 

 

 

The availability information may further be used as an alarm status or to control routing 

in case of path failure. The eNB feature fast IP rerouting based on BFD enables            

conditional routing based on the BFD status [27]. To improve resilience two independent 

or partially independent paths can be implemented between the eNB and the IP gateway 

(GW). The path which is considered to be the primary path is supervised by the BFD 

process. Whenever the BFD reports path availability the primary path is used for traffic 

forwarding. As soon the primary path is declared to be unavailable the traffic is forwarded 

to the secondary path.  

 

A single hop BFD is defined in RFC5880 and it is further clarified in RFC7419 which 

specifies common interval support in bidirectional forwarding detection to improve           

interoperability between different vendor systems [28;29]. Single hop BFD is used to 

monitor a connectivity cross a link and thus this is limited to peers sharing the subnet. 

The BFD specification was further extended to support monitoring of paths consisting 

several links. This extension is referred as bidirectional forwarding detection (BFD) for 

multihop paths [30]. The BFD is configured between two peers. Each peer is configured 

to send small “hello” messages to its peer. As far the node receives these “hello”         

messages from its peer the path is declared to be available but when no “hello” message 

is received within a specific time frame the path is declared to be unavailable. 

 

From the planning point of view there are a few aspects to be considered. First one is 

the mode of operation. The BFD process may operate in single hop or multi hop mode. 

Single hop refers to the situation where the peer is within the same subnet and thus only 

one layer 3 (L3) hop exists on the path. Multi hop mode refers cases where the peer 

node is located in the other subnet and one or more routers are located in between the 

peer nodes. The selection of the mode is controlled by node interoperability and the 

network design targets. The second aspect which is visible in the planning point of view 

is the peer IP address. Each peer is identified by an IP address and these addresses 

need to be configured in the nodes running the BFD processes. Typically the BFD          

supervision is defined between the eNB and the IP GW assigned for the eNB as shown 

in Figure 11.  
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Figure 11. An example of Bidirectional Forwarding Detection (BFD) process between the eNB-1 

and the router R1. In case the path from eNB-1 o R1 becomes unavailable the bath to R2 is taken 

in use. 

 

Next the details of an example configuration are discussed. This example shows a case 

where eNB connection towards the core network is partially protected. The section        

between the eNB-1 and the Ethernet switch (SW-1) is unprotected; however, the          

connection from SW-1 onwards is protected. The blue line in Figure 11 illustrates a BFD 

process in the example mobile backhaul network. The BFD process supervises the path 

in between the eNB-1 and the router R1. 

 

The traffic forwarding in the eNB assumes R1 as a GW to access the core network as 

far the path is claimed to be available by the BFD process. As soon the BFD process 

detects the path being unavailable the traffic forwarding in the eNB assumes R2 as a 

GW to access the core network. Listing 2 shows parameters applied in the eNB-1 for the 

BFD process in this example. 

 

<managedObject class="BFD" distName="MRBTS-15/LNBTS-15/FTM-

1/IPNO-1/BFD-1" operation="create" version="TL15A"> 

<p name="bfdActivation">true</p> 

<p name="bfdAdminUp">true</p> 

<p name="bfdDestAddress">10.100.0.1</p> 

<p name="bfdDetectMult">3</p> 

<p name="bfdGrp"/> 
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<p name="bfdSourceIpAddr">10.100.0.7</p> 

<p name="bfdSourceUdpPort">3784</p> 

<p name="bfdType">singleHopBFD</p> 

<p name="desMinTxInt">500</p> 

<p name="reqMinRxInt">500</p> 

</managedObject>  

Listing 2. The BFD managed object parameters for eNB-1 shown in Figure 11. The process is 

defined between two IP endpoints and thus the IP addresses for this managed object needs to 

be defined case by case. 

 

The traffic forwarding parameters for this example are shown in Listing 3.  In the first item 

the traffic forwarding is based on the status of the BFD process (bfdid=1). When the 

BFD-1 indicates the path being available the gateway (GW) assuming IP address 

10.100.0.1 is used for the destination 10.10.20.0/24 a as the preference is set highest 

(preference=1). The second item shows unconditional forwarding definition that is the 

traffic forwarding is not based on any BFD process. This is indicated by a special value 

bfdId=0. The preference of the second forwarding item is set lower than is used for the 

primary path (preference=3) and thus this forwarding definition takes action only if no 

valid forwarding options with higher preference is available. The forwarding process      

assumes 10.100.0.2 as GW when the first path becomes unavailable. 

 

<managedObject class="IPRT" distName="MRBTS-15/LNBTS-15/FTM-

1/IPNO-1/IPRT-1" operation="create" version="TL15A"> 

<list name="staticRoutes"> 

<item> 

<p name="bfdId">1</p> 

<p name="destIpAddr">10.10.20.0</p> 

<p name="gateway">10.100.0.1</p> 

<p name="netmask">255.255.255.0</p> 

<p name="preSrcIpv4Addr">0.0.0.0</p> 

<p name="preference">1</p> 

</item> 

<item> 

<p name="bfdId">0</p> 

<p name="destIpAddr">10.10.20.0</p> 

<p name="gateway">10.100.0.2</p> 

<p name="netmask">255.255.255.0</p> 

<p name="preSrcIpv4Addr">0.0.0.0</p> 
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<p name="preference">3</p> 

</item> 

</managedObject> 

 

Listing 3. An example of routing manged object (IPRT-1) in the eNB XML file, traffic forwarding 

based on the BFD-1 process. To a destination 10.10.20.0/24 GW 10.100.0.1 is preferred. If that 

path becomes unavailable the less preferred path via GW 10.100.0.2 is used. 

 

 

This subsection concludes the discussion of the traffic path supervision and path protec-

tion. Next the quality of service aware Ethernet switching feature is discussed 

 

2.5.1.4 Quality of Service (QoS) Aware Ethernet Switching 

 

The next functionality to discuss here is the Quality of Service (QoS) aware Ethernet 

switching. Quality awareness enhances the basic Ethernet switching capabilities. This 

functionality introduces a list of small processes running at Ethernet switch in the eNB. 

These include traffic policing, traffic classification, queuing, scheduling and traffic shap-

ing. The QoS aware Ethernet switching enables desired treatment of aggregated traffic 

at the eNB Ethernet switch egress interface in case of network congestion. The traffic is 

delay and/or dropped in controlled manner based on how it was marked. This ensures 

that the aggregated traffic does not violate the bandwidth attributes of the User Network 

Interface (UNI). This is important especially in a case the eNB UL traffic is aggregated to 

other traffic at eNB Ethernet switch.  

 

The traffic shaping in egress interface ensures that UNI capacity attributes are not           

violated either by too large aggregated burst or too high aggregated average data rate. 

The queuing system in each interface of the QoS aware Ethernet switch consists of one 

strict priority queue and five weighted fair queues. Traffic is classified to proper queue 

based on the Differentiated Services Code Point (DSCP) value on IP header or by VLAN 

priority bits in VLAN tag. The scheduling weights can be controlled to ensure proper 

traffic treatment in case on congestion at UNI. 
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2.5.1.5 Transport Admission Control (TAC) 

 

In addition to control total traffic volumes by the shaping process also the Guaranteed 

Bit Rate (GBR) traffic can be limited in a controlled manner. Transport admission control 

(TAC) feature allows the operator to set a limit for the GBR traffic. The transport                

admission control (TAC) will check the available transport capacity before it accepts the 

new Guaranteed Bit Rate (GBR) bearer setup. If not sufficient capacity is available the 

new bearer setup is rejected. By Transport Admission Control the operator can protect 

the services of GBR bearers which are already served by the system in case of conges-

tion. Separate limits can be defined for normal traffic, incoming handover traffic and 

emergency traffic. Listing 4 shows an example of transport admission control                    

parameters. 

 

<managedObject class="TAC" distName="MRBTS-xxx666/LNBTS-

xxx666/FTM-1/TAC-1" operation="update" version="LN5.0"/> 

<managedObject class="LTAC" distName="MRBTS-xxx666/LNBTS-

xxx666/FTM-1/TAC-1/LTAC-1" operation="update" version= 

"LN5.0"> 

<p name="tacExludeL2Overhead">false</p> 

<p name="tacActivityFactor">100</p> 

<p name="tacLimitGbrNormal">105000</p> 

<p name="tacLimitGbrHandover">120000</p> 

<p name="tacLimitGbrEmergency">150000</p> 

<p name="transportNwId">0</p> 

<p name="qci2AvPacketSize">200</p> 

<p name="qci3AvPacketSize">80</p> 

<p name="qci4AvPacketSize">300</p> 

</managedObject> 

Listing 4. An example listing of the eNB transport admission control parameters in eNB XML file. 

The admission limits can be defined separately for normal traffic, traffic entering the cell by hand 

over procedures and for emergency traffic. 

 

This concludes the discussion of the transport admission control and also discussion 

about processes which are relevant close to the eNB. The next subsection elaborates 

processes which reach further towards the core network. 
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2.5.2 Far Reaching Processes 

 

In this document the far reaching process refers a process which has wide geographical 

significance having one end at the eNB and the peer far away from the eNB close to or 

at the core network as illustrated in Figure 3.  The far reaching processes includes path 

availability monitoring from the eNB to the Serving Gateway (S-GW), IP connectivity 

quality monitoring and IP security processes.  

 

Two processes monitoring the IP path are discussed in this section. First the GPRS  

Tunnelling Protocol for User plane (GTP-U) path supervision is discussed after which the 

Two Way Active Measurement Protocol (TWAMP) is covered and finally in this section 

the secure connection is briefly discussed. After that the IP security is covered.  

 

2.5.2.1 GPRS Tunnelling Protocol for User Plane (GTP-U) Path Supervision 

 

The GPRS tunnelling protocol for user plane (GTP-U) path supervision is defined in 

3GPP TS 29.281 [31]. When GTP-U path supervision is activated in the eNB the bearer 

establishments are accepted only to such serving gateway (SGW) which are reachable 

from the eNB. This reach ability is checked by continuous process of sending and            

receiving control messages between the selected SGWs and the eNB as illustrated in 

Figure 12.  

  

Figure 12. An example of GTP-U path supervision flow between the eNB-1 and the Serving    

Gateway (S-GW). Bearer establishments are accepted to the S-GW only if the path is available. 
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From the parameter planning point of view this means that the Serving Gateway (SGW) 

IP addresses are configured to eNB. These IP addresses are required only for the          

supervision purposes as the one to be used for the S1-bearer is signalled by the MME 

during the bearer setup phase. The parameters for GTP U-plane path supervision are 

shown in Listing 5. The list of S-GWs is reduced in this figure for clarity. 

 

<managedObject class="GTPU" distName="MRBTS-xxx684/LNBTS-

xxx684/GTPU-1" operation="create" version="LN5.0"> 

<p name="gtpuPathSupint">60</p> 

<p name="gtpuN3Reqs">5</p> 

<p name="gtpuT3Resp">2</p> 

<list name="sgwIpAddressList"> 

<item> 

<p name="sgwIpAddress">10.150.13.18</p> 

<p name="transportNwId">0</p> 

</item> 

<item> 

<p name="sgwIpAddress">10.150.13.19</p> 

<p name="transportNwId">0</p> 

</item> 

... 

<item> 

<p name="sgwIpAddress">189.40.170.1</p> 

<p name="transportNwId">1</p> 

</item> 

</list> 

</managedObject> 

Listing 5. An example of a managed object (GTPU-1) and its parameters for GTP-U path super-

vision in the eNB XML file. Path supervision interval gtpuPathSupint is set to 60 seconds and a 

list of SGW IP addresses sgwIpAddress are defined. 

 

This discussion covered path availability monitoring. Path availability status is important 

information in the bearer set-up phase as the bearers are set up only to those S-GWs 

which are reachable. This minimizes the “silence call” phenomena sometimes seen in 

networks. In addition to availability the connection quality can be monitored as well. The 

next subsection discusses the process which is specifically designed to help monitoring 

IP connectivity quality.  
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2.5.2.2 Two Way Active Measurement Protocol (TWAMP) 

 

The Two Way Active Measurement Protocol (TWAMP) enables continuous monitoring 

of the IP connectivity quality. It gives the operator means to detect congestion or faults 

in the network. The main function is to measure the delay and packet loss between two 

interfaces. Increased delay is an indication of a network congestion. By using TWAMP 

an operator can ensure that the mobile backhaul and IP backbone networks fulfil the set 

design targets in terms of delay, delay variation and packet loss. 

 

The Two Way Active Measurement Protocol (TWAMP) is defined in the RCF5357 [32]. 

The Two Way Active Measurement Protocol consists of control part to establish the  

monitoring process and the actual monitoring part. This study focuses only on the      

monitoring part of the TWAMP RFC. In case the monitoring is set up by the administrative 

means the process is referred as TWAMP light in the RFC5357. The TWAMP light is 

described in the appendix I of the RFC5357.  

 

The monitoring is based on continuous flow of measurement messages sent by one peer 

(sender) to another peer referred as reflector. The test message contains up to four time 

stamps and two sequence numbers. The first time stamp is updated by the sender when 

the test message is sent out form its interface. The second time stamp is updated by the 

reflector on arrival. The third time stamp is updated when the reflector sends the          

message out from its interface and the fourth and the last time stamp is updated when 

the sender receives the reflected test message. The fourth time stamp is not visible on 

the link but only at the process at the sender. Based on these four time stamps the delay 

can be calculated to each direction separately. The sequence numbers are used to       

detect packet loss.  If a particular sequence number is missing on reception it is a sign 

of a lost packet.  

 

From the planning point of view the first tasks is to define the locations of the nodes 

acting as a sender and a reflector to ensure sufficient coverage for the monitoring with 

reasonable amount of overhear introduced by the TWAMP messages. The second task 

is to define the end point IP addresses to the relevant nodes. In the eNB this means one 

local IP address and one peer IP address for each TWAMP process. The TWAMP meas-

urement path is illustrated in Figure 13. 
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Figure 13. An example of the Two Way Active Measurement Protocol (TWAMP) flow between the 

eNB-3 and the TWAMP reflector. The path delay, delay variation and packet loss reports can be 

generated based on the measurement results. 

 

 

A simplified method, UDP echo, is also available for the delay monitoring. This is useful 

if the peer node does not support the TWAMP. In the UDP echo process there are only 

two time stamps instead of four. The sender updates the first time stamp when the test 

message is sent out. The reflector node in case of UDP echo just sends back the test 

message without manipulating any time stamps. And finally the original sender updates 

the second time stamps on arrival of the echoed test message. Based on the time stamps 

the round trip delay can be calculated. The TWAMP and UDP echo are meant to be used 

continuously to monitor IP connection quality.  

 

Several two way active measurement protocol (TWAMP) processes can be configured 

to the eNB. Also the DSCP marking can be defined for each process separately. This 

enables delay and packet loss reporting on traffic class basis. The parameters controlling 

the TWAMP sender are illustrated in example listing in Listing 6. 

 

<managedObject class="TWAMP" distName="MRBTS-xxx536/LNBTS-

xxx536/FTM-1/IPNO-1/TWAMP-1" operation="create" version="LN7.0"> 

<p name="administrativeState">unlocked</p> 

<p name="destIpAddress">10.1.233.7</p> 

<p name="destPort">5000</p> 

<p name="dscp">34</p> 

<p name="messageSize">100</p> 

<p name="plrAlarmThreshold">10000</p> 

<p name="rttAlarmThreshold">1000000</p> 
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<p name="sourceIpAddress">10.150.34.1</p> 

</managedObject> 

Listing 6. An example of a TWAMP managed object and TWAMP parameters in the eNB XML 

file. The process is defined between two IP endpoints (destIpAddress and sourceIpAddress) and 

the traffic marking (dscp) is set to desired value. 

 

This ends the discussion of the Two Way Active Measurement Protocol. The next item 

to discuss here is the security particularly security on transport interfaces. 

2.5.2.3 Transport Security (IPsec) 

 

The most important features in communication security consists of authenticity,            

confidentiality, integrity, nonrepudiation and availability. Authentication is a process of 

verifying the identities of the communication parties. Confidentiality ensure that the         

information is not obtainable by unauthorised parties. Integrity means that messages 

have not been altered on the communication channel. Nonrepudiation of a message 

means that the original sender cannot later deny having sent the message.  Availability 

is an underlying assumption that the communication can be successful. The most rele-

vant features in the LTE network point of view are: authenticity, confidentiality and           

integrity. Introduction of LTE is a step to improve the availability of the mobile access 

channel. The last feature, nonrepudiation, is more relevant for the application layer.  [33.] 

 

There is a need to address the authenticity, confidentiality and integrity measures not 

only in the air interface but also on transport interfaces. The eNB density grows all the 

time as the network coverage and capacity is expanded and more and more small cell 

eNBs are in public places such as lamp posts, bus stops and advertisement signs making 

the transport interfaces vulnerable. [2,190.] 

 

According to the 3GPP technical specifications the air interface security covers the path 

from the User Equipment (UE) to the eNB and it is terminated at the eNB and thus does 

not cover the transport interfaces [34]. The security infrastructure in mobile backhaul is 

well established IPsec defined by the IETF. IPsec is a protocol suite rather than one 

protocol. These protocols may operate in transport mode or in tunnel mode. In transport 

mode the security association is define between two hosts while in tunnel mode the      

security association is define between the tunnel endpoints. In tunnel mode for              

confidential protection an IP packet is first encrypted and then encapsulated into the 
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tunnel IP packet. In this way in addition to original IP packet payload also the original IP 

addresses are encrypted.  

 

The authentication in the LTE backhaul is based on public key cryptography and X.509 

certificates. Public key infrastructure (PKI) is used to issue and maintain the required 

certificates. [2,191.] The public key infrastructure planning is outside of the scope of this 

study and thus is not discussed further. 

 

Network is divided into security domains and security GW (SEG) is to protect the border 

of such domain. One security GW is in the eNB and the other typically at the operators 

IP backbone or core network. IP security provides data integrity, data origin authentica-

tion, anti-replay protection, confidentiality (optional) and limited protection against traffic 

flow analysis when confidentially is applied. [34 chapter 5.] 

 

An example of an IPsec scenario operating in tunnel mode is shown in Figure 14. This 

example assumes that the mobile backhaul network is untrusted while the IP backbone 

is trusted domain as it is administrated by the mobile network operator by himself and 

the nodes and fibre terminations are located in controlled environment. The tunnel mode 

isolates the IP addresses used in LTE applications and IP backbone from those used in 

mobile backhaul. This simplifies planning as subnets can be planned independently in 

these two domains. 

 

  

Figure 14. An example of IPsec tunnels defined between the eNB internal security GW and the 

security GW at the operator’s backbone network. Traffic forwarding in the mobile backhaul is 

based on the tunnel end point IP addresses, the outer IP addresses. The inner IP addresses are 

not visible to the backhaul network. 
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The traffic is encapsulated with IPsec headers and passed to the tunnel based on the 

configured policies. The peer security gateway in turn decrypts the packet and forwards 

the original packet further towards the final destination. In the S1 interface one security 

GW is located in the eNB and the peer is located in secure section of the network closer 

to core network.  

 

For X2 traffic there are a few options to consider. IPsec tunnel may be configured directly 

between adjacent eNBs or the X2 traffic can be passed via the same security GW as the 

S1 traffic. In the example above the X2 traffic from eNB-2 to eNB-3 is first encrypted by 

eNB-2 and then placed to IPsec tunnel towards security GW-1. Security SW-1 decrypts 

the traffic and forwards it towards the security GW-2 which in turn encrypts the traffic 

again and forwards it towards the eNB-3 which finally decrypts the X2 traffic received 

from eNB-2. 

 

The direct IPsec tunnel between eNBs provides low latency connections but needs lots 

of configuration work when new adjacent eNB is introduced to the network. The second 

option, sharing the IPsec tunnels configured for S1 traffic, provides simple solution at the 

cost of additional delay caused by longer distance and additional decryption and encryp-

tion processes. 

 

The position of IPsec in the S1-interface protocol stack is shown in Figure 15. The traffic 

forwarding between the security GW and the eNB is based on the outer IP addresses 

and the transport IP is transparently passed cross the backhaul. The transport IP in     

Figure 15 is one of the application IP addresses illustrated in Figure 8 and the IPsec 

tunnel IP address is one of the transport interface IP address for example VLAN interface 

IP         address. [8 subsection 12.2.2.] 
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Figure 15. U-plane protocol stack with IPsec tunnel. The user IP traffic is encapsulated in GTP-U 

packets. Security GW further encapsulates the packet into IPsec tunnel. In the backhaul network 

the encapsulated packets are forwarded based on the IPsec tunnel end point IP addresses.     

Adapted from [8]. 

 

 

Most if not all access processed discussed in 2.5.1 are relaying on the outer IP         

addresses while the processes covered in 2.5.2 uses inner IP address ranges for peer 

communication. 

 

 

2.5.3 End-to-End Processes 

 

In this document the end-to-end function refers to a process which has a peer entity 

either in the core network element (MME or S-GW) or at management system servers. 

The position of these elements in the network is shown in Figure 3.   

 

The functionalities discussed in this section include S1-flex, Stream Control                

Transmission Protocol (SCTP) multi-homing and a few network management related 

connections. From the eNB planning point of view the focus is in IP connectivity and thus 

no other process details are discussed here. And finally as a last end-to-end topic the 

Quality of Service (QoS) related functions are discussed. 
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2.5.3.1 Resilience and Load Balancing with S1-Flex 

 

To improve the network level resilience the S1-flex functionality has been defined. The 

S1-Flex provides network resiliency by means of allowing eNB to be connected to more 

than one MME. S1-Flex also helps balancing the load between the MMEs the eNB is 

connected to. The third benefit of the S1-Flex functionality is the reduced MME load as 

within a MME pool area tracking area change does not imply change of serving MME 

and thus reduces the amount of required signalling. [35.]  

 

In this study the only relevant part is the IP connectivity to more than one MME and thus 

the S1-flex functionality is not discussed further here. The eNB is provided with MME IP 

addresses so that it can start communication with the desired MMEs. Also the IP route 

to these destinations needs to be defined.  

 

2.5.3.2 Resilience with Multi-Home Stream Control Transmission Protocol 

 

The Stream Control Transmission Protocol (SCTP) is a transport layer protocol like 

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). SCTP was 

originally developed by the Internet Engineering Task Force (IETF) as a transport layer 

protocol for the SS7 signalling networks. It has enhanced, more secure connection set-

up, it can handle data in multiple logical streams both in fully or partial reliable delivery. 

SCTP support multi-homing for host with multiple network interfaces. [36;37.] 

  

In LTE backhaul the SCTP multi-homing improves availability of signalling connection on 

S1 interface. The multi-homed SCTP association has multiple IP endpoints in each peer, 

eNB and the Mobility Management Entity (MME). The SCTP multi-homing relies on    

multiple independent paths between the peers. The primary path is used for signalling 

messages and the secondary paths are continuously supervised using short hello     

packets. In case of packet loss in delivery the retransmission takes place and this time 

on the secondary path ensuring fast recovery against single faults.     

 

From the network planning point of view the SCTP multi-homing introduces one              

additional control plane IP address in the eNB and in the MME which need to be            

considered. Also the IP routes to these peer destinations have to be defined carefully to 

avoid routing the paths via single point of failure. 
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2.5.3.3 Miscellaneous Peers 

 

The next topic in the end-to-end process category covers the connection to various   

management servers. In this study connections to network management systems,       

Network Time Protocol (NTP) servers, Domain Name Servers (DNS) and security      

servers such as Public Key Infrastructure (PKI) servers belong to this category are      

considered. 

 

The eNB needs to know the management system IP address it is supposed to be         

connected to. These peer IP addresses are configured in the eNB. These IP addresses 

are typically common for large number of eNBs and can be define once for the whole 

roll-out project and thus this topic has low focus in this study. 

 

2.5.3.4 Quality of Service (QoS) Functionalities 

 

The Quality of Service (QoS) functionalities includes classifiers and class of services, 

metering and colouring functions, policer and shapers, queues and schedulers. A       

classifier inspects the incoming packets and decides to which class of service they        

belong to. A metering function measures the traffic arrival rate and assigns colours to 

the packet according to the measured rate. The colour indicates the desired treatment in 

case of congestion: green not to be dropped, yellow may be dropped and red to be 

dropped.   

 

A policer is a traffic limiter which ensures that the traffic confirms with the defined band-

width limit. The excess traffic which does not confirm the set limit is dropped. A shaper 

is another limiter function. The shaper limits the average output rate to set limit by delay-

ing the excess traffic. A queue consists of fist-in-first-out (FIFO) buffer and a dropper 

function. The buffer holds the traffic which is waiting to be transmitted. Traffic in a queue 

is server in the order and no overtake is allowed.  

 

A scheduler multiplexes traffic from two or more queues to a single output. The                  

algorithms used to serve the queue includes for example strict priority and weighted fair 

queue. In the strict priory process each queue has different priority and the scheduler 

serves the first priority queue first. Only if the first priority queue is empty the strict priority 

scheduler serves the next queue.  
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The weighted fair queue scheduler serves the queues based on the predefined weights. 

Each queue is assigned a weight, a share of bandwidth, the queue is to be served. This 

scheduler can be configured to ensure desired share of the available link capacity. [38.] 

 

Quality of Service (QoS) functionalities discussed further in this document includes traffic 

marking, traffic shaping and queuing control processes. Traffic shaping is more relevant 

at access section while traffic marking is more general topic. 

 

In the LTE network the QoS attributes stored in the Home Subscriber Server (HSS) for 

subscribers are grouped in classes and these classes are identified by a QoS Class 

Indicator (QCI). The QCI value indicates how the traffic must be treated in other words 

how much delay or packet loss the traffic in the given class may tolerate. The eNB           

receives the QCI value from the MME in bearer setup signalling message. The QoS 

Class Indicator (QCI) value controls the air interface scheduler to ensure the desired 

traffic treatment.  

 

The QoS Class Indicator is also used as an input for U-plane traffic marking in uplink 

(UL) direction at transport interface. As the Differentiated Services Code Point (DSCP) 

is used as a traffic marking method at transport interface a conversion from the QCI to 

DSCP is required. A configurable mapping table, to associate a Differentiated Services 

Code Point (DSCP) value with each QoS Class Indicator (QCI), is configured in the eNB. 

Preparing this mapping data is one part of the eNB parameter planning activities. The 

QoS marking must be applied consistently both on radio and the transport interfaces in 

all eNBs and thus the same mapping data is applied for all eNBs. [8 subsection 12.6.2.] 

 

The QoS Class Indicator (QCI) to Differentiated Services Code Point (DSCP) mapping 

is the same in network level. However, the traffic shaping is typically case specific as 

eNB configurations, traffic amounts and backhaul capacities may vary from an eNB to 

another. Traffic shaping rate is aligned with the backhaul interface capacity for each eNB. 

The second parameter applied for traffic shaping is the burst size. The eNB is not         

supposed to exceed the burst size defined for the user network interface (UNI) and thus 

the traffic has to be shaped to avoid possible buffer overflows at some backhaul or back-

bone nodes. The maximum burst the eNB is allowed to transmit can be harmonized cross 

the network to simplify the eNB parameter planning. 
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Traffic policing may be applied to protect the system from excess traffic from being        

entering to the system. Policing is typically applied when untrusted network or node is 

connected to trusted network at the network edge. [38.] 

 

2.6  Description of Earlier Parameter Interrelation Rule Optimisation Case 

 

Parameter interrelation rule optimisation for network planning aims to minimize the    

manual entries required to complete a parameter set for a given node in a mass roll-out 

phase. It shall not be confused with the network optimisation where the aim is to improve 

the network performance by modifying the parameter values. 

 

This study aims to define eNB parameter model so that the required entries for eNB 

transport parameters defined during the eNB rollout project for the given network cluster 

can be minimized. Similar parameter interrelation optimisation for network planning has 

been conducted before. The improvement was achieved by the planning sheet            

modifications. Summary of the previous findings are discussed shortly in this section. 

The parameter planning sheet optimisation in GERAN is elaborated in Appendix 1. 

 

The results of these cases are summarised in Table 3. The first development step             

resulted 7% reduction in the number of required entries and 21% reduction in characters 

in these entries. The second development round further improved the situation and          

introduced 64% reduction in the number of active parameter entries and more than 90% 

reduction in the number of characters required for the entries compared to the case 1. 

 

 

Table 3. Case comparison. Especially the case 3 has a huge decrease in required manual entries 

compared to the initial case, case 1. 

Case Number of entries 

(4200 TRX, 420 BCF) 

Relative to 

case 1 

Number of characters 

in entries  

Relative to 

case 1 

1 (Table 27) 64680 100% 317520 100% 

2 (Table 28) 60060 93% 249900 79% 

3 (Table 30) 21858 34% 30438 9.6% 

 

The findings from this GERAN case are considered in eNB parameter model develop-

ment. Key findings are listed in the Table 4. 
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Table 4. Key findings in GERAN planning sheet optimisation 

Item The key reasons for achieved improvement 

1 Naming convention is automated 

2 Double entry is eliminated. Any parameter is entered only once in the planning 

sheet even it is needed by several system objects. 

 

This concludes the discussion of the earlier parameter study conducted earlier on 

GERAN Abis interface parameters. Next the applied study approach and material used 

in this this study is discussed.  
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3 Experiments and Results  

 

This chapter discusses the method applied to collect the data from the selected roll-out 

projects, it summaries the parameter interrelation rules which were identified in the    

studied cases. This chapter also discusses the most relevant material used in this study.  

 

The material is divided into three categories; product data, public data and finally the 

project data. First the main eNB product data are discussed. The eNB product data     

consist of a list of features the given HW and SW release supports and the parameters 

to control these features. Since this study focuses on eNB transport features (in other 

words those parameters which are related to S1 and X2 interfaces of the eNB), the air 

interface features and parameters lie outside the scope of this study. 

 

The second important type of material is the public data. This includes standards,         

recommendations and white papers related to the S1 and X2 interfaces and related 

transport features. The S1 and X2 are open interfaces, and the functionalities used in 

these interfaces are based on public standards and recommendation. This part is          

discussed in the standards, recommendations and white paper section. 

 

Finally the project data are discussed. This discussion starts with a definition what and 

how to collect and continues with the actual collected data.  

 

3.1 Product Data 

 

Feature and parameter descriptions represent a relevant part of the product                     

documentation. Basic descriptions are available in customer documentation and further 

details can be found in the company internal documentations and databases. The main 

internal documentations used in this study are feature descriptions and specifications 

and eNB parameter database descriptions. The main product documentation used for 

parameter analysis in this study is listed in Table 5. 
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Table 5. Key product documentation used in this study. 

Documentation Title, document ID, number of pages Date when 

accessed 

Operating Documentation, 

Functional area descriptions 

LTE Transport, DN0943983,  

61 pages 

 

Operating Documentation, 

Features 

Feature List, DN0944258 

35 pages 

 

Operating Documentation, 

Features 

LTE RL70, Feature Descriptions and 

Instructions, DN09185982, 449 pages 

 

Operating Documentation, 

Features 

LTE RL60, Feature Descriptions and 

Instructions,  DN09185955, 325  pages 

 

Operating Documentation, 

Features 

LTE RL50, Feature Descriptions and 

Instructions, DN09185967, 304 pages 

 

Operating Documentation, 

Features 

LTE RL40, Feature Descriptions and 

Instructions, DN09185979, 279 pages 

 

Operating Documentation, 

Features 

Feature Descriptions RL30, 

DN0986461, 334 pages 

 

Operating Documentation, 

Features 

Feature Descriptions RL20, 

DN0978033, 254 pages 

 

Operating Documentation, 

Features 

Feature Descriptions RL10 

DN0978045,250 pages 

 

On-line (Internal) Parameter Knowledge Database 2 FEB 2014 

On-line (internal) Parameter Dictionary Database 2 FEB 2014 

 

These feature descriptions are used to form a feature map. This map visualizes the     

feature relations. The use of a feature may depend on the other features activated in 

eNB. Some features are exclusive options while others complement each other. An       

example of the feature map is presented in Appendix 3. 

 

The feature map is further analysed to form an eNB transport parameter map. The logic 

is the same as in feature map but the analysis is done in more detailed level. An example 

of the eNB transport parameter map is presented in Figure 24. 
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3.2 Standards, Recommendations and White Papers 

 

The standards recommendations and white papers also play an important role in this 

analyse. The eNB transport interfaces X2 and S1 are open standard interfaces. The      

application layer of protocol stack is defined by 3rd Generation Partnership Program 

(3GPP) while the transport layer relays on well-known IP technology. These standards 

are mainly defined by Internet Engineering Task Force (IETF). The link layer is following 

the Institute of Electrical and Electronics Engineers (IEEE) and Metro Ethernet Forum 

(MEF) standards and recommendations. The white papers give hints and guides how to 

deploy the network and apply certain features. The most relevant white papers are      

published by Next Generation Mobile Networks (NGMN) and European Telecommuni-

cations Standards Institute (ETSI). 

 

The standards and recommendations cover the details which are important for inter-   

operability. These standards and recommendations are also used as a link to other           

application areas, where the same functionality is applied in the different technology     

environment. The list of standards, recommendations and white papers used in this study 

is given in References, at the end on the thesis. 

 

3.3 Project Data 

 

Project data represent a unique set of material collected from the selected projects within 

a certain time frame. The data are focused on eNB transport parameters and the possible 

rules, if any, used to resolve a parameter value based on a value already defined for 

another parameter in the given eNB or the eNB cluster. To collect the project data a 

round of questionnaire is conducted in the case companies. The received replies are 

analysed and unclear details are clarified by email conversations. 

 

The current working approach in studying the eNB transport parameter interrelations is 

to analyse a few cases to see how the interrelation rules are applied in a planning          

process in roll-out projects. This study focuses on the identification of the current eNB 

parameter interrelation rules and how they are applied. Another interesting area is to 

analyse if any of the current eNB parameter plans could be considered as a model      

template for future projects. 
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The study starts with preparing the questionnaire to collect the practises used and        

features activated in the given roll-out projects. The questionnaire is sent to planning         

engineers who have shown interest to participate this eNB transport parameter study. 

The questionnaire is show in the appendix 1. 

 

The study continues with analysing the replies to the questionnaire and clarifying the 

unclear topics. The replies consists of written free-form notes and comments to the items 

in the questionnaire and also one or a few eNB configuration files in Extensible Mark-up 

Language (XML) format. This project data are discussed in detail in subsection 3.3.2 and 

onwards. 

 

The project data are analysed and eNB transport parameter interrelations are identified. 

Based on the findings more generic rules are introduced. This analysis considers the 

features of the given SW release and identifying the most complex ones. In this study a 

feature is consider to be a complex one if it has many parameters to be planned site by 

site and/or these parameters have impact on or relation to other eNB feature. 

 

Another study branch is to identify the need to modify a parameter in roll-out phase and 

classify the parameters to two or a few categories based on the likelihood to a need to 

be modified. Based on the findings the actual number of parameter classes is defined. 

The findings are discussed in subsection 3.3.2 and onwards. Theoretical analysis is      

carried out later in this section. 

 

Further on, the interrelations of the eNB transport features and their parameters are  

studied in chapter 4. The interrelations are studied within an eNB and also within a     

planning cluster of several eNBs. The configurations are then analysed and the common 

factors are identified. The target is to find an optimal set of predefined configurations 

which provides the required flexibility and which are simple enough to be managed in 

rapid network roll-outs in efficient manner. 

 

In section 3.4, current best practices of the eNB access parameter planning are collected 

in network roll-out projects conducted by the case company. Five projects from two        

different market areas are studied. The used eNB transport features have an impact on 

the required parameters and thus the eNB transport features are analysed for each     

project. In this part, the study finds out the rules used to relate the eNB parameters in 
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the projects. These rules are used to minimize the user entries in the eNB parameter 

database and thus minimize work effort and potential human errors. 

 

Examples of simple rules as listed in Table 6. 

 

Table 6. Example rules for parameter interrelations 

Rules for parameter interrelations 

The value of parameter y(i) is a copy of the value of parameter x(i). 

The value of parameter y(i) is a copy of the value of parameter x(i) if condition c(i) is true.  

The value of parameter y(i) is calculated based on parameter value x(i). 

The value of parameter y(i) is calculated based on parameter value x(i) if condition c(i) is true.  

The value of parameter y(i) is calculated based on parameter values x(i) and z(i). 

The value of parameter y(i) is calculated based on parameter values x(i) and z(i) if condition 

c(i) is true.  

 

 

An interrelation rule can be written in a form:  

y(i) = f(x1(i), x2(i),…,xn(i)).    (1) 

Where 

x1(i), x2(i), …, xn(i) are already defined parameters for eNB(i) and 

y(i) is a resolved parameter for eNB(i).  

 

And further more than one parameter can be resolved from the list of input parameters 

and thus the y(i) can be written to represent multiple resolved parameters y1(i), y2(i), …, 

ym(i). A group of these parameters can be marked shortly y(p,i). So far this inter-relation 

is limited for parameters of one single eNB. The expression can be further      generalized 

when the common parameters for a given eNB cluster are considered. The generalised 

formulae can be written as: 

 

y(p,i) = f(x1(i), x2(i), …, xn(i), r1(j), r2(j), …, rk(j)).  (2) 

Where 

x1(i), x2(i), …, xn(i) are already defined parameters for eNB(i), 

r1(j), r2(j), …, rk(j) are already defined parameters for a cluster of eNBs the 

eNB(i) belongs to and 

y(p,i) is a resolved parameter y(p) for eNB(i).  
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The interrelations applied in the studied cases are summarised in 3.4. Finally, the         

outcome of this study is presented in chapter 4 

 

 

3.3.1 Questionnaire 

 

The data collection form, the questionnaire, was implemented as a set of questions sent 

to selected project contact persons. Firsts a request to participate to this study was sent 

to group of potential contact persons, mainly planning engineers in various regions. Then 

the questionnaire was sent to the contact persons who showed interest and possibility 

to join the study in the given time frame. 

 

The items in received responses were clarified if needed by means of using e-mail         

exchange with the project contact persons. The study analyses if any of the relevant 

rules to interrelate the different eNB transport parameters have been considered or used 

in a particular project.  

 

The material was also collected through interviews and email exchange aimed at clarify-

ing the on-line meetings and e-mails if needed. The material consists of the eNB 

transport parameters of one or a few eNBs and the list of rules and tools, if any, used to 

predefine some of the parameters. The rules were analysed and further development 

areas were studied.  

 

In both the questionnaire and interviews, the following list of key experts were                   

approached. The key data collection events are shown in Table 7. 
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Table 7. Key data collection events in this study. 

Position in the com-

pany, region 

Type of contact Date  

contact persons Enquiry of possibilities to participate the study 

sent out to group of project contact persons. 

29 June 2015 

mobile access     

planners 

Enquiry of possibilities to participate the study 

sent out to group of mobile access planners. 

6 July 2015 

mobile access     

planners 

Questionnaire sent out. 9 July 2015 

Planning engineer, 

MEA region 

Email exchange, questionnaire return. 15 July 2015 

mobile access    

planners 

Gently reminder of the Questionnaire set out. 17 July 2015 

Planning engineer 1. 

LAM region 

Email exchange, questionnaire return. 18 July 2015 

Planning engineer 2. 

LAM region 

Email exchange, questionnaire return. 22 July 2015 

Planning engineer 3. 

LAM region 

Email exchange, questionnaire return. 22 July 2015 

Planning engineer 4. 

LAM region 

Email exchange, questionnaire return. 13 Aug 2015 

Planning engineer 1. 

LAM region 

Email exchange, clarifications. 21 Sep 2015 

Planning engineer, 

MEA region 

Email exchange, clarifications. 21 Sep 2015 

Planning engineer, 

MEA region 

Email exchange, clarifications. 22 Sep 2015 

Planning engineer 4. 

LAM region 

Email exchange, clarifications. 22 Sep 2015 

Planning engineer 1. 

LAM region 

Email exchange, clarifications. 22 Sep 2015 

Planning engineer 3. 

LAM region 

Email exchange, clarifications. 24 Sep 2015 

Planning engineer 4. 

LAM region 

Email exchange, clarifications. 30 Sep 2015 

Planning engineer 3. 

LAM region 

Email exchange, clarifications. 7 Oct 2015 
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For each rule, the responses to the following questions were collected: Can this rule be 

generalized? What could limit the generalization? Could it be valid for wide range of 

cases? How shall the rule be modified to make it more generic? Should the rule be limited 

to certain configurations only? Also the information that a rule was not used is interesting 

and further the reasons for not to apply a rule are very valuable for this study.  

 

 

3.3.2 Experiment from Operator A 

 

The first network to analyse is located in the Middle East and Africa region and the roll 

out speed at the time of study was approximately 100 integrated eNBs per month. The 

Nokia scope of network planning activities in this project included eNB radio planning, 

eNB access planning, EPC planning and mobile backhaul planning. 

 

The first planning rule applied for eNB transport parameters in this project is the way how 

the IP addresses are allocated to the eNB applications: “Subnets for application IP                

addresses are allocated in chunks of /20 subnets, and /22 subnet per application type. The rule 

within eNB is apparent from the following example. /20 subnet in below example = 

10.150.34.0/20. Each application has a /22 subnet.” The related XML configuration is shown 

in Listing 7. 

 

<p name="uPlaneIpAddress">10.150.34.1</p> 

<p name="cPlaneIpAddress">10.150.38.1</p> 

<p name="sPlaneIpAddress">10.150.46.1</p> 

<p name="mPlaneIpAddress">10.150.42.1</p> 

Listing 7. The IP address block allocation rule applied in project A, a block of /22 network was 

assigned for each traffic plane. 

 

No particular rule was identified for VLAN transport IP address allocation. These VLAN 

transport IP addresses are allocated independently from the application IP addresses. It 

was also noted in the answers that the LTE VLAN subnets are different from the 3G BTS 

VLAN subnet even the LTE BTS and the 3G BTS are located to the same site. The 

reason for different subnets in this project is that the IP allocation and planning for 3G 

was done by the other planner than the one who prepared the plans for LTE. Dedicated 

IP address ranges reduce the need to co-ordinate the allocation on daily basis and thus 

it is easier for the admin point of view. 

 



45 

 

In the answer there was a note about VLAN ID reuse: “The same eNB VLAN IDs is often 

reused in different transport hubs, but seems that there is no rule for this.”  The related XML 

configuration is shown in Listing 8. 

 

managedObject class="IVIF" distName="MRBTS-xxx536/LNBTS-

xxx536/FTM-1/IPNO-1/IEIF-1/IVIF-1" operation="create"   

version= "LN7.0"> 

<p name="vlanId">3910</p> 

<p name="localIpAddr">172.30.79.171</p> 

<p name="netmask">255.255.255.224</p> 

<p name="localIpv6Addr">0:0:0:0:0:0:0:0</p> 

<p name="localIpv6PrefixLength">0</p> 

<p name="sir">1000000</p> 

<p name="sbs">4000</p> 

<p name="qosEnabled">true</p> 

<p name="wfqSchedQueueWeight">1000</p> 

</managedObject> 

Listing 8. The VLAN ID in IVIF-1 managed object in eNB XML file. VLAN IDs were reused but no 

particular rule to create the value was used. 

 

In this network only one VLAN is used per eNB. In this case one default route per eNB 

is enough and thus no additional rules for routing definition was required. 

 

The second identified planning rule in this project is that the network time protocol (NTP) 

server IP address is the same as the default gateway IP address. The provider edge 

(PE) router (eNB default gateway) to which the eNB is connected to supports NTP. It 

was noted in the answer that this approach leaves NTP traffic unencrypted and may be 

considered as a risk by some security enthusiast. The snapshot of the eNB configuration 

file below shows the same IP address value applied in two managed objects; in IPRT 

object where the static routes are defined and in the INTP object which contains address 

of the NTP server. The related XML configuration is shown in Listing 9. 

 

 

<managedObject class="IPRT" distName="MRBTS-xxx536/LNBTS-

xxx536/FTM-1/IPNO-1/IPRT-1" operation="update" version= 

"LN7.0"> 

<list name="staticRoutes"> 

<item> 
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<p name="destIpAddr">0.0.0.0</p> 

<p name="netmask">0.0.0.0</p> 

<p name="gateway">172.30.79.161</p> 

… 

</managedObject> 

<managedObject class="INTP" distName="MRBTS-xxx536/LNBTS-

xxx536/FTM-1/IPNO-1/INTP-1" operation="update" ver-

sion="LN7.0"> 

<list name="ntpServers"> 

<p>172.30.79.161</p> 

</list> 

</managedObject> 

Listing 9. The GW was also used as an NTP server for the given eNB. The same IP address value 

was reused in routing object (IPRT-1) and the Network Time Protocol object (INTP-1). 

 

One potential planning rule came up in the clarification discussions. The QoS aware 

Ethernet switching feature was discussed. This feature is not needed on tail site but only 

in the chain sites or co-located sites where traffic for other BTS is connected to backhaul 

via the eNB integrated quality of service (QoS) aware Ethernet switch. Currently the QoS 

aware Ethernet switch feature is activated only for chain site but not for tail sites. It was 

discussed that even the QoS aware Ethernet switch is not required for tail site the feature 

activation would do no harm and thus this could be one potential action to harmonize the 

eNB setting cross the network. The required Ethernet ports need to be activated case by 

case on need basis applying the port specific settings in the eNB XML file. Listing 10 

shows the QoS aware switching feature activation. 

 

<managedObject class="L2SWI" distName="MRBTS-801536/LNBTS-

801536/FTM-1/L2SWI-1" operation="update" version="LN7.0"> 

... 

<p name="enableLayer2Switching">true</p> 

... 

Listing 10. The QoS aware switching feature activation. To harmonize the setting cross different 

site type this feature could be activated not on in chain sites but also in the tail site. 

 

This concludes the discussion about the case A and the discussion focuses now to the 

second case, case B. 
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3.3.3 Experiment from Operator B 

 

This network is in the Latin America region. The average eNB integration rate is               

approximately 40 eNB per month. The Nokia scope in network planning activities in this 

project included eNB radio planning, eNB access planning and EPC planning. 

 

The first rule mentioned in the response is the way the VLAN ID is defined. The VLAN 

ID definition in the eNB XML file is shown in Listing 11. 

 

<managedObject class="IVIF" distName="MRBTS-xxx684/LNBTS-

xxx684/FTM-1/IPNO-1/IEIF-1/IVIF-1" operation="create"   

version="LN5.0"> 

<p name="vlanId">80</p>  … text omitted … 

<managedObject class="IVIF" distName="MRBTS-xxx684/LNBTS-

xxx684/FTM-1/IPNO-1/IEIF-1/IVIF-2" operation="create"     

version="LN5.0"> 

<p name="vlanId">1580</p> …  

<managedObject class="IVIF" distName="MRBTS-xxx684/LNBTS-

xxx684/FTM-1/IPNO-1/IEIF-1/IVIF-3" operation="create"   

version="LN5.0"> 

<p name="vlanId">2080</p> …  

<managedObject class="IVIF" distName="MRBTS-xxx684/LNBTS-

xxx684/FTM-1/IPNO-1/IEIF-1/IVIF-4" operation="create"   

version="LN5.0"> 

<p name="vlanId">3080</p> …  

<managedObject class="IVIF" distName="MRBTS-xxx684/LNBTS-

xxx684/FTM-1/IPNO-1/IEIF-1/IVIF-5" operation="create"   

version="LN5.0"> 

<p name="vlanId">3580</p> 

… 

Listing 11. An XML file snapshot showing the VLAN ID setting applied in case B. The VLAN IDs 

are allocated in step of 500 for each traffic type. 

 

 

The group of eNBs connected to the same aggregation point (GW) ware sharing the 

same VLAN and thus the same VLAN ID was assigned to them. The subnet size used 

in this project is /27. If the number of eNBs exceeded the available number of IP              

addresses in the /27 subnet the other /27 subnet was assigned for the same aggregation 

point. 
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Based on the eNB configuration XML file the eNB application addresses follows a similar 

rule as in case A. A snapshot of the parameter definition is shown in Listing 12. 

<managedObject class="IPNO" distName="MRBTS-xxx684/LNBTS-

xxx684/FTM-1/IPNO-1" operation="update" version="LN5.0"> 

<p name="mPlaneIpAddress">10.243.13.164</p> 

<p name="uPlaneIpAddress">10.243.77.164</p> 

<p name="cPlaneIpAddress">10.243.141.164</p> 

<p name="sPlaneIpAddress">10.243.205.164</p>  

Listing 12. IP address block are allocated in step of /18 for different traffic types each step contains 

16384 addresses to be divided further to subnets to be used for several eNB clusters. 

 

No other obvious planning rule is identified in this case. The analysis continues with the 

third case, case C. 

 

3.3.4 Experiment from Operator C 

 

The third analysed network is also located in the Latin America region. The eNB integra-

tion rate at the time of study was approximately 160 eNBs per month. The Nokia scope 

of the network planning activities in this project included eNB radio planning, eNB access 

planning, IP backbone planning and mobile backhaul planning. 

 

The first rule mentioned in the reply is the VLAN ID related rule. The eNB configuration 

contains four VLAN interfaces. The VLAN IDs are assigned for the eNB in steps of 100. 

The smallest VLAN ID in the example eNB is 3300 and the next 3400 and so on as. The 

eNB XML file snapshot showing the VLAN configurations are seen in Listing 13. 

 

<managedObject class="IVIF" distName="MRBTS-xxx666/LNBTS-

xxx666/FTM-1/IPNO-1/IEIF-1/IVIF-2" operation="create"   

version="LN5.0"> 

<p name="vlanId">3300</p> 

<p name="localIpAddr">10.225.10.33</p> 

… 

<managedObject class="IVIF" distName="MRBTS-xxx666/LNBTS-

xxx666/FTM-1/IPNO-1/IEIF-1/IVIF-1" operation="create"   

version="LN5.0"> 

<p name="vlanId">3400</p> 
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<p name="localIpAddr">10.224.234.33</p> 

… 

<managedObject class="IVIF" distName="MRBTS-xxx666/LNBTS-

xxx666/FTM-1/IPNO-1/IEIF-1/IVIF-4" operation="create"   

version="LN5.0"> 

<p name="vlanId">3500</p> 

<p name="localIpAddr">10.224.193.222</p> 

… 

<managedObject class="IVIF" distName="MRBTS-xxx666/LNBTS-

xxx666/FTM-1/IPNO-1/IEIF-1/IVIF-3" operation="create"   

version="LN5.0"> 

<p name="vlanId">3600</p> 

<p name="localIpAddr">10.224.170.33</p> 

… 

Listing 13. A snapshot of eNB XML file showing the VLAN ID assignment in case C. The VLAN 
IDs are assigned in steps of 100 for different traffic types. 

 

The other planning rule mentioned in the reply is related to OMS IP address and NTP 

server IP address. For a regional cluster all eNBs assumes the same management sys-

tem and the NTP server and thus the same IP address value is applied for all eNBs within 

the cluster. 

 

In this project the eNB application addresses assumes the same IP address as the VLAN 

interface assigned for the given purpose. This rule can be identified based on the eNB 

configuration file. Listing 14 shows the eNB application IP address definition. 

 

<managedObject class="IPNO" distName="MRBTS-xxx666/LNBTS-

xxx666/FTM-1/IPNO-1" operation="update" version="LN5.0"> 

<p name="mPlaneIpAddress">10.224.170.33</p> 

<p name="uPlaneIpAddress">10.224.234.33</p> 

<p name="cPlaneIpAddress">10.225.10.33</p> 

<p name="sPlaneIpAddress">10.224.193.222</p> 

Listing 14. A snapshot of eNB application IP address definition in the eNB XML file. The addresses 
are equal to the VLAN interface IP addresses shown in Listing 13. 

 

No other obvious planning rule is identified in this case. The next studied case, case D, 

is also from the Latin America region. 
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3.3.5 Experiment from Operator D 

 

The next analysed case is also from the Latin America region. The average roll-out speed 

in this project was 80 eNBs per month at the time of the study. The Nokia scope of the 

network planning activities in this project included eNB radio planning, eNB access     

planning and Mobility Management Entity (MME) part of the Evolved Packet Core (EPC) 

planning. 

 

The first planning rule mentioned in the response in this case is the assignment of eNB 

application IP addresses. The applications assume VLAN interface IP address: 

“- IVIF-1 ‘localIpAddr’ = IPNO ‘cPlaneIpAddress’ 

- IVIF-2 ‘localIpAddr’ = IPNO ‘uPlaneIpAddress’ 

- IVIF-3 ‘localIpAddr’ = IPNO ‘mPlaneIpAddress’ 

- IVIF-4 ‘localIpAddr’ = IPNO ‘sPlaneIpAddress’” 

 

The second rule mentioned in the reply is the ID assignment: “- MRBTS_ID = LNBTS_ID” 

It was also noted that the LNBTS IDs within a planning cluster are assigned in sequence: 

“- New eNB´s LNBTS ID = LNBTS ID + 1 of the last eNB planned inside same eNB´s area.” 

 

Other common parameters within planning cluster were Timing over Packet (ToP)     

master IP address and Primary OMS IP address. The XML snapshot is shown in Listing 

15. 

 

<managedObject class="IPNO" distName="MRBTS-xxxx12/LNBTS-

xxxx12/FTM-1/IPNO-1" operation="update" version="LN5.0"> 

... 

<p name="oamIpAddr">10.231.1.4</p> 

... 

<managedObject class="TOPF" distName="MRBTS-xxxx12/LNBTS-

xxxx12/FTM-1/TOPB-1/TOPF-1" operation="create" ver-

sion="LN5.0"> 

<p name="actTopFreqSynch">true</p> 

<p name="logMeanSyncValue">-4</p> 

<p name="masterIpAddr">10.105.115.148</p> 

</managedObject> 

Listing 15. Common parameters used for the whole planning cluster in this project are the             

operating and management system (oamIpAddr) and ToP master IP address (masterIpAddr). 
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No other planning rules were identified in this case. The discussion continues with the 

next case, case E. 

3.3.6 Experiment from Operator E 

 

This network is also in the Latin America region. The average roll-out speed in this project 

was 50 eNBs per month at the time of the study. The Nokia scope of network planning 

activities in this project included eNB radio planning and eNB access planning. 

 

In this project templates were used to manage parameters which are common for group 

of sites. One of these templates contains parameters for egress shaper. The parameter 

values depend on the available backhaul capacity. An item in a template, containing all 

relevant parameter for the egress shaper, was referred using a value which was directly 

derived from the available backhaul capacity. For example for backhaul capacity of 

50000 kbps the template ID of 50 was used. 

 

A formula was used to calculate the scheduling weights based on the available backhaul 

capacity. The amount of ToP synchronisation traffic does not depend on the user plan 

traffic volumes and thus the share of ToP synchronisation traffic decreases when the 

user plane traffic volume increases. The scheduling weight parameters are illustrated in 

Listing 16. 

<managedObject class="IVIF" operation="create" version= 

"LN6.0" distName="MRBTS-xxx755/LNBTS-xxx755/FTM-1/IPNO-

1/IEIF-1/IVIF-1"> 

… 

<p name="wfqSchedQueueWeight">70</p> 

<p name="vlanId">1592</p></managedObject> 

<managedObject class="IVIF" operation="create" version= 

"LN6.0" distName="MRBTS-xxx755/LNBTS-xxx755/FTM-1/IPNO-

1/IEIF-1/IVIF-2"> 

<… 

<p name="wfqSchedQueueWeight">830</p> 

<p name="vlanId">1532</p></managedObject> 

<managedObject class="IVIF" operation="create" version= 

"LN6.0" distName="MRBTS-xxx755/LNBTS-xxx755/FTM-1/IPNO-

1/IEIF-1/IVIF-3"> 

… 

<p name="wfqSchedQueueWeight">50</p> 
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<p name="vlanId">1502</p></managedObject> 

<managedObject class="IVIF" operation="create" version= 

"LN6.0" distName="MRBTS-xxx755/LNBTS-xxx755/FTM-1/IPNO-

1/IEIF-1/IVIF-4"> 

… 

<p name="wfqSchedQueueWeight">15</p> 

<p name="vlanId">1562</p></managedObject> 

Listing 16. A snapshot of the eNB XML file showing the Weighted Fair Queue (WFQ) weights. 

The weights defines the share of link capacity to be scheduled for the given queue. 

 

Also the limits used for Transport Admission Control (TAC) were calculated as a            

percentile of the egress Shaping Information Rate (SIR). The TAC and SIR settings are 

shown in Listing 17. 

 

<managedObject class="LTAC" operation="create" version= 

"LN6.0" distName="MRBTS-xxx755/LNBTS-xxx755/FTM-1/TAC-

1/LTAC-1"> 

<p name="tacLimitGbrEmergency">25000</p> 

<p name="tacLimitGbrHandover">22500</p> 

<p name="tacLimitGbrNormal">20000</p> 

… 

<managedObject class="IEIF" operation="create" version= 

"LN6.0" distName="MRBTS-xxx755/LNBTS-xxx755/FTM-1/IPNO-

1/IEIF-1"> 

… 

<p name="sirTotal">20000</p> 

… 

Listing 17. A snapshot of the eNB XML file showing the Transmission Admission Control limits 

and the shaping rate. 

 

 It was pointed out in the reply that many parameters (the far end IP addresses for SCTP, 

GTP supervision, ToP server and O&M) are the same for the cluster of the eNBs. These 

parameter values can be copied in all eNB files within the planning cluster. Also VLAN 

IDs are in some cases the same for all eNBs within the planning cluster. The HW          

templates are in most case the same for all eNBs. 
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3.4 Summary of Studied Cases 

 

The analysed networks contain different features and follow different approaches in   

planning. The eNB HW product in all studied cases is Nokia Flexi Multiradio 10 BTS. 

Most of the analysed cases are running in RL50 release level. One case is in RL60 and 

one in RL70 release level. The applied planning rules depend on the used features and 

planning strategies. Among these studied case one feature was identified to have big 

impact on the selected rules and this in the IP Security feature. The IP security is             

operating in tunnel mode and thus it hides the application IP addresses from the transport 

IP network. 

 

When the applied planning rules are generalised the following rule types can be           

identified. The generalised rule types are listed in Table 8. 

 

Table 8. Identified rule types. 

Rule type 

The same eNB specific value is applied for several parameters within an eNB 

The value is derived from the other parameter value by adding a constant  offset value 

The value is derived from the other parameter value by multiplying with a constant factor 

Pseudo parameter is used as a root to generate value or values for eNB parameters 

Common cluster specific values are used for several eNBs 

Common network level values applied for all eNBs 

 

 

The following section lists a few examples of each rule type. The most common case of 

applying the same value to more than one eNB transport parameter can be found in IP 

addressing. Four out of five examined cases applied the rule having application IP         

address equal to VLAN interface IP address. A snapshot of the eNB XML file highlighting 

the use of rule type 1 is shown in Listing 18. 

 
<managedObject class="IVIF" distName="MRBTS-xxx684/LNBTS-

xxx684/FTM-1/IPNO-1/IEIF-1/IVIF-1" operation="create"   

version="LN5.0"> 

<p name="vlanId">80</p> 

<p name="localIpAddr">10.243.13.164</p> 

... 

<p name="vlanId">1580</p> 
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<p name="localIpAddr">10.243.141.164</p> 

... 

<p name="vlanId">2080</p> 

<p name="localIpAddr">10.243.205.164</p> 

... 

<p name="vlanId">3080</p> 

<p name="localIpAddr">10.243.77.164</p> 

... 

<p name="vlanId">3580</p> 

<p name="localIpAddr">10.36.44.68</p> 

... 

<managedObject class="IPNO" distName="MRBTS-xxx684/LNBTS-

xxx684/FTM-1/IPNO-1" operation="update" version="LN5.0"> 

<p name="mPlaneIpAddress">10.243.13.164</p> 

<p name="uPlaneIpAddress">10.243.77.164</p> 

<p name="cPlaneIpAddress">10.243.141.164</p> 

<p name="sPlaneIpAddress">10.243.205.164</p> 

... 

<p name="addCPlaneIpv4Address">10.36.44.68</p> 

<p name="addUPlaneIpv4Address">10.36.44.68</p> 

Listing 18. An example of rule type 1. Common rule applied in four out of the five studied case. 

Application IP addresses assumes the same values as the associated VLAN interface. 

 
The rule is also summarised in the form of a table. This can be seen in Table 9. The   

additional C-plane and U-plane VLAN and addresses are used for the second operator 

in case of network sharing. 

 

 
Table 9. An example of rule type 1. Application IP address assumes VLAN interface IP address 
(case B). 

VLAN ID VLAN interface IP address Application Application IP address 

80 10.243.13.164 M-plane 10.243.13.164 

1580 10.243.141.164 U-plane 10.243.141.164 

2080 10.243.205.164 C-plane 10.243.205.164 

3080 10.243.77.164 S-plane 10.243.77.164 

3580 10.36.44.68 Additional C-plane 10.36.44.68 

3580 10.36.44.68 Additional U-plane 10.36.44.68 
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Within these studied cases the most common parameter which value is derived from 

another eNB transport parameter by adding a constant offset VLAN id. Applying the rule 

type 2 in studied cases is summarised in Table 10. 

 

Table 10. An example of rule type 2. Rule to define the value for VLAN ID by adding a constant. 

VLAN #1 #2 #3 #4 #5 Step1 

Case A 3910      

Case B 80 1580 2080 3080 3580 500 

Case C 3300 3400 3500 3600  100 

Case D 500 501 502 503  1 

Case E 1502 1532 1562 1592  30 

Note 1. Not all possible step values applied for eNB in case B. 

 

An example of applying the third identified rule is taken from transport admission control 

(TAC). There are three different limits to be set for the TAC; one for normal traffic the 

second limit is applied for incoming hand over traffic and the third limit is applied for 

emergency traffic. An example XML snapshot where the rule type 3 is applied is shown 

in Listing 19. 

<managedObject class="LTAC" distName="MRBTS-xxx666/LNBTS-

xxx666/FTM-1/TAC-1/LTAC-1" operation="update" version= 

"LN5.0"> 

<p name="tacExludeL2Overhead">false</p> 

<p name="tacActivityFactor">100</p> 

<p name="tacLimitGbrNormal">105000</p> 

<p name="tacLimitGbrHandover">120000</p> 

<p name="tacLimitGbrEmergency">150000</p> 

… 

Listing 19. A snapshot of the eNB XML file showing the Transmission Admission Control limits. 

The limits are derived from a base value by multiplying with the constant. This is an example of 

rule type 3. 

 

The multiplying is not visible in the final outcome, the XML file, as it contains individual 

values for the parameters. The multiplication is illustrated in Table 11. 
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Table 11. An example of rule type 3. A rule to define limits for Transport Admission Control (TAC) 

(Case C).  

Parameter name Reference value Multiplier Applied value 

tacLimitGbrNormal 150000 0.7 105000 

tacLimitGbrHandover 150000 0.8 120000 

tacLimitGbrEmergency 150000 1.0 150000 

 

The method of using network parameter which is not visible directly in an eNB was     

mentioned in case E discussions. This kind of parameter can be called pseudo                

parameter in the eNB point of view. The User Network Interface (UNI), the eNB is inter-

facing to, has two capacity attributes; Committed Information Rate (CIR) and Excess 

Information Rate (EIR). Either of these is directly applied as eNB transport parameter, 

however, these may be used as a reference value to calculate some of the actual           

parameter values for the eNB.  

 

The CIR at UNI must be equal or greater than the Guaranteed Bit Rate (GBR) traffic in 

the eNB. The shaping rate applied in uplink (UL) at UNI shall not exceed the sum of CIR 

and EIR. On the other hand there is no point to apply shaping lower rate than the sum of 

CIR and EIR as in that case some transport capacity would remain unused. Thus the 

shaping rate shall be equal to the sum of CIR and EIR. Table 12 shown an example of 

applying pseudo parameter to define the values for the actual eNB parameters. 

 

Table 12. An example of rule type 4. A pseudo parameter (UNI CIR) used as a reference to 

determine a value for actual eNB parameter (Case E). 

Parameter name UNI CIR as a reference value (from the eNB 

point of view this is pseudo parameter as it 

is not defined in eNB configuration file) 

Multiplier Applied 

value 

tacLimitGbrNormal 30000 0.67 20000 

tacLimitGbrHandover 30000 0.75 22500 

tacLimitGbrEmergency 30000 0.83 25000 

 

 

A planning cluster is a set of eNBs which are planned together in a limited time span. All 

eNBs within a planning cluster share the cluster specific parameters. The cluster can be 

small containing a few eNBs within the same IP subnets. These eNBs share the same 

IP gateway (GW). The cluster may be as large as a Mobility Management Entity (MME) 
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area. In this case all eNBs share the same MME IP address as a first contact point for 

S1 interface Application (S1AP) signalling. Typically the cluster is something in between 

the abovementioned ones.  

 

Figure 16 shows an example of typical planning clusters. The smallest cluster is a group 

of eNBs within the same subnet and these eNBs share the same IP GW. The next cluster 

in the given example is the security GW area. In this case all eNBs share the same 

security GWs. However, the IP GW is not necessary the same for all eNBs. The next 

level of cluster is the Mobility Management Entity (MME) area and the last mentioned in 

Figure 16 is the whole network (PLMN). 

 

 

 

 

Figure 16. An example of planning clusters. IP GW cluster (also called VLAN cluster) is the    

smallest planning cluster. The security GW cluster is the second level cluster (applicable when 

IPsec is applied). The Mobility Management Entity (MME) area is the third cluster and finally the 

whole Public Land Mobile Network (PLMN) is the last cluster. 
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The last identified rule considers parameters which have the same value for all eNBs. 

These are planned once and are applied for all eNBs typically applying planning           

templates. Great deal of the eNB transport parameters falls in to this category. These 

include for example most of the Ethernet interface and QoS related parameters. Traffic 

marking and classification needs to be consistent within a network and thus parameters 

controlling marking and classification are typically the same for all eNBs. 
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4 Development of Parameter Models 

 

The aim of the eNB transport parameter model is to define parameter interrelations in a 

way that only a few manual entries are needed to generate the values for vast number 

of actual parameters in eNB managed objects. The focus in this study is the eNB 

transport parameters which need to have a case specific value within a planning cluster. 

The parameters, having common value within a planning cluster, can be managed by 

applying predefined values in planning templates.  

 

Based on the studied cases two main categories of case specific parameters were      

identified. The first category contains capacity related parameters such as queue 

weights, shaping rate and transport admission control limits and the second category 

includes addresses and identifiers mainly IP addresses and VLAN IDs. These two          

categories do not seem to have direct interrelations and thus the models related to these 

are discussed separately. The model for capacity related parameters is discussed first 

as it has a limited set of parameters and their combinations to consider. 

  

4.1 Interrelation Rule Metrics  

 

To be able to compare different scenarios the metrics for the interrelations rules are 

defined. One metric is a complexity. In this study the complexity is defined as a number 

of input entries required to create case specific transport parameters for the eNB        

managed objects for one eNB assuming a base configuration as a reference. In other 

words the number of eNB parameters which needs to be modified from the base           

configuration. Figure 17 illustrates complexity metric. In this example one parameter 

needs to be modified from base values in order to create the parameter set for eNB-1. 
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Figure 17. An illustration of the complexity metric. The complexity index indicates the average 

number of parameters which deviates from the base configuration value. The complexity index is 

a decimal number as some of the deviated parameters are applied for a cluster of eNBs and thus 

the impact on one eNB is a small fraction only. 

 

 

Some of the modified parameters are unique for each eNB while other may be common 

for all the eNB in a cluster. To take this into an account the complexity metric can be 

written in to the following form: 

 

cx(i) = n1(i) + n2(i)/k1 + n3(i)/k2 + n4(i)/k3 + … .   (3) 

 

Where 

cx(i) is the number of parameters which needs to be resolved for eNB-i, 

n1(i) is the number of parameters which are unique for the eNB-i, 

n2(i) is the number of parameter which are unique for the cluster k1, 

n3(i) is the number of parameter which are unique for the cluster k2, 

n4(i) is the number of parameter which are unique for the cluster k3, 

k1 is the number of eNBs in the cluster k1, 

k2 is the number of eNBs in the cluster k2 and 

k3 is the number of eNBs in the cluster k3. 
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The parameters n() are considered to be input for the interrelation rules. The parameters 

k() indicates the number of eNBs in the given cluster. The ratio n()/k() is a share of         

parameters per one eNB in this complexity calculation. The cluster k1 is typically VLAN 

cluster, VLAN ID and the IP GW are a common for all eNBs within the VLAN cluster. The 

subnet size limits the number of eNBs in the VLAN cluster. The k1 values in studies 

cases fall in a range from 1 to 29 based on the used subnet sizes. The cluster k2 could 

be a security GW cluster, the cluster k3 the Mobility Management Entity (MME) cluster. 

Other clusters may also exist in the network for example timing over packet (ToP) server 

cluster, two way active measurement protocol (TWAMP) reflector cluster etc. 

 

The smaller the complexity, cx(i), the better, as fewer input entries are required to define 

the parameters. However, to compare just the complexity is not enough as the required 

functionality may introduce other parameters and the complexity metric does not          

consider the benefit of these additional parameters.  

 

The second metric is a process efficiency index. The process efficiency metric is defined 

by dividing the number of calculated parameters (m) by the required input parameters 

(complexity). The higher the process efficiency metric the more output parameters are 

determined per input parameter count. The process efficiency metric indicates how        

efficient the eNB parameter interrelation rule is. This process efficiency metric shall not 

be confused with the eNB operational efficiency. In other words the high process              

efficiency metric does not guarantee high operational efficiency. The actual parameter 

values defines the eNB operational efficiency. The process efficiency metric formula is 

writes as: 

  

pe(i) = m/cx(i).    (4) 

 

Where 

pe(i) is the calculated process efficiency metric, 

m is the number of eNB parameters which deviates from the base line set (output 

of the interrelation rules) and 

cx(i) is the calculated complexity metric for eNB(i) (number of inputs required for 

the interrelation rules). 
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The process efficiency pe(i) metric is used to compare different scenarios to each other 

and the higher the metric the higher is the process efficiency. The n(3) and n(4) are 

assumed to be small and the k(2) and k(3) large and thus these terms are not included 

in the further calculations used in this study. The complexity is calculated according to 

the following formulae: 

 

cx(i) = n1(i) + n2(i)/k1.    (5) 

 

In this study the comparison calculations are done for three different cluster sizes. The 

most common subnet size among the studied cases is /27 (netmask 255.255.255.224). 

This subnet has 30 usable IP addresses out of which one is assumed for the GW router. 

Roughly 30% of the address space is assumed to be reserved for future use and thus 

out of 29 potential eNB IP addresses 20 is assumed to be taken in use in day one.  

 

In a similar manner for subnet /29 (netmask 255.255.255.248) out of 5 potential eNB IP 

addresses 3 are assumed for eNBs. One more subnet size used for comparison is /25 

(netmask 255.255.255.128). This gives 125 free addresses for eNBs out of which 80 is 

assumed to be available for allocation on day one while the rest are reserved for future 

usage.  The interrelation rules in different scenarios are compared and the results are 

represented in a table. A table format is shown in Table 13. 

 

Table 13. A template used for scenario metrics comparison. The metrics are calculated for three 
different VLAN cluster sizes. 

Scenario Metric Cluster size 

3 eNBs 20 eNBs 80 eNBs 

1 cx(i) 

pe(i) 

   

2 cx(i) 

pe(i) 

   

3 cx(i) 

pe(i) 

   

 

This concludes the theoretical discussion about the metrics used to compare the          

scenarios. The next sections introduce the eNB parameter model and calculate the    

metrics for the introduced scenarios. 
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4.2 Generic eNB Transport Parameter Model 

 

The generic eNB transport parameter model defines the required input entries, required 

parameters in eNB managed objects and optional functions used to calculate the           

parameter values for a given network scenario. Network scenarios are selected so that 

a roll-out project applies typically only one scenario within a planning cluster. The aim is 

to minimise the number of required input entries for the each network scenario by apply-

ing the same input entry to many eNB managed object parameters. The input entry can 

be applied directly or it can be used as an input for an optional calculation used to form 

one or many eNB managed object parameters. A generic model of parameter inter-        

relations is shown in Figure 18. 

 

 

Figure 18. A generic eNB transport parameter model with interrelation rules. The eNB specific, 
cluster specific and bigger cluster specific input entries are used to determine the parameters in 
the eNB managed objects. A managed object parameter assumes a value of an input entry or a 
result of a function. 

 

In this study the eNB transport parameters and thus the input entries are divided into 

four main categories based on how specific the parameter value is in the eNB within a 

planning cluster. The parameter categories are; global and network level, cluster level, 

capacity step or type specific and eNB specific. 
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The main focus is to minimise the eNB specific and the first cluster specific entries as 

these have the biggest impact on the complexity (cx(i)) and the process efficiency (pe(i)) 

as indicated by the equations (3) and (4). 

 

A parameter belongs to the global parameter category if the same value is assumed 

globally for all eNBs. Global parameter value assumes a factory default value or a value 

generally recommended by the system vendor. By definition a global parameter is not 

modified. However, if a parameter which typically belongs to global category needs to be 

modified it can be done but after modification the parameter is no longer considered to 

belong to that category anymore. 

 

A parameter belongs to network level category if it is not a global one and the same value 

is assumed for all eNBs within a network. A value for network level parameter is defined 

once for the whole network. All eNBs within the network assumes identical value. From 

the parameter planning point of view both global and network level parameters are 

straightforward to manage in the planning phase as the same copy is applied for all 

eNBs. This can be done for example by creating a baseline parameter template which is 

used as a basis for individual parameter files. 

 

A parameter belongs to cluster level parameter category when its value has an equal 

value in all eNB within a cluster but it may be different in other cluster. For example VLAN 

cluster level parameter includes VLAN ID, subnet size and IP gateway address or ad-

dresses. From the parameter interrelation rules point of view the smallest of the nested 

clusters is the dominant one while the impact of larger clusters on the process efficiency 

and the complexity metrics is negligible. 

 

A parameter belongs to capacity step or type specific parameter category when its value 

is typical for the given capacity step or site type. This category contains parameters 

which are related to eNB capacity or site type; for example tail site versus chain site. The 

tail sites have only one Ethernet port activated while the chain sites have two active ports 

to allow connectivity to the next site in the chain. The capacity step has an impact on the 

admission control thresholds and shaping rates. These are specific for the given capacity 

step rather than individual eNB. 
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The last parameter category to discuss is the eNB specific parameter category. This 

category includes the eNB specific IP addresses and other identifiers. Parameters which 

are unique per eNB consist mainly of IP addresses. 

 

4.3 Modelling Capacity Related eNB Transport Parameters 

 

The User Network Interface (UNI) bandwidth attributes; Committed Information Rate 

(CIR), Committed Burst Size (CBS), Excess Information Rate (EIR) and Excess Burst 

Size (EBS) needs to be aligned with traffic requirement of the given eNB. The eNB Peak 

Information Rate (PIR) at the transport interface is limited by the given eNB radio inter-

face configuration for example available bandwidth (for example 5, 10, 20 MHz),       

transmission mode (for example TM1, TM4, TM9), multiple-in-multiple-out (MIMO)     

configuration (for example 2*2, 4*4) and number of radio cells in the given eNB.  

 

The eNB egress rate may also be limited to configurable limit at the shaper function 

shown in Figure 19. The policing function at mobile backhaul network side of the UNI 

may discard the traffic which violates the bandwidth profiles. To avoid violating the band-

width profiles at UNI the egress shaper shall be used to limit the transmit rate in controlled 

manner already in the eNB.  

 

 

 

Figure 19. The traffic engineering functions; queuing and shaping in the eNB and policing in the 

backhaul side of the UNI. The eNB shall shape the egress traffic in order to avoid violating the 

UNI bandwidth profile. Violation may cause traffic loss at policer. Adopted from [20]. 
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The first rule defines interrelation between the shaping rate and the peak information 

rate. The shaping information rate (sir) shall be equal to Peak Information Rate (PIR). 

This rule can be written in the following mathematical form: 

 

sir = PIR.     (6) 

 

Where  

PIR = CIR + EIR,    (7) 

EIR >= 0.      (8) 

In case the bandwidth profiles are defined in the UNI level the shaping is done at UNI 

level as well and if the bandwidth profiles are defined in Ethernet virtual connection (EVC) 

level the shaping is applied in VLAN level in the eNB as an eNB VLAN is associated with 

an EVC at the UNI. 

 

The acceptable burst size depends on the queuing capabilities of the backhaul nodes. A 

safe value can be agreed to be used cross the whole planning cluster. Only if User      

Network Interface (UNI) Committed Burst Size (CBS) or Excess Burst Size (EBS) is         

exceptional small the shaper burst size needs to be specifically optimised for the given 

UNI. A safe value is small but large enough to carry the largest possible IP packet.  The 

small Committed Burst Size (CBS) value is also seen to improve efficient Transmission 

Control Protocol (TCP) throughput (TCP goodput) [39]. The second rule defines the       

relation between the Maximum Transmission Unit (MTU), the shaping burst size and the 

Committed Burst Size (CBS). This rule can be written as: 

  

MTU  < shaping burst size < k*(MTU) < CBS.    (9) 

 

Where k is typically a small value for example 1.5 to 5. 

 

The burst size must be larger than the MTU to avoid the shaper being blocked in case a 

packet larger than the burst size is to be scheduled. The terms in the rule are given in 

network level (L3) including IP header and payload. The Committed Burst Size (CBS) in 

Metro Ethernet Forum (MEF) documentation is given as bytes in a service frame thus 

including Ethernet header as well and thus the CSB in L3 level (CBS_L3) needs to be 

adjusted to the corresponding CSB at L2 level (CSB_L2) by adding the number of bytes 

in Ethernet header and possible VLAN tag. 
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To analyse the queuing system shown in Figure 19 first the Guaranteed Bit Rate (GBR) 

traffic is considered. The GBR traffic is typically real time traffic which is sensitive to 

delays and thus the classifier typically allocates the Expedited Forwarding (EF) queue 

for the GBR traffic.  

 

The User Network Interface (UNI) Committed Information Rate (CIR) parameter value 

can also be linked to limits used for the Transmission Admission Control (TAC) applied 

for Guaranteed Bit Rate (GBR) traffic. The minimum theoretical value for UNI CIR would 

be equal to the highest TAC limit which is the limit for emergency traffic. In practice some 

capacity for non-GBR traffic needs also be assumed when CIR value is defined. In gen-

eral terms the rule can be written as: 

 

CIR > TAC emergency limit > TAC hand over limit > TAC normal limit. (10) 

 

All these four values are typically configuration dependent thus in order to maintain        

different configurations all these four items needs to be updated. To minimize the        

number of case specific items a factor (k) is introduced. Applying this factor the formula 

can be written in the following form where one parameter is used as a master and the 

other ones are calculated based on that. Anyone out of these four parameters could be 

a valid master parameter and in this example TAC normal limit was chosen to act as 

master parameters. Applying factor k for terms in formulae (9) the following interrelations 

can be written: 

 

TAC hand over limit = k1 * TAC normal limit   (11) 

TAC emergency limit = k2 * TAC normal limit   (12) 

CIR >= k3 * TAC normal limit.    (13) 

 

Where   

1 < k1 < k2 < k3.    (14) 

 

In this approach the k1, k2 and k3 are constants which are selected on network level 

rather than site level. This leaves only one parameter to be defined on configuration or 

site level. 

 

The potential range of the Committed Information Rate (CIR) can be written the following 

form: 
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k3 * TAC normal limit <= CIR <= PIR.   (15) 

 

So far only the Guaranteed Bit Rate (GRB) traffic was considered. Next the Assured 

Forwarding (AF) and Best Effort (BE) traffic classes are also considered and the impact 

of AF and BE traffic on CIR is elaborated. The use of AF traffic classes depends on the 

applications and services operator want to offer to the subscribers. In this model the 

required bandwidth of each AF class is assumed to be given as an input. Also the         

minimum bandwidth of the best effort (BE) is considered to be an input. The formula for 

the Committed Information Rate (CIR) can be written as: 

 

CIR >= BWGBR + BWAF + BWBEmin.   (16) 

 

Where 

BWGBR is the bandwidth for GBR traffic (k3 * TAC normal limit), 

BWAF is the bandwidth requirement for all AF classes and 

BWBEmin is the minimum requirement of bandwidth for BE traffic class. 

 

The bandwidth requirement for AF traffic classes can be further divided to the require-

ments for each AF class and AF queue shown in Figure 19: 

 

 BWAF = BWAF41 + BWAF31 + BWAF21 + BWAF11.  (17) 

 

Where 

BWAF41 is the bandwidth requirement for AF41 traffic class, 

BWAF31 is the bandwidth requirement for AF31 traffic class, 

BWAF21 is the bandwidth requirement for AF21 traffic class and 

BWAF11 is the bandwidth requirement for AF11 traffic class. 

 

The next step is to define the weights for the queueing system. In the weighted fair 

queueing (WFQ) the weight is used to control the relative share of resources the given 

queue is about to get. The share the queue i is served is a ratio of the weight of the 

queue i to the sum of weights of the all queues in the queueing system. To make the 

weight values easier to interpret the sum can be selected to be a round figure for example 

100,  
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 100 = weight41 + weight31 + weight21 +weight11 + weightBE. (18) 

 

In this case the weight value of 20 indicates the 20% share for the given queue. Applying 

formulae (18) the available bandwidth for the AF41 queue can be written as: 

 

BWAF41 = BWWFQ * weight41/100.   (20) 

 

Where 

 BWWFQ is the total available bandwidth for the WFQ scheduler. 

 

The BWWFQ can be written based on the Guaranteed Bit Rate (GBR) traffic and User 

Network Interface (UNI) Committed Information Rate (CIR) values in the following form: 

 BWWFQ = CIR – BWGBR.   (21) 

 

And the bandwidth for AF41 queue can further be expressed as: 

 

  BWAF41 = (CIR – BWGBR) * Weight41/100.  (22) 

 

In the similar manner a bandwidth for any queue in the WFQ system can be defined.  

 

The interdependencies of the eNB transport capacity control parameter are visualised in 

Figure 20. The input parameters can be seen in the left hand side. The peak rate can be 

based on the eNB air interface configuration or optionally on the limit given manually. 

The limiting factor may be the available backhaul link capacity rather than the air inter-

face capability and thus this manual limit is required in some cases.  
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Figure 20. A model of the capacity related parameters interdependencies, model 1. The target 

amount of traffic in each traffic class is used as an input to generate the required WFQ weights, 

Transport Admission Control (TAC) limits and the shaping information rate (sir). 

 

 

Figure 20 shows an approach where the bandwidth requirements are given separately 

for each traffic class that is for each Assured Forwarding (AF) queue. In cases where the 

share of bandwidth requirements between the traffic classes is constant from an eNB to 

another the approach can be modified so that the bandwidth requirement of one traffic 

class and the relative shares are given as input instead of the absolute values. That 

approach scales well for different total traffic volumes. 

 

The last input parameter in Figure 20 is the normal GBR. The normal Guaranteed Bit 

Rate (GBR) is used to define the Transport Admission Control (TAC) limits and it is also          

essential input for the Committed Information Rate (CIR) calculation. In this model the 

normal GBR parameter is left to be given as a manual entry. In further studies inter-

dependencies between the radio parameters and the optimal GBR value may be defined. 

The k1, k2 and k3 represent constants at least in the cluster level maybe on the network 

level as well. Finally in the right hand side the solved parameters are shown. The most 

of them are used in the eNB configuration data and two as the UNI attributes and thus 

affects the configuration of the network side node. The metrics for the interrelation rule 

is shown in Table 14. 
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Table 14. A scenario metrics comparison for capacity parameters. The impact of the number of 

unique input entry sets on metrics with three different cluster size. The process efficiency is very 

high in large cluster if the number of different sets is small. 

Scenario: 

The number of different input 

entry sets in a cluster 

Metric Cluster size 

3 eNBs 20 eNBs 80 eNBs 

1  cx(i) 

pe(i) 

3.3 

3.3 

0.5 

22 

0.13 

88 

2 cx(i) 

pe(i) 

5.7 

1.9 

0.9 

13 

0.21 

52 

3 cx(i) 

pe(i) 

8 

1.4 

1.2 

9.2 

0.30 

37 

4 cx(i) 

pe(i) 

N/A 1.6 

7.1 

0.39 

28 

5 cx(i) 

pe(i) 

N/A 1.9 

5.8 

0.48 

23 

each eNB has unique set of 

input parameters 

cx(i) 

pe(i) 

8 

1.4 

7.2 

1.5 

7.0 

1.6 

 

The following assumptions applies to the calculations: The seven inputs in the left hand 

side in Figure 20 is one entry set. The three constants k1, k2 and k3 are calculated once 

per cluster and as the output both eNB and UNI parameters are considered that is 11 

outputs per eNB. For small cluster (3 eNBs) the scenario 4 and 5 are not applicable (N/A) 

as the number of input entry sets is exceeding the number of eNBs.  

 

This concludes the discussion of capacity related parameters and their interrelations. 

The next section discusses the interdependencies of the identification and IP address           

parameters. 

 

4.4 Modelling Identification and IP Address Parameters 

 

This section discussed the identifier and address parameters related to eNB transport 

interfaces and features. These parameters includes VLAN IDs and IP addresses. The 

eNB parameters which contain an IP address as a value can be divided into several 

groups. One possible grouping could be based on the use of the parameter as listed in 

Table 15. 
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Table 15. A list of possible use cases for an IP address value. An IP address value has many 

other roles than just an interface or application address. 

IP address parameter use case 

An identifier of own application and/or interface 

An identifier of peer node and/or interface 

An identifier of an endpoint for a process 

A criteria in filter or policing rule 

A destination or a gateway for a route 

  

  

The own application and interface address parameter values are unique in each eNB. 

The peer node and endpoint identifiers are typically common for a group or the eNBs. 

The policy rules may apply both the own and the peer IP address. The discussed IP 

addressing scenarios are divided into three main groups. The first IP addressing scenario 

represents simple cases where VLAN interface IP address is assumed for eNB applica-

tion IP address as well. The second scenario represents cases assuming loopback       

address as eNB application IP address and the third scenario discusses IP addressing 

with IPsec feature.  Each of these scenarios variates in terms of number of VLANs,    

number of different application addresses and the redundancy approach to be used. The 

IP addressing scenarios are listed in Table 16.  

 

Table 16. The main eNB IP addressing scenarios 

# Scenario Applied in the studied 

case(s) / typical use case 

Typical sub-scenarios 

1 Application IP assumes 

the VLAN interface IP 

address 

B, C, D and E Single VLAN 

Dedicated VLAN for M-plane 

VLAN per application 

2 Application IP assumes 

loopback address, no 

IPsec 

Path protection  Single VLAN pair 

Dedicated VLAN pair for M-plane 

VLAN pair per application 

3 IPsec scenario A Single IPsec tunnel 

Dedicated IPsec tunnel for M-plane 

 

VLAN ID interdependencies are discussed next after which the IP address parameter 

interdependencies are looked at in more detail. 
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4.4.1 VLAN ID Interdependencies 

 

One of the identification parameter in eNB transport domain is the VLAN ID. The VLAN 

ID ranges used in the eNB are aligned with the VLAN ID ranges used in the GW router 

or with the service VLAN used in the user network interface (UNI) Ethernet virtual          

connection (EVC). The VLAN is terminated at the GW router; however, the VLAN ID 

used at EVC at the UNI may be mapped to another VLAN ID at the peer [12]. The         

possibility to remap the VLAN IDs gives flexibility in cases where customer end VLAN ID 

conflicts with the ones already used at the peer for other purposes. However,                    

unnecessary remapping shall be avoided as it is known to complicate the network        

configuration and thus introduces additional risks to misinterpret or miss configure the 

network nodes. This model assumes that the VLAN ID applied in the eNB is equal to the 

one applied in the GW router for the given purposes. 

 

Rule1: The GW router may be connected to several independent link layer (L2) domains 

which are identified unambiguously by a unique VLAN ID. 

 

Rule2: Several eNBs may share the same L2 domain and thus assumes the equal VLAN 

ID value. 

 

Rule3: each eNB may assume several VLANs (to separate different traffic types or for 

the primary and secondary paths). 

 

An example scenario of two independent VLANs each serving a few eNBs is shown in 

Figure 21. In this figure the eNB-1 and the eNB-2 assumes the same green VLAN while 

the eNB-3, the eNB-4 and the eNB-5 assumes another, the blue VLAN.  
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Figure 21. An example of two VLANs each shared with a few eNBs. The green line in the top 

illustrates VLAN which interconnects eNB-1, eNB-2 and router R1. The blue line below that            

illustrates a VLAN which is used to interconnect eNB-3, eNB-4, eNB-5 and router R1. 

 

All eNB traffic is forwarded within a single VLAN in this example. In case traffic separation 

within an eNB is required then several VLANs are used per eNB. Within the cases      

studied only one case has single VLAN, one has five VLANs and the rest three have four 

VLANs per eNB each. Based on the subnet size assigned for the VLAN it can be             

assumed that most of the cases share the VLAN between several eNBs or other radio 

technology BTS. 

 
The VLAN ID range can be divided into blocks per function and per geographical location 

of the L2 domains and thus the VLAN ID can be calculated based on the following          

formula. 

 
 

VLAN ID = f(x,y).    (23) 

 

Where  x defines the traffic plane and 

 y defines physical location of the L2 domain. 

 

In the example shown in Figure 22 three VLANs are assumed for traffic separation for 

each eNB. Each VLAN group is shared among several eNBs within the same IP GW 

cluster. The first two most significant digits defines the traffic plane and the last two digits 

the L2 domain in question. In that case the formula can be written as  
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VLAN ID = 100 * x + y    (24) 

 

Where x = 33 for M-plane 

 X = 34 for S-plane 

 X = 35 for C/U-plane and 

 y identifies 100 possible L2 domains. 

 
The main idea is to apply simple rule which can be followed cross the network. 

  
Figure 22. A principle of VLAN ID range distribution by function and by geographical area. The 

function is a traffic plane; management plane (33 M-plane), synchronisation plane (34 S-plane) 

and combined control and user plane (35 C/U-plane). Each physical L2 domain reach to particular 

geographical area. A VLAN ID value is a combination of a function and a geographical area    

number (00, 01, 02,…). 

 

 

This concludes the discussion of the VLAN ID interdependencies and next topic to        

discuss is the IP address parameters and their interdependencies. 

 

4.4.2 IP Addressing Scenario 1 

 

The first IP addressing scenario assumes VLAN interface IP address as an application 

IP address. This scenario like all addressing scenarios variates in terms of number of 

VLANs, number of different application addresses and the redundancy approach to be 

used.  
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In scenario 1 with single VLAN all application IP addresses have the same value as the 

VLAN interface IP address and thus five different parameters assumes the same value. 

A configuration file snapshot is shown in Listing 20. 

 

<managedObject class="IPNO" distName="MRBTS-107303/LNBTS-

107303/FTM-1/IPNO-1" operation="update" version="LN7.0"> 

<p name="mPlaneIpAddress">10.1.100.11</p> 

<p name="uPlaneIpAddress">10.1.100.11</p> 

<p name="cPlaneIpAddress">10.1.100.11</p> 

<p name="sPlaneIpAddress">10.1.100.11</p> 

… 

<managedObject class="IVIF" distName="MRBTS-107303/LNBTS-

107303/FTM-1/IPNO-1/IEIF-1/IVIF-1" operation="create"   

version="LN7.0"> 

<p name="vlanId">100</p> 

<p name="localIpAddr">10.1.100.11</p> 

<p name="netmask">255.255.255.224</p> 

… 

</managedObject> 

Listing 20. An example of scenario 1. Single IP address value is assumed for VLAN interface 

(localIpAddr) and for all eNB applications (mPlaneIpAddress, uPlaneIpAddress, 

cPlaneIpAddress and sPlaneIpAddress). 

 

One variation is to add a secondary GW and apply Bidirectional Forwarding Detection 

(BFD) process to monitor the availability of the path to the primary GW. This would add 

a new managed object where the same IP address is applied as a local IP address. A 

snapshot of BFD parameters are shown in Listing 21. 

 

 

<managedObject class="BFD" distName="MRBTS-xxx303/LNBTS-

xxx303/FTM-1/IPNO-1/BFD-1" operation="create" version= 

"LN7.0"> 

… 

<p name="bfdSourceIpAddr">10.1.100.11</p> 

… 

</managedObject> 

Listing 21. An example of Bidirectional Forwarding Detection (BFD) process also assuming the 

same IP address value as a source address as is used for VLAN interface IP address above. 
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The second possible variation is to add the Two Way Active Measurement Protocol 

(TWAMP) process. This will introduce one more managed object with the same IP         

address as a local end identifier as shown in Listing 22. 

 

<managedObject class="TWAMP" distName="MRBTS-xxx303/LNBTS-

xxx303/FTM-1/IPNO-1/TWAMP-1" operation="create" version= 

"LN7.0"> 

… 

<p name="sourceIpAddress">10.1.100.11</p> 

</managedObject> 

Listing 22. An example of parameters required for the Two Way Active Measurement Protocol 

(TWAMP) process. The IP address used as a local end point (sourceIpAddress) assumes the 

same value as the VLAN interface shown in Listing 20. 

 

In this scenario one of the IP address parameters is taken as a master parameter and 

the others just assumes a copy of the value. The question is: Which of the parameters 

shall be selected as a master? Based on the scenario1 with single VLAN only the two 

last IP address parameters (BFD and TWAMP managed objects) can be excluded from 

the list of candidates as there do not exists in all configurations.  

  

Next the second sub-scenario of the scenario1 is analysed. In the second sub-scenario 

a dedicated VLAN is assumed for M-plane traffic. This scenario is illustrated in               

Listing 23. 

 

<managedObject class="IPNO" distName="MRBTS-xxx303/LNBTS-

xxx303/FTM-1/IPNO-1" operation="update" version="LN7.0"> 

<p name="mPlaneIpAddress">10.1.200.11</p> 

<p name="uPlaneIpAddress">10.1.100.11</p> 

<p name="cPlaneIpAddress">10.1.100.11</p> 

<p name="sPlaneIpAddress">10.1.100.11</p> 

… 

</managedObject> 

<managedObject class="IVIF" distName="MRBTS-xxx303/LNBTS-

xxx303/FTM-1/IPNO-1/IEIF-1/IVIF-1" operation="create"   

version="LN7.0"> 

<p name="vlanId">100</p> 

<p name="localIpAddr">10.1.100.11</p> 

… 
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</managedObject> 

<managedObject class="IVIF" distName="MRBTS-xxx303/LNBTS-

xxx303/FTM-1/IPNO-1/IEIF-1/IVIF-2" operation="create"   

version="LN7.0"> 

<p name="vlanId">200</p> 

<p name="localIpAddr">10.1.200.11</p> 

… 

</managedObject> 

Listing 23. IP addressing scenario assuming dedicated VLAN and thus dedicated IP address for 

the NB M-plane. In this example M-plane application address (mPlaneIpAddress) has the same 

value as the interface of the VLAN 200 (localIpAddr). 

 

In general terms the sub-scenarios of the scenario1 can be expressed as a function of 

the number of the VLANs to be used. Table 17 shows the few valid combinations with 

typical use cases. 

 

Table 17. A few valid IP addressing sub-scenarios of the scenario 1. 

Number of VLANs 

 (applications) 

Scenario 

ID 

Typical use case 

1  

(CUSM) 

1.1 No traffic separation required between traffic planes. Simple 

configuration. 

2  

(CUSM,C2) 

1.2 No traffic separation required between the traffic planes. The 

secondary C-plane VLAN is due to the SCTP multi-homing. 

2  

(CUS, M) 

1.3 M-plane traffic needs to be separated from the other traffic to 

fulfil the operator’s security policies. 

3  

(CUS,C2,M) 

1.4 M-plane traffic needs to be separated from the other traffic to 

fulfil the operator’s security policies. The secondary C-plane 

VLAN due to SCTP multi-homing. 

3  

(CU,S,M) 

1.5 Traffic separation is driven by the backhaul capabilities in 

cases where the backhaul is able to classify traffic only 

based on the VLAN ID but not based on VLAN priority or 

DSCP. C-plane and U-plane are kept together to simplify X2 

routing.  

3  

(CU,SC2,M) 

1.6 Traffic separation is driven by the backhaul capabilities in 

cases where backhaul is able to classify traffic only based on 

the VLAN ID but not based on VLAN priority or DSCP. C-

plane and U-plane are kept together to simplify X2 routing. 
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S-plane and C2 assumes the same VLAN as the similar traf-

fic treatment is required. 

4  

(C,U,S,M) 

1.7 Traffic separation is driven by the backhaul capabilities in 

cases where backhaul is able to classify traffic only based on 

the VLAN ID but not based on VLAN priority or DSCP.  

5  

(C,C2,U,S,M) 

1.8 Traffic separation is driven by the backhaul capabilities in 

cases where backhaul is able to classify traffic only based on 

the VLAN ID but not based on VLAN priority or DSCP. The 

secondary C-plane VLAN due to SCTP multi-homing. 

 

The first sub-scenario, scenario 1.1, is the simples in terms of configuration complexity. 

It has single VLAN and single IP address used for the VLAN interface and for the appli-

cations as well. Figure 23 illustrates scenario 1.1 on the left hand side and the scenario 

1.1 with BFD based traffic protection on the right hand side. 

 

 

 

Figure 23. eNB IP addressing scenario 1.1 on left and scenario 1.1 with Bidirectional Forwarding 

Detection (BFD) on right. One IP address is shared by all eNB applications and the VLAN inter-

face. On the left hand side single IP Gateway (GW) is used while with path protection with BFD 

process the secondary GW is also defined. 

 

 

Figure 24 visualises the eNB IP addressing parameter interrelations in the basic scenario 

1.1. In the left hand side the minimum set of input parameters; eNB specific IP address, 

VLAN cluster specific VLAN ID and GW IP address, and parameters which are common 

for several VLAN clusters. These are used to generate the required eNB transport         

parameters shown in the right hand side. In this scenario single input entry, IP address, 

is used to solve all required four application IP address parameter values in IPNO-1 

object and the VLAN interface IP address in IVIF-1 object. The larger cluster contains 

parameters which values are applicable for several VLAN clusters. Typically all the 

VLANs used for the same purpose, for example for M-plane, assumes the same subnet 

size and thus the VLAN subnet netmask is considered to be bigger cluster specific rather 

than VLAN specific in this model. 
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Figure 24. eNB IP addressing parameter interrelations in the scenario 1.1. One eNB specific entry 

is used as a value for five different parameters in the eNB XML configuration file. Each of the two 

VLAN cluster level entries and three bigger cluster (for example Mobility Management Entity 

(MME) cluster) level are used once in the XML file. 

 

 

Each additional VLAN introduces one eNB level input entry (IP address) and two VLAN 

cluster level input entries; VLAN ID, Primary GW IP address.  These additional VLANs 

require six parameters in the eNB configuration file; vlanId, localIpAddr, netmask in IVIF-

object and destIPaddr, netmask and the gateway in the IPRT-object. In case the VLAN 

is to be used for multi-home stream control transmission protocol (SCTP) one more out-

put parameter is counted (cPlaneIpAddressSec).  

 

The complexity and the process efficiency metrics are defined for scenarios shown in 

Table 17. The calculated metrics are  listed in Table 18. 
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Table 18. Metrics for eNB IP addressing scenario 1  

Scenario Metric Cluster size 

3 eNBs 20 eNBs 80 eNBs 

1.1 cx(i) 

pe(i) 

1.7 

4.2 

1.1 

6.4 

1.0 

6.8 

1.2 cx(i) 

pe(i) 

3.3 

4.2 

2.2 

6.4 

2.1 

6.8 

1.3 cx(i) 

pe(i) 

3.3 

3.9 

2.2 

5.9 

  2.1 

6.3 

1.4 cx(i) 

pe(i) 

5.0 

3.8 

3.3 

5.8 

3.1 

6.2 

1.5 cx(i) 

pe(i) 

5.0 

3.6 

3.3 

5.5 

3.1 

5.9 

1.6 cx(i) 

pe(i) 

5.0 

3.8 

3.3 

5.8 

3.1 

6.2 

1.7 cx(i) 

pe(i) 

6.7 

  3.5 

4.4 

5.2 

4.1 

5.6 

1.8 cx(i) 

pe(i) 

8.3 

3.5 

5.5 

5.3 

5.1 

  5.7 

 

It can be seen that increasing the cluster size from 3 eNBs to 20 eNBs both metrics 

shows notable improvement; complexity (cx) decreases and process efficiency (pe)       

increases. Further cluster size increase from 20 eNBs to 80 eNBs shows still some        

improvement, however, the small one. 

 

The eNBs may require additional features such as redundant GW and backhaul quality 

monitoring based on two way active measurement protocol (TWAMP). In case those 

additional features are not applied to all site in the cluster they can be added as a          

conditional item in the parameter model. Figure 25 illustrated scenario 1.1 with additional 

inputs to create the conditional items. The dotted lines represents the conditional items. 

By giving a value for the secondary GW IP address input entry the required additional 

object, in this case the BFD-1 object, is created and the object parameter values are 

filled in based on the inputs given. In the similar manner the conditional TWAMP objects 

and related parameters are defined on need basis.  



82 

 

 

 

Figure 25. eNB IP addressing parameter interrelations in the scenario 1.1 with Bidirectional       

Forwarding Detection (BFD) and Two Way Active Measurement Protocol (TWAMP). Compared 

to the basic scenario 1.1 the BFD and TWAMP introduces additional elements in the eNB XML 

file. Many newly introduced parameter assumes a value of already defined input entry.  

 

 

The metrics are also compared taken the Bidirectional Forwarding Detection (BFD) and 

the Two Way Active Measurement Protocol (TWAMP) features in to an account. Table 

19 shows the calculated metrics values for the same scenarios assuming both BFD with 

additional route and TWAMP processes. Comparing Table 18 and Table 19, it can be 

seen that the additional features, BFD and TWAMP, increases the complexity as            

additional input parameters are required. However, the process efficiency increases 

much more. This is because the input parameters are used to define a much larger    

number of the output parameters in the latter case.  
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Table 19. Metrics for eNB IP addressing scenario 1 with Bidirectional Forwarding Detection (BFD) 
and Two Way Active Measurement Protocol (TWAMP). 

Scenario Metric Cluster size 

3 eNBs 20 eNBs 80 eNBs 

1.1  cx(i) 

pe(i) 

2.0 

8.5 

1.2 

14.8 

1.0 

16.4 

1.2 cx(i) 

pe(i) 

4.0 

6.2 

2.3 

10.9 

2.1 

12.0 

1.3 cx(i) 

pe(i) 

4.0 

6.0 

2.3 

10.4 

2.1 

11.6 

1.4 

 

cx(i) 

pe(i) 

6.0 

5.3 

3.5 

9.3 

3.1 

10.3 

1.5 cx(i) 

pe(i) 

6.0 

5.2 

3.5 

9.0 

3.1 

10.0 

1.6 cx(i) 

pe(i) 

6.0 

5.3 

3.5 

9.3 

3.1 

10.3 

1.7 cx(i) 

pe(i) 

8.0 

4.7 

4.6 

8.3 

4.2 

9.2 

1.8 cx(i) 

pe(i) 

10.0 

4.6 

5.8 

8.0 

5.2 

8.9 

 

Typically the same scenario is applied for all eNBs within the planning cluster and thus 

it is practical to fine tune the parameter model to the given scenario rather than trying to 

solve all scenarios with a single model applying complex logic. The rest of the sub        

scenarios are not discussed in detail. The second scenario listed in Table 16 is discussed 

next. 

 

4.4.3 IP Addressing Scenario 2 

 

In the second IP addressing scenario all or most of the applications assume a loopback 

address as an application IP address. This adds flexibility and enables additional means 

to provide transport redundancy. More than one VLAN can be defined to be used for an 

application and based on the availability of the path on given VLAN it is either used for 

traffic forwarding or ignored as a valid option. Quite like the scenario1 also the scenario2 

variates in terms of number or VLANs for traffic separation, the redundancy path and 

backhaul quality monitoring requirements. Table 20 lists the typical sub-scenarios for  

scenario 2. 
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Table 20. A few sub-scenarios of the scenario 2. 

Number of 

VLANs 

Scenario 

ID 

Typical use case 

1  

(CUSM) 

2.1 No traffic separation required between traffic planes. Simple    

configuration. Applications may assume the same IP address or 

they may have dedicated IP address. It can also be a combination 

of these. 

2  

(primary/ 

secondary) 

2.2 The second VLAN is defined to provide an alternative traffic path 

in case the primary path is not operational.  

2  

(CUSM,C2) 

2.3 No traffic separation required between the traffic planes.           

Secondary C-plane VLAN is used in case the SCTP multi-homing 

is to be configured. C2 must not be equal to C. 

2  

(CUS, M) 

2.4 M-plane traffic needs to be separated from the other traffic to fulfil 

the operator’s security policies. 

3  

(CUS,C2,M) 

2.5 M-plane traffic needs to be separated from the other traffic to fulfil 

the operator’s security policies. A secondary C-plane VLAN due 

to SCTP multi-homing. 

3  

(CU,S,M) 

2.6 Traffic separation is driven by the backhaul capabilities in cases 

where the backhaul is able to classify traffic only based on the 

VLAN ID but not based on VLAN priority or DSCP. C-plane and 

U-plane are kept together to simplify X2 routing.  

3  

(CU,SC2,M) 

2.7 Traffic separation is driven by the backhaul capabilities in cases 

where backhaul is able to classify traffic only based on the VLAN 

ID but not based on VLAN priority or DSCP. C-plane and U-plane 

are kept together to simplify X2 routing. S-plane and C2 assumes 

the same VLAN as the similar traffic treatment is required. 

4  

(C,U,S,M) 

2.8 Traffic separation is driven by the backhaul capabilities in cases 

where backhaul is able to classify traffic only based on the VLAN 

ID but not based on VLAN priority or DSCP.  

5 

(C,C2,U,S,M) 

2.9 Traffic separation is driven by the backhaul capabilities in cases 

where backhaul is able to classify traffic only based on the VLAN 

ID but not based on VLAN priority or DSCP. A secondary C-plane 

VLAN due to SCTP multi-homing. 

n2m 

(Primary/  

Secondary) 

2.10 A generic case for n different application IP addresses and m 

VLANs to be used for primary and secondary paths. 
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Next the n2m sub-scenario is discussed in detail. Figure 26 illustrates the principle of the 

n2m scenario. One example use case for this scenario is the mobile-edge computing 

(MEC) connectivity case. In that case VLAN having interface IP address T1 is used as a 

primary path for U- and C-plane traffic towards the MEC node, VLAN T2 is used for         

S-plane traffic and also as a secondary path for U- and C-plane traffic in case the path 

via the MEC or the MEC itself becomes unavailable. The last VLAN (T3) is used for        

M-plane traffic.  

 

 

 

Figure 26. An IP addressing n2m scenario (n=3, m=3). In this generic scenario the n represents 

the number of the unique IP addresses assigned for the application as a loopback address and 

m is the number of IP addresses assigned for the VLAN interfaces. 

 

 

The eNB IP parameter interdependencies are illustrated in Figure 27. In this scenario 

only a few interdependencies can be identified. First the U-plane and C-plane application 

IP address parameter values in IPNO object are equal. The second object which can 

reuse other parameters is the BFD object. In this example the BFD object assumes 

VLAN IP address (T1) as the bfdSourceAddr and the GW1 as the bfdDestAddress          

parameters. Other potential choices for the bfdSourceAddress parameter value is the 

one used as the U-plane application address (uPlaneIpAddress). Also in the BFD         

process may     monitor connection further in the network on multi-hop basis other value 

for bfdDestAddress is to be applied. Such address may not be used for any other          

purposes in the eNB and needs to be introduced as an additional input in the model. 
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Figure 27. eNB IP addressing parameter interrelations in the n2m example scenario. The         

combined C/U-plane IP address entry value is copied into five different eNB XML file parameters. 

The first GW is used twice, the VLAN mask is used three times, destination IP address and mask 

twice each and the Two Way Active Measurement Protocol (TWAMP) peer IP address is used 

twice in this example. 

 

 

The scenario metric are calculated for scenarios shown in Table 20. These calculated 

metrics are shown in Table 21. Scenarios up to 2.9 are predefined and scenario 2.10 is 

generic and variates in terms of number of different application IP addresses (n) and the 

number of VLANs (m). Scenario 2.10 assumes protected path for each application. 
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Table 21. Metrics for eNB IP addressing scenario 2 with Bidirectional Forwarding Detection (BFD) 
and Two Way Active Measurement Protocol (TWAMP). 

Scenario Metric Cluster size 

3 eNBs 20 eNBs 80 eNBs 

2.1  cx(i) 

pe(i) 

4.7 

3.4 

4.1 

3.9 

4.0 

4.0 

2.2 cx(i) 

pe(i) 

7.3 

3.1 

6.2 

3.7 

6.1 

3.8 

2.3 cx(i) 

pe(i) 

6.3 

3.5 

5.2 

4.2 

5.1 

4.4 

2.4 cx(i) 

pe(i) 

7.3 

3.1 

 6.2 

3.7 

6.1 

3.8 

2.5 cx(i) 

pe(i) 

8.0 

3.5 

6.3 

4.4 

6.1 

4.6 

2.6 cx(i) 

pe(i) 

9.0 

3.2 

7.3 

4.0 

7.1 

4.1 

2.7 cx(i) 

pe(i) 

8.0 

3.5 

6.3 

4.4 

6.1 

4.6 

2.8 cx(i) 

pe(i) 

10.7 

3.3 

 8.4 

4.2 

8.1 

4.3 

2.9 cx(i) 

pe(i) 

11.3 

3.5 

8.5 

4.7 

8.1 

4.9 

2.10 

n2m=122 

cx(i) 

pe(i) 

4.3 

5.1 

3.2 

6.9 

3.1 

7.2 

2.10 

n2m=224 

cx(i) 

pe(i) 

8.7 

3.9 

6.4 

5.3 

6.1 

5.6 

2.10 

n2m=326 

cx(i) 

pe(i) 

13.0 

3.5 

9.6 

4.8 

9.2 

5.0 

2.10 

n2m=428 

cx(i) 

pe(i) 

17.3 

3.3 

12.8 

4.5 

  12.2 

4.8 

 
This concludes the discussion about the IP addressing scenario 2. In the following       

section the IP addressing scenario with IP security is discussed. 

 

4.4.4 IP Addressing Scenario 3 

 

The last eNB IP addressing scenario to discuss is scenario 3. This scenario covers IP 

addressing cases when IPsec is to be used. Two independent IP address domains needs 

to be considered when IP address interrelations are studied. The outer domain is            
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applicable between the eNB and the security GW. The forwarding of the IP packets in 

outer domain is based on the IPsec tunnel IP endpoint addresses and these IP                

addresses are relevant only in the transport network between the eNB and the security 

GW. At the eNB the outer domain IP address that is the IPsec tunnel end point IP address 

is the VLAN interface IP address. The inner domain IP addresses, transport IP in Figure 

28, have relevancy only in between the security GW and the core elements like MME 

and SAE-GW and inside the eNB. The inner domain IP addresses in the eNB includes 

the application IP addresses (U-plane, C-plane, M-plane and S-plane). 

 

It was identified that some of the processes, for example the Bidirectional Forwarding      

Detection (BFD), operates between the eNB and the GW router within the unsecure IP 

domain operating with the outer IP addresses while the Two Way Active Measurement 

Protocol (TWAMP) endpoint is typically in the core site thus in a secure area and the 

relevant IP address to look at is the inner domain IP address. 

 

 

Figure 28. U-plane protocol stack with IPsec tunnel [8]. The near-by processes for example the 

Bidirectional Forwarding Detection (BFD) operates in the same domain the IPsec Tunnel IP        

addresses while the far-reaching processes for example the Two Way Active Measurement Pro-

tocol (TWAMP) operates in the inner domain and thus assumes Transport IP address as a local 

end IP point address. Adapted from [8]. 

 

The example snapshot of an eNB XML file below in Listing 24 shows three different      

managed objects which all contain the same IP address value equal to 10.200.0.7 and two 

managed objects which contain IP address value equal to 10.200.0.1. The first managed 

object (IVIF-2) defines a VLAN interface and assigns IP address (10.200.0.7) to this VLAN 

interface. The second managed object (BFD-2) defines a BFD process to supervise the 

path availability from the VLAN interface (10.200.0.7) to the primary GW (10.200.0.1) and        

finally the third object (IPNO-1) defines the IP addresses for applications. In this example 
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the S-plane IP address assumes the VLAN (IVIF-2) IP address (10.200.0.7). The primary 

GW IP address defined in the routing object (IPRT-1) contains the value (10.200.0.1) which 

can be found also in the bidirectional forwarding detection (BFD-1) managed object.  

 

<managedObject class="IVIF" distName="MRBTS-15/LNBTS-

15/FTM-1/IPNO-1/IEIF-1/IVIF-2" operation="create" version= 

"TL15A"> 

<p name="vlanId">200</p> 

<p name="localIpAddr">10.200.0.7</p> 

...  

<managedObject class="BFD" distName="MRBTS-15/LNBTS-15/FTM-

1/IPNO-1/BFD-2" operation="create" version="TL15A"> 

… 

<p name="bfdDestAddress">10.200.0.1</p> 

… 

<p name="bfdSourceIpAddr">10.200.0.7</p> 

.. 

<managedObject class="IPNO" distName="MRBTS-15/LNBTS-

15/FTM-1/IPNO-1" operation="update" version="TL15A"> 

...  

<p name="sPlaneIpAddress">10.200.0.7</p> 

...  

<managedObject class="IPRT" distName="MRBTS-15/LNBTS-

15/FTM-1/IPNO-1/IPRT-1" operation="create" version="TL15A"> 

<list name="staticRoutes"> 

...  

<item> 

<p name="bfdId">2</p> 

<p name="destIpAddr">0.0.0.0</p> 

<p name="gateway">10.200.0.1</p> 

… 

<item> 

<p name="bfdId">0</p> 

<p name="destIpAddr">0.0.0.0</p> 

<p name="gateway">10.200.0.2</p> 

… 

</item> 

Listing 24. An example of IP addressing scenario where the same IP address value (10.200.0.7) 

is used for three different managed objects (IVIF, BFD, and IPNO). And the other value 

(10.200.0.1) is applied in two different managed objects (BFD and IPRT). 
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These eNB IP address parameter interrelations are visualized in Figure 29. The IPsec 

introduces new object (IPSECC) in the eNB configuration file. The traffic treatment in 

IPsec process is controlled by means of security policy rules. These policy rules contain 

criteria some of which are eNB specific and others are common for the whole security 

GW cluster. The eNB specific criteria contains the already introduced eNB IP addresses 

and thus no new eNB specific input entries are necessary for IPsec.  

 

Some traffic types may assume several security policies. In this example case U-plane 

and M-plane assumes two different security policies. For U-plane the aim is to define 

each destination (SGW) separately and for M-plane the motivation for multiple policies 

is to encrypt certain M-plane traffic on transport and bypass the other type of M-plane 

traffic as it has already been encrypted on application layer. 

 

The quantity of required security policies needs to be defined case by case as the          

policies applied in eNB shall be in line with the operator’s overall security policies. Some 

of the policies may be aggregated to single policy to simplify the configuration. This can 

be done by relaxing the accuracy applied in the security policies in other words instead 

of applying two policies, one for each destination SGW, one common policy with wider 

IP address block to cover IP address of both SGW may be consider.  

 

For clarity only the parameters which are relevant to understanding the IPsec scenario 

are shown and thus bidirectional forwarding detection (BFD) and two way active       

measurement protocol (TWAMP) related objects are not shown in Figure 29. 
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Figure 29. eNB IP addressing with IPsec, scenario 3.1. IPsec introduces policies which are used 

to control the traffic treatment in the eNB security gateway. This example shows policies 10 to 60. 

Most of the policies uses IP addresses as policing criteria and thus a few additional IP address 

entries are introduced. 

 

 

In this study one IPsec case is studied. For reference the metrics is calculated to one 

IPsec case, referred as 3.1. This scenario 3.1 assumes single VLAN and four different 

eNB application IP addresses and thus it is like scenario 2.10 (n2m=421) with IPsec. The 

IPsec adds many parameters on top of those required in scenario 2.10. These need to 

be defined for the eNB configuration file. However, most of them can be derived from the 

other parameters already defined for scenario 2.10. The calculated metrics are shown in 
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Table 22. This calculation assumes six security polices each requiring two security GW 

cluster level input entries. 

 

 

Table 22. Metrics for eNB IP addressing scenario 3. 

Scenario Metric Cluster size 

3 eNBs 20 eNBs 80 eNBs 

3.1  cx(i) 

pe(i) 

5.7 

8.1 

5.1 

9.0 

5.1 

9.1 

3.1 with 

TWAMP 

cx(i) 

pe(i) 

5.7 

8.8 

5.1 

9.7 

5.1 

9.9 

 

 

It should be noted that the calculated metrics for scenario 3 shall not be compared           

directly to metrics calculate for scenario 2 as the scenarios have different assumptions. 

Unlike the scenario 2 the scenario 3 assumes no bidirectional forwarding detection (BFD) 

object and related parameters.   
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5 Analysis and Conclusions  

 

The aim of this study was to develop an eNB transport parameter model to simplify the 

eNB transport parameter planning in network roll-out phase. The parameter model         

defines parameter interrelation rules and it suggests a small set of input entries which 

are to be used to solve a large number of transport parameters in eNB managed objects. 

This study identifies that most of the eNB transport parameters assume the same values 

within a planning cluster or even within the whole network.  

 

In this study the eNB transport parameters are divided into four main categories based 

on how specific the parameter value is in the eNB within a planning cluster. The               

parameter categories are; global and network level, cluster level, capacity step or type 

specific and eNB specific. The input entries in the parameters model follows the same 

categories. The generic model is illustrated in Figure 30. The global and network level 

parameters are not visible in this model as those are prepared in the base configuration 

already before the eNB specific planning starts.   

 

 

  

 

Figure 30. A generic eNB transport parameter model with interrelation rules. The eNB specific, 
cluster specific and bigger cluster specific input entries are used to determine the parameters in 
the eNB managed objects. A managed object parameter assumes a value of an input entry or a 
result of a function. 
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This study identifies two different areas where the parameter interrelation rules benefit 

most the planning process. Fist the interrelation rules between the different traffic           

engineering parameters are introduced. The traffic engineering parameters include 

shaping, transport admission control and scheduling parameters. The characteristic of 

these parameters is that these parameters do not need to be defined for each eNB      

separately but rather for each eNB target capacity step for example if the given planning 

cluster contains only two different capacity steps then only two different sets of traffic 

engineering parameters needs to be defined.  

 

The second parameter area which benefits from the parameter interrelation rules in    

planning process is the VLAN and IP addressing parameters. To manage the VLAN and 

IP addressing parameters this study suggests to divide all possible configurations into 

more manageable scenarios and sub-scenarios. This narrows down the parameter   

management process in a roll-out project as a project typically assumes a limited number 

of scenarios in a given time frame. The main IP addressing scenarios suggested by this 

study are listed in Table 23. 

 

Table 23. The main IP addressing scenarios suggested by this study. 

# Scenario Typical sub-scenarios 

1 Application IP assumes the VLAN 

interface IP address 

Single VLAN 

Dedicated VLAN for M-plane 

VLAN per application 

2 Application IP assumes loopback 

address, no IPsec 

Single VLAN pair (primary, secondary) 

Dedicated VLAN pair for M-plane 

VLAN pair per application 

3 IPsec scenario Single IPsec tunnel 

Dedicated IPsec tunnel for M-plane 

 

Further this study suggest to define the eNB transport parameter interrelation rules in 

sub-scenario level. This reduces the number of required input entries as a sub-scenario 

is optimised for the specific network configuration and thus unnecessary selections can 

be avoided. The actual benefit of the suggested scenarios and rules depends on the 

feature set used in the given network.  

 

This study analyses the basic scenarios also with Bidirectional Forwarding Detection 

(BFD), Fast IP Rerouting and Two Way Active Measurement Protocol (TWAMP)           

processes. These processes are seen more and more often in the advanced networks 



95 

 

as the first two are meant to improve the network resilience and the last one gives the 

operator visibility to the mobile backhaul network load and quality. All of these processes 

benefit from the interrelation rules as the related managed objects require parameters 

which are already defined in the basic scenario. 

 

The benefits of the suggested scenarios are evaluated using the process efficiency     

metric defined in equation (4). The average process efficiency in introduced IP address-

ing scenarios is in range of 4.7 to 11.1 assuming cluster size 80 eNBs. In practical terms 

this means that every introduced input entry defines a value for five to eleven eNB       

specific parameters in average.  

 

The planning cluster size has an impact on the benefit of the parameter interrelation 

rules. In every introduced scenario the calculated metrics shows the highest benefit at 

the largest planning cluster. Complexity metrics (cx(i)) shows 11% to 48% improvement 

and the process efficiency metrics (pe(i)) improves 13% to 93% when the cluster size is 

increased from 3 eNBs 80 eNBs in calculated scenarios (Table 14, Table 18, Table 19, 

Table 21 and Table 22). This study considers relatively small cluster sizes (3, 20 and 80 

eNBs).  From the parameter interrelation rules point of view the higher the cluster size is 

the more efficient the process becomes. It is left for further studies to determine the most 

optimal cluster size. The large VLAN cluster implies a large layer two domain and thus 

large broadcast domain which is known to have negative impact on network stability and 

performance.   

 

As it can be seen from the metrics the actual benefit depends strongly on the scenario 

in question. In addition to direct time savings due to less required effort spend in the input 

entries the introduced parameter interrelation rules when applied minimise human errors 

and thus the non-quality cost as well. In roll-out projects the non-quality cost may even 

exceed the actual effective work effort spent on parameter planning due to process       

delays and potentially additional site visits required to rectify the errors. The accurate 

non-quality cost analysis is left for future studies.  
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6 Discussion 

 

The developed parameter model and the introduced eNB transport parameter inter-       

relation rules simplify the planning tasks, reduce the work effort and minimise the risk of 

human errors. The suggested scenarios simplify the planning tasks as the most optimal 

network scenario can easily be identified and selected among the introduced scenarios 

and sub-scenarios.  

 

The discussion and descriptions of the interrelation rules help operators to adjust the 

given scenario for the current case. The discussion and descriptions of the introduced 

eNB transport parameter interrelation rules enable the flexibility and adaptability to fulfil 

the local requirements that the operator may have. The work effort is reduced as the 

number of decisions to be made is reduced due to the parameter interrelation rules. The 

number of human errors is reduced also as the number of manually entered entries are 

reduced notable. Assuming that each manual entry has a relation to every other manual 

entry and the probability for human error is constant for each manual entry pair, the      

reduction of the number of input entries reduces the number of such entry pair                  

approximately exponentially. This explains the exponential impact on non-quality cost as 

shown in Figure 31.   

 

 

 

 

Figure 31 Impact of the number of entries on the work effort and the non-quality cost. Reducing 
the number of input entries decrease the direct work effort approximately linearly while the non-
quality cost reduction is estimated to follow exponential curve. 
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The eNB transport parameter model and the introduced interrelation rules help operators 

to introduce more advanced transport features in a cost effective manner as the model 

and the theory behind guide the operator in parameter definition process. Examples of 

Bidirectional Forwarding Detection (BFD) based path monitoring and Fast IP rerouting 

protection as well as examples of Two Way Active Measurement Protocol (TWAMP) 

guide the operator when deploying a highly resilient and high quality aware network. 

 

By applying the introduced eNB transport parameter interrelation rules the operator can 

eliminate the logical errors for example in traffic engineering parameters and minimise 

human errors in general as the number of considered entries is reduced. Logical errors 

are avoided as the interrelation logic is predefined and well explained and thus the          

operator does not need spend time to create such logic for the case. 

 

The findings in this study are mainly based on the five studied cases. In addition to that 

a few other eNB configurations were also considered. The five studied cases represent 

only a small share of all ongoing projects. Out of these five studied cases four are           

following the same basic IP addressing scenario while one is having clearly different IP 

addressing scenario. All the four similar cases are from the same Latin America region. 

The bigger number of analysed cases would have given wider view to current practises. 

Also it would have been better if the cases would have been evenly distributed over the 

globe. Now the Latin America region is over weighted and project practises in other       

regions such as China, Europe, North America and Far East are not analysed thoroughly. 

 

It became evident that the networks are constantly evolving and the additional transport 

features are foreseen in the future in many studied cases. Similar messages are also 

seen from other projects. Typical additions to current configurations are the transport 

quality monitoring based on the Two Way Active Measurement Protocol (TWAMP)       

process and the features to connect eNBs to several operators’ core networks. Also the 

Mobile-Edge Computing (MEC) is mentioned in many occasion when future evolution is 

discussed. 

 

Taking this into an account the introduced scenarios are believed to cover most of the 

typical design cases. The scenarios are created based on the RL70 release feature set 

and are valid for that release. Most of the parameters discussed in this study are         

available on earlier releases as well and thus these scenarios can be considered also in 



98 

 

networks running on earlier releases. However, some fine-tuning may be required before 

the model for the given scenario is taken into use.  

 

On the other hand since RL70 release, new releases are made available for operators. 

These new releases contain also new eNB transport features and possible modified       

parameters for the current functionalities. This may mean that if the model introduced in 

this paper is taken in use it may not be the most efficient for the newest releases. Further 

work is required to update the introduced scenarios to support the latest eNB transport 

features and related parameters. 

 

Based on the earlier similar parameter process optimisation cases and comments in the 

questionnaire replies it is seen that there is a room to define parameter interrelation rules 

for various identifiers (IDs) like MRBTS_ID and LNBTS_ID. The MRBTS ID identifies a 

Multiradio Base station site object and the LNBTS ID identifies the LTE base station radio 

network parameter object in an eNB configuration file. Both of these IDs are unique within 

the entire network and in Flexi Multiradio 10 BTS the MRBTS_ID and the LNBTS_ID may 

assume the same value. In this study, however, the detailed discussion about the IDs is 

limited to the VLAN ID as the MRBTS_ID and the LNBTS_ID are considered to belong 

to eNB radio parameters rather than eNB transport parameters and thus are outside of 

the defined scope of this study. 

 

The traffic engineering parameters are looked at only from the transport parameter      

perspective. It shall not be forgotten that also the eNB radio parameters contains various 

parameters which can be seen as traffic engineering parameters. The parameter inter-

relation rules may further be enhanced by considering both the eNB radio and the eNB 

transport parameters at the same time in the same rule set. The traffic engineering        

parameters have a highly important role in network design. Suboptimal traffic engineer-

ing parameters are seen to have a negative impact on the achievable user throughput 

and in worse case may block the traffic totally in a given interface. 

 

As a future study it is suggested to look at the eNB radio configuration parameters to 

determine the cell and the eNB peak data rates. These peak data rates could be              

determined based on the already available information such as available radio band-

width, applied MIMO configuration, Transmission Mode (TM) and number of cells just to 

mention a few. This enhancement would potentially further reduce the number of             
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required manual entries in capacity related eNB parameter scenario discussed in this 

study. 

 

The suggested scenarios and the introduced parameter interrelation rules could be       

implemented in a planning tool. The eNB transport parameter interrelation rules can also 

be applied in Excel work sheets. In this manner the scenarios and the rules can be taken 

in use without massive tool development effort. The planning tool and planning sheet 

development aspects are not discussed in this study as these lie outside of the scope of 

this study.  
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7 Summary  

 

The aim of this study was to introduce an eNB transport parameter model to improve 

planning process efficiency and thus reduce planning cost in roll-out projects. This study 

introduces an eNB transport parameter model and defines the parameter inter-relations. 

This model is estimated not only to reduce the work effort 80% to 90% but also reduce 

the risk for human errors. This study has reached the set objectives. 

 

The eNB transport parameter model is presented in a form of network scenarios and the 

eNB transport parameter interrelation rules in these network scenarios. The complexity 

and process efficiency metrics are defined to make it possible to evaluate the impact of 

the given model on the work effort. These metrics show process efficiency between five 

and eleven indicating that for each manually given entry five to eleven eNB specific     

configuration parameters are resolved. 

 

This study identifies two main types of parameters which benefit the most of the defined 

eNB transport parameter interrelation rules. The first to discuss is the eNB capacity        

related parameters including the traffic engineering parameters such as shaping rate and 

admission control limits. This study defines a logic between the various traffic engineer-

ing parameters and it leaves the numeric details for example the actual shaping rate, for 

the case specific projects to solve.  

 

The second parameter area which is identified to benefit from the eNB transport              

parameter interrelation rules are the eNB VLAN IDs and IP addressing parameters. In 

addition to the role of interface or application address an IP address is seen in a role of 

an identifier of a process peer. In such a case the IP address, local end identifier, must 

be selected from the list of already defined interface or application IP addresses. This 

implies that the same IP address value must be configured in many eNB managed object 

parameters. These interrelations are defined in this study.  

 

This study identifies three main IP addressing scenarios and additionally sub-scenarios 

for the most typical variations. As a working approach this study suggests to select one 

or a few introduced scenarios and adapt the interrelations for the given case. This study 

does not give any recommendation for certain scenarios but tries to discuss the relevant 

aspects to make it easier for an operator to select the best fit scenario for their network. 

 



101 

 

The study suggest further studies to enhance the introduced eNB transport parameter 

interrelation rules. Especially some of the input entries in the capacity parameter model 

can potentially be replaced by a rule applying to radio configuration parameters.  
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Parameter Planning Sheet Optimisation in GERAN 

 

 

1   Description of the Parameter Planning Sheet Optimisation 

 

This appendix discusses shortly about the parameter interrelation optimisation in        

planning sheets used for GSM EDGE Radio Access Network (GERAN). The planning 

sheets discussed are used to manage the Base Station Controller (BSC) and Base 

Transceiver Station (BTS) parameters during the planning phase in roll-out projects. 

These planning sheets are called BSC datafill and BTS integration sheet. Parameter 

interrelation optimisation aims to reduce the number of human entries to generate a 

given number of required parameters. Parameter interrelation optimization shall not be 

confused with the network optimisation where the aim is to improve the network opera-

tional performance by tuning the network parameters. 

 

In the GERAN parameter interrelation optimization case the signalling connection          

parameters in Abis interface is studied. In GERAN architecture the Abis interface is         

located in between the Base Transceiver Station (BTS) to Base Station Controller (BSC). 

The number of entries a planner have to fill in or at least have to consider for a full Base 

Station Controller (BSC) configuration, containing 4620 signalling links, is reduced from 

134000 down to 115500. This is achieved by the planning sheet modification.  

 

In the first improvement step two group of parameters are merging to single group.     

Originally a group is defined as a set of parameters required for a single command line 

command. By merging two groups to a single group is feasible as many of the                   

parameters required in these two groups are the same and must be aligned manually 

anyhow. By this merge a design for services principle that one parameter is entered only 

once in the system is fulfilled. 
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The planning sheets under discussion are listed in Table 24. 

 

Table 24. Company internal data used in GERAN parameter analysis. 

file File name and version Link 

BSC datafill 
template version 
69 

V69-RG20EP1_data-
fill_template.xls.  

https://sharenet-ims.inside.nokiasiemensnet-
works.com/Overview/D433288722 Accessed 
9 Mar 2014 using version control to get    
earlier version. 

BSC datafill 
template version 
74 

V74-RG20EP1EP2_data-
fill_template.xls.        

https://sharenet-ims.inside.nokiasiemensnet-
works.com/Overview/D433288722 Accessed 
9 Mar 2014. 

BTS Integration 
sheet. 

V46-BTS IP@ template - 
RG30.xlsx         

https://sharenet-ims.inside.nokiasiemensnet-
works.com/Overview/D486848059. Accessed 
9 Mar 2014. 

 

The use of the planning sheets is discussed in in the company internal planning guide-

lines. The achieved improvement is clearly notable in the planning sheets themselves 

and in the planning guidelines. These company internal documents are listed in              

Table 25.   

 

Table 25. Company internal planning documents discussing the planning sheets (GERAN). 

Company internal planning documents discussing the planning sheets 

(GERAN) 

Document 

number 

RG 20 Packet Abis and AoIP Dimensioning and Planning Guidelines  D424443119 

RG 20(EP1)  Packet Abis and AoIP Dimensioning and Planning Guidelines  D437437766 

RG 30 Packet Abis and AoIP Planning Guidelines D486927060 

 

Next the Abis signalling links are discussed shortly and the discussion continues with the 

improvement iterations. 

 

  

https://sharenet-ims.inside.nokiasiemensnetworks.com/Overview/D433288722
https://sharenet-ims.inside.nokiasiemensnetworks.com/Overview/D433288722
https://sharenet-ims.inside.nokiasiemensnetworks.com/Overview/D433288722
https://sharenet-ims.inside.nokiasiemensnetworks.com/Overview/D433288722
https://sharenet-ims.inside.nokiasiemensnetworks.com/Overview/D486848059
https://sharenet-ims.inside.nokiasiemensnetworks.com/Overview/D486848059
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2   Description of the Abis Signalling Links and Parameters  
 

The signalling protocol stack of the packet Abis is shown in Figure 32 [40]. In legacy Abis 

the control plane messages are transferred according to Link Access Procedure on the 

D-channel (LAPD) at Integrated Services Digital Network (ISDN) user-network interface. 

Originally the D-channel used in Abis was defined as a 64 kbit/s channel in E1/T1 frame 

[41]. Later on also 16 kbit/s and 32 kbit/s channel were adopted to optimise the E1/T1 

capacity usage. The link layer aspects related to the D-channel are defined in ITU-T 

Q.920 and Q921 specifications [42;43]. The specifications are defined for TDM based  

D-channels. The corresponding network layer aspects are covered in ITU-T Q.931   

specification [44]. 

 

 

Figure 32. A protocol stack for Packet Abis C-plane and M-plane in GERAN. The Abis application 

part is interfacing IUA adaptation layer and not the SCTP directly as in the LTE. Copied from [40]. 

 

The original link protocol recommendations Q.920 and Q.921 are not optimal for 

IP/Ethernet based packet networks. Instead the Stream Control Transport Protocol 

(SCTP) defined by the Internet Engineering Task Force (IETF) is used to carry signalling 

messages in GERAN. To maintain the compatibility to the Q.921 / Q.931 boundary    

primitives for example addressing scheme an adaptation between the Q.931 and the 

SCTP is required. The ISDN Q.921-User Adaptation (IUA) layer provides the necessary 

adaptation [45]. 
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The Stream Control Transport Protocol (SCTP) provides reliable in-sequence transport 

of signalling messages between the BSC and the BTS [36;37]. The IUA and SCTP          

together provide the similar functionality as the Q.921 does in TDM based transport    

connections. The parameters related to Q.931/Q.921 boundary and the SCTP protocol 

are in focus in the parameter interrelation optimisation. The BSC model used in this   

analysis is Nokia FlexiBSC. 

 

The full FlexiBSC configuration in RG20 release supports up to 4200 Transceivers 

(TRXs) [46]. In this implementation each TRX requires a TRX signalling link (TRXSIG) 

of its own. Furthermore, a management function for the Base Transceiver Station (BTS) 

equipment, Base Control Function (BCF), requires similar BCF Signalling link (BCFSIG) 

also called as Operation and Maintenance Signalling link (OMUSIG). Four Man Machine 

Language (MML) commands are required to configure and activate each TRX signalling 

(TRXSIG) operation and maintenance signalling (OMUSIG) link. An example of the    

syntax of the MML commands required to create and activate an OMUSIG link is shown 

in Table 26. The ZOPX command is used to create a SCTP association and the ZOYP 

is used to manage association IP addresses [47]. The ZDWP command creates an Abis 

D-channel and finally the ZOYS is used to modify the state of the association [47;48]. 

 

Table 26. MML command for OMUSIG SCTP association creation. 

MML command for OMUSIG SCTP association creation 

ZOYX:BCF313OMU:IUA:S:BCXU,0:AFASTNEW; 

ZOYP:IUA:BCF313OMU:"10.11.22.20",,49152:"10.66.0.3",27,,,49152; 

ZDWP:OP313:BCXU,0:62,1:BCF313OMU,; 

ZOYS:IUA:BCF313OMU:ACT:; 

 

These parameters are visible in a planning sheet and thus needs to be defined during 

the access planning phase. Three different approaches how the parameters are              

organised in the planning sheets are discussed in the following subsections. The follow-

ing presentation is based on the planning sheets listed in Table 24. 

 

Next the different planning sheet versions are discusses. First the version 69 of the BSC 

datafill is discussed. This is the last release before applying the improvements discussed 

later in this document. 
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2.1   Case 1 – BSC Datafill Version V69 

 

The parameters for the four MML commands were presented individually in the BSC 

datafill (version V69). BSC datafill is a planning Excel (XLS) sheet for BSC parameters. 

The BSC datafill snapshot containing the Link Access Procedure on the D-channel 

(LAPD) parameters for Packet Abis is shown in Figure 33. In this structure of the planning 

sheet eight entries was required to include all possible parameters for the given MML 

command. In this example four out of the eight fields (D-Channel Link Name, Association 

Name, SAPI and TEI) were updated for each signalling link. 

 

 

Figure 33. A snapshot of the LAPD link parameters for packet Abis in the BSC Datafill Version 

V69. For each parameter in MML command to create the LAPD link an entry is introduced in the 

planning sheet (GERAN). 

 

In addition to Packet Abis Link Access Procedure on the D-channel (LAPD) parameters 

the Stream Control Transmission Protocol (SCTP) parameters are needed for each     

signalling link. The parameters required for SCTP association creation are shown in     

Figure 34. This table contains of parameters for several MML commands; OYX, OYT, 

OYX and OYP. The total number of parameter entries is 21 for each SCTP association. 

Some of the entries contain the same values always for example the SCTP user for Abis 

interface is always ‘IUA’ and the unit is always ‘BCSU’ for FlexiBSC. Further, some of 

the parameters may assume the system default value and thus be left empty in the     

planning sheet.  

 

Figure 34. SCTP parameters for Packet Abis in the BSC Datafill Version V69 (GERAN) 
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The SCTP timer values (columns H to P) are managed as SCTP parameter set which 

then can be applied for several associations. Timer values needs to be tuned if the     

characteristic of the transport path deviates from the reference one. One use case is the 

satellite connection. The SCTP timer parameter values are entered in SCTP parameter 

set level and thus not needed for each signalling link. 

 

The total number of entries in BSC datafill V69 for each OMUSIG and TRXSIG link and 

for the reference BSC configuration is summarized in Table 27. These values are used 

as a base line reference values for further cases. 

 
Table 27. Case 1 - Entries for SCTP association and D-channel in the BSC Datafill Version V69 

(GERAN). 

Object level Parameter entries note1 Number of 

entries note2 

Number of 

characters in 

entries note2 

BCF D-channel (Figure 33 

SCTP associations (Figure 34) 

4 + 10 = 14 17+49 = 66 

TRX D-channel , SCTP associations 4 + 10 = 14 18+51=69 

Total for total 

4620 signalling 

links 4200 TRX 

(420 BCFs) 

 420 *14  + 

4200*14 = 

64680 

420*66 + 

4200*69= 

27720 + 

289800 

 = 317520 

Note 1. Only actively used entries counted. 

Note 2. SCTP timer parameters (OYT command group) not counted. 

 

 

The next case represents minor improvement for BSC datafill structure. This was             

introduced in BSC datafill version 74. 

 

  



Appendix 1 

112 

 

 

2.2   Case 2 – BSC Datafill Version V74 

 

In the BSC datafill version V74 the LAPD and SCTP planning sheets are merged. This 

is possible as the MML commands are sharing the same parameters. The merged     

planning sheet is shown in Figure 35. 

 

 

Figure 35. Abis SCTP & D-channel planning sheet in the BSC Datafill Version V74. The D-channel 

and SCTP association tabs are merged as they contain may same parameters. This reduces the 

number of required entries. 

 

The total number of entries in the Abis SCTP & D-channel sheet is 25 per OMUSIG and 

TRXSIG link. The number of entries in BSC datafill v69 was 29 thus almost 14% reduc-

tion was achieved by the sheet merge. The reduction in actively used entries from case 

one is from 64680 to 55440 and the number of characters to be typed from 317520 down 

to 249900. The number of entries for case 2 is summarised in Table 28. 

 

Table 28. Case 2 – The number of entries required for the SCTP associations and the D-channel 

in the BSC Datafill Version V74 (GERAN). 

Object level Parameter entries note1 Number of 

entries note2 

Number of 

characters in 

entries note2 

BCF D-channel , SCTP associations 13 55 

TRX D-channel , SCTP associations 13 54 

Total for total 

4620 signalling 

links 4200 TRX 

(420 BCFs) 

 420 *13  + 

4200*13 = 

60060 

420*55 + 

4200*54 =  

23100 + 

226800 = 

249900 

Note 1. Only actively used entries counted. 

Note 2. SCTP timer parameters (OYT command group) not counted. 
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This solution still had couple of problems which could be solved by further optimizing the 

parameter interrelations. The SCTP association is created between two computer units 

one in the BTS and another in the BSC. In this implementation two parameters are used 

to identify a computer unit thus introducing a redundant step. The BTS computer unit is 

identified directly by the primary destination IP address (10.0.4.2) and also indirectly at 

BCF creation step. In other word the BTS IP address is entered twice, once in SCTP 

association creation phase and again in the BCF object creation phase. The BTS             

M-plane IP address (10.0.4.2) and the D-channel name, DNAME, are given to BCF        

object as a parameter when the BCF is created. This process introduces redundant entry 

which a planner must consider. A snapshot of parameters needed for BCF object is given 

in Figure 36.  

 

 

Figure 36. A snapshot of parameters for BCF creation in the BSC Datafill Version V74. The D-

channel which was defined earlier is now associated with the BFC. 

 

 

Similarly the reference to BSC computer unit is redundant. The computer unit is identified 

not only by the signalling unit and index, BCSU 1, but also by the signalling unit IP          

address given as source address 1 (10.0.1.2) in Figure 35. This double reference to the 

same unit cause additional typing and it is also a source for potential human errors as 

the IP address given in the Abis SCTP & D-channel sheet must match the one given for 

the BSCU in the IP Interfaces section shown in Figure 37. 

 

In this snapshot several VLAN interface IP addresses and one interface IP address can 

be seen. The interface address is the same what was used in this example for SCTP 

association. 
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Figure 37. A snapshot of the IP interface section in the BSC Datafill Version V74. The IP                

addresses used in the SCTP association must match the ones defined for the computer units. 

 

The double reference situation across these four BSC objects is shown in Figure 38. The 

actual parameter naming syntax depends on the MML command in question. In this     

figure the parameter names are harmonized for clarify in the illustration. In the left hand 

side the SCTP association object has two references to a BCSU, one to BCSU index 

and other to BCSU IP address.  The same BCSU is referred third time in D-channel 

object. Also the reference to BTS (BCF managed object) is redundant. The SCTP          

association has Destination IP address parameters to refer a BTS M-plane or C-plane 

IP address. This relation could be solved also via D-channel object. 

 

 

Figure 38. An example of BSC parameter double reference. The SCTP association refers to the 

signalling unit by the unit index and by the unit interface IP address. The same unit index is also 

used in D-channel definition.  The IP address given for the BCF must match the value used in the 

SCTP association definition. 



Appendix 1 

115 

 

 

The second problem is that the relatively long strings are required repetitively for frequent 

parameters. The two IP addresses and two name parameters in this example generated 

the need to type 32 characters for each signalling link. The IP addresses used in this 

example represents a simple one containing less characters to type than in average. The 

next step is to addresses these two problems. The improvements which are considered 

to solve the problems are listed in Table 29. 

 

Table 29. Improvements which are considered to address the problems listed in Table 28. 

Considered improvements 

The BTS M-plane and C-plane IP addresses shall be given only once per BCF and not for each 

TRX separately. Entry per TRX leads to 10 and more entries per BCF in average. 

The double reference to BCSU in the SCTP association shall be replaced by single reference, 

BCSU index only. The IP address shall be solved from the data defined for the BCSU before. 

The name parameters shall be generated automatically based on the other parameters for 

example BCF and TRX ID. 

 

The solution required another structure and was implemented in a separate planning 

sheet. The solution is discussed in next subsection.  

 

2.3   Case 3 – BTS IP Address Template 

 

BTS IP address template was developed. The parameters are organised in this planning 

sheet by base station equipment (BCF managed object), one column per each BCF. The 

entries required to solve the MML command required for SCTP association and                

D-channel creation are divided into two sections. Firstly the BTS M-plane and C-plane 

IP address data and BTS TRX configuration is given as input. Snapshot of this is shown 

in Figure 39. 
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Figure 39.  BTS IP address section and TRX configuration section in the BTS IP address template. 

These addresses were introduced once and look-up function was used to pick up the relevant IP 

address to the given association. The traffic plane was used as a key for the look up. 

 

Secondly the TRX to BCSU mapping logic is defined. This represents control data rather 

than site specific planning data and thus can be prepared well in advanced for future 

BCFs. This is done once as a preparation step for the planning sheet. Figure 40 shows 

an example of TRX to BCSU mapping control.  

 

Figure 40. TRX to BCSU mapping section in the BTS IP address template. This approach distrib-

uted the SCTP associations and also the load evenly to the signalling units. 
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Round robin method is used to distribute the TRXs to active signalling units (vertical). 

The number in the table identifies the signalling unit which processes the SCTP               

association and D-channel for the given TRX and BCF. In this example the signalling 

units 0, 1, 4 and 5 belong to the BSC configuration. Round robin is also applied cross 

the BCFs (horizontal).  Another control data are the BCSU IP addresses. In this planning 

sheet these are defined once for the BSC and not for each SCTP association separately. 

Snapshot is shown in Figure 41. 

 

 

Figure 41. BSC M-plane and C-plane IP addresses for Abis interface in the BTS IP address     

template. These addresses were introduced once and look-up function was used to pick up the 

relevant IP address to the given association. The signalling unit index was used as a key for the 

look up. 

 

The number of entries in this planning sheet can be divided into two groups: entries per 

BCF and entries per BSC. In the original approach the entries are per signalling link. 

Using the same assumptions; FlexiBSC with 4200 TRX, in average 10 TRX per BCF, 

the number of entries required for the SCTP associations and D-channels is calculated. 

Table 30 shown the number of required entries for case 3. 
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Table 30. Case 3 – The number of entries required for the SCTP associations and the D-channels 

in the BTS IP address template (GERAN). 

Object level 

 

Parameter entries Number of 

entries 

Number of 

characters in 

entries note1 

BCF  

(case specific 

inputs) 

BFC-ID (313),  

BTS M-plane IP address (10.66.0.1),  

BTS M-plane IP mask (/27),  

BTS C-plane IP address(10.64.0.1), BTS 

C-plane IP mask(/27), 

TRX configuration (10*”x”)note2 

15 35 

BCF (controls) TRX to BCSU mapping table 37 37 

BSC BCSU IP addressesnote3 18 18*11 = 198 

Total for 4200 

TRX (420 BCFs) 

 420*(15+37) 

+ 18 = 21858 

420*(35+37) 

+ 198 = 

30438 

Note 1 to be compatible with previous calculations 8 characters per IP address is assumed. 

Note 2 to be compatible with previous calculations 10 TRX per BCF assumed 

Note 3 worst case figures.  The planning sheet supports single IP address entry per BSC. That approach 

can be used when predefined BSC subnet structure can be used in the given project. 

 

The outcome of the BTS IP@ planning sheet is the list of required command line         

commands, Man Machine Language (MML) commands, shown in Table 31. For each 

signalling link four MML command is generated and thus for full BSC configuration more 

than 18000 MML commands are generated. 

 

Table 31. The MML commands required for a signalling link of TRX 3 in BCF 208. 

Man Machine Language (MML) commands for signalling link creation 

ZOYX:BCF208TRX03:IUA:S:BCXU,1:AFASTNOB; 

ZOYP:IUA:BCF208TRX03:"10.11.22.11",,49155:"0",,,,49155; 

ZDWP:P2083:BCXU,1:0,3:BCF208TRX03,; 

ZOYS:IUA:BCF208TRX03:ACT:; 

 

In this approach the level of automation is extend to the MML command creation. The 

likelihood for mistyping MML commands is nil.  
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2.4   Naming Convention 

 

The naming convention is automated in case 3 and this is reducing the required typing 

considerable. The SCTP association name parameter is an ASCII string having 1 to 16 

characters. This name string is composed by fixed and variable fields. The syntax of the 

composed string is the following: 

 

BCF<BCF ID><object>(<TRX ID>) 

 

Where, 

BCF 

BCF is a constant string. “BCF” is used to distinguish the signalling              

association used at Abis interface (towards the BCF) from those used        

towards core elements. 

<BCF ID>  

BCF ID is a unique identifier of the BCF within a BSC. The range is from 1 

to 4400, however, in practice the average number of TRX per BCF is more 

than 5 and thus less than 1000 BCF is created within a BSC having            

capacity of 4400 TRX [49, 200]. In this process three digit number is used 

to identify a BCF. 

<object>  

object is a string “OMU” or “TRX” to distinguish the operation and       

maintenance signalling links (OMUSIG) from telecom signalling links 

(TRXSIG) 

<TRX ID>  

Optional. TRX ID is used when <object> equals to “TRX”. It identifies the 

TRX within a BCF, range from 1 to 36. 

  

SCTP association name for TRX 3 within BCF 208 is constructed as BCF208TRX03.  

The second name parameter in this example is the D-channel name. Due to historical 

reasons this parameter is an ASCII string of up to 5 characters. Allowed characters are 

limited to “A” to “Z” and “0” to “9”. Traditionally the D-channel name indicates the TRX 

and the BCF the TRX belongs to. This approach is also used in this automated name 

construction.  
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The syntax for D-channel name is the following 

 

 <type><BCF ID><TRX ID> 

 

Where, 

type identifies the type of the D-channel. Typically used values 

O   indicates an OMUSIG for legacy Abis interface 

OP indicates an OMUSIG for packet Abis interface 

T    indicates a TRXSIG for legacy Abis interface 

P   indicates a TRXSIG for packet Abis interface 

BCF ID three digit number 

TRX ID single digit coded number 

1 to 9   TRX ID 1 to 9 

A to Z   TRX ID 10 to 35 

0 TRX   ID 36 (TRX IDs greater than 18 are seldom used) 

 

D-channel name used at packet Abis interface for TRX 3 within BCF 208 is constructed 

as P2083. 

 

2.5   Double Entries 

 

To avoid double entry for frequently used parameters look-up method is used. In the 

original approach the computer unit identifier and the interface IP address were                

parameters which were required for each signalling link separately. In the case 3 the 

double entry is avoided by applying a lookup method. Based on the computer unit        

identifier the relevant IP addresses is fetched from the predefined table. This method 

introduced a need for some preparation works including the computer unit identifier – 

computer unit interface IP address –table preparations. This preparation work, however, 

is small when large number of SCTP associations is to be prepared. For small number 

of associations the tradition method may be found more practical due to the less amount 

of required preparation work.  
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2.6   Summary of the Previous Findings 

 

The results of these cases are summarised in Table 32. The first development step          

resulted 7% reduction in the number of required entries and 21% reduction in characters 

in these entries. The second development round further improved the situation and         

introduced 64% reduction in the number of active parameter entries and more than 90% 

reduction in the number of characters required for the entries compared to the case 1. 

 

Table 32. Case comparison. Especially the case 3 has a huge decrease in required manual         

entries compared to the initial case, case 1. 

Case Number of entries 

(4200 TRX, 420 BCF) 

Relative to 

case 1 

Number of characters 

in entries  

Relative to 

case 1 

1 (Table 27) 64680 100% 317520 100% 

2 (Table 28) 60060 93% 249900 79% 

3 (Table 30) 21858 34% 30438 9.6% 

 

The findings from this GERAN case are considered in eNB parameter model develop-

ment. Key findings are listed in the Table 33. 

 

Table 33. Key findings in GERAN planning sheet optimisation 

Item Findings 

1 Naming convention was automated 

2 Double entry was eliminated. Any parameter was entered only once in the planning 

sheet even it was needed by several system objects. 

 

This concludes the discussion of the parameter interrelation study conducted earlier on 

GERAN Abis interface parameters.  
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Questionnaire for the eNB Transport Parameter Planning Practices 

 

I am studying the practices used in eNB transport parameter planning. The target group 

for this study is the mobile access planners who have been doing the eNB transport high 

level design and defining the eNB transport parameter rules to be applied in a project. 

I appreciate if you can invest few minutes of your time to help me in this study. This 

questionnaire has few questions I hope you can answer based on your best understand-

ing. 

If you have being doing eNB parameter planning you belong the main target group of 

this study. 

 

I thank you for your time and effort. If you have any questions or comments please do 

not hesitate to contact me. 

Best regards, 

Raimo Ahosola 

raimo.ahosola (at) nokia.com 

<phone number> 

 

Return address: raimo.ahosola (at) nokia.com 

 

 

 

1 Motivation 

The parameter planning is time consuming and error prone task. In many cases the very 

same value needs to be entered to many different parameters. Errors are hard to detect 

until the plan file is downloaded to the target eNB. And even the download is successful 

and the eNB seems to work properly still some parameter errors may remain undetected.  

The aim is to simplify the required manual steps in planning phase and thus save time 

and cost and minimize the human errors and thus reduce the non-quality cost in the roll-

out project. 

The purpose of this questionnaire is to collect current practices from eNB roll-out           

projects. 
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2 eNB Transport Parameter Planning Practices 

 

The purpose of this study is to gather the current practices used in LTE Access panning. 

The LTE access planning in this context refers the eNB transport interface and parameter 

planning.  

This questionnaire is divided into three sections. The first section contains contact infor-

mation and the characteristics of the project for example the roll-out speed and project 

scope and size. The second section is the free form area to collect practices how the 

parameter values have been chosen and what logic and rules have been used to          

generate values for parameters based on the values of the other parameters. 

The third section summarizes the main eNB transport features. This is included here for 

your reference.  

 

2.1 Scope 

The scope of this study is the steps before the parameter formatting phase in the         

planning process. The simplified planning process is shown in Figure 1.  

The interest area in this questionnaire is the rules and decisions used to define the eNB 

transport parameter interdependencies in the given project. The parameter formatting or 

organizing in tools such as Daisy or BTS Site Manger is not in the focus of this study. 

 

  

 

Figure 1. Access planning process 
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3 Contact Information Section  

 

The study will handle the project anonymously. No contact person names or references 

to country or operator are shown in the final study report. The contact person information 

in this query is important on data collection phase. Further clarifications may be required 

after the first analysis. 

Please fill in the following tables. Table 1 is filled with name and e-mail address of the 

technical expert who is able to further clarify the planning rules developed for and applied 

in the given project.  

 

Table 1 Contact information 

Contact item  Fill-in area 

Operator/region  

Nokia Contact person name e.g. the 

eNB access planner 
 

Nokia Contact person e-mail address  

Nokia Contact person phone number  

 

Table 2 is filled in with project scope related data. This information may be used to        

categorize the similar projects to common category. 

 

Table 2 Background information 

Background item  Fill-in area 

Average roll-out speed 

[eNB per month] 
 

Average roll-out speed per 

eNB access planner [eNB 

per month] 

 

Nokia planning scope in the 

given project. 

[   ] eNB radio planning 

[   ] eNB access planning 

[   ] EPC planning 

[   ] IP backbone planning 

[   ] mobile backhaul planning 

Nokia implementation 

scope 

[   ] site acquisition 

[   ] civil works 

[   ] eNB installation, commissioning and integration 
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The example eNB XML file is useful to check what features are use in the given network. 

This may also be used to categorize the projects by used feature sets. Pls. if possible 

include an example XML to the return e-mail if possible or a link where I can access the 

file. 

Table 3 Example eNB XML 

eNB data item  Fill-in area 

Current SW release  

[   ] link to the sample XML file(s) <add link here> 

attached eNB XML file 

[  ] TRS section only 

[  ] complete BTS and TRS  

<attach file here> 

 

 

4 Practice Section 

This section collects the practices not only applied but also considered to streamline the 

eNB transport parameter planning. Explain shortly what kind of rules or mathematical 

formulas were used/considered for the parameter interdependencies. Examples: 

1. Parameters: mPlaneIpAddress, uPlaneIpAddress, cPlaneIpAddress and 

sPlaneIpAddress shall all assume the VLAN interface IP address 

2. Parameter: C-plane VLAN ID shall assume value M-plane VLAN ID +100 

 

In this questionnaire the rules have been divided into the following categories depending 

on which information the given parameter value is based on. 

An eNB transport parameter value is based on  

1. the other transport parameter value of the same eNB 

2. the other non-transport parameter value of the same eNB 

3. the transport parameter value of the other eNB 

4. the common, possible pseudo parameter, used for the cluster of the eNBs 

5. the other means 

Think of any rule even not written down which was found useful or was considered for 

defining the eNB transport parameters. It may be as simple as parameter x shall have 

the same value as parameter y, once y is defined x will be known based on y. 

 

Also think of the planning cluster of eNBs. What parameters were common for the eNBs 

within the cluster? Was any systematic method used to manage these parameters? 
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Fill in the relevant categories. 

 

eNB transport parameter definition based on the other transport parameter of the same 

eNB 

 

/* add a free form explanation here. Possible mathematical formulas are well come as 

well */ 

 

 

 

 

 

 

 

 

eNB transport parameter definition based on the other BTS parameter of the same eNB 

/* add a free form explanation here. Possible mathematical formulas are well come as 

well */ 

 

 

 

 

 

 

 

 

 

eNB transport parameter definition based on the transport parameter of the other eNB 

/* add a free form explanation here. Possible mathematical formulas are well come as 

well */ 
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eNB transport parameter definition based on the common, possible pseudo parameter, 

used for the cluster of the eNBs 

/* add a free form explanation here. Possible mathematical formulas are well come as 

well */ 

 

 

 

 

 

 

 

 

 

eNB transport parameter definition based on the common possible pseudo parameter 

used for the cluster of the eNBs 

/* add a free form explanation here. Possible mathematical formulas are well come as 

well */ 
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5 Feature Section 

In this section the radio, transport and operability features which presence is assumed 

to have an impact on the planning rules are listed. Please indicate if the given feature is 

used in the network. A feature in the list may have a clarification question which I hope 

is answered. In case different feature sets are used in different planning clusters one 

questionnaire per such cluster shall be filled in. 

Table 4 eNB transport features 

Feature ID  Feature name 

LTE713 [1] Synchronous Ethernet 

LTE132 [1] VLAN based traffic differentiation 

LTE134 [1] Timing over packet 

LTE2 [2] S1 Flex 

LTE4 [2] RAN Sharing 

LTE140 [2] Ethernet OAM 

LTE491 [2] FlexiPacket Radio Connectivity 

LTE564 [2] IPsec on FTIB 

LTE592 [2] Link Supervision with BFD 

LTE649 [2] QoS Aware Ethernet Switching 

LTE775 [2] SCTP Multi-homing (MME) 

LTE475 [2] Automatic iOMS Resiliency - introduction 

LTE521 [2] Security on Ethernet ports on FCM/FSM2 

LTE144 [3] Transport admission control 

LTE574 [3] IP Transport Network Measurements 

LTE866 [3] Fast IP Rerouting 

LTE931 [3] Ethernet Jumbo Frames 

LTE612 [4] Synchronization Hub 

LTE628 [4] FTIF Transport PDH / Ethernet 

LTE593 [4] Security for Ethernet Ports on FCT/FSM3 

LTE947 [4] FSMF Flexi Multiradio 10 System Module 

LTE505 [5] Transport Separation for RAN Sharing 

LTE125 [6] IPv6 for U/C-Plane 

LTE1390 [6] IPsec Emergency Bypass 

LTE1401 [6] Measurement based TAC 

LTE610 [7] Timing over Packet Resilience 

LTE648 [7] SCTP Multi-homing 

LTE891 [7] Timing over Packet with Phase Synch 

LTE1240 [7] User Layer TCP MSS clamping 

LTE1753 [7] Backup IPsec Tunnel 
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An Example of a Feature Interrelations Map 

 

Many eNB transport feature has relation to other transport feature. In the example shown 

in Figure 1 three features together forms a desired function, in this example traffic          

protection against the link failure. VLAN based traffic differentiation feature (LTE132) 

allows to define independent traffic paths for primary and secondary usage. Link super-

vision with BFD (LTE592) provides capability to detect failures on a link and finally the 

fast IP rerouting feature (LTE866) provides eNB with the capabilities to switch over to 

the secondary path when the primary path becomes unavailable. 

 

Figure 1. An example feature interrelation map. 

 

The IP addressing for this scenario is illustrated in Figure 2. In this example all eNB 

applications assume the same IP address (UCSM). The primary path is defined to us 

eNB VLAN interface T1 and the traffic will forwarded towards the next hop gateway GW1. 

This path is supervised with the bidirectional forwarding detection (BFD) process and the 

fast IP rerouting is defined to use this path as primary path for all traffic based on the 

BFD condition. The secondary path is given lower priority in the routing table and thus it 

will only be used when the primary, higher, priority path is declared to be unavailable by 

the BFD process. 

 

 

Figure 2. An IP addressing with traffic protection using VLAN based traffic differentiation, link 

supervision with BFD and fast IP rerouting features 

 


