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1 Introduction 

 

Wireless systems have become a revolutionizing development in the electronic systems 

in today’s generation. In my personal opinion, it can be pre-stated that in near future 

wired communication systems will be confined to a definite area of electronics. Though 

it is very handy to have such systems, the design process is quite complicated and cum-

bersome. Among different steps in transmitting data from one place other, there exists a 

process called modulation where data is manipulated so that it is suitable to transmit to 

receiver. 

 

Tomasi explains [1, p. 100] that “The process of impressing low-frequency information 

signals onto a high-frequency carrier signal is called modulation.” The low-frequency sig-

nals are commonly known as baseband signal or modulating signal, which is produced 

by the data source, and the high-frequency information carrying signal is called pass-

band signal or modulated signal, which is in suitable form to get transmitted [2]. 

 

1.1 Advantages of Modulation 

 

Baseband signals from different users can be translated to different frequency bands so 

that multiple users can be fitted within a band of electromagnetic spectrum. Also when 

wireless transmissions through long distance is taken in account, low frequency waves 

are prone to attenuation. As a result, receiving side will not be able to pick the low fre-

quency baseband signals. Besides all, modulation reduces size of antenna, this is be-

cause antenna height is inversely proportional to the radiated signal frequency. Higher 

the frequency, smaller is the size of antenna. [3] 

 

1.2 Linear and Angle Modulation 

 

In general practice sinusoids are used as the carrier signal and which can be represented 

by following equation 1 

 A cos(𝜔𝐶𝑡 + 𝜙) (1) 

 

In the above equation the parameters which can be changed are amplitude, frequency 

and phase. If the modulation process impress the data on amplitude then it is called 
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amplitude modulation. Amplitude modulation is also referred to as Linear Modulation. 

Linear Modulation has a property, that the input and output relation comply with principle 

of homogeneity and superposition [3]. And if the data is impressed on either frequency 

or phase is called angle modulation as suggested by the name itself [1]. 

 

Varieties of modulation schemes are available though they are performed by varying the 

three parameters or combination of these parameters. 

2 Fundamental Analog and Digital Modulations 

 

Various types of modulation schemes are available that can be implemented according 

to the requirement of bandwidth, efficiency or cost. In this section AM, ASK and BPSK 

will be dealt which will be implemented through I/Q modulator. 

 

2.1 Amplitude Modulation 

 

It is relatively low quality and in-expensive type of analog modulation in which the ampli-

tude of the carrier signal is varied proportionally to the instantaneous amplitude of the 

baseband signal [1].  

  

The simplest way to achieve amplitude modulation is to pass the baseband signal and 

carrier through non-linear devices called mixers. For a frequency of the carrier signal fc 

and data signal frequency of fm, the resulting frequencies are at fc-fm and fc+fm. Any fre-

quency between fc and fc-fm are called lower-side band (LSB) and between fc and fc+fm 

are called upper side-band (USB). An intuitive understanding on this concept in fre-

quency domain is shown in Figure 1. 
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Considering the carrier and data are cosine waves with previously mentioned frequen-

cies, amplitude modulation can be expressed as equation 2. 

 

 
cos(2𝜋𝑓𝑐) ⋅ cos(2𝜋𝑓𝑚) =

1

2
𝑐𝑜𝑠[2𝜋(𝑓𝑐 + 𝑓𝑚)] +

1

2
cos[2𝜋(𝑓𝑐 − 𝑓𝑚)] (2) 

 

It can be seen that the message frequency has been translated to two different greater 

frequencies fc+fm and fc-fm. Also the signals get attenuated by half [4]. 

 

The use of quadrature modulator (QM) has made the hardware implementation easier 

for different types of modulation. Various types of Amplitude modulation can be per-

formed in QM. One common use of QM in Amplitude modulation is to remove one of the 

sidebands from the modulated wave and eliminate the half attenuation seen in equation 

3. To achieve such modulation, the input of QM is driven by message signals that are in 

quadrature in a way to obtain require side band. [4].  

For instance, 

 

 [cos(2𝜋𝑓𝑐) ⋅ cos(2𝜋𝑓𝑚)] + [sin(2𝜋𝑓𝑐) ⋅ sin(2𝜋𝑓𝑚)] 

=[
1

2
cos[2𝜋(𝑓𝑐 + 𝑓𝑚)]+

1

2
 cos[2𝜋(𝑓𝑐 − 𝑓𝑚)]] 

+[
1

2
cos[2𝜋(𝑓𝑐 − 𝑓𝑚)]- 

1

2
cos[2𝜋(𝑓𝑐 + 𝑓𝑚)]] 

=cos[2𝜋(𝑓𝑐 − 𝑓𝑚)] 

(3) 

 

In equation (3), cos (2πfc) and sin (2πfc) are quadrature carriers while cos (2πfm) and sin 

(2πfm) are quadrature data signal. 

 Figure 1 : illustration of modulation at frequency domain  
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2.2 Amplitude Shift Keying (ASK) 

 

An analogous modulation technique for Amplitude modulation in digital domain is ASK. 

In ASK, carrier is amplitude modulated with respect to the amplitude of modulating binary 

signal. For logic 1 and 0, carrier amplitude is shifted between different levels. A common 

class of Amplitude Shift Keying is On-Off Keying (OOK), where carrier signal is present 

at logic 1 while absent at logic 0. Amplitude modulated signals can be represented by 

equation (4). [1] 

 

  

𝑣𝑎𝑚(𝑡) = 𝑣𝑚(𝑡)[𝐴 cos(𝜔𝐶𝑡)] 
(4) 

Where, 

𝑣𝑎𝑚(𝑡) = 𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 − 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑 𝑤𝑎𝑣𝑒 

A = 𝑢𝑛𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑 𝐶𝑎𝑟𝑟𝑖𝑒𝑟 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 (𝑣𝑜𝑙𝑡𝑠) 

𝑣𝑚(𝑡) = 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑏𝑖𝑛𝑎𝑟𝑦 𝑠𝑖𝑔𝑛𝑎𝑙 (𝑣𝑜𝑙𝑡𝑠) 

𝜔𝐶 = 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑟𝑎𝑑𝑖𝑎𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑟𝑎𝑑𝑖𝑎𝑛𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑) 

 

Modulating binary signal (𝑣𝑚(𝑡)) have +1V representing logic 1 and 0V representing logic 

0.So, for logic 1, above equation becomes  𝑣𝑎𝑚(𝑡) = 𝐴 cos(𝜔𝐶𝑡)  and for logic 0  𝑣𝑎𝑚(𝑡) =

0 . This clearly explains that for logic 1 there is presence of the carrier signal while for 

logic 0 the carrier signal is absent, which suggest the name of the modulation as On-Off 

keying which is represented by Figure 2. 

  

 

 

 

 

 Figure 2 : BPSK constellation diagram  
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2.3 Binary Phase Shift Keying (BPSK) 

 

In BPSK logic 1 is represented by a value of carrier’s phase and the second phase rep-

resents the logic 0, while the amplitude of the carrier remains unchanged.  Generally the 

phases are 180° apart [3]. This can be illustrated by constellation diagram Figure 3 below 

 

 

 

If we have sinusoid of amplitude A, the power is  

 
𝑃𝑠 =

1

2
𝐴2 (5) 

 

Then,  

  

𝐴 = √2𝑃𝑠 

 

(6) 

 

So the two states of BPSK signal are: 

At 0° phase: 

  

𝑉𝐵𝑃𝑆𝐾(𝑡) = √2𝑝𝑠 cos(𝜔𝐶𝑡) 

 

(7) 

 

At 180° phase: 

𝑉𝐵𝑃𝑆𝐾(𝑡) = √2𝑝𝑠 cos(𝜔𝐶𝑡 + 𝜋) 

 Figure 3 : BPSK constellation diagram  
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𝑉𝐵𝑃𝑆𝐾(𝑡) = −√2𝑝𝑠 cos(𝜔𝐶𝑡) 

 

(8) 

3 Signal Adder 

 

Summing amplifier can be constructed from inverting amplifier to give negative of sum 

of voltages of the input signals as shown in Figure 4. [5] 

 

 

 

Since the non-inverting node is grounded, the voltage at the inverting input is 0. Taking 

to consideration, the general characteristics of an Op-Amp, that the input impedance is 

so high that no current flows into the negative terminal [5], we can deduce following 

equation at inverting node using KCL law: 

 

 𝐼 = 𝑖1 + 𝑖2 (9) 

   

 

We can solve equation (9) using fundamental circuit equations to estimate the output of 

summing amplifier. 

−
𝑣𝑜𝑢𝑡

𝑅𝑓
=

𝑣𝑖𝑛1

𝑅
+

𝑣𝑖𝑛2

𝑅
 

 
𝑣𝑜𝑢𝑡 = −

𝑅𝑓

𝑅
(𝑣𝑖𝑛1 + 𝑣𝑖𝑛2) 

 

(10) 

 Figure 4 : A two signal summing amplifier  
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From Equation (10), it can be concluded that input signals are added algebraically and 

gain of the output signal can be adjusted by use of suitable Rf and R values. Also the 

negative sign indicates the output is inverted. 

 

3.1 Multisim Simulation of Signal Adder 

 

A Multisim simulation of summing amplifier was performed using LM324N to have earlier 

analysis of the signal behaviour. Two sinusoids of same phase (0°) and amplitude (500 

mVp) were passed through the input and the output was compared with one of the input. 

The setup is shown in Figure 5.  

 

 

 

Magnitude analysis was conducted using built in feature of Multisim, whose result is pre-

sented in Figure 6. The green line is the reference input signal, while red line represents 

the output signal of the summing amplifier. 

 

 

 

 Figure 5 : Multisim setup for signal adder  

 Figure 6 : AC analysis on Multisim for output signal  
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Theoretically, the sum of the signals must be 1Vp for 500 mVp input, whatever the fre-

quency be, but observing the amplitude response at different frequencies, results tend 

to approach theoretical estimation at lower frequencies. Frequencies above 200 KHz 

seems to undergo large attenuation, indicating LM324N not a good choice for higher 

frequencies.  

 

Summing amplifier was also implemented in hardware. The PADS layout and Schematic 

for it is attached at Appendix 3. 

4 Signal Mixer 

 

Mixers are non-linear devices which performs multiplication of two frequencies that re-

sults in amplitude multiplication and shift of frequency. Usually, one of the input signals 

is low frequency signal and the other one is very high frequency signal, generally from 

Local oscillator (LO). Frequency shifting can be realized if the LO signal is constant  in 

amplitude and frequency and the other input is quite low compared to LO so that only 

LO has ability to affect the trans-conductance of the mixer. [6] The multiplication of the 

signals in mixers can be modelled as a switch, driven by very high frequency, which is in 

series with the input signal. [6] Figure 7 shows an ideal mixer diagram. 

 

 

 

The switch is generally a nonlinear device like diode or transistor driven by LO. The 

spectrum of an ideal mixer presented in  [6, p. 316] is re-printed in Figure 8 

 

 

 Figure 7 : Ideal mixer model   
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 Figure 8 : Spectrum of an ideal mixer  

 

As observed in Figure 8, of an input frequency and LO frequency, an ideal mixer outputs 

two frequencies at region equal to n*LO ± fin, where n is the harmonics number of LO. 

Desired frequency thus can be obtained by use of filters.  

 

In real world mixer, the effect of input signal to the trans-conductance property of the 

mixer cannot be neglected even for small input frequency, resulting in all possible har-

monic components, thus in real world output frequencies are n*LO ± m*fin, where n and 

m are integers. [7] 

 

A quick note on ports name of a mixer seems beneficial at this instance of this report. 

Generally mixers are used to translate lower frequencies to upper frequencies (up con-

version) and vice-versa (down-conversion). If it is used for up conversion, then the input 

signal is normally named IF (intermediate frequency) signal and the output is named RF 

(Radio Frequency) signal. And for the down conversion, opposite is the case. [8] The 

modulation process is up-conversion process and here onwards naming convention of 

up-converting mixer shall be used. 

 

4.1 Gilbert Cell Mixer 

 

Gilbert Cell Mixer is an active mixer. Rather than traditional way of implementing diodes, 

Gilbert Cell utilizes the nonlinear property of transistor to perform mixing action. An ad-

vantage of active mixer over passive mixer is that it amplifies the output signal. [8] A 

Gilbert Cell is shown in Figure 9 
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An intuitive understanding on working principle of Gilbert cell presented in Figure 9 can 

be done by driving LO inputs one by one following certain conditions. If LO-1 input con-

nected to source that drives transistors Q4 and Q5, and LO-2 does not enable Q3 and 

Q6, Q1 and gets connected to corresponding two RF outputs. And if LO-2 enables tran-

sistors Q4 and Q5 then we get same RF outputs but ports are interchanged with respect 

to previous former case. [8]  

 

4.2 LT5560 Mixer IC 

 

LT5560 is a Low Power double-balanced Gilbert Cell mixer manufactured by Linear 

Technology. Linear Technology claims that it can perform up or down conversion with 

2.4dB typical gain from frequency range of 10 KHz to 4 GHz while the LO source input 

of -2 dBm  can be drive the mixer.  [9]  After some research at different electronic com-

ponent suppliers in Helsinki, this IC was found most suitable and chose for the thesis 

project. 

 

Even though manufacturer claims the IC to work on wide range of frequency applications, 

there are no any details provided in datasheet for up-conversion of frequencies with LO 

range below 1 MHz. A dilemma occurred on how to bias and make the IC work on fre-

quency of 200 KHz. In page 25, figure number 22, the datasheet includes schematic of 

mixer down converting application to 450 KHz form 200.45 MHz LO input and 200 MHz 

RF input. So modifying the schematic to work under the desired frequency seemed 

 Figure 9 : Gilbert Cell reprinted form [8]  
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proper solution at the time and a board was built based on the schematic shown in Figure 

10. 

 

 

 

 

Resistors R1 and R2 are pull-up resistors connecting the differential output of the IC to 

the 5V source. R3 is the DC current path to ground from LO- port. Capacitor C1 and 

inductor L1 forms the High-pass filter for input signal while inductor L2 is used as RF 

choke and DC current path to ground. [9] 

 

At the position of components except R1 and R2 (200 ohm resistors), connectors were 

placed so that it would facilitate experimenting the board with different through hole com-

ponents.  A reference table for the connectors to the components in the schematic is 

presented in Table 1. The layout and schematic of the developed board can be found in 

Appendix 4. 

 

Because of the datasheet not mentioning about impedance of the input port for lower 

frequencies below 40 MHz, L2 was chosen 40 mH RFC coil and signal input was given 

through IN+ directly.  C2 and C3 were chosen 10 pF and C4 1nF. Mixer showed good 

mixing response for LO frequencies above 5 MHz. Spectrum analysis of the mixer at 20 

MHz carrier and 500 KHz IF is presented at page 2 of Appendix 4. 

 

 

 Figure 10 : LT5560 Bias Circuit remodified version of figure 22 of [9]  
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Components in Bias Circuit Corresponding connectors in PCB-layout 

C1 J3 

L1 J4 

L2 J1 

C2 J7 

C3 J6 

C4 J2 

OUT+/OUT- J10 

 

The spectrum of output signal had highest power at 19.950 MHz, 200 MHz and 20.050 

MHz. Clearly, the 19.950 MHz and 20.050 MHz signals are the mixed signals.  200 MHz 

signal is the carrier signal which in ideal case should not be present on the output. No 

device can be ideal, but since the magnitude of the carrier signal is bigger than the mixed 

signals, one can conclude that there is leakage of carrier signal to the output port.  

 

Other smaller peaks on the graph are harmonic signals. The harmonic signals on the 

graph are at frequencies 19.800 MHz, 19.850 MHz, 19.900 MHz, 20.100 MHz, 20.150 

MHz, and 20.200 MHz from left to right. As discussed in section Signal Mixer, a real 

mixer would produce results at all the harmonics of the input signal, in this particular case 

harmonics are at 200 MHz ± m*500KHz, where m =2,3 and 4. 

  

 Table 1: Components tally table for LT5560 board  
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5 Phase Shifter 

 

If time shift is introduced in a signal in time domain, phase shift is introduced in frequency 

domain. [10] Let a time domain signal x (t-to) shifted by to be represented in frequency 

domain as X(ω).   

 

 
 𝐹(𝑥(𝑡 − 𝑡𝑜)) = ∫ 𝑥(𝑡 − 𝑡0). 𝑒−𝑗𝜔𝑡

+∞

−∞

𝑑𝑡 (11) 

Let’s suppose t-to = a, then t = a + to, differentiating by a, we get dt = da, so the equation 

(11) becomes  

 

 
𝐹(𝑥(𝑎)) = ∫ 𝑥(𝑎). 𝑒−𝑗𝜔(𝑎+𝑡0)

+∞

−∞

𝑑𝑎 (12) 

 
𝐹(𝑥(𝑎)) = ∫ 𝑥(𝑎). 𝑒−𝑗𝜔𝑎

+∞

−∞

𝑑𝑎. 𝑒−𝑗𝜔𝑡0 (13) 

 𝐹(𝑥(𝑎)) = 𝑒−𝑗𝜔𝑡0 . X(𝜔) (14) 

 

Equation (14) suggests that for time shift of to the phase shifts by e-jωto. [10] 

 

5.1 All-Pass Filter 

 

All-pass filter have the property of keeping the amplitude constant but change the phase 

of a signal. [11]  A first order all-pass filter is shown in Figure 11. 
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Considering again the general assumptions for the op-amp, V+ = V-. Using KCL law at 

V-, following equation is obtained  

 

 i1 = i2 (15) 

 Vin − V

R1
=

V − 𝑉𝑜𝑢𝑡

𝑅𝑓
 (16) 

Putting same value for R1 and Rf, 

 Vout = 2 ∗ V_ − Vin (17) 

 

V- can be calculated using the voltage divider law at V+ port as follows 

  

 
V_ =

R
1

SC
+ R

∗ Vin (18) 

 
V_ =

SCR

1 + SCR
∗ 𝑉𝑖𝑛 (19) 

 

From equation (17) and (19),  

 

 
Vout = 2 ∗ (

SCR

1 + SCR
∗ 𝑉𝑖𝑛) − 𝑉𝑖𝑛 (20) 

 Vout

Vin
=

2SCR − 1 − SCR

𝑗𝜔𝑅𝐶 + 1
 (21) 

 Vout

Vin
=

SCR − 1

SCR + 1
 (22) 

 

Dividing numerator and denominator on left hand side by CR 

 Vout

Vin
=

𝑆 −
1

𝐶𝑅

𝑆 +
1

𝐶𝑅

 (23) 

 

Since 1/RC sets a frequency, so it is meaningful to represent 1/RC as ωo. 

 
H(S) =

𝑆 − 𝜔𝑜

𝑆 + 𝜔𝑜
 (24) 

 

Substituting S by jω, 

 Figure 11 : First-order all-pass filter [11]  
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H(jω) =

𝑗𝜔 − 𝜔𝑜

𝑗𝜔 + 𝜔𝑜
 (25) 

 

 

H(jω) = −
1 − 𝑗

𝜔

𝜔𝑜

1 + 𝑗
𝜔

𝜔𝑜

 (26) 

 

Equation (26) is the transfer function of all-pass filter in Figure 11. 

 

When ω=0, i.e. when direct current is passed through the circuit 

 

 

|H(0)| = |−
1 −

0

𝜔𝑜

1 +
0

𝜔𝑜

| = 1 (27) 

 

And when, ω=∞,  

 

|H(∞)| = |−
−

𝜔

𝜔𝑜
𝜔

𝜔𝑜

| = 1 (28) 

 

Equations (27) and (28) concludes that and ideal all-pass active filter does not alter the 

magnitude of signal. 

 

Rewriting equation (24) to determine the phase response 

 

 𝜙(𝑗𝜔) = 𝑡𝑎𝑛−1 (
𝜔

−𝜔𝑜
) − 𝑡𝑎𝑛−1 (

𝜔

𝜔𝑜
) (29) 

 𝜙(𝑆) = 𝜋 − 𝑡𝑎𝑛−1 (
𝜔

𝜔𝑜
) − 𝑡𝑎𝑛−1 (

𝜔

𝜔𝑜
) (30) 

 𝜙(𝑆) = 𝜋 − 2𝑡𝑎𝑛−1 (
𝜔

𝜔𝑜
) (31) 

 

When ω=0, θ=π and when w=∞, θ = π - 2*π/2 = 0. Which concludes that phase changes 

from 180° to 0° when frequency from low to high are swept through the all-pass filter. [11] 

 

A particular case of interest is when ω = ωo,  

 

 𝜙(𝜔𝑜) = 𝜋 − 2𝑡𝑎𝑛−1 (
𝜔0

𝜔𝑜
) (32) 
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 𝜙(𝜔𝑜) = 𝜋 − 2 ∗
𝜋

4
 (33) 

 𝜙(𝜔𝑜) =
𝜋

2
 (34) 

 

Equation (34) implies that when R and C are tuned to frequency ωo, also known as corner 

frequency of all pass filter, the phase of the output frequency is shifted by 90° with re-

spect to the corner frequency. [11] 

 

5.2 Phase Shifter Implementation 

 

In the design of I/Q modulator, the signal from Local oscillator (LO) is fed into two mixers, 

but the mixers receives LO signal in quadrature. In real world implementation, quadrature 

shifters implemented are wide-band in nature. The all-pass filter presented on section 

5.1 can shift only one frequency to 90°. One of the solutions to obtain wideband quadra-

ture shift is to implement all-pass network in parallel. 

 

The explanation of the working of all-pass network is beyond the scope of the report and 

shall not be discussed more on this but a phase shift networks has been developed using 

a freeware program called QuadNet available at the developer’s site www.TonneSoft-

ware.com. The software calculates the values for capacitors and resistors required for 

generation of quadrature signals from given input. Furthermore, choice to estimate the 

frequency band, number of all-pass section required and flexibility to keep value of one 

of the components constant makes it easy to generate the required network in few clicks. 

For the thesis purpose, all six all-pass section was specified for the frequency band of 

100 KHz to 250 KHz and capacitor value was specified to 10 pf, rest of the calculation 

was done by the software generating network shown in Figure 12 

 

http://www.tonnesoftware.com/
http://www.tonnesoftware.com/
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Network presented in Figure 12 was simulated in Multisim software. All the component 

values were used as calculated by software. Unlabelled resistors were chosen to be 10 

KΩ and all the op-amp used were LM324N available in Multisim component library. A 1 

volt peak to peak sinusoid was passed through input to obtain output at the ports I and 

Q. AC analyses was performed by sweeping frequency from 10 KHz to 1 GHz which 

produced the result shown in Figure 13.  The red trace represents the phase response 

of the In-phase LO signal while green trace represents the quadrature LO signal. 

 

The simulation result is summarized in Table 2. Magnitude and phase data are in re-

spective columns as the name suggests.  Phase of quadrature signal (Q) with respect to 

In-phase (I) signal is calculated. And also magnitude percentage with respect to input 

LO signal is also calculated for both the signals. 

 

 

 

frequency (KHz) magnitude(mV) phase(degrees) mag(%) magnitude (mV) phase(degrees) phase difference mag(%)

100 931.7406 -30.3616 93.17406 927.1901 -120.2223 89.8607 92.71901

200 786.5251 -136.4703 78.65251 783.5985 133.7453 -90.2156 78.35985

250 702.1046 -174.4973 70.21046 699.7318 95.7478 -90.2451 69.97318

Quadrature signalIn-phase signal

 Figure 12 : All-pass network for 100 KHz – 250 KHz built on QuadNet  

 Table 2: Simulation results of all-pass filter  



18 

 

 

 

It can be concluded from the simulation data that the phase difference of the two outputs 

for the give frequency range remains approximately near 90°, with less than 1% error, 

But the magnitude attenuation gets bigger with rise in frequency.  

 

 

 

 

The same network was implemented in hardware and tested at different frequencies, 

graphs shown in appendix 1. The hardware performs quadrature shift on very narrow 

region from 190 KHz to 210 KHz with approximately ±5° continuous fluctuations. One 

main reason to this result could be the tolerance value of the components used. As the 

capacitors and resistors used had 5% tolerance, and to achieve precise resistance value, 

number of resistors were combined together, resulting in huge addition of tolerance in 

total. 

  

 Figure 13 : AC-analyses 100-250 KHz all-pass parallel network  
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6 I/Q Modulator 

 

Signals that is described by polar magnitude (A) and phase angle (ɸ) can also be repre-

sented by Cartesian co-ordinates. Cartesian coordinates forms the basis of quadrature 

modulation. X axis and y axis are designated as In-phase (I) and quadrature (Q) respec-

tively in quadrature modulation. In I axis the unit basis vector has length of one and angle 

zero, while Q axis basis vector has equal magnitude as I axis but the angle is 90°. [12] 

This can be represented as:   

 

 𝐵𝐼 = 1 ⋅ 𝑒0 (35) 

 𝐵𝑄 = 1 ⋅ 𝑒𝑗𝜋∕2 (36) 

 

Transforming (35) and (36) to time domain signals 

 

 𝐵𝐼(𝑡) = 1 ⋅ cos(𝜔𝐶𝑡 + 0) = cos(𝜔𝐶𝑡) (37) 

 

 𝐵𝑄(𝑡) = 1 ⋅ cos(𝜔𝐶𝑡 + 𝜋 ∕ 2) = sin(𝜔𝐶𝑡) (38) 

 

Scaling the basis vector and adding them can be done to produce any signal with coor-

dinates (I, Q).  

 𝑆 = 𝐼 ⋅ 𝐵𝐼 + 𝑄 ⋅ 𝐵𝑄 (39) 

 

I and Q are practically time varying, so Equation (39) can be written in time domain as 

 

 𝑠(𝑡) = 𝐼(𝑡) ⋅ cos(𝜔𝐶𝑡) + 𝑄(𝑡) ⋅ sin(𝜔𝐶𝑡) (40) 

 

Equation (40) is the general quadrature modulator (QM) equation. [12] Figure 14 is the 

model of ideal I/Q modulator showing the implementation of the general QM equation. 
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6.1 I/Q Data 

 

While looking at a simple sinusoidal wave one cannot determine if the frequency is pos-

itive or negative because both produce same curve, i.e. cos(x)= cos(-x).  Since mixing 

frequency f1 with f2 will produce f1+f2 and f1-f2 or f2+f1 and f2-f1, it is hard to tell the 

outcome. Also it’s hard to determine the power of the signal everywhere within the signal. 

[13] These dilemma can be solved by I/Q data.  

 

Let’s examine Figure 15. If the signal is observed in 3 dimensions as a helix I and Q data 

can be easily studied. If the helix is seen from the front end then it gives us in-phase data 

(I data) whereas if the same helix is seen from top view Q data can be obtained. The 

difference is clearly observed that the Q data signal is 90° out of phase and starts at 0. 

And when the same helix is viewed down the time axis one can quickly figure out that it 

is turning counter clockwise indicating a positive frequency. [13] 

 

 

 

 

 

 

 Figure 14 : fundamental block of Quadrature modulator  
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a b 

 

 

 

c d 

 

 

 

 
It can be summarized that expressing a signal in I/Q data form gives more control on 

signal manipulation. The concept of I/Q data are widely use in DSP (Digital Signal Pro-

cessing) domain.  

 Figure 15 : 

a) Helix view of a signal   b) front view of the helix   c) top 

view of the helix d) view from the time axis (Reprinted from  

[13]) 
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6.2 Sources of Errors in Quadrature Modulator 

 

No system is perfect and quadrature modulator is no exception. Errors are introduced 

from the input stage till the final signal addition stage. This is why Figure 14 is an ideal 

representation of quadrature modulator and our goal is to get as close as possible to it. 

[12] 

 

Let’s examine the errors at different points in the ideal quadrature in Figure 16 below: 

 

 

 

 

When a signal is passed through a system, if non-linear distortions are not considered, 

then a signal can have gain and offset errors. [12]  Erro1 and error 2 in Figure 16 can 

thus be written as follows: 

 

 𝐼(𝑡) = 𝐴𝐼 . 𝐼(𝑡) + 𝑜𝑓𝑓𝑠𝑒𝑡𝐼 (41) 

 𝑄(𝑡) = 𝐴𝑄 . 𝑄(𝑡) + 𝑜𝑓𝑓𝑠𝑒𝑡𝑄 (42) 

 

Where, AI and offI Amplitude error in the I channel respectively whereas AQ and offQ are 

errors in Q channel. If we take a look at the basis signals (quadrature signals generally 

obtained through oscillator), cosine function is passed through 90° phase shifter circuit. 

If the phase of cosine function is taken to be 0, the phase of output sine function is 90° 

along with some quantity of phase error introduced by the phase shifter. And we cannot 

eliminate the Amplitude and offset error in both the quadrature signals. [12] So the basis 

signals can be re-estimated as  

 Figure 16 : Introducing errors in ideal quadrature modulator  
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 cos(𝜔𝐶𝑡) = 𝐴𝐶 cos(𝜔𝐶𝑡) + 𝑜𝑓𝑓𝑠𝑒𝑡𝐶 (43) 

 sin(𝜔𝐶𝑡) = 𝐴𝑆 sin(𝜔𝐶𝑡 + 𝜀𝑠) + 𝑜𝑓𝑓𝑠𝑒𝑡𝑆 (44) 

 

Where, AC, AS, offsetC, offsetS are respective amplitude and offset errors and εs Is the 

error introduced due to shift. 

 

With these new errors taken in consideration, we can approximate the signals with error 

4, error 5 and finally the output signal with error 6.  

 

Using relation (43) and (41) signal at error4 point would be then 

 

 𝐼(𝑡). cos(𝜔𝐶𝑡) = (𝐴𝐼 . 𝐼(𝑡) + 𝑜𝑓𝑓𝑠𝑒𝑡𝐼). (𝐴𝐶 cos(𝜔𝐶𝑡) + 𝑜𝑓𝑓𝑠𝑒𝑡𝐶) (45) 

 

And from relation (44) and (42), signal at error5 would be 

 

 𝑄(𝑡). sin(𝜔𝐶𝑡) = (𝐴𝑄 . 𝑄(𝑡) + 𝑜𝑓𝑓𝑠𝑒𝑡𝑄). (𝐴𝑆 sin(𝜔𝐶𝑡 + 𝜀𝑠) + 𝑜𝑓𝑓𝑠𝑒𝑡𝑆) (46) 

 

 

Combining relation (45), (46) and (40), a better approximation of the signal s (t) could be 

achieved. 

 

 𝑠(𝑡) = (𝐴𝐼 . 𝐼(𝑡) + 𝑜𝑓𝑓𝑠𝑒𝑡𝐼). (𝐴𝐶 cos(𝜔𝐶𝑡) + 𝑜𝑓𝑓𝑠𝑒𝑡𝐶)

+ (𝐴𝑄 . 𝑄(𝑡) + 𝑜𝑓𝑓𝑠𝑒𝑡𝑄). (𝐴𝑆 sin(𝜔𝐶𝑡 + 𝜀𝑠) + 𝑜𝑓𝑓𝑠𝑒𝑡𝑆) 
(47) 

 

Considering ideal condition, no gain errors, offset errors and phase errors, 

AI=AQ=AC=AS=1, offsetI=offsetQ=offsetC=offsetS=0 and εs, equation (47) reduces to fol-

lowing 

 

 𝑠(𝑡) = (1 ∗ 𝐼(𝑡) + 0). (1 ∗ cos(𝜔𝐶𝑡) + 0) + (1 ∗ 𝑄(𝑡) + 0). (1

∗ sin(𝜔𝐶𝑡 + 0) + 0) 
(48) 

 𝑠(𝑡) = 𝐼(𝑡) ⋅ cos(𝜔𝐶𝑡) + 𝑄(𝑡) ⋅ sin(𝜔𝐶𝑡) (49) 

 

 

The equation (49) is the ideal I/Q modulator equation. 
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7 Implementation 

 

7.1 Simulation in Multisim 

 

An I/Q modulator was constructed in NI Multisim 13.0 and simulated to study its perfor-

mance.  Different stages were individually constructed and combined so that real imple-

mentation problems would be easily studied beforehand. The simulation block diagram 

for this purpose is shown in Figure 17. Description of the blocks are presented in follow-

ing paragraphs. 

 
 
90PhaseShifter:  

 

This block is the phase shifter described in section 0. The LO signal from function gen-

erator XFG1 is feed into the input and the resulting in-phase and quadrature LO signal 

flows through nets LO_in and LO_90. 

 

A1 and A2:  

 

Both A1 and A2 are the multiplier blocks added from Multisim library. They are the ideal 

multiplier, and their realization in the real world is impracticable. But for the study pur-

pose, since the library does not contain any mixer IC, it was one of the solutions for easy 

implementation. Multipliers were here used as mixers. The gain was set to unity for both 

the mixers. 

 

 

Gain: 

 

GAIN block consist of two independent inverting gain stages built from LM324N op-Amp. 

Initially, the gain is set to unity but can be changed to different levels adjusting variable 

resistors. The main purpose of this block is to compensate the gain irregularities in the 

output signals from the mixers A1 and A2 as it is essential that the amplitude and fre-

quency be similar for both the output for correct operation of I/Q modulator. 

 

Signal Adder: 
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Signal adder block employs the same circuit discussed in section 3. Modulated signal is 

obtained through output port of signal adder. 

 

 

 

 

 

 

Remaining symbols and components are summarized in Table 3. The magnitude of the 

AC signals are in Vp units meaning peak-peak voltage while the DC volts are denoted 

by V. 

 

 

 

 Figure 17 : Multisim I/Q block diagram  
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Carrier signal input is set to 500 mV through a DC source. Switch S2 can be set to ground 

or the carrier input 500 mV as required. 

 
 

  

Name 
Compo-

nents 
Function Frequency magnitude 

XFG1 
Function 

generator 

Provides LO signal into 

the phase shifter 
200 KHz Sine wave 500 mVp 

XFG2 
Function 

generator 

Provides Input signal for 

ASK  to the mixer A1 

20 KHz square 

wave 50% duty cy-

cle 

500 mV with off-

set of 500 mV 

XFG3 
Function 

generator 

Provides Input signal for 

BPSK to the mixer A1 

20 KHz Square 

wave 50% duty Cy-

cle 

1 Vp 

XFG4 
Function 

generator 

Provides Input signal for 

AM to the mixer A1 
20 KHz  Sine wave 500 mVp 

XSC1 
4-channel 

oscilloscope 

Plots the graph of mod-

ulated signal, input-I sig-

nal, and in-phase and 

quadrature signals of 

LO 

- - 

XSA1 
Spectrum an-

alyser 

Plots power spectrum of 

modulated signal 
- - 

S1 switch 
Selects the type of mod-

ulation to be perfomed 
- - 

S2 switch Controls carrier input - - 

 Table 3: List of components and their functions  
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7.2  Results 

 

Different modulations were performed using the I/Q modulator constructed in Multisim. 

All the waveforms from the simulation are attached to Appendix 2. For the sake of easi-

ness the waveforms are formatted with different colours.   

 

Table 4 summarizes the colour codes of the simulated signals. The data readings are as 

well labelled on the waveform itself where-ever possible. 

 

It is evident from the results that modulated signals form particular wave pattern. ASK 

without carrier has carrier wave whenever the square base band signal is high and, car-

rier is not present when the square signal is low. In BPSK, the change in phase of the 

carrier was observed where the notch was formed at the intersection of input signal and 

modulated signal.  

 

AM modulation with carrier and no-carrier had similar looking time domain waveforms 

but looking at the frequency domain, three peaks were observed in former case, where 

one peak was at 180 KHz, second at 200 KHz and third at 220 KHz, indicating two trans-

lated frequencies and one carrier wave from quadrature input while the latter case only 

had two peaks, at similar region except 200 KHz frequency content missing. 

 

Noise is inevitable in real world implementation as discussed earlier in sources of Errors 

section. A similar simulation setup was done in LabVIEW and carrier with uniform white 

noise was introduce to ideal mixer. The resulted BPSK, ASK and AM modulated signals 

are presented in Appendix 2. 

  

 Table 4: Colour representation of simulated signals  

Coloured Signals Implemented signal 

Green Baseband input signal 

Dark Purple LO-inphase signal 

Light Purple LO-quadrature signal 

Red Modulated signal 
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8 Conclusion 

 

An effort to design an I/Q modulator was done. Since this project was confined to certain 

frequency range from 200 to 250 KHz, the mixer could not fulfil the desired application 

area, as suggested from the result of the spectrum analysis as the modulated signals 

were highly attenuated. Furthermore, leakage of the carrier signal from LO port into the 

output port of LT5560 added hindrance to the mixer’s implementation, hardware realiza-

tion could not be completed. But different stages of I/Q modulators were built and tested. 

An approach to real implementation was done using Multisim simulation and different 

modulation were performed through the simulated I/Q modulator and waveforms were 

studied. 

 

A project might not come to success but one can always learn from failure and try to 

avoid the errors in next attempt.  An important lesson learned was that, an I/Q modulator 

require very precise component selection and capability to design layouts that minimizes 

errors as much as possible. The phase shifter would have a better response if 1% toler-

ance resistors and capacitors were used. Another important point that could be learnt is 

that errors are inevitable. Amplitude errors and offset errors can be minimized to almost 

negligible once they appear in system, but phase are difficult to tackle with and requires 

effective techniques to develop phase shifter with minimum error, thus providing good 

performance capability to I/Q modulator. 
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All Pass filter Network 

 

 

 

All Pass Filter Schematic 

 

 

All-Pass Filter layout 
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Phase shifter I and Q Output measurements at Different Frequencies 
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Simulation Result of I/Q Modulator 

 

 

 

ASK with carrier 

 

 

 

ASK without carrier 
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BPSK 
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AM with Carrier Time Domain Analysis 

 

 

 

 

AM with Carrier Spectral Analysis 
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AM with no carrier Time Domain Analysis 

 

 

 

 

AM with no carrier Spectral Analysis 
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BPSK, ASK and AM with white uniform noise in carrier 
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Summing Amplifier Physical Implementation 

 

 

 

 

Summing Amplifier PCB Layout 

 

 

 

 

Summing Amplifier Schematic 
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LT5560 Board implementation 

 

 

 
LT5560 Board Layout 

 
 

 
LT5560 Board Schematic 
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LT5560 spectrum analysis at LO = 20 MHz, IF = 500 KHz 
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