

Phat Chau Tan

Automation Testing With Robot Framework

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

27 March 2016

 Abstract

Author(s)
Title

Number of Pages
Date

Phat Chau Tan
Automation Testing With Robot Framework

36 pages
27 March 2016

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s)

Jaana Holvikivi, Principal Lecturer

Software testing is now a key part of the software development process. Especially, auto-
mation testing is more and more required by companies. The goal of the project was to
use Robot Framework to build tests that perform automation testing of an application’s
user interface.

The project used Selenium2Library, Python version 2.7.11 and Robot Framework version
3.0 in a Windows environment. Robot Framework is free of charge and a powerful tool for
automating testing activities. It has various testing libraries and a supporting community.
Test files are organized in Pycharm IDE. Selenium2Library is to import keywords to per-
form user interface testing. The report demonstrates the implementation of test scripts and
testing environment setup.

Two test suits were created for login and item search testing. Robot Framework generates
clear and simple reports so that a user can easily locate specific information. The project
also brings experience and learned lessons about how to write better testing scripts. Au-
tomated tests help reduce time and the cost of running test cases and fixing the applica-
tion’s bugs.

Keywords Automation, testing, Robot Framework, Selenium2 Library,
Python

Contents

1 Introduction 1

2 Testing in Software Development Methodologies 2

2.1 Waterfall 2

2.2 V-Model 3

2.3 Scrum 4

3 Fundamental Software Testing Processes 5

3.1 Planning and Control 5

3.2 Analysis and Design 7

3.3 Implementation and Execution 7

3.4 Result Evaluation and Reporting 8

3.5 Test Finalization 9

4 Software Testing Levels 9

4.1 Unit Testing 9

4.2 Integration Testing 10

4.3 System Testing 11

4.4 Acceptance Testing 11

5 Robot Framework 12

6 Robot Framework Installation 13

7 Test Cases Implementation 16

7.1 Login Test Cases 16

7.2 Item Search Test Cases 23

8 Test Case Execution Options and Reports 26

9 Result and Discussion 29

10 Conclusion 31

References 32

Abbreviations

API Application Programming Interface

ATDD Acceptance Test-Driven Development

CMD Command Prompt

CSS Cascading Style Sheets

DDD Data Driven Development

DOM Document Object Model

GUI Graphical User Interface

HTML Hyper Text Markup Language

IDE Integrated Development Environment

IE Internet Explorer

UAT User Acceptance Testing

URL Uniform Resource Locator

1

1 Introduction

Competition in the Information Technology field becomes higher and more challenging

so companies and start-ups have to strive for new ideas and methods to survive.

Hence, management and developing teams need to deliver quality products that meet

custom needs. Building and maintaining quality software is a challenging task since

customers often change their requirements and projects get larger and more compli-

cated. Therefore, software testing is a compulsory phase of current projects to ensure

the high quality of end products.

Automation software testing is a necessary and important phase in the current software

development process. Testing activities are to discover errors and defects of applica-

tions in an early phase to produce reliable products to be released in production. To

accomplish this, the quality assurance team has to perform proper manual or automa-

tion testing. In this report, I will investigate in detail how automation testing works.

The goal of this project is to use Robot Framework to develop automation scripts using

Selenium2Library to test graphical user interface (GUI). I will investigate more to see

how users can customize their automated scripts and how Robot Framework performs

automation testing. The learned lessons and experience drawn from the project are

also discussed in this report.

2

2 Testing in Software Development Methodologies

2.1 Waterfall

Waterfall is one of the popular software development models in the world. This devel-

opment method is linear and sequential which means that each development phase

must be completed before moving to the next phase. Typically, the Waterfall model has

the following stages: System and Software Requirements, Analysis, Program Design,

Coding, Testing and Operations including deployment and maintenance.

Figure 1. Waterfall Model [1].

Figure 1 represents the phases of the Waterfall development methodology. Testing

activities can be started early by performing reviews of specification documents after all

system and application specifications are completed. A document review is a neces-

sary step in software testing to eliminate unnecessary documentation bugs and to en-

sure that all requirements are well clarified before the testing phase begins. During the

verification phase, if clients want to change or update requirements, customers have to

wait until the test round is completed because documents cannot be updated.

3

When testers confirm that the software works well according to client specifications,

developers will release the software in production. Since then, the project moves into

the maintenance phase. This is the longest phase of the whole project. At this stage,

production bugs or the customer’s new update requests will trigger the whole process

again to address the customer’s demands. One major drawback of this methodology is

that since the testing phase is performed at the end of the process, bugs and errors are

found at a late stage of development process. It is more expensive and difficult to fix

defects at a later stage than an earlier one.

2.2 V-Model

V-Model is another sequential development process. This is an extended version of the

Waterfall model. V-Model stands for Verification and Validation, which means that eve-

ry development phase has an associated specific testing phase. Verification means

testing activities. Similar to the Waterfall model, the next stage begins only when the

previous stage is totally completed. [2.]

Figure 2. V-Model [2].

Figure 2 illustrates that software development and testing are performed simultaneous-

ly. Testing actions start right in the Requirement Definition phase. The fact that testing

4

activities begin at an early stage helps identifying bugs and defects earlier. This will

reduce the cost of fixing bugs.

The left side of Figure 2 represents the development phases that each of them has

associated test planning process to prepare for actual test execution stages in the right

side of the figure. In the Requirement Definition phase, when the development team

understands clearly all client’s requirements, testers or verification specialists will re-

view and use these specifications to create test inputs for User Acceptance Testing

(UAT) test cases. Next phase is Functional System Design where after the team identi-

fies product requirements, a complete system design is created to describe how the

requirements can be implemented. Testers again will review the whole design and de-

velop a system test plan. Creating a system test plan in this stage saves quite amount

of time for actual execution of testing in later phase. Next phase is Technical System

Design stage that more detailed and technical matters are discussed and planed by

developers. In associated with this phase, integration test plan is created. In the last

phase Component Specification, each and every component will be determined on how

each of them is implemented. Based on design details of each module, a unit test plan

is created. [2.]

2.3 Scrum

Scrum is a framework developed to manage from simple to complicated Agile projects.

It is not only used in software development but also in other areas. The primary pur-

pose of the Scrum methodology is to allow a team to respond quickly to changes by

focusing on prioritized tasks. [3.]

Figure 3. Scrum process [4].

5

Figure 3 demonstrates a typical Scrum process. A product backlog contains a list of

software features, updates and tasks to be implemented. The development team will

go through the sprint planning phase to select tasks for the sprint backlog. Once the

sprint backlog is ready, the team will carry out a serial of sprints or increments each of

which usually lasts for 2-4 weeks. The goal of sprint is to emphasize the shippable

working product at the end of each sprint.

In Scrum, there is no actual phase called “Testing”. Quality assurance activities occur

any time during the project. Testing can be considered a separate task in the sprint

backlog or as the “Done” criteria for a task. Basically, a Scrum team is cross-functional.

For that reason, a Scrum team may not have a dedicated test manager. The Scrum

Master or developer can even help organizing and building tests. However, proper test-

ing requires professional skills and experience so the team should have qualified test-

ers. They will be dedicated to managing, creating and executing test cases. [3.]

After every sprint, the product gradually becomes larger and more complicated, so re-

gression and continuous integration testing are required to ensure that the end product

still works correctly. Testing all new and currently existing features manually is not the

best option while automation testing can do the job faster. In automation testing, initially

testers have to spend an amount of time and effort to build automated tests but it will

save enormous time when executing the actual tests later on.

Working software is the primary measure of each increment’s process. Nevertheless,

testing can also be considered one main measure to assess a project’s progress be-

cause the final product cannot be released until development and all associated tests

are passed. Testing is a crucial section in a complicated Scrum project. [5,7.]

3 Fundamental Software Testing Processes

3.1 Planning and Control

The first issue in test planning is to understand the purposes of the project and clients,

and the potential risks. Once the testing team gains this kind of knowledge about the

project, the next step is to determine the goals and specifications of testing activities.

However, to facilitate the making of a test plan, the company should have the test poli-

cies and test strategy of the company in advance. The test policy is a high-level docu-

6

ment specifying regulations for testing. The test strategy is a company-level document

to define the testing approach to achieve specified testing goals. [6.]

Testing planning has some main activities and tasks. Firstly, it is important to identify

the goals of testing and the scope. The scope includes selection of the software, sys-

tem and components. Risk assessments are also created to point out difficult areas of

the project and product, so that testers will address them properly. Secondly, the task

is to define the testing approach to describe how the team performs testing. The team

will select the testing techniques to be used, areas to be tested and the way that relat-

ed teams and individuals work and communicate in specified procedures. Thirdly, the

plan should determine test resources including the required hardware and software and

human recourses. Fourthly, if the company has a test policy and test strategy, the plan

needs to follow these high-level documents strictly. The fifth activity is to construct the

timeline for all activities such as test analysis, test design and execution, and assess-

ment. Finally, clarification of the exit criteria needs to be made. This gives a definition

of how testing activities are to be considered completed properly. Some examples of

the exit criteria are 100% requirement coverage, all test cases executed or all critical

bugs fixed. [6;7.]

Planning is not enough. It is required to have a test control to monitor testing activities

in order to propose any necessary changes during testing. Testers should evaluate the

actual progress against the planned progress. Based on information gathered from

control activities, testers report to the manager and client about the current testing sta-

tus and receive any comments to update initial test planning. The test control has sev-

eral main activities. Firstly, the test control is to measure the testing outcome. The team

should know the number of passed and failed test cases. The amount, severity and

type of bugs need to be tracked. The second activity is to keep track of testing status,

percentage of requirements covered and exit criteria. These should be documented

and transferred to the related team and individuals so that the whole team knows the

current status of testing and test results. Moreover, the latest testing information should

be available to the project manager and key project members so that they can make a

decision whether to continue or stop testing. Based on the provided testing data, they

can decide whether testers carry on or stop testing, or release the product. The final

activity is about taking corrective actions. Testers can send software back to develop-

ers and ask for more investigation if they find critical bugs that prevent them from per-

7

forming further testing. In short, testing control is a continuous activity throughout the

whole project. [6.]

3.2 Analysis and Design

While the team creates test planning and test control in planning and control, testers

will examine the testing goals further and convert them into test conditions at the anal-

ysis and design stage. At this stage, the first testers have to look at the product’s re-

quirements and specifications for detailed information to understand how the software

behaves. Then they generate test conditions based on the software’s specifications.

Test conditions describe the objectives of the specifications. An example of a test con-

dition is “When users enter a wrong password more than 3 times, a notification will ap-

pear”. Moreover, during this phase, testers also discover the uncertainty in the re-

quirements, and figure out the boundary points and values where the software is easy

to fail. Unclear specifications will lead to an issue that related requirements cannot be

tested. One reason for this issue is that the requirements are very general; hence they

must be specific and detailed enough so testers can carry out testing. For example, this

is a requirement that does not meet the testing purpose: “The website automatically

logs out if there is no user activity”. From the tester’s point of view, this is difficult to test

because they will ask themselves how long the website should wait for a user’s re-

sponse before logging out. Testers will ask project managers or developers to clarify

the documented requirements in a more specific way. A more testing-friendly specifica-

tion is: “The website automatically logs out if there is no user activity in 10 minutes”.

Finally, testers evaluate what is needed to build an environment for testing. They con-

sider the necessary hardware and software tools such as selecting the automation test-

ing tool, database server, computers or licenses.

3.3 Implementation and Execution

Once test conditions are ready, testers will generate test scenarios and test cases.

Test scenarios are a group of test cases that test the same software’s requirements.

Test cases are specific tests with a clarified input (status before test) and expected

output (expected status after test). The following example illustrates the differences

between test conditions, test scenarios and test cases. [8,24-25.]

 Test condition: When users enter a wrong password more than 3 times, a notifi-

cation will appear.

 Test scenarios:

8

1. When users enter a wrong password more than 3 times, a notification

will appear.

2. When users enter a wrong password less than or equal to 3 times, a no-

tification will appear.

 Test cases for scenario number 1:

1. When users enter wrong password 4 times, a notification will appear.

2. When users enter wrong password 5 times, a notification will appear.

 Test cases for scenarios number 2:

1. When users enter wrong password 3 times, a notification will not ap-

pear.

2. When users enter wrong password 2 times, a notification will not ap-

pear.

In this phase, test suites are constructed to help organize the test structure. A test suite

contains many test cases indicating certain functions of software. Testers also consider

a set of different test inputs used in test execution. Eventually, a test environment that

is identical to the production one is built. Pre-testing activities need to be done to ac-

quire a sufficient number of computers and devices, and install the required software

and tools to prepare for implementing and running tests.

The next phase is test execution when testers run all test cases to fully verify the sys-

tem under test. The process is started manually or automatically if an automated tool is

utilized. Once the test execution is finished, testers investigate the outcome report to

see where the tests fail. Failed tests mean that the software does not generate results

as expected. Finally, bugs are opened for failed tests in a bug management and control

system such as Bugzilla or Mantis.

3.4 Result Evaluation and Reporting

While the first phase of the testing process maps out the exit criteria, the goal of this

phase is to check the testing results against pre-defined exit criteria. Testers evaluate

whether they have performed enough testing or not. They also consider whether they

should do more testing or update the exit criteria as part of control activities. While

evaluating the results, testers inspect the test evidence, note what has been and has

not been verified and document which area testers have to pay more attention to in the

next rounds. The status of bugs also needs to be monitored to see the total number of

bugs and how many of them are verified or remain open. Finally, the test round report

9

must be generated so that all related team members can see the result and what has

happened. The data in the result document must match the one stored in the bug man-

agement and control system. [6.]

3.5 Test Finalization

The testing team will finalize the testing when the product is distributed to customers or

the project reaches a certain target. The project officially moves into the maintenance

phase, after the software is released to the client. In this phase, the team gathers fig-

ures and facts to assess and improve performance of testing and withdraw a lesson

and experience for later projects. Test assets should be saved so that when regression

testing or verification of a new update is required, testers can retrieve these assets

quickly and utilize them again. Bugs that has not been verified yet need to be docu-

mented so next testers will verify them when next round starts.

4 Software Testing Levels

4.1 Unit Testing

Unit testing is designed to find bugs and errors in tiny and independent parts of the

code. Software is divided into smaller components, modules and parts. These pieces

are separated from the whole software and tested to check their function. Then, they

are connected to check whether these components or units communicate with each

other correctly. The testing targets of unit testing can be functions, classes or simply a

functional part of code. Either testers or developers can write code for unit testing. This

is the initial level of testing. To help perform unit testing, drivers and stub are created.

The driver acts as a component to call the other target component that needs to be

tested. The stub acts as a component to be called from the component to be tested.

[9,148-150.]

Doing unit testing brings many advantages to the project. Errors are found at a very

early stage of the project; hence the cost of fixing bugs is largely reduced compared to

the ones found in the production environment. It is easier to spot and fix bugs in a sin-

gle component than in a whole program. The tests can also be automated. When test-

ers need to perform regression testing and the project becomes larger with many indi-

vidual modules, automation will save plenty of time testing all current existing modules.

This will greatly assist the team to deliver a higher quality program.

10

4.2 Integration Testing

Integration testing is carried out after unit testing with the purpose of verifying function,

interaction and communication between individual modules. In this phase, small mod-

ules tested in unit testing are connected and combined into a larger and more complex

component. A dedicated team usually performs the testing. These modules are tested

to check whether they communicate correctly after they are integrated. In other words,

these modules are tested as a group. Several testing methods are available to be ap-

plied in this phase. Two most common techniques are top-down and bottom-up tech-

niques. [9,152-153.]

Figure 4. Hierarchy of integrated modules.

Figure 4 illustrates the levels of the integrated modules. The level of hierarchy goes in

a descending order from Module 1 which has the highest level and is more critical. The

top modules define the navigation and logic flow of the software while the bottom mod-

ules represent basic functionalities.

The top-down technique focuses on testing from the top module first to bottom ones.

One advantage of this method is that testers usually do not need many drivers. Moreo-

ver, an initial sample of complete software may be ready for testing earlier and testers

have more time to find severe design bugs at an early stage. However, one disad-

vantage is that the testing team will need to spend initial resources to write stubs for

Module 1

Module 2

Module 4 Module 5

Module 3

11

testing. Another disadvantage is that verifying the basic functionalities is carried out at

the end of the process because testing the bottom modules is performed at a later

stage. [9,155-157.]

In contrast to the top-down method, the bottom-up approach starts from the bottom

modules that have the lowest hierarchy. A drawback of this technique is that drivers

need to be created before testing and implementing drivers is complicated than stubs.

Critical modules that are on top of the software architecture are tested at the end of the

process and the team may not have enough time to perform thorough testing to search

for critical defects. Nevertheless, as testing happens for bottom level modules first, the

basic functionalities of software are ensured. The approach brings a time-efficient ad-

vantage because testing begins as soon as developers complete basic modules and

integrate them. [9,154-155.]

4.3 System Testing

System testing is the last phase performed by dedicated testers to see if the end prod-

uct meets the customer’s needs before handing the software to clients. Testers will

carry out full system testing after all components are integrated into a final complete

product. In this phase, testers need to act as real users to simulate all scenarios that

may happen in a production environment. In addition to functional testing, this phase

should include a non-functional check of software. The screen layout and usability

need to be inspected and testers can give comments and suggestions to developers to

enhance a user’s experience. The testing of this phase is based on software specifica-

tion documentation; hence testers also need to check the requirement document to see

whether all requirements are specified correctly. The quality specification document will

improve the testing process, so performing requirement reviews is a good practice if

timeline allows. In short, this phase is the final gate to ensure that the software meets

the client’s requirements.

4.4 Acceptance Testing

User acceptance testing (UAT) takes place after system testing has been completed to

verify all the software’s behaviours. The primary goal of acceptance tests is to check if

the software works as expected in real-life scenarios. People who carry out the testing

are customers or end users. There are two types of UAT: Internal UAT and external

UAT. People from the company that build the product will do the internal UAT first.

12

These people must not be the ones that directly develop the software but they should

be from another department. Then, real end-users will perform the external UAT after

the internal UAT is passed. If customers find any valid bugs or make a change request,

the software will be sent back to developers to implement and testers will do another

regression testing round to verify the changes. Clients will then decide whether they

want another round of UAT or not. Once clients confirm the pass for UAT, the project

team will finalize the last steps of documentation and the software is released to cus-

tomers.

5 Robot Framework

Robot Framework is defined as: “Robot Framework is a Python-based, extensible key-

word-driven test automation framework for end-to-end acceptance testing and ac-

ceptance-test-driven development (ATDD)” [10]. Keywords in the library are written

either in Python or in Java. The framework is free to use and published in compliance

with Apache License 2.0. The Robot Framework community is very supportive at an-

swering questions and provide quick fixes for issues. It uses a keyword-driven testing

method meaning that keywords act as programming functions or methods so it is easy

for users to create their own higher-level keywords based on existing ones provided by

available libraries. The text syntax follows a tabular style which makes writing test cas-

es more user-friendly. The framework is utilized to perform system testing, acceptance

testing and regression testing. The software supports a high-level structure of tests and

provides multiple test editors such as RIDE or Eclipse plugin so that users can easily

maintain and scale the tests. [10.]

Figure 5. Robot Framework Architecture [10].

13

Figure 5 illustrates the high level architecture of Robot Framework. It receives the test

data and uses test libraries to communicate with the system that is being tested. Inter-

action between test libraries and the system under test is usually direct. However,

some test libraries need to have drivers such as Selenium2Library in order to connect

with the tested system. Robot Framework can work with multiple browsers such as

Internet Explorer, Firefox and Chrome.

The framework contains many standard and external libraries to support various kinds

of testing. Each library serves a unique testing purpose. Standard test libraries are in-

cluded while installing Robot Framework such as Builtin, OperatingSystem, Dialogs

and Remote. On the other hand, external libraries are created to meet the user’s de-

sires and requirements to perform certain testing purposes. One great advantage of the

tool is that new core keywords can be written in Java or Python to do certain activities

of testing. This enhances the testing capabilities of the tool. Some of the most common

external libraries are Selenium2Library, Database Library or Android Library.

6 Robot Framework Installation

The project is carried out in a Windows environment. In this project, I use Python ver-

sion 2.7.11 and Robot Framework version 3.0 which are the latest applicable versions

at the time. Actually a newer Python version 3 is available but this version so far has

some drawbacks and does not fully support all functionalities.

Prior to installing Robot Framework, Python needs to be installed at

https://www.python.org/downloads/. Next the Path variable value needs to be set up for

Python as shown in Figure 6 below.

14

Figure 6. Path variable values.

Figure 6 displays the visual location to update the Path variable value. Instructions for

setting up Path value are given below:

 Go to directory “Control Panel\System and Security\System”.

 Select “Advanced system settings”.

 “System properties” popup appears and select “Environment variables” button.

 “Environment variables” popup appears.

 Find the Path variable in “System variables” section and Click “Edit” button.

 “Edit system variable” popup now appears and the value line

“;C:\Python27;C:\Python27\Scripts” needs to be added to “Variable value” field.

The next step is to verify whether Python is installed correctly. I open Command

Prompt (CMD) interface and type “python --version” and it will result in the in-

stalled Python version as shown in Figure 7 below.

15

 Figure 7. Python version.

Figure 7 shows the installed Python version after the command is entered. Once Py-

thon is ready, Robot Framework can be installed by using pip. Pip is a package man-

ager for packages and software written in Python. It is very practical and easy to use. If

Python version 2.7.9 or newer versions are used, pip is automatically installed already.

 Figure 8. Robot Framework installation and version.

Figure 8 illustrates the command lines to install and verify the Robot Framework ver-

sion. To install Robot Framework, I open the CMD again and enter “pip install

robotframe work” [11]. I then once again need to verify that Robot Framework is

installed correctly by typing “pybot --version”. The result line “Robot Frame-

work 3.0 (Python 2.7.11 on win32)” shows the installed Robot Framework

version 3.0 along with the Python version 2.7.11. Then, I will install Selenium2Library

by entering command in the CMD “pip install robotframework-

selenium2library”.

Additionally, the framework has many supported test editors and an integrated devel-

opment environment (IDE) with plugin to support the management and organization of

the test structure. This project uses PyCharm IDE plus Robot plugin. PyCharm is easy

to use and brings great experience. It is free for Community Edition and can be ac-

16

cessed at https://www.jetbrains.com/pycharm/. When I finish installing PyCharm, I need

to install a Robot plugin. In the PyCharm interface, I select “File” and then “Settings”.

When “Settings” popup appears, I choose “Plugins” in the left panel and select “Browse

repositories” button. “Browse Repositories” popup appears and in the search tool, I

search for Intellibot and install it.

7 Test Cases Implementation

7.1 Login Test Cases

The Selenium library is one of most commonly used libraries for testing a web applica-

tion interface. It interacts with the web application through its own driver. Each browser

requires different Selenium drivers. Chrome and Internet Explorer (IE) need to have

separate drivers; meanwhile Firefox does not require one. The addresses for down-

loading the latest driver versions for Chrome and IE are given below:

 IE: http://selenium-release.storage.googleapis.com/index.html

 Chrome: http://chromedriver.storage.googleapis.com/index.html

The next step is selecting the latest version of drivers in Win 32 format. Then, the Path

variable needs to be configured to point to the folder that has these drivers. For exam-

ple, if the folder path containing both drivers is C:\Drivers, then “;C:\Drivers” must be

added to the Path variable.

It is important to have a good test structure to easily maintain and scale the tests as

more and more test cases will be added later on. Test cases for user login and item

search are implemented and organized in five files “Common_Keywords.robot”,

“Common_Login.robot”, “Common_Login.robot”, “Login.robot” and

“Search_Item.robot”. PyCharm editor utilizes the “robot” extension format as Fig-

ure 9 shows below.

17

Figure 9. Tests organization in PyCharm.

Figure 9 represents the automated tests structure where “Robot Framework Pro-

ject” is both a root folder and project name. Inside the project folder, there are two

sub-folders “Common” and “Tests”. The “Common” folder contains robot files that

serve as resource files. These resource files list common keywords that are called

many times from different files in the “Test” folder. Hence, it reduces the complexity

and size of the execution files in the “Test” folder. The “Tests” folder includes test

files that have actual test cases which will be run by the program. “Login.robot” file

imports “Common_Keywords.robot” and “Common_Login.robot”; and

“Search_Item.robot” imports “Common_Keywords.robot” and “Com-

mon_Search_Item.robot”. Listing 10 below lists the content of “Login.robot”

that users with invalid credentials cannot log in.

18

*** Settings ***

Resource ../Common/Common_Keywords.robot

Resource ../Common/Common_Login.robot

Test Setup Open Browser Test Setup http://www.sandbox.ebay.com

Test Teardown Close Window

*** Test Cases ***

Wrong Username And Password Are Entered

 [Documentation] Test that users cannot login with wrong

username and password

 [Tags] Wrong_Credentials

 Enter Login Page

 Enter Username user1

 Enter Password 1234

 Sign In

 Check That Login Fails

Empty Username Is Entered

 [Documentation] Test that users cannot login with empty

username

 [Tags] Empty_Username

 Enter Login Page

 Enter Username ${empty}

 Enter Password 1234

 Sign In

 Check That Login Fails

Empty Password Is Entered

 [Documentation] Test that users cannot login with empty

password

 [Tags] Empty_Password

 Enter Login Page

 Enter Username user1

 Enter Password ${empty}

 Sign In

 Check That Login Fails

Listing 10. Login.robot script.

19

Listing 10 presents the structure of the Robot Framework file. In the script, each sec-

tion is separated by “*** ***” line. “*** Settings ***” defines resource files

and used libraries and specifies activities prior to executing a test suite or test cases.

“*** Test Cases ***” is the section to write test cases with testing activities. The

keywords and their arguments or parameters are separated by empty spaces.

In the “*** Settings ***” section, the “Resource” keyword is used to import

resource files. “Test Setup” and “Test Teardown” specify preparation and finali-

zation activities before and after executing a single test case. “Test Setup” will

make “Open Browser Test Setup” to run first before running any test cases. It is

a user-defined keyword called from “Common_Keywords.robot” file and it takes

“http://www.sandbox.ebay.com” value as a parameter to open the tested web-

site. For “Test Teardown” activity, “Close Window” is a keyword from Selenium2

library and will close a current open window after all testing activities are completed for

a single test case. The Slenium2Library keywords are available at [12].

In the “*** Test Cases ***” section, there are three test cases “Wrong

Username And Password Are Entered”, “Empty Username Is Entered”

and “Empty Password Is Entered”. The combination of the three test cases is

called a test suite. The test case names which are defined by users start at the begin-

ning of the line and should give a general idea of what this test case is about. Inside

each test case, testing activities and related information are specified. They are distin-

guished from test case names by being indented with empty spaces. “[Documenta-

tion]” set the related information that a user wants to document and is displayed in a

result report. “[Tags]” is used to categorize test cases and users can freely tag their

tests. Next, “Enter Login Page”, “Enter Username”, “Enter Password”,

“Sign In” and “Check That Login Fails” keywords are defined by users in

two resource files. They are high-level keywords and contain lower-level keywords

which are standard ones from the library. The goal of creating new keywords is to

make the script more user-friendly, reusable, maintainable and scalable. “Enter

Username” and “Enter Password” takes two parameter values, for example “us-

er1” and “1234” in the first test case. “${empty}” is a built-in variable and carries

empty value. As Listing 10 shows, all test cases have the same testing keywords and

the differences are the documented text, tag and parameter values for username and

20

password. The keyword names need to describe their action by starting with a verb.

The order of testing actions in Listing 10 is that the tool will open the login page, enter

username and password, sign in and verify that a user cannot log in. Next, I will inves-

tigate the content of two resource files that contain lower-level keywords that do the

actual action for login test cases.

*** Settings ***

Library Selenium2Library

*** Variables ***

${Browser} firefox

*** Keywords ***

Open Browser Test Setup [Arguments] ${URL}

 Open Browser ${URL} ${Browser}

 Maximize Browser Window

Listing 11. Common_Keywords.robot file.

Listing 11 demonstrates the content of “Common_Keywords.robot” file. “Li-

brary” in “Setting” section imports external “Selenium2Library”. Any test

files that import this resource file do not need to import “Selenium2Library” again.

“*** Variables ***” specifies variable names and values whose scope stays

within the current test suite only. The name and value of the variable are differentiated

by empty spaces. The syntax for declaring a variable is: “${variable_name}”, emp-

ty spaces and variable value. Hence, “${Browser}” variable carries “firefox”

value. “*** Keywords ***” is the place where users can create their own higher

level keywords based on standard ones from imported libraries. A new keyword can

either have some parameters or no parameter by using “[Arguments]” after the

keyword name. “Open Browser Test Setup” keyword has one parameter

“${URL}” which contains the website address. The keyword includes two lower-level

keywords “Open Browser” and “Maximize Browser Window”. They are defined

from the imported library and will actually carry out testing activities. A document of

these keywords is available at [12]. “Open Browser” receives two parameter values:

URL and browser type; and its function is to open the browser with a specified website

address. ”Open Browser Test Setup” from Listing 10 is called with a passing vari-

able value “http://www.sandbox.ebay.com” to “${URL}” parameter in Listing

21

11. Therefore, “Open Browser” opens the website

“http://www.sandbox.ebay.com” with the Firefox browser. “Maximize

Browser Window” enlarges the open browser to full screen because “Open Brows-

er” initially opens a smaller window. Overall, this file function is to open the tested

website before running a test case.

*** Settings ***

Library Selenium2Library

*** Keywords ***

Enter Login Page

 Click Link Sign in

Enter Username [Arguments] ${username}

 Wait Until Page Contains Element userid

 Input Text userid ${username}

Enter Password [Arguments] ${password}

 Wait Until Page Contains Element pass

 Input Password pass ${password}

Sign In

 Click Button sgnBt

Check That Login Fails

 Page Should Contain Your email/username or password is in-

correct.

Listing 12. Common_Login.robot file.

Listing 12 represents the “Common_Login.robot” script whose keywords are dedi-

cated only for login-related testing actions. Four user-defined keywords “Enter Log-

in Page”, “Enter Username”, “Enter Password”, “Sign In” and “Check

That Login Fails” are created. Selenium2 keywords “Click Link”, “Wait

Until Page Contains Element”, “Input Text”, “Input Password”,

“Click Button” and “Page Should Contain” identifies a locator on the

22

webpage to do the action. The most commonly used locators are text, “id”, “name”,

“class” attributes in the HTML code.

Figure 13. eBay sandbox search tool.

Figure 13 shows the search tool of sandbox eBay page which is dedicated for testing.

“Click Link” clicks on the “Sign in” link text locator which is in a red square and

it will lead to the login page displayed in Figure 14 below.

Figure 14. Login area with locator and used keywords.

Figure 14 demonstrates a login page with specifying “id” attribute values. The “id”

attribute is unique in every page so locating an element by “id” is the best option. Con-

tinuing with explaining Listing 12, “Input Text” finds the “id” attribute that has the

value “userid” which is the username field and enters the parameter value

“${username}” passed from Listing 10. Similarly, “Input Password” enters

“${password}” parameter value to the password filed that has “id” attribute value

23

as “pass”. “Click Button” keyword will click on the “Sign in” button by identifying

the “sgnBt” value of “id” attribute. After clicking on the “Sign in” button, the

“Page Should Contain” will verify that users cannot sign in by searching for text

“Your email/username or password is incorrect.”. “Wait Until Page

Contains Element” keyword will pause the testing process until it finds the speci-

fied locator. This keyword is necessary because I need to ensure that the keywords

“Input Text” or “Input Password” can find the locator to avoid false negative

test results. To find the value for locator attributes, one can right-click on target ele-

ments and select Inspect Element option for Firefox or Inspect option for Chrome. This

will display the developer tool panel pointing out the HTML code of the selected ele-

ment.

In summary, “Login.robot” (Listing 10) is the main script that has “Com-

mon_Keywords.robot” (Listing 11) and “Common_Login.robot” (Listing 12) as

resource files. Listing 10 contains high level keywords defined by a user to describe

testing steps. Each high level keyword has their lower keywords. To summarize the

testing activities, Selenium2 driver opens the website window first, then runs one test

case and closes the browser after finishing the current test case. It continues a similar

process till the last test case. Next, I will investigate the Data Driven Development

(DDD) style with item search test cases.

7.2 Item Search Test Cases

The purpose of these test cases is to check if the searched items are available in the

eBay store. Figure 9 illustrates the test file structure which is similar to login tests.

“Search_Item.robot” (Listing 13) is the execution file that takes “Com-

mon_Keywords.robot” (Listing 11) and “Common_Search_Item.robot” (Listing

14) as resource files.

24

*** Settings ***

Resource ../Common/Common_Keywords.robot

Resource ../Common/Common_Search_Item.robot

Test Template Check That Searched Item Exists

Test Setup Open Browser Test Setup http://www.ebay.com

Test Teardown Close Window

*** Test Cases ***

Search For Laptop Acer Aspire

Search For Iphone 6 Iphone 6

Search For Watch Watch

*** Keywords ***

Check That Searched Item Exists [Arguments] ${item}

 Enter Searched Item ${item}

 Check That Searched Item Is Available

Listing 13. Search_Item.robot file.

Listing 13 represents the “Search_Item.robot” script content. The principal of da-

ta-driven testing is that all test cases will run one same keyword and pass different pa-

rameter values for that keyword. It means that all test cases will perform one testing

activity purpose but with various data. The “Search_Item.robot” test is to deter-

mine whether the searched items (Acer Aspire, Iphone 6 and Watch) are available to

buy in eBay. “Test Template” keyword in “*** Settings ***” specifies the

“Check That Searched Item Exists” keyword that all test cases will call. In

“*** Test Cases ***”, three test cases are created “Search For Laptop”,

“Search For Iphone 6” and “Search For Watch” with three corresponding

variable values “Acer Aspire”, “Iphone 6” and “Watch”. Each test case will call

“Check That Searched Item Exists” keyword and pass a variable value to the

“${item}” variable. In “*** Keywords ***”, the keyword is defined to receive

one parameter value stored in “${item}” variable and contains other two lower level

keywords that are specified in “Common_Search_Item.robot” file (Listing 14).

“Enter Searched Item” in Listing 13 passes the “${item}” value to the same

keyword in Listing 14 and “Check That Searched Item Is Available” checks

if the searched items exist. These two user-defined keywords are discussed in more

detail in Listing 14.

25

*** Settings ***

Library Selenium2Library

*** Keywords ***

Enter Searched Item [Arguments] ${Searched_Item}

 Input Text gh-ac ${Searched_Item}

 Click Button gh-btn

Check That Searched Item Is Available

 Set Browser Implicit Wait 2

 Wait Until Element Is Visible gf-l

 Page Should Not Contain Refine your search

Listing 14. Common_Search_Item.robot file.

Listing 14 shows the script for two keywords. “Enter Searched Item” stores the

parameter value in “${Searched_Item}” variable and contains “Input Text”

and “Click Button” keywords. The function of these two keywords was explained

in Listing 12 of the login test cases above. The keyword “Set Browser Implicit

Wait” specifies two seconds as the waiting time for all keywords to repeat their action

if they fail in the first time. For example, if “Wait Until Element Is Visible”

cannot find the attribute value “gf-l” in the first attempt, it will wait for 2 seconds and

try to search for that value for the last time before giving an error notification.

Figure 15. Search bar with id locator.

Figure 15 displays the “id” attribute of the search bar and button. “Input Text”

enters text from “${Searched_Item}” value into the search bar which has the “id”

attribute value as “gh-ac”. Similarly, “Click Button” clicks on the Search button

that has “gh-btn” attribute value. Clicking Search button leads to Figure 16.

26

Figure 16. Search result screen.

Figure 16 represents the search result page screen when the searched item is not

available. When the search results in no found items, the text “Refine your

search” will appear. Hence, if the item is found, that text will not be visible. The key-

word “Page Should Not Contain” checks that “Refine your search” text is

not visible on the result page. Keyword “Wait Until Element Is Visible” is to

make sure that “id” attribute “gf-l” appears before running “Page Should Not

Contain” keyword. “gf-l” is located near the bottom of the page and if “gf-l” is

visible, it means that most of the elements of the page are most likely visible for Selei-

um2Library. Test execution and generated reports are covered in the next section.

8 Test Case Execution Options and Reports

Robot Framework offers several methods to customize test case execution. First, to

run the whole test suite, calling only the test file name is sufficient. I run Login tests with

entering the command line “pybot Tests/Login.robot” into Pycharm Terminal

which is opened by selecting View /Tool Windows/Terminal. Figure 15 shows the inter-

face of the terminal.

27

Figure 17. Running Login.robot file.

Figure 17 shows the command line to execute “Login.robot” file in “Tests” folder.

The syntax of the execution command is “pybot” plus the path to the target file. Since

the current directory is the root folder “Robot Framework Project”, one needs to

specify the full path for “Login.robot” as “Tests/Login.robot”. Figure 17 also

shows that all three test cases are run with the PASS result. Second, if one wants to

run specific test cases, a tag can be used in the command line “pybot --include

Wrong_Credentials Tests/Login.robot”.

Figure 18. Running a single test case with a tag.

28

Figure 18 demonstrates a command line to run one test case by specifying which tag is

to be executed. “-- include” declares the tag and only test cases that have the

specified tag will be run. As Figure 18 displays, only one test case that contains the tag

“Wrong_Credentials” is executed.

An advantage of Robot Framework is clear and detailed outcome reports. It generates

report files “output.xml”, “log.html” and “report.html” after finishing test

execution. However, only “log.html” and “report.html” should be viewed for

summary testing details.

Figure 19. Summary of testing report.

Figure 19 illustrates a testing summary in “report.html” file. The report gives an

overview of the details of the test status, start time and end time. In the “Test Statistics”

section, it displays how many test cases are passed or failed. It also shows statistics

sorted by a tag or suite level. A green background will be shown if all tests are execut-

ed successfully. A red background will be displayed if one test fails. In the “Summary

Information” section, the general status and duration of testing are shown. If I want to

29

investigate more detailed data, I can click on options in “Test Details” section to see

more information about each test case. In general, the layout of report.html file is user-

friendly and easy to inspect data.

Figure 20. Detailed information in log.html file.

Figure 20 represents more details of the test results in “log.html” file. This report

summarizes data and presents them on the keyword level. “Wrong Username And

Password Are Entered” test case is shown with its execution keywords such as

“Open Browser Test Setup” or “Enter Login Page”. It also specifies where

the keywords come from. “Selenium2Library.Open Browser” denotes that

“Open Browser” keyword comes from Selenium2Libray. Similarly, “Com-

mon_Login.Enter Login Page” implies that “Enter Login Page” belongs to

the “Common_Login” resource file. In the right column, the duration that each key-

word takes to perform testing activities is displayed. The green color will turn red if that

keyword fails.

9 Result and Discussion

Automation testing helps save a tremendous amount of time while performing regres-

sion testing because automated tests can be run over night and at the weekend. In this

project, all test cases were completed and run successfully though there were chal-

30

lenges and difficulties. One challenge was that some amount of time was spent for the

initial effort to build reliable tests. The reliability of the tests is critical because test re-

sults can give false positive or negative outcomes.

In Listing 14, initially the keyword “Set Browser Implicit Wait” was not used

and this caused false negative results with error “Element is no longer at-

tached to the DOM”. The reason was that after the eBay item search result page

finished loading, it automatically refreshed the second time and at the same time the

keyword “Page Should Not Contain” was running. The refreshing page made the

element invalid at the time when “Page Should Not Contain” was running. For

that reason, “Set Browser Implicit Wait” was needed to set an amount of

waiting time that the keyword would wait before trying the last time if it failed the first

time. Basically, that keyword gives time for page elements to be in a stable condition

before checking for any elements. In addition, “Builtin” library of Robot Framework

has keyword “Sleep” which pauses the testing execution for a specific amount of

time. However, “Sleep” keyword should not be used in writing test cases because it

slows down the testing speed.

Another difficulty during writing the test script was the availability of the “id” or

“name” attributes. Some elements do not have those attributes so different elements

are used to check for some conditions. Actually, there are different methods to locate

an element such as using the XPath or CSS selector but it will complicate the test

script. A lesson learned here is that when software is still in a test environment, it

should be developed in a way that it facilitates automation testing such as adding nec-

essary attributes to elements to make locating them easier.

31

10 Conclusion

The primary goal of the project has been achieved with utilizing Robot Framework and

Selenium2Libary to write and run automated test cases successfully. The user inter-

face of a complicated application can be tested in a much shorter period of time. In

addition to GUI testing, more available libraries such as API or Database can be used

to serve specific testing purposes.

Nowadays, automation testing plays an important role in the software development

process because of the growing complexity of applications. It improves software quality

and reduces project costs. Though automation testing brings many benefits, it cannot

totally replace manual testing. Manual and automation testing need to be performed in

parallel. A challenge of the project and also of automated tests is that they are vulnera-

ble to the change of the tested software. An update to the application may cause an

unexpected testing result if the structure of the tests is not well organized. So mainte-

nance will become an issue when the number of test cases increases tremendously.

Automation testing will still keep growing in the future. Many automation tools have

been created and more new and improved libraries for Robot Framework will be re-

leased to meet the needs of the automation software testing community.

32

References

1. Schell J. The Art of Game Design [ebook]. CRC Press; 04 August 2008.

URL:

http://proquestcombo.safaribooksonline.com.ezproxy.metropolia.fi/book/programming/g

ame-programming/9780123694966/the-game-improves-through-iteration/ch07lev1sec4

Accessed 21 March 2016.

2. Spillner A, Linz T, Schaefer H. Software Testing Foundations, 4th Edition [ebook].

Santa Barbara, CA: Rocky Nook; 19 March 2014.

URL: http://proquestcombo.safaribooksonline.com.ezproxy.metropolia.fi/book/software-

engineering-and-development/software-testing/9781492001454/3-testing-in-the-

software-life-cycle/ch00lev76a_html

Accessed 21 March 2016.

3. Linz T. Testing in Scrum. Santa Barbara, CA: Rocky Nook; 2014.

4. Scrum Alliance. Learn About Scrum [online]. Westminster, Colorado.

URL: https://www.scrumalliance.org/why-scrum

Accessed 21 March 2016.

5. Evans K. Testing in Scrum Projects [online]. Tampere: Logica; 27 March 2008.

URL: http://www.cs.tut.fi/tapahtumat/testaus08/Kalevi.pdf

Accessed 03 February 2016.

6. Graham D, Veenendaal EV, Evans I, Black R. Foundations of Software Testing:

ISTQB Certification. Gaynor Redvers-Mutton; 17 November 2014.

7. Ghahrai A. Fundamental Test Process [online]. Amir Ghahrai; 08 November 2008.

URL: http://www.testingexcellence.com/fundamental-test-process-software-testing/

Accessed 06 February 2016.

8. Bath G, McKay J. The Software Test Engineer’s Handbook. Santa Barbara, CA:

Rocky Nook Inc; 2008.

9. Burnstein I. Practical Software Testing. New York, USA: Springer; 2003.

33

10. Nokia Solutions and Networks. Robot Framework User Guide Version 3.0 [online].

31 December 2015.

URL: http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html

Accessed 20 February 2016.

11. Python Software Foundation. robotframework 3.0 [online].

URL: https://pypi.python.org/pypi/robotframework

Accessed 24 February 2016.

12. Robot Framework. Selenium2Library [online]. 26 August 2015.

URL: http://robotframework.org/Selenium2Library/doc/Selenium2Library.html

Accessed 06 March 2016.

