

Prateek Jain

Non-functional Test Automation for Windows

Phone Apps

Helsinki Metropolia University of Applied Sciences

Master’s Degree

Information Technology

Master’s Thesis

24 April 2016

 Abstract

Author(s)
Title

Number of Pages
Date

Prateek Jain
Non-functional Test Automation for Windows Phone Apps

53 pages + 1 appendices
25 April 2016

Degree Master’s Degree

Degree Programme Information Technology

Instructor

Peter Hjort, Lecturer

Mobile applications are required to be developed in a short period of time to meet the

competitive market's demands. This limitation undermines the product quality and re-

liability. Therefore, it is necessary to undergo a rigorous testing process not only on

functional but also on non-functional requirements.

This study is about automating the non-functional testing areas for the mobile appli-

cations. At the beginning manual testing is covered and after that the topic is dis-

cussed with examples from previous testing systems. This thesis presents one way to

develop an automated testing system. The biggest target for this project was to reduce

the test results variation, which makes it more difficult to judge the quality of the app

and thus increases the risk of bad quality app being pushed to the market and reduce

the test cycle by automating the manual testing process.

The outcome of the study is an NFT automated testing system for the test organiza-

tion. This tool tests the performance and the memory utilization of the mobile applica-

tions. The developed automated testing system is integrated to the testing process.

Keywords Non-functional testing, automation, Windows Phone,
mobile apps

 Abbreviations

 Abbreviations/Acronyms

DUT Device under Test

GUI Graphical User Interface

GUID Globally Unique Identifier

CLR Common Runtime Language

WinPRT Windows Phone Runtime

WP Windows Phone

ETL Event trace Log

OBA OEM Background Agent

OEM Original Equipment Manufacturer

WPA Windows Performance Analyzer

WPAA Windows Phone Application Analysis

NFT Non Functional Testing

MSA Measure Systems Analysis

ANOVA Analysis of Variance

Perf Performance

Apps Applications

AIAG Automotive Industry Action Group

 Glossary

Glossary

WINPRT

Windows Phone Runtime is a subset of native API that is built into the op-

erating system.

XAP

It is the file format for Silverlight applications used to distribute and install

application software onto Microsoft's Windows Phone 7/8/8.1/10 operating

system.

CLR

Common language runtime manages the execution of programs, allowing

to share common classes written in any of several supported languages.

Standard deviation

It is a measure that is used to quantify the amount of variation or dispersion

of a set of data values.

Variance

It describes how much a random variable differs from its expected value

Total gage R&R

A method to measure the variation due to the measurement system includ-

ing multiple operators using the same gage.

Gage R&R

This study helps to investigate, the measurement system variability and
variation caused by different operators.

MSA

Measurement systems analysis determines the total variation in a process

from the measurement system.

https://simple.wikipedia.org/wiki/Random_variable
https://simple.wikipedia.org/wiki/Expected_value

Contents

Abstract

Abbreviations/Acronyms

Table of Contents

Glossary

1 Introduction 1

Business Problem 2

Scope 2

Structure 3

2 Method and Material 4

2.1 Research Method 4

2.2 Research Process 4

2.3 Data Collection and Material 5

2.4 Research Outcome 6

3 Background 6

3.1 Windows Phone 8 Architecture 6

3.1.1 Types of Windows Phone Apps 9

3.2 Software Testing 10

3.2.1 Automated Software Testing 11

3.2.2 Functional Vs Non-functional Testing 12

3.2.3 Types of testing 12

3.3 Non-functional Testing Area 13

3.4 Windows Phone NFT Test Cases and Certification Criteria 15

3.5 Existing Tools by Microsoft 16

3.5.1 Limitations of Existing System 17

4 Initial State Setup 18

5 Test Automation 21

5.1 Requisites for Automated Test Tool 21

5.1.1 Requisite as General Test Automation Tool 21

5.1.2 Requisites from Non-functional Prospective 22

5.1.3 Requisites Gathered from Current System 23

5.2 Non-functional Test Tool Design 25

5.3 Implementation and Piloting of NFT Automated System 32

5.3.1 Technical Decisions 32

5.3.2 Implementation 33

6 Measurement and Analysis 40

6.1 Measuring UI Responsiveness 40

6.1.1 Results from Existing System 40

6.1.2 Results from Automated System 41

6.2 Measuring Memory Consumption 42

6.2.1 Results from Existing System 42

6.2.2 Results from the new automated system 44

6.3 Testing Cycle Time 47

6.4 Comparative Result Analysis with Similar Test Automation Study 49

7 Conclusions 51

References 54

Appendices

1 (55)

1 Introduction

With the rapid evolution of the wireless market, there has been evolution of countless

mobile devices in the recent years. For mobile phones alone, a recent study has esti-

mated that the total number of Mobile subscription approaches total global population in

2013, which is around 6.8 billion. The number of smartphone users worldwide will sur-

pass 2 billion in 2018, according to new figures from Gartner, Inc. A smart phone is

essentially one with an embedded operating system or hosting environment that is able

to run third-party applications, beyond the standard services of SMS, MMS and voice

calling [9]. While the demand for increasingly complex mobile applications is sustained

so too are users’ expectations for quality. Unlike traditional software, mobile applications

should have the characteristics of spontaneous interaction, high reliability, and low power

consumption.

By 2017, mobile apps will be downloaded more than 268 billion times, generating reve-

nue of more than $77 billion and making apps one of the most popular computing tools

for users across the globe, according to Gartner[21]. Thousands of apps are added to

the different app stores on daily basis. The apps market is more consumer driven. In

such a competitive situation, one has to be prepared not to miss an opportunity. Mobile

applications are required to be developed in a short period of time to meet the competi-

tive market's demand. This urgency undermines product quality and reliability since mo-

bile application developers tend to be more driven by the marketability than meticulous

design and testing process requires sufficient time. But aside from that, there is a certain

expectation of quality and an application with high quality only gets noticed.

Some other reasons are mobile users expect near real-time resolution of bug. Regular

upgrades in mobile platforms are forcing developers to maintain app compatibility. The

test cycle grows for every device, and every firmware or software update. Therefore, it

is necessary to undergo a rigorous testing process not only on functional but also on

non-functional requirements, especially response time limits. In this regard, performance

testing of applications is the most important element because of the very restricted op-

erational environment based on real-time functions. As for mobile applications, critical

performance factors are related to spontaneous interaction, high reliability, stability and

low power consumption.

2 (55)

In practice, manual testing of mobile device applications is time consuming, expensive

and very difficult to do effectively. It could also lead to the huge variation in the test results

and thus producing inconsistent test results, which then makes it more difficult to judge

the quality of the testing and thus increases the risk of bad quality app pushed to the

market. Automated testing approaches have proven successful in other areas of soft-

ware development and, more recently, they have attracted attention in the domain of

mobile device applications. Automated testing is attractive essentially because it can re-

duce the costs and time associated with testing, lead to shorter release cycles, allow

developers or testers to focus on constructing effective test cases, and ultimately to im-

prove product quality. Therefore, the research objective related to this topic is to deter-

mine a tool/method to speed up the release cycles and remove deviations in the test

results (on windows phone platform).

Business Problem

Smartphone users are very critical on the performance of an application especially to

spontaneous interaction and app stability. If the apps are not spontaneous users gener-

ally would not return to these apps.

Testing of mobile device applications is time consuming and can prove very expensive

due to the variation in the results (when done manually). Also the release cycle time of

the app would increase when testing on multiple devices (different configurations). Thus

it becomes very important find an answer to the below business problem.

How to reduce the standard deviations in the non-functional test results and sim-

ultaneously reduce the release cycle time?

Scope

As stated in the above section, mobile applications needs to be delivered to the market

in quick time with high quality. And non-functional attributes are one of the key factors in

making the application successful in the market. Thus performance testing becomes very

important element. Non-functional testing has many areas varying from the spontaneous

3 (55)

interaction, high reliability, stability, low power consumption, etc. The scope of the re-

search is limited to the solution for Generic Response time cases and memory usage of

the Windows phone apps for Windows Phone 8.0 platform and optimizing the test cycle

time.

Structure

Chapter 1 introduces the actual work and the reason behind this thesis.

Chapter 2 covers the research methodology used to carry out the thesis work. It aims to

classify the research characteristics throughout a methodology analysis and the reasons

behind such a classification. It also throws the light on the outcome of this research work.

Chapter 3 introduces with the Windows Phone8 architecture and the types of the Win-

dows Phone apps. It also tells about the different non-functional test types and their def-

initions. Apart from this it explains about the MSFT NFT cases and their pass criteria. It

also throws some light on the existing tools in the market.

Chapter 4 tells about the existing system and process, how the testing was done manu-

ally in the initial test set-up.

Chapter 5 aims to define the requirements for the automation tool and non-functional test

cases. And continue by presenting a tool that tries to fulfil those requirements. It also

explains how the needed key components are implemented.

Chapter 6 tells about the test results of the apps, which are picked up for the piloting.

The results are then compared between the existing system and newly proposed system.

Basically the tool is evaluated based on the pilot experience.

Chapter 7 summarizes the complete project and the future of the presented automation

tool is briefly discussed. There it is evaluated how well requirements for this thesis,

defined in Section 5.1, are met.

4 (55)

2 Method and Material

This section covers the research methodology and process used to carry out the study.

It further explains how the data is been collected and finally throws the light on the out-

come of this study.

2.1 Research Method

This chapter covers the research methodology used to carry out the study. It aims to

classify the research characteristics throughout a methodology analysis and the reasons

behind such a classification.

There are several ways to classify research due to the objectives, approach, procedures

and data collection. This research applies the action research methodology with the

quantitative analysis (approach) of the data being collected during the research work.

Action research is initiated to solve an immediate problem and aims at bringing change

into organization. Action research is also cyclic and later cycles are used to challenge

and refine the results of the earlier cycles.

Quantitative research is ‘Explaining phenomena by collection numerical data that are

analysed using mathematically based methods (in particular statistics)’ [Aliaga and

Gunderson (2000)]

2.2 Research Process

As initially covered in the introduction, this research is focused to find an automated

solution as a replacement for the manual method of doing the non-functional testing. So,

the first step was to gather the data and processes been deployed in the current system.

This serves as the input in designing the new system (requirement gathering).

The data can be collected from the existing source based (more details can be found in

the data collection sub-section). Once, the data has been collected there should be ad-

5 (55)

equate evidence to prove existing method is not good enough. Hence, a statistical anal-

ysis was performed on the existing data. Minitab16 [17] is a good tool which was used in

doing the quantitative analysis.

Since this study is focused on specific areas of the non-functional testing (response time

and memory usage by Windows Phone mobile apps), all the relevant test cases are

collected from the current system and based on the Microsoft guidelines (detailed in

Section 5.1.2) for publishing a mobile app. This again forms the part of requirements.

As a matter of fact, Windows Phone does not have a long history in the market, efforts

were made to find out the existing solutions based on the gathered requirements. Even-

tually a tool developed by MSFT called Windows Phone Application Analysis (WPAA) [4]

was identified (as somewhat similar). The tool was then analysed and later used for the

benchmarking purposes against the research project. The outcome of this phase is also

used in designing the new automated system.

Then, the project design was created based on the gathered requirements. And, based

on this project design, the relevant technology were identified to be used in creation of

the proposed solution.

Once the design and technology was finalized the creation of the project started. After

the completion of the project, a fresh round of execution was done for the selected set

of applications. Then the data gathered during the new set of execution was again eval-

uated using the same methods as used before.

After successful piloting for selected apps and hence proving its validity and reliability,

the new automated tool can be deployed across the testing organization.

2.3 Data Collection and Material

The goal for the data collection is to capture quality evidence that then translates to rich

data analysis and allows the building of a convincing and credible answer to questions

that have been posed. Regardless of the field of study or preference for defining data

(quantitative, qualitative), accurate data collection is essential to maintaining the integrity

of research. As mentioned above this research is based on the quantitative analysis.

6 (55)

During this research various data samples were collected from the existing data available

(from the current test data repository) and also the results were gathered using the new

system (outcome of this research).

Existing test assets used in the existing system, outcome from the existing tool and Mi-

crosoft guidelines for publishing a mobile app formed the part of the requirements.

Apart from this the existing process also played an important part of the requirement

gathering.

2.4 Research Outcome

The outcome is the creation of new automated tool/method which can help reduce the

variations in the test results and also reduce the cycle time significantly for mobile apps

(on Windows Phone platform). But the scope of the research is limited to the solution

for optimizing the cycle time and reducing the standard deviation in the response time

and memory test results.

3 Background

This chapter introduces the Windows Phone8 architecture and the types of the Windows

Phone apps. It also discusses software testing and its approaches. Apart from this it

explains non-functional test types and their definitions, and covers MSFT NFT cases and

their pass criteria.

3.1 Windows Phone 8 Architecture

Windows Phone 8 is one of the later (released on October 29, 2012) entries in the world

of mobiles OS, powered with lot of capabilities. To understand how the Windows Phone

apps work and perform, it is very important to understand the underlying windows phone

architecture.

Figure 1 gives a peak into the Windows Phone platform architecture.

7 (55)

Figure 1 Windows Phone 8 platform for the app models [5]

Windows phone 8 platform architecture comprises of different layers stacked one after

another. The bottom block is the shared core which has two parts.

Windows core system – contains base OS functionality which is shared across many

type of windows devices such as security, networking etc.

Mobile core – contains core common language runtime (CLR) which is core .net library,

code gen and garbage collector. It also has the trident engine for Internet Explorer, core

multimedia and DirectX capabilities.

Above the Windows shared Core block is the platform services which provides different

service managers to provide the platform services to the apps been developed and de-

ployed. Below are the different components of this block.

 Package Manager is responsible for installing or uninstalling apps and also

keeps track of the apps being installed and licensed. It maintains the applica-

tions metadata through the app lifecycle and also stores information about the

app being tiled on the Home screen. It also tracks of the application's exten-

sibility points which are registered and can be used in appropriate places in

the OS [5].

 Execution Manager takes care of the events associated with app’s execution

lifetime like app launch, shutdown and deactivation. A hosting process is also

8 (55)

created by the execution manager for the app so that it can run under it. Exe-

cution manager is also responsible to perform similar task for background pro-

cesses and helps in proper scheduling of those tasks. [5]

 Navigation Server manages all of the navigation events between foreground

apps on the windows phone. When an app tile is launched from the Home

screen, the navigation server passes that information to the execution man-

ager so that the chosen app can be started. Similarly, if the back key is

pressed and hold and an app is picked from the list of background apps, the

Navigation Server informs the Execution Manager to reactivate that applica-

tion. [5]

 Resource Manager is responsible for monitoring the use of system resources

like CPU, memory etc. and ensure the phone is always responsive. It keeps

track of the system resources been used by the active processes and also

enforces the constraints if needed. For instance, an application or background

process can be terminated if it exceeds the allocated resource pool. [5]

Application model lies on the top is the Windows phone platform model. The Win-

dows Phone SDK allows to build apps using a variety of languages and tools. One can

build the app using XAML and the choice of managed language, which allows to maintain

the investments from existing apps. To provide greater flexibility and performance, Win-

dows Phone 8 introduces the ability to use C++ within the XAML app and in games writ-

ten using Direct3D. Figure 2 illustrates the set of APIs that make up the Windows Phone

API.[1].

9 (55)

Figure 2 Windows Phone API.[1]

The .NET API represents the managed API on Windows Phone 8 and simplifies the pro-

cess of accessing user data. An example would be to facilitate the sign-in experience for

users. The managed code runs under the control of common language runtime

(CLR). Windows Phone Runtime is the subset of native API. They are implemented in

C++ and projected into different languages, making it easy to use. On the other hand,

Win32 APIs gives the access to low-level features of the platform [1].

3.1.1 Types of Windows Phone Apps

Windows Phone 8 supports several different application flavours, as described in Table

1.

10 (55)

Table 1: Windows Phone 8 app types [5]

App type Description
Languages
Supported UI Framework

APIs
supported

XAML

In this app XAML and man-
aged code is used to imple-
ment a UI and not Direct 3D
code is used.

C#, Visual
Basic XAML

Microsoft
.NET, Win-
dows Phone
API, Windows
Runtime API

Mixed
mode

These apps follow the
XAML app structure but al-
low for the inclusion of na-
tive code. These types of
apps come into picture
when most of the code
used is native but also
there is a need access to
the XAML UI framework
and some of the features
that are only available to
XAML code. The existing
native library can be well
used in these type of appli-
cations.

C#, Visual
Basic,
C/C++

XAML, Direct3D
(via
DrawingSurface)

NET Win-
dows Phone
API, Windows
Runtime API,
Win32/COM
API (within
Windows
Runtime com-
ponents)

Direct3D

These types of app are
best suited for games. The
apps using Direct3D code
offers best to extract the
most out of the phone’s
base hardware. They also
offer the code sharing be-
tween Windows and Win-
dows Phone. C/C++

Direct3D
Windows
Runtime API
Win32/COM
API

Windows Phone provides an immersive “hub” experience for its primary content type,

and provides a fair amount of extensibility to extend the built-in experience. These ex-

tensibility points offer additional ways for users to invoke the app. Apart from the apps,

Original Equipment Manufacturer (OEM) can create the background agents and services

for the Windows Phone.

3.2 Software Testing

Software testing plays an importance role in delivering the reliable and quality mobile

application to the end user, in this dynamic world of continuous and frequent software

releases. Software testing approach is broadly categorized as manual and automated

testing. Even though exploratory testing (manual) helps to better understand the weak-

ness of the application, it comes with its own set of cost and reliability issues. In this

11 (55)

research the focus is on the test automation, which can help to overcome the reliability

and long testing cycle issues of manual testing.

3.2.1 Automated Software Testing

Test automation helps in repeatedly executing the test cases with high consistency on

different versions of systems under test. Automation acts as the savior of the test engi-

neers in case of repetitive tasks, thus easing their workload. Test automation leads to

more accurate and reliable test results, it also shortens the testing cycle time [19].

Table 2 tells about the common test automation benefits against manual testing [19].

Table 2: Common test automation benefits

Automation testing perform the repetitive operations with consistency and in shorter

span of time.

Automating the test cases is very helpful when the test execution is very frequent

and the code changes very frequently. By executing the same automated test on

the newer version of software can help in finding the regressions.

Automation testing can enable executing the same test set on different machines

with different OS platform combinations, concurrently.

Automating repetitive and uninteresting tasks releases test engineers for more re-
warding and demanding tasks.

Automation runs test cases significantly faster than human resources and signifi-

cantly reduces the chance of variation in the test results. Thus helping to maintain

the high quality of the software.

It is also worth discussing some issues with the test automation. The initial cost of making

an automation system can be very high as compared to the manual testing and might

take some time in the beginning, thus needs support from the management. Manage-

ment can have unrealistic expectations that it could solve all the testing problems. It is

not necessary that new issues are found in every round of testing, until there is some

code change. Also, it is difficult to find the usability issues with the test automation ap-

proach. Maintaining the test automation environment and the test assets in the frequently

12 (55)

changing environment can be very challenging and can cause the breakdown of the test

automation system, while the manual testers can accustom themselves easily [19].

3.2.2 Functional Vs Non-functional Testing

Functional Testing of the software is conducted on a complete, integrated system to

evaluate the system's compliance with its specified requirements. The main objective of

the functional testing is to determine if the output produced by the system matches the

pre-defined expected outcome. Apart from this, it is also important to test the non-func-

tional aspect of the applications. With the limited resources available on the mobile de-

vices it even becomes more important to cover the areas like performance, security,

usability, power usage, reliability and resource management [7].

In this thesis the focus is on non-functional testing of the mobile apps, which is discussed

in detail (Section 3.3).

3.2.3 Types of testing

Traditionally software testing can be sub-divided into three levels such as unit, integration

and system testing. The concepts of testing in this thesis revolves around the testing of

the mobile applications.

Unit testing

The smallest building block of any system is called a unit. Every unit has an interface

and is used for the interaction and also for testing it. Unit testing is handled by program-

mers who know the code under test before handing over the system to the testing team.

The goal of it is to test, if each unit works as intended before being integrated to the main

system [20]. There are many approaches for the unit testing and test first development,

also called TDD is one of them. Test driven development (TDD) is a software develop-

ment method that uses short iterations based on the pre-defined test cases. It requires

the developers to write the automated test units before writing the actual code.

13 (55)

Then, a test is run and then the code is refactored to the acceptable standards. Such

development process induces progressive growth of design and completion of progres-

sive codes and results in optimized unit tests carried out [6]. However, the scope of this

study is on system level test automation than unit level testing.

Integration Testing

The testing of the combined units of the application, to determine if they work correctly

together is integration testing. Integration testing can expose problems with the inter-

faces among program components before trouble occurs in real-world program execu-

tion [20]. There are different approaches for integration testing like bottom up and top-

down approach. In top-down integration testing, the highest-level modules are tested first

and progressively lower-level modules are tested after that. While, Bottom-up integration

testing begins with unit testing, followed by tests of progressively higher-level combina-

tions of units called modules. Continuous integration is one of the most commonly ap-

proach these days. It helps to find the regressions and remove them at early phase of

daily integration. Thus reducing the integration problems and allows rapid software de-

livery.

System Testing

This is the next level in the testing and tests the system as a whole. Once all the compo-

nents are integrated, the application is tested rigorously to verify that it meets the func-

tional and non-functional requirements as specified in the user acceptable document.

System Test approach assists in mitigating risks and ensuring a successful project. Dur-

ing system testing the product is tested for the graphical user interface, usability, end-to-

end functional testing and non-functional testing aspects etc [8]. This research focuses

on the non-functional testing aspects of the mobile applications.

3.3 Non-functional Testing Area

With the increased versatility of the mobile apps, it is becoming necessary to keep in

mind not only the mobile functional elements but also the non-functional elements, when

http://searchcio-midmarket.techtarget.com/definition/interface
http://searchcio-midmarket.techtarget.com/definition/interface
http://searchsoftwarequality.techtarget.com/definition/unit-testing

14 (55)

determining the test scope. The term “non-functional testing” refers to testing those as-

pects of a software application that may not be connected with a defined user action or

function (like, interaction, high reliability, stability and low power consumption). The cor-

rect specification and adherence of non-functional requirements similarly plays an equal

role, in the success of mobile applications.

Therefore, it is important to discuss the different non-functional testing areas. Table 2

provides a brief description about the different test area covered under non-functional

testing.

Table 2 Non-functional test area definitions [9, 12]

NFT Testing

Areas

Test Type Description

Performance

testing

Response Time Response time covers sub areas like Comple-

tion time, reaction time and latency.

Response time is measured as, total time be-

tween initial user input and completion of de-

sired action. While reaction time is the elapsed

time between initial user input and the subse-

quent response

Install Time Time taken by the application for the installation

Boot Time Time taken from pressing the power button till

the Home screen appears for first time and sub-

sequent boots.

Benchmarking Measuring the similar app on competitor de-

vices and analysing the results in comparison to

Windows Phones

Resource

Utilization

Memory & CPU Testing Measure the memory usage for the WP apps

and services to check they should not exceed

the memory limits set by MSFT Technical

guidelines.

Power

Management

Current Consumption and

sleep mode testing

Measuring average current consumption of the

device during the app usage over a period of

time.

And verifying that device returns to sleep mode

after different use cases.

Stress and

Reliability

Endurance, Long period

testing and Robustness

Endurance: Measures SW reliability with fea-

ture specific long lasting user operations.

15 (55)

Long Period Testing: Measures SW reliability

from product- and user profile specific point of

views with long term usage.

Evaluating and validating a software system's

tolerance to faults which occur externally to the

system under the test

Even though most of the above discussed non-functional aspects are crucial for a mobile

application, this paper focuses on the Generic Response time and memory usage aspect

of the windows phone application.

3.4 Windows Phone NFT Test Cases and Certification Criteria

If a developer wants to publish an application to the windows Phone store, the app must

comply with the certification requirements specified by MSFT. The certification require-

ments are divided by type, such as app policies, content policies, and app submission

requirements etc. This section gives a brief about it focusing on the non-functional as-

pect of the application. Below are the Microsoft technical certification criteria for applica-

tion responsiveness [2, 5].

1. App Launch time: The app must render the first screen or a splash screen within

5 seconds after launch. Also, the app must be responsive to user input within 20

seconds after launch.

2. App responsiveness after being closed: When an app is started after being

closed, its launch time must meet the above requirements for App Launch Time

(1).

3. App responsiveness after being deactivated: A Windows Phone app is deac-

tivated when the user pushes it to the background. When an app is activated after

termination, it must meet the requirements for App Launch Time (1).

4. App responsiveness: App must not appear to be unresponsive for more than

three seconds, if it perform some operation. An example would be, downloading

data over a network connection or transitioning between different views, the app

must display a visual progress or busy indicator.

16 (55)

While designing a mobile application, it is very important to keep in mind that the appli-

cation can be used on different devices with varying memory. The size of the default

memory cap imposed on an app is determined by the app as well as by the memory size

of the device [3]. Thus Microsoft has defined certain memory limits for different app types,

depending on the device configuration. Table 3 gives an overview on the memory limits

for different windows phone 8 applications.

Table 3: MSFT Memory Limits [3]

App type
Lower-memory

phones (512 MB)
1-GB

phones
2-GB

phones

Windows Phone 8.0 (all types) 180 MB 380 MB 780 MB

Silverlight 8.1 and Windows Runtime 8.1 185 MB 390 MB 825 MB

Continuous Background Execution (Win-
dows Phone 8.0 only)

150 MB 150 MB 300 MB

*To use the memory limits described in the preceding table, 2-GB phones must also have Win-

dows Phone 8 Update 3 (that is, a version equal to or greater than 8.0.10492).

The above defined certification criteria should be fulfilled before an application is submit-

ted to Windows Phone marketplace. Thus, it forms an important part of the requirement

for this study.

3.5 Existing Tools by Microsoft

Windows Phone Application Analysis [4] includes the option to monitor the app while

exercising its features as an ordinary user would use it.

The goal of app monitoring is to help understand the quality of the app, and to give an

actionable feedback to improve it. This information helps in improving the app long before

it reaches the end user, and to differentiate it from other apps by its responsiveness and

its responsible resource usage. The app monitoring feature aims to capture all the key

metrics that are relevant from quality perspective, and then to rate the app based on

these metrics [4].

17 (55)

App monitoring can help to identify issues such as the following:

 Slow start up time.

 Slow response time to input, such as scrolling or zooming.

 High battery drain.

 Network latency.

 High cost of network data.

 Poor performance as the quality of the network signal changes.

 Out of memory errors caused by high resource usage.

Figure 3 shows an example graph from the application analysis tool, showing the app
behaviour and performance.

Figure 3: Snapshot of Performance Graph from Windows Phone Performance
analysis tool [4]

Each area is color-coded and symbolizes different performance aspects. The test results

or the graphs might vary based on the app type. For instance, the frame rate section

displays the number of screen redraws, in frames per second. While the frame rate is

not shown for XNA framework apps. The memory usage section shows the amount of

phone memory being used by the app in megabytes.

3.5.1 Limitations of Existing System

18 (55)

The Windows Phone Application Analysis [4] has some limitations, due to which it is not

considered as an alternative to the new proposed automated system. Below are few

more limitations of this tool.

1. Need the access to the source code. Thus it becomes difficult for a

tester to test the mobile application, if he/she don’t have the access to

the application source code. More suitable for the unit testing. While this

thesis focuses on the system level testing.

2. Confined to limited test set. Not giving the values for all the needed test

cases. The performance test cases were pre-defined and cannot be cus-

tomized.

3. Not expandable. Unable to add more scenarios for the non-functional

testing.

4. Unable to trace the Windows Phone Runtime (WINPRT) apps memory.

5. Extensive test reports with the device under test and OS information is

not available.

6. Unable to get the continuous logs for trend analysis. Thus unable to use

the test results with the existing reporting system.

As discussed in earlier sections, manual testing is very expensive and very difficult to

do effectively. The WPAA tool also needs the manual intervention for executing some

of the scenarios. Thus based on these limitations a decision was made that Windows

Phone Application Analysis tool cannot be used for the complete coverage of the non-

functional testing of the Windows Phone apps.

4 Initial State Setup

The aim of this chapter is to explain the test setup and testing process of the existing

system, which is time consuming and prone to deliver inconsistent results. Since the

focus of this research work is confined to the UI responsiveness and memory utilization

of the mobile applications, this section explains only about those NFT areas.

As per the old testing process once the developer commits the code, it is submitted to

the continuous integration. During this phase the functional unit test cases are executed

to check the regression and then it is moved for the functional system testing. After the

19 (55)

approval from the Quality lead, the release further proceeds to the non-functional testing

area. Figure 4 shows the testing process map of the old system.

Figure 4: Initial Test process map

As seen in Figure 4, the non-functional testing was done at the very late stage. This could

lead to slippage of the non-functional bugs till the very end and sometimes it becomes

very expensive to fix them, thus, increasing the overall cost and delay of the project. But

aside from that, manual testing also adds to the inconsistent test results and delayed test

cycle time.

Performance testing

Performance testing covers overall application responsivness, device boot time, latency

and reaction time, as explained in Section 3.3. The initial test setup was based on

manual testing. All generic perofmance scenario (defined in Section 3.4) were manually

tested using high speed camera. Each scenario was excuted multiple times to get the

accurate results. Also, each scenarios were executed on multiple devcies with different

configurations. This leads to the longer testing cycle time. These scenarios could be

done simultaneously with many testers, but could lead to variation in the results due to

the human error. Performance results have to be accurate and understood by the testers.

They should provide the same result and leave minimum room for interpretation and thus

human error. As this has a direct impact to the costs accumulated during the test rounds

on the application development phase.

20 (55)

Resource Utilization

With the limited memeory available on the devices, application memory monitoring

becomes one of the major contributor to overall application non-functional testing.

Resource utilization covers the memory utilization measuement for the apps, services

and background Agents. During this test the memory usage for the WP apps was

checked along with the their peak memory. As it should not exceed the memory limits

set by MSFT Technical guidelines.

The initial test setup was based on manul testing and WPA tool was used to measure

the resource utilization by an app. Since, WPA tool needs the app source code to run

the memory profile. The tester needs to setup up the development eviornment on his

machine. Then, the tester starts the monitoring via the WPA tool and would

simultaneously run the test steps for different scenarios. Each of these scenarios were

then repeated on devices with different memory sizes (512 MB, 1GB, 2GB etc).

Repeatedly executing the same steps manully, makes the system prone to variations in

the test results. The same process was repeated on every release to find the regression.

After each round the resuts were noted manully and there was no continous logging

available for the results. This process was time consuming, leading to a direct impact to

the costs accumulated during testing rounds on the application development phase.

Thus, it was proved that, in practice manual testing of mobile device applications is time

consuming, expensive and very difficult to do effectively. It could also lead to the huge

variation in the test results, which then makes it more difficult to judge the quality of the

app and thus increases the risk of bad quality app pushed to the market. Also the release

cycle time of the app would increase when testing on multiple devices (different config-

urations) and different operating system versions.

21 (55)

5 Test Automation

The aim of this chapter is to define requirements for the automation framework and con-

tinue by presenting a tool that tries to fulfill those requirements. It also explains how the

needed key components are implemented.

5.1 Requisites for Automated Test Tool

There are multiple requirements such as repeatability, reproducibility, short testing cycle,

test monitoring etc which suggest a new automation tool is needed. In high level these

requisites are divided into three sections. Each section has its own weightage in the

creation of the new automated tool and explained in the below section.

5.1.1 Requisite as General Test Automation Tool

This section covers the basic high level requirements for any test automation framework

or tool. Even though there has been many researches and developments done in the

field of test automation. However, the high level requirements for the test automation

remains same even today. These high level requirements can be categorized as auto-

matic test execution, Ease of Use and tool maintainability.

The first and the foremost requirement for an automated test tool is fully automatic test

execution of the test cases. However, executing tests is not enough, the tool must also

be capable to analyze the test results, handle the runtime exceptions during test execu-

tion and report the test results in a readable format for all the stakeholders [16]. The test

automation framework or tool should be easy to use by the engineers or it is very likely

to be abandoned. The test engineers should be able to design and edit the tests, run

them and monitor the test execution status with ease. If a new person joins the team, he

or she should be able to start quickly without much of the programming skills [18]. Main-

tainability is another very important aspect for any software, be it a test tool or the soft-

ware under test. The tool must be easy and fast to maintain, when the test system or the

environment changes or updates. Apart from this it should be designed in such a way

that new features can be added to the tool when the need arise [19].

22 (55)

5.1.2 Requisites from Non-functional Prospective

With the limited memeory available on the devices, application memory monitoring

becomes one of the major contributor to overall application non-functional testing. Apps

consuming more more can lead to the degraded UI performance of the apps.

Non-functional requirements have been derived from the Microsoft Technical Certifica-

tion Criteria defined in the Section 3.4 above. The requirements are then broken down

in the below test cases.

The NFT test cases are divided into 2 segments and Table 4 covers the performance

test case definitions for an application.

Performance test cases definitions

Table 4: Performance Test cases

Requirement Requirement Text

Measure the launch time of the splash

screen

Application’s first screen or a splash screen must be visible

within defined time after launch.

Measure the first load time of the application

 Measure the time elapsed between the initial user input until

the app is fully visible and ready for the user input. The meas-

ured time must be within the defined time limits.

Measure the app load time after it has been

closed

Measure the time elapsed between the initial user input until

the app is fully visible and ready for the user input after being

closed. The measured time must be within the defined time

limits.

Measure the app load time after it has been

de-activated (pushed to the background, not

active.)

Measure the time elapsed between the initial user input until

the app is fully visible and ready for the user input after is been

de-activated. The measured time must be within the defined

time limits.

Closing time of an application
Measure the closing time of the application and check it is

closed within the defined time period.

Is the app closable from main screen?
Check if the application is closable from its main screen using

the back button.

Installation time To measure the application installation time.

23 (55)

The performance test cases defined in Table 4 cover the most generic responsiveness

use cases for any mobile application. The main focus of these test cases is cater the

initial app launch experience of the end user. However, Table 5 charts down the memory

usage test cases for the Windows Phone 8 mobile apps and services.

Memory Test cases

Table 5: Memory test Cases

Measure the memory usage for the

WP apps

To measure the memory usage for the windows phone apps and check

they should not exceed the memory limits set by MSFT Technical

guidelines on devices with different configurations.

Checking Commit limit for the

background agents

To measure the commit limit of the windows phone background agents

and check it should not exceed the defined limits.

Measuring the memory by the ser-

vices.

To measure the memory usage for the individual and bundled services.

And check that a service should not cross the memory limit.

MSFT has defined separate memory limits each use case defined above, which are dis-

cussed above in Table 4, for instance an app has lower memory limit on a phone with

less memory and higher limit for mobiles with more memory. The above defined test

cases holds fair amount of weightage in this new NFT automated test tool and are con-

sidered the base of the new automated tool.

5.1.3 Requisites Gathered from Current System

As mentioned in the above sections, most of the existing non-functional testing was done

manually, which lead to the delayed test cycle and inconsistent test results. And it made

difficult to judge the quality of the app and thus increases the risk of releasing a good

app with bad quality. A root cause analysis was conducted for the existing system using

the fish bone diagram. A fish-bone diagram is a quality defect prevention tool to identify

potential factors causing an overall effect.

The below fish-bone diagram (Figure 5) depicts the problems in the current system which

have severe impact on the current way of working and testing life cycle.

24 (55)

time

high cycle

results and

memory

Deviations in

Environment

Measurements

Methods

Material

Machines

Personnel

NFT_Requestee

NFT_Tester

Perforce

HW_Dev ices

Test_case

F irmware

Xap_files

MSFT_tools

No_continous_data

C onstant_v alues

A pp_Stability

P latform_stability

Cause and Effect Diagram

Figure 5 Cause & Effect Diagram

The above identified reasons are turned into the requirements and must be addressed

in the new automated tool. Reproducibility and repeatibilty are the major factors which

can help in reducing the the variance in the test results. Reproducibility is the ability of

a gage, used by multiple operators, to consistently reproduce the same measurement of

the same part, under the same conditions [17]. Testing should provide the same result

for same use cases (if no changes are made to that area) and leave minimum room for

interpretation caused by human error. While repeatibility is the ability of an operator to

consistently repeat the same measurement of the same part, using the same gage,

under the same conditions[17]. While testing a software it is very important to execute

each scenario multiple times to get the accurate results.

As the earlier testing process was manual, execution speed of the test case was another

major issue. Thus automating the new testing process can decrease the overall testing

cycle time and increase the repeatability and re-useability. As discused in Section 3.5

the exisiting tool (WPAA) lacks the capability of continous results logging and device

extensive reports, they become important requiements for the new automated system.

Test logs have lot of informaton, but it is good to see the test reports which can provide

25 (55)

the statistical information about the results and cater all the stakehlders. The test report

should have a summary about the list of executed test cases with their status, along with

the info on below fileds, see below:

 Name and verion of the app

 Device configuration

 OS & Firmware details.

 Total number of passed and executed test cases.

 Etc.

Test reports can either be generated at the end of test execution or later based on the

test logs.

This section first defined the high level requirements for the general test automation

framework. Then it explained the requirements from the non-functional perspective,

which is the core of this tool. And in the later part, the requirements are gathered from

the existing system. Though all the requirements go hand-in hand. But due to the time

limitations, the focus on each section was defined (in terms of the weightage), based on

the business needs. Which in turn drive the development of this automated tool. The next

section builds from this foundation and suggests the test tool design fulfilling these re-

quirements.

5.2 Non-functional Test Tool Design

Design is one of the most important phase in the SW development of any tool. Multiple

requirements and limitations of the current system suggests that another system is

needed for achieving the reduced test life cycle and accurate results. Thus based on the

above requirements in Section 5.1, the new automated tool has to be designed.

This section explains about the design (Figure 6) and layout of the newly proposed test

tool.

26 (55)

Figure 6: High level - NFT automated tool design

Figure 6 shows the high level design for the new NFT automated test tool. The new test

tool is designed in such a way that it is easy to use and maintain. This tool is based on

two tier architecture, the top tier is the user interface, which gives test engineers the

flexibility for designing the test cases and controlling them. This layer also showcases

the test results in user friendly manner. While the underlying tier is the core engine of the

new automated tool and performs the real execution task and interacts with the device

under test. Figure 7 gives the detailed overview on the design of the new NFT tool.

27 (55)

Figure 7: Detailed design diagram - NFT tool

Test Configurator

Test configurator is the non-functional test engineer/expert playground. It has been de-

signed in such a way that a test engineer can use it with minimal training or help.

Test configurator has multiple functionalities, ranging from dummy data generation to

test case/set configuration.

Test Data generator is used for generating the dummy test data. The dummy test data

is needed to simulate the stress and user scenarios on the device. This data can be

photos, music, videos files etc. which is used to fill in the physical memory of the device.

Apart from this, the test generator is also capable in creating the process which can eat

up the RAM of the device under test (DUT).

Test customization module is used for creating the new test cases/sets and also editing

the existing test assets. During the test case creation user can select the process/service

against which the test case has to be executed. User also has the flexibility to select the

number of test iterations and the device type. And the created test cases can be stored

into xml files.

28 (55)

Once the test case is created a test bundle is created using the test builder. This test

bundle contains all the needed parameters required for the test execution. This bundle

is then pushed to the test queue.

Test Monitoring System

Test monitoring system is used for controlling test execution and checking test results.

It is expected to have at least the below listed capabilities

 Controlling the test execution.

 Stopping test execution.

 Setting up the logging level.

 Monitoring test execution while tests are running.

 Viewing test logs while tests are running and afterwards.

 Viewing current and old test reports.

The test monitoring system is designed to be a GUI based interface for controlling and

stopping test execution, with underlying scripts to control the test execution. The test

logs and results should be presented in a readable and graphical format, which is much

richer than the plain text reports. The graphical interface also allows the stakeholders

to interpret the results in a convenient manner. The exporting of the test results/reports

in different formats should also be supported, which can be used by other reporting

systems that are already in use.

Test Executor

Test execution system is the core of this automated tool. It accepts the test bundles

been prepared using the test configuration system and pushed to the test queue as il-

lustrated in Figure 7. The framework concept relies greatly on reusable components.

The most significant component is the test executor which consists of multiple subcom-

ponents. Its main components are bundle extractor, the test library, process monitor,

the test data parser and other utilities like logger. This component, is the only one that

interacts with the device and executes the test cases on the DUT. How all these and

other components work together is illustrated in Figure 9.

29 (55)

Bundle Extractor

Test bundle generated by the test configurator which has all the test details, is

pushed to the test queue in the form of a zip file. The bundle extractor, exacts the

needed info like app details, number of iteration, test type etc. and passes to the

specific test executor.

Executor

Performance Test Preparator

Once the bundle extractor gets the application info like app name, version, GUID

etc., the performance test preparator combines this info with other performance

parameters. The performance test execution is based on the event based tracing

(ETL). An xml is been generated combining all the test cases and their correspond-

ing parameters. A new table node is been created for each test case and things

under a particular table is executed together.

Example:

<?xml version="1.0"?>

<Data>

 <Table Id="XAML_Appxxx_Setup">

 <Row Description="App_xxx">

 <ParameterName="PackageAumId">

App_xxx__8wekyb3d8bbwe!x36f9fa1cyfdady4cf0y99ecyc03771ed741ax</Parameter>

 <Parameter Name="Prelaunch">back;</Parameter>

 </Row>

 </Table>

 <Table Id=" XAML_Appxxx">

 <Row Description="App_xxx">

 <ParameterName="PackageAumId">

App_xxx__8wekyb3d8bbwe!x36f9fa1cyfdady4cf0y99ecyc03771ed741ax </Parameter>

 <Parameter Name="LaunchApp">tap 200px 300px; flick left; flick left;</Parameter>

 </Row>

 </Table>

</Data>

Once this is done, the command is passed on to the test execution module. The

ETW tracking happens in parallel. The trace logs are then parsed using a Pow-

erShell script and timestamps of various events are been collected and calculated

for the end results.

30 (55)

Memory Test Preparator (Process Monitor)

Similarly once the Memory test preparator gets the details form the bundle extrac-

tor, it checks for the process and memory test type. As discussed earlier, the tool

could support the memory measurement for the applications, services and the

background agents. The new tool also supports both the automated functional test

and manual test. Based on these parameters the new package is created and

passed on to the test execution module. A supporting service called process mon-

itor (PM) is been designed for the continuous data logging. It is a customizable

background memory logger which can trace the memory usage on the specified

interval. Default set to .5 seconds. It runs in parallel whenever a memory test case

is executed and communicates with the test execution module.

Test Execution Module

This module directly interacts with the device under test (DUT) via IP Over usb.

The IP over USB feature allows to connect a PC to a phone’s network for a direct

connection between the PC and phone. This feature is typically used for transfer-

ring files or testing programs. It deploys the app and the test packages on the

device and takes care of the test execution for both the performance and memory

test cases.

Logger

Logging is one of the core parts of any test automation framework or tool. Apart from the

test case results, it should log more detailed information about the test execution and

how the system behaved. On top of that the tool must log what it is doing internally, to

make it easier to debug problems in the tool itself.

The multiple level logging helps in controlling the information been captured during the

execution. Level 1 enables the logging at lower level, while the level 4 captures the test

results and reports only. The intermediate levels are capable of capturing the information

about the incorrect test environment setup, warnings and debug info.

31 (55)

As already discussed about the need of continuous logging (Section 3.5.1), this logger

is been designed to capture the memory usage on continuous basis. This is further been

used to generate the memory test reports showing the trends.

Test Data Parser

Its task is processing the output i.e. test result data and forwarding it to the reporting and

DB script. The reporting module handles the visualization of the test data and is shown

in the form of the test reports. While the DB scripts helps in storing the parsed data into

the DB. This stored test results can later be retrieved or can further be used by other

reporting systems within the organization. Test data parser is the heart of the reporting

system. It further processes the data to convert in different formats.

Reporting

As discussed earlier, test logs have all the information from starting from the test execu-

tion but, they are lengthy and not good for seeing test status at a glance. Test reports

provides a concise view of the test results. They provide statistical information about the

complete test execution. A good test report helps in catering all the stakeholders from

test mangers to the developers. Test report should have a summary about the list of

executed test cases with their status, along with the info on below fields (Section 5.1.3).

Like,

 Name and version of the app

 Device configuration

 OS & Firmware details.

 Total number of passed and executed test cases, etc

Test reports can be either created at the same time when tests are run or they can be

constructed based on test logs afterwards. This reporting system is also capable of fetch-

ing the reports for the past six months. The reports can be exported in different formats

like pdf, xls and can be published by email.

32 (55)

5.3 Implementation and Piloting of NFT Automated System

This section continues from the previous section and describes how the components of

the new system were implemented. The tool is then evaluated based on the pilot expe-

riences in the next chapter.

5.3.1 Technical Decisions

It is very important to choose the right technology to develop and maintain any software,

as it makes the life of a developer easier. This section details about the technology been

chosen for the tool development and the reasoning behind it.

Implementation Language

Since the NFT automation tool focuses on the Non-functional testing of the Windows

Phone app, so it was decided to mainly stick with the Microsoft Technologies. This gives

the flexibility for the tool to be used and maintained across the company. The UI of the

tool is mainly written in C# and it also provides many good libraries for the reporting

purposes.

Since scripting languages comes very handy and are mostly commonly used in the de-

velopment of the automation tools, so Power Shell was chosen for that purposes. Pow-

erShell is “a task-based command-line shell and scripting language… built on the

.NET Framework.” PowerShell can help anyone working in the Microsoft ecosystem and

can interact with a dizzying number of technologies.

Storing test results and reports

Now a repository needs to be finalized where the all the non-functional test results, re-

ports and logs can be saved. Since, MySQL was used with the older system and holds

all the historic data, so it was decided to be used. Also, some of the dashboards were

based on the same Database, so it was good idea to continue using it and define the

schema for the new system based on it.

33 (55)

5.3.2 Implementation

NFT Tool interface is very simple and easy to use. As discussed earlier, this tool focuses

on providing the automated solution for the non-functional testing, covering performance

and memory testing.

Performance management involves measurement of the below factors, as defined

above in Section 5.1.2

 installation time

 launching time

 initial responsiveness time

 initial responsiveness after deactivation

 initial responsiveness after closing

 uninstallation time

 if the application is closable from the main menu Measurement of these param-
eters should be the first step during NFT testing process

 Memory Management

In this part we are measuring memory snapshots for UI applications, drivers and pro-

cesses running on the devices. It is a very important to make sure that particular appli-

cation does not consume too much memory because of big limitation of total memory

size on mobile devices. The test cases are based on requirements defined in Section

5.1.2.

User Interface

NFT Tool interface is very simple and easy to use. The user interface is divided into three

main sections:

Configuration view

Test configurator is the test engineer/expert playground. It has been designed in such a

way that a test engineer can use it with minimal training or help. It has multiple function-

alities, ranging from dummy data generation to test case selection. It is further divided

into two subpages.

34 (55)

 Test builder (Figure 8) - This is the main page of the tool where the test

setup takes place by providing Test builder packages and by setting addi-

tional parameters.

Figure 8: NFT Tool Main Screen GUI

The Test builder view has many different components, which can help the test engineers

to design the test case based on their requirements. With the MainScreenDevic-

esScreenBox [Figure 8-1], test engineers have the liberty to choose the device under

test and also select the test type. Here are the different test types:

 General - General test type focuses on the performance related use cases.

One needs to just provide the test builder package and application XAP file

is taken from the Testbuilder package and rest is taken care by the tool.

 Custom test - It performs all the tests from the package which is provided

and do not make any modifications.

 Memory – This test type the NFT Tool is meant for measuring the memory

for the applications and the replaces the Tux.Net library by its own specific

1

2

35 (55)

version. To be able to complete the tests properly one have to make sure

that the tests meet few specific requirements.

 Manual - In this test type we are measuring the same parameters as in

Memory test. The only difference is that we don't have to provide any auto-

mated scenarios. Instead we have to specify the time for the test and per-

form the actions on the device manually.

 Composite - this test type is similar to the Manual test. The only difference

is that we are measuring only the memory counters and CPU usage for pro-

cesses/services/drivers and we don't have to provide any XAP file.

In the test builder view the user has the flexibility to either pass on the existing test

cases or create their own test cases. For the existing test cases, a zipped test package

is passed onto the tool. The tool then verifies if the package contains all necessary

files, for instance, applications XAP file and the configuration. While in case of new test

creation, the test engineer can select the process or services listed on the tool UI. The

user then selects the number of repetitions for the test and maximum number of times

the test case are repeated to get the specified result. Each repetition is displayed sep-

arately in the recent results list.

Test Data generator

Test data generator view (Figure 9) can be divided in two sections. The left section al-

lows the user to fill the ram memory by providing the desired percentage of available

memory. The right section allows the user to fill the physical memory by providing the

desired percentage and the type of files which should be copied on the devices. The

filled memory can also be freed by clicking the "Release Memory" button correspond-

ing to each section.

https://wikis.in.nokia.com/NWPApplicationSW/Apollo#recent_results_box

36 (55)

Figure 9: Test data generator

Execution view

In this view test experts can check the test execution progress and list of previous re-

sults. Color of the results indicates if the particular test harness is passed or not. Here

is the classification for the color codes:

o green - all test cases in the test harness passed
o yellow - one of few test cases in the test harness failed, some passed
o red - the whole test harness failed

o gray - NFT Tool was unable to get the results from the device.

Execution view is divided into 3 sections.

Execution Queue section contains queue of test harnesses (packages) to be executed.

Tests are executed in FIFO order, from bottom to the top of the queue. The test harness

can also be removed from the queue.

During the execution all the buttons are disabled, so the test harness cannot be removed

from the queue. The executed test harness can exported and later can be used from the

Test Builder screen.

Execution Status view helps to check the execution status of the current test harness.

The progress bars on this view, show the timeout from the pre-defined value, and also

indicates if the execution is still running. While the test information are also shown about

the current state of the execution.

37 (55)

Recent results

When the test harness is completed the results are displayed in "Recent results" box.

The results are displayed from the newest on the top to the latest on the bottom of the

list. The results are grouped by the application.

Figure 10 shows an example of the test results from the new automated tool, where
test results are grouped by the app names.

Figure 10: Recent results window

Detailed Test Results window

Detailed test results windows, as all other views in NFT Tool is divided into few main

sections. Each of them displays logically divided information about the test cases.

This view changes dynamically depending on the selected test case or on the test har-

ness results.

Test Results Basic Info

This section shows the basic information about the test execution along with the test

results, for instance it covers the pass/fail count and the performance test results. The

example below (Figure 11) shows the results for the Performance Test Case [General].

https://wikis.in.nokia.com/NWPApplicationSW/PerformanceTestCase

38 (55)

Figure 11: Performance test results

Test Case List

This windows lists down all the executed test cases for a test harness and provides the

functionality to export the test reports. The report can be exported in four different for-

mats:

 XML with graphs (graphs are stored in separate directory)
 XML without graphs
 PDF
 WRT (Web Reporting Tool) format

This window also helps in customizing the test reports by allowing to choose different

memory counters and their units.

Details View

This window has multiple tabs covering the test results in depth, ranging from the sum-

mary to detailed scenario graphs. Different tabs in this view are detailed below.

Summary Tab helps in checking the peak values of each memory counter for the pro-

cess or service under test for each test case. Rows are grouped by the process name.

39 (55)

Logs tab contains XML logs received during the test execution. It is very helpful for de-

bugging, as it contains the test steps of each the test case and list of errors if some-

thing went wrong.

Counters tab allows to draw the graphs for drivers and processes counters. One can

select many processes and drivers in the same time and many counters. All the graphs

will be drawn and grouped by the driver/process name or by the test case name de-

pending on the selection.

Memory tab is displayed only for the memory and manual test cases. On this tab one

can check the memory consumption of the UI thread for the Silverlight applications.

The memory data can also exported here in CSV data format, to check for the continu-

ous memory consumption.

Figure 12 shows an instance of the detail test results view with the memory graphs.

Figure 12: Memory test results

Once the designing and implementation is completed. The next chapter continues from

here by collecting pilot experiences together. Based on the results the overall feasibility

of the tool can be evaluated and possible changes can be suggested.

https://wikis.in.nokia.com/NWPApplicationSW/MemoryTestCaseApollo
https://wikis.in.nokia.com/NWPApplicationSW/ManualTestCase

40 (55)

6 Measurement and Analysis

The previous chapter explains how the automation tool works. The concept describes

how the different components work and how a request is processed.

In this chapter the results of 2 apps, which were picked up for the piloting are compared

between the existing system and newly proposed system, which is been developed as

part of this research work. Basically the tool is evaluated based on the pilot experience.

6.1 Measuring UI Responsiveness

A gage R & R study was done for both the older system and the NFT automation tool.

This measurement how much variability is caused, when different engineers perform the

same test repeatedly. Gage R&R measures the amount of variability induced in meas-

urements by the measurement system itself. Then compares it to the total variability ob-

served in the system, to determine the viability of the measurement system. This study

was done using three different testers in 5 iterations, with both manual and automated

system.

6.1.1 Results from Existing System

As stated earlier, in the previous system all generic performance scenario were manually

tested using high speed camera which leads to human error and was time consuming.

There is a total variance of about 30.4% when the same person repeats the same task

multiple times. Also the variation in reproducibility (different operator measuring the same

item) is recorded as 15.9% which is also not within the acceptance level i.e. less than

10%. According to Automotive Industry Action Group (AIAG) guidelines, if the measure-

ment system's variation is less than 10% of process's variation, then it is acceptable.

Figure 13 shows the summary report of Gage R&R Study for the old testing system.

41 (55)

Figure 13: Gage R&R - Existing system

Based on the results in Figure 17 and AIAG guidelines, manual measurement system

cannot be considered acceptable with a total GR&R of 27.99 % study variation and

34.5% process variation.

6.1.2 Results from Automated System

The study was conducted with the new automated system, which promises to reduce the

test results variation and reduce the test cycle time. There is a total variance of about

0.5% when the same person repeats the same task multiple times with the new auto-

mated tool. Also the variation in reproducibility (different operator measuring the same

item) is recorded as 0.8% which is well below the acceptance level i.e. less than 10%.

According to AIAG guidelines, if the measurement system's variation is less than 10% of

process's variation, then it is acceptable.

Figure 14 shows the summary report of Gage R&R Study for the new automated testing

system.

42 (55)

Figure 14: Gage R&R - Automated system

Thus Automated measurement system can be considered acceptable with a total GR&R

of 4.7 % study variation and 0.9% process variation, as shown in the test summary above

(Figure 16).

6.2 Measuring Memory Consumption

Two studies were done for both the systems to measure if the new automated system

scores over the manual system used previously for the memory usage scenarios. Firstly,

a normality test was done to check the data is normally distributed. Later a gage R & R

study was also done using two operators to check how much variability is caused, when

different engineers perform the same test repeatedly.

6.2.1 Results from Existing System

All memory scenarios were manually tested which leads to variation in test results for

the same use cases and also leads to high cycle time. In the existing process most of

the results are lying between 299 MB to 401 MB. There is a deviation of about 25%

(shown in Figure 15), when the same person repeats the same task multiple times, which

cannot be considered acceptable for any test system.

43 (55)

Figure 15: Normality test: existing system

The summary table in Figure 17, shows the minimum and maximum values of the test

results along with median. The minimum recorded value is 299 MB while the maximum

value is recoded as 401 MB. There is noticeably big amount of variation between the two

end points and the standard deviation is recorded as 24.84%. Thus making the test re-

sults very unreliable.

Measurement System Analysis-Manual

Another test called MSA (ASTM E2782 Standard Guide for Measurement Systems Anal-

ysis), was done to check if the existing system is accurate and stable. By conducting the

MSA test, the capacity of the system to produce same results over time can be checked.

Measurement Systems Analysis is a key step to any process improvement effort.

Figure 16 gives the overview of the Gage R&R test conducted on the old system for the

memory use cases.

400380360340320300

Median

Mean

350345340335330

1st Q uartile 320.40

Median 340.00

3rd Q uartile 358.00

Maximum 401.40

330.43 348.34

328.00 350.00

19.92 33.03

A -Squared 0.20

P-V alue 0.880

Mean 339.39

StDev 24.84

V ariance 617.21

Skewness 0.419505

Kurtosis -0.156690

N 32

Minimum 298.70

A nderson-Darling Normality Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev

95% Confidence Intervals

Summary for Memory usage(MB)

44 (55)

Figure 16: Gage R&R - Manual Process

The measurement results by 2 operators, in multiple repetitions, shows high %Study

Variation and %Contribution. So it seems the existing measurement system is not relia-

ble and seems to be the reason for the variance in the test results (as shown in Figure

20 above).

6.2.2 Results from the new automated system

The same study is conducted with the new automated system, which promises to reduce

the test results variation and reduce the test cycle time. Figure 17 shows the normality

test summary of the new automated test system for memory usage scenarios.

45 (55)

Figure 17: Normality test: New automated system

With the new automated process most of the results are lying between 330MB to 350MB.

And the standard deviation is reduced to 5%, which is a significant improvement in the

test results variation

Figure 18 gives the overview of the Gage R&R test conducted on the new system for the

memory use cases.

350345340335330

Median

Mean

344343342341340

1st Q uartile 338.97

Median 342.60

3rd Q uartile 345.48

Maximum 350.80

340.14 343.92

340.00 343.70

4.20 6.96

A -Squared 0.40

P-V alue 0.346

Mean 342.03

StDev 5.24

V ariance 27.44

Skewness -0.448485

Kurtosis -0.017475

N 32

Minimum 330.50

A nderson-Darling Normality Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev

95% Confidence Intervals

Summary for Memory usage(MB)

46 (55)

Figure 18: Gage R&R - New automated tool

Also the MSA measurement of the automated system shows the %Study Variation of

22.87% and %Contribution as 5.23%, which can be considered acceptable. If the Total

Gage R&R contribution in the %Study Var column is between 10% and 30%, and %Con-

tribution is between 1% and 9%, the measurement system is acceptable depending on

the application, the cost of the measuring device, cost of repair, or other factors.

The below comparison (Figure 19) shows there is significant decrease in the variation of

the results with the new automated system.

47 (55)

Figure 19: Variance in Test Results - Manual Vs Automated

The standard deviation has been reduced to 5% from 25%. The test results are now in

acceptable limits as the delta between upper and lower limit has reduced to 40 MB only.

6.3 Testing Cycle Time

This research started with two main objectives, one to reduce the variation in the results

by automated the existing system. Secondly, to reduce the testing cycle time. This sec-

tion will now focus on measuring and understanding the testing cycle time of the overall

process. Figure 20 shows the mean testing cycle time of the existing system for the

execution of the test cases was around 80 minutes.

61554943373125191371

450

400

350

300

250

Observation

M
e

m
o

ry
 U

s
a

g
e

_
X=342.0

UCL=362.0

LCL=322.1

Memory usage(MB) After_Memory usage(MB)

Comparision Manual vs Automated- Memory usage Results

48 (55)

Figure 20: Normality test for test life cycle

But, the new automated system has bring it down significantly. Comparison in Figure 21

shows there is a meaningful shift in the testing cycle time with the new automated sys-

tem.

Figure 21: Test cycle time Comparison - Manual vs Automated

85807570

Median

Mean

807978777675

1st Q uartile 75.000

Median 78.000

3rd Q uartile 80.000

Maximum 85.000

75.864 79.136

75.000 80.000

3.637 6.031

A -Squared 0.27

P-V alue 0.659

Mean 77.500

StDev 4.537

V ariance 20.581

Skewness -0.197903

Kurtosis -0.228387

N 32

Minimum 67.000

A nderson-Darling Normality Test

95% C onfidence Interv al for Mean

95% C onfidence Interv al for Median

95% C onfidence Interv al for StDev

95% Confidence Intervals

Summary for Cycle time (mins)

61554943373125191371

100

90

80

70

60

50

40

Observation

In
d

iv
id

u
a

l
V

a
lu

e

_
X=45.34
UCL=48.78

LCL=41.91

Cycle time (mins) After_Cycle time (mins)

Comparision Manual vs Automated- Cycle time

49 (55)

Mean testing cycle time has now reduced to 45.34 minutes as compared to 80 minutes

from the old testing system. Most of the testing cycle times lie within a range of 41 and

48 minutes. Thus the second goal of this study for reducing the testing cycle time is also

achieved.

6.4 Comparative Result Analysis with Similar Test Automation Study

This section presents the comparative study of the test result results for the similar test

automation studies. After looking back on this thesis and also at other research works in

the same area. It can be summarized that test automation has a clear advantage over

manual testing where repetitive tasks are being performed. Thus saving the overall cost

of the project.

Similar Study

As an example from the Mater’s study ”Test automation in Practise” [20] shows the test

effort reduction comparison of different test approaches, ranging from no automation to

full test automation. It also presents that in many cases 100% automation is not feasible

and it does not show significant improvement in cost reductions.

Figure 22 shows the comparison of overall reduction in testing efforts for the same sys-

tem with no automation, partial automation and full automation. This table is been in-

herited from a similar study of test automation for the comparison purposes.

Figure 22: Reduction in test efforts [20]

In Figure 22, it is clearly visible that there is an overall reduction of 70% in the test efforts

between the no test automation and UI test automation.

50 (55)

NFT automation tool

As explained above (in Section 6.3), with the automation of non-functional testing of the

mobile application, the mean cycle time is reduced to 45.34 min as compared to 80 min

previously. And this is a reduction of almost 44% in the testing cycle time for an applica-

tion. Apart from this, there is a huge reduction in the deviation of the test results, which

was the main objective of the organization, under which this study was conducted. The

deviation is reduced by almost 80%, which is a great achievement.

The assessment is positive and the new solution is suggested as acceptable. Even

though this tool is been declared successful, but there could still be more improve-

ments done to it. One of those could be adding the support for the Universal apps for

Windows Phone 10.

The next section focuses on the summary and some improvement suggestions.

51 (55)

7 Conclusions

The main objective of this section is to look back into the requirements that were set for

this study in the beginning and evaluate how well they have been met. Besides that the

future of the presented automation tool is also briefly discussed.

Due to the competitive market's demand most of the mobile applications are required to

be developed in a short period, which can undermine the application quality. Therefore,

it is necessary to undergo a rigorous testing process not only on functional but also on

non-functional requirements, especially time limits. Non-functional testing is a large area

and its different test areas are discussed in Section 3.3. As for mobile applications, criti-

cal performance factors are related to spontaneous interaction, high reliability, stability

and low power consumption. While this thesis only concentrates on two aspects of non-

functional testing that is responsive testing and resource utilization testing.

In practice, manual testing of mobile device applications is time consuming, expensive

and very difficult to do effectively. It could also lead to the huge variation in the test re-

sults, which then makes it more difficult to judge the quality of the app and thus in-

creases the risk of bad quality app pushed to the market. Automated testing is attrac-

tive essentially because it can reduce the costs and time associated with testing, lead

to shorter release cycles and allows developers and testers to focus on constructing ef-

fective test cases.

The starting point for this project was a need to automatize most parts of the non-func-

tional testing to remove deviations in the test results and reduce the testing life cycle.

The study of the previous testing system with the basic principles of test automation

provided a good base for this project. The initial setup was based on the manual testing

which is time consuming and expensive, so a new test automation system needs to be

developed. The requirements for the new system were broadly classified into three ar-

eas. Firstly, the generic automation requisites covering repeatability, ease of use, main-

tainability etc. Secondly, requisites from the existing system reduce variance, continu-

ous logging, reporting and so on. Thirdly, requisites from the non-functional perspective

covering the performance and memory test definitions. These requirements are ex-

plained thoroughly in Section 5.1. Multiple requirements and limitations of the current

52 (55)

system suggests that another system is needed for achieving the reduced test life cycle

and accurate results.

The NFT test automation tool is mainly constructed of three parts: test configurator,

monitoring system and test executor. Test Configurator is the tester's playground,

providing the functionality ranging from test case configuration to dummy data genera-

tion. Previously, the tester has to manually copy the test data. During the test case cre-

ation user can select the process/service against which the test case has to be exe-

cuted and schedule it for later execution. The performance test cases are pre-stored

and the test engineer can customize the memory related test cases (requirement in

Section 5.1.2). The created test cases can be stored and used later, enabling the re-

usability and applicability (requirement in Section 5.1.3). The tool UI is simple and

easy to use (requirement in Section 5.1.1), one of the basic of test automation.

The test executor is the centrum of the whole tool and it controls testing devices and

communicates with the client and the service. The user can also run multiple iterations

of the stored test set in the same test environment, eliminating human error and reduc-

ing the variance in test results (requirement in Section 5.1.3). It enables the reproduci-

bility and repeatability (requirement in Section 5.1.3). It also takes care of continuous

logging (requirement in Section 5.1.3) and collects results at the end of each test cycle.

After each execution the results were stored separately. While in the previous system

everything was done manually. The tool software is coded mostly with C# and Pow-

erShell. For test cases there are multiple helper functions created to make writing even

easier, enabling maintainability (requirement in Section 5.1.1) and adding new features

to the framework. The tool software is coded mostly with C# and PowerShell, which is

used commonly within the organization.

The test monitoring system is used for controlling test execution and checking test re-

sults. The test logs and results are now presented in a readable and graphical format,

which is much richer than the plain text reports. These test reports covers details of ap-

plication under test, DUT, OS details and test summary(requirement in Section 5.1.3)

Test results can stored in different formats and can be exported/retrieved later on. This

enables the re-usability and ease to use (requirement in Section 5.1.1, 5.1.3).

53 (55)

Now we have automated test system which takes the application’s XAP as an input

and produces the detailed test report for the desired area. The new NFT test automa-

tion tool was piloted on 2 apps and the results discussed (in Section 6), explains what

is been achieved by the new automated system. The results are similar for automated

and manual testing with reduction in the variation of test results. The variation in the

test results have been reduced by 80% for memory and 85% for performance test

cases. Also, the testing cycle time has come down to 45 minutes from 80 minutes. With

this the system was verified to fit for use for non-functional testing of the windows

phone 8 applications. Thus meeting all the requirements set during this project.

Even the NFT test automation tool is already in active use there are still some develop-

ment on going. There are lots of improvements to be done. At the moment it does not

support the windows phone 10 applications. However, in future it would be the next

step to take this work forward and enable it for windows phone 10 applications. It can

be further extended in other important non-functional testing areas like stress and relia-

bility, network communication delays affecting the overall application responsiveness

etc. Since the tool already had the test data generator, it can also be used to stress the

device under test (DUT) by increasing the memory and CPU pressure and thus check-

ing how the apps behave under such situation. Application performance under the real-

istic network conditions is also of the major areas. The application may behave differ-

ently on different networks as network protocols impact throughput and delays. The

above mentioned (two) areas are the perfect candidates to be added to this tool. The

hope is that in the near future it is expanded and used in other NFT areas.

54 (55)

References

[1] Windows Phone API reference [online]. http://msdn.microsoft.com/enus/library/window-

sphone/develop/ff626516(v=vs.105).aspx ; 2014. Accessed on April 2014

[2] Technical certification requirements for Windows Phone [online].

http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh184840(v=vs.105).aspx; 2014. Ac-
cessed on April 2014

[3] App memory limits for Windows Phone 8 [online].

 http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj681682(v=vs.105).aspx; 2014. Ac-
cessed on April 2014

[4] Windows Phone Application Analysis for Windows Phone 8 [online].

 http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh202934(v=vs.105).aspx; 2014. Ac-

cessed on April 2014

[5] Andrew Whitechapel, Sean McKenna; Windows Phone 8 Development Internals.

Chapter 1. Vision and architecture; 2013. Accessed on April 2014

[6] Heejin Kim, Byoungju Choi, Seokjin Yoon. Performance Testing based on Test-Driven Development for

Mobile Applications [online]. Suwon, S. Korea: International Conference on Ubiquitous Information Manage-

ment and Communication; January 15-16, 2009. p.612-617.

[7] Heejin Kim, Byoungju Choi, W. Eric Wong. Performance Testing of Mobile Applications at the Unit Test

Level [online]. Shanghai, China: Third IEEE International Conference on Secure Software Integration and

Reliability Improvement; July 8-10 2009. p.171-179. URL: http://ieeexplore.ieee.org.ezproxy.metropo-

lia.fi/stamp/stamp.jsp?tp=&arnumber=5325380. Accessed on May 2014

[8] Jiang Bo, Long Xiang, Gao Xiaopeng. MobileTest: A Tool Supporting Automatic Black Box Test for Soft-

ware on Smart Mobile Devices [online]. IEEE:Second International Workshop on Automation of Software

Test; 2007.

[9] Sakura She, Sasindran Sivapalan, Ian Warren, Hermes. A Tool for Testing Mobile Device Applications

[online]. Gold Cost, Australia: Australian Software Engineering Conference; 2009. p.121-129.

http://msdn.microsoft.com/enus/library/windowsphone/develop/ff626516(v=vs.105).aspx
http://msdn.microsoft.com/enus/library/windowsphone/develop/ff626516(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh184840(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj681682(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh202934(v=vs.105).aspx
http://ieeexplore.ieee.org.ezproxy.metropolia.fi/stamp/stamp.jsp?tp=&arnumber=5325380
http://ieeexplore.ieee.org.ezproxy.metropolia.fi/stamp/stamp.jsp?tp=&arnumber=5325380

55 (55)

[10] Kirubakaran, B., Karthikeyani, V. Mobile application testing — Challenges and solution approach

through automation [online]. Pattern Recognition, Informatics and Mobile Engineering (PRIME), 2013 In-

ternational Conference; 21-22 Feb 2013. p 79-84. URL: http://ieeex-

plore.ieee.org.ezproxy.metropolia.fi/xpl/articleDetails.jsp?arnumber=6496451.

[11] M. E. Delamaro, A. M. R. Vincenzi, J. C. Maldonado. A Strategy to Perform Coverage Testing of Mobile

Applications [online]. Shanghai, China: AST; May 23, 2006. p 118-124.

[12] The company's intranet. Non-functional testing - Wiki. Internal Wiki. [Online] Accessed on Apr 2014.

[13] Kristoffer Dyrkorn, Frank Wathne. Automated Testing of Non-functional Requirements [online]. Nash-

ville, Tennessee, USA : OOPSLA’08; October 19–23, 2008. p 719-720. Accessed on

[14] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, A GUI Crawling-based technique for

Android Mobile Application Testing, Software Testing [online]. Naples, Italy: Verification and Validation

Workshops (ICSTW), 2011 IEEE Fourth International Conference; 21-25 March 2011. p 252 – 261. URL:

http://ieeexplore.ieee.org.ezproxy.metropolia.fi/xpl/articleDetails.jsp?arnumber=5954416.

[15] E. Kit. Integrated, effective test design and automation. Software Development,
pages 27–41, February 1999

[16] Nagle. Test automation frameworks, 2000. URL http://safsdev.sourceforge.
net/DataDrivenTestAutomationFrameworks.htm. February 20, 2005

[17] https://www.minitab.com/en-us/products/minitab/

[18] E. Dustin, J. Rashka, and J. Paul. Automated Software Testing. Addison-Wesley,
1999.

[19] M. Fewster and D. Graham. Software Test Automation. Addison-Wesley, 1999.

[20] Test Automation in Practice. Master’s Thesis, Delft University of Technology Delft, the Netherlands.

Kishenkumar Bhaggan BSc. 2009 p 47-54

[21] http://www.gartner.com/newsroom/id/2654115

http://ieeexplore.ieee.org.ezproxy.metropolia.fi/xpl/articleDetails.jsp?arnumber=6496451
http://ieeexplore.ieee.org.ezproxy.metropolia.fi/xpl/articleDetails.jsp?arnumber=6496451
http://ieeexplore.ieee.org.ezproxy.metropolia.fi/xpl/articleDetails.jsp?arnumber=5954416

