

Lal Jung Gurung

IOS GAME DEVELOPMENT USING SPRITEKIT FRAMEWORK

WITH SWIFT PROGRAMMING LANGUAGE

IOS GAME DEVELOPMENT USING SPRITEKIT FRAMEWORK
WITH SWIFT PROGRAMMING LANGUAGE

 Lal Jung Gurung
 Bachelor’s Thesis
 Spring 2016
 Information Technology
 Oulu University of Applied Sciences

 3

ABSTRACT

Oulu University of Applied Sciences
Information Technology

Author: Lal Jung Gurung
Title of the bachelor’s thesis: iOS Game Development using SpriteKit Frame-
work with Swift Programming Language
Supervisor: Kari Laitinen
Term and year of completion: 2016 Number of pages: 42

iOS is a mobile operating system for Apple manufactured phones and tablets.
Mobile Gaming Industries are growing very fast, and compatibility with iOS is
becoming very popular among game developers. The aim of this Bachelor’s
thesis was to find the best available game development tools for iOS platform.

The 2D game named Lapland was developed using Apple’s own native frame-
work, SpriteKit. The game was written with the Swift programming language.
The combination of SpriteKit and Swift help developers to make game develop-
ment easy and fast, focusing more time on gameplay than other tedious tasks.

The result was the game running successfully on iOS devices. SpriteKit pro-
vides all the necessary tools for creating a 2D-game for the iOS platform.

Keywords: iOS, Game Development, SpriteKit, Swift Programming Language.

 4

PREFACE

During my training program in Oulu Game Lab [1], I developed a game using a

Unity game engine for android platform [2]. I became familiar with the Unity and

android platform. In this thesis, I try to find best game development tools to de-

velop a 2D-game for the iOS platform.

I would like to thank my thesis supervisor Kari Laitinen for his support and ad-

vice during my thesis. We had meeting every two weeks. I would also like to

thank my language teacher Kaija Posio. GameArt2D provides all the 2D game

art assets for the game.

May 2016, Oulu
Lal Jung Gurung

 5

CONTENTS

ABSTRACT 3	

PREFACE 4	

TABLE OF CONTENTS 5	

VOCABULARY 7	

1 INTRODUCTION 8	

2 EVALUATING IOS GAME DEVELOPMENT PLATFORM 9	

2.1 iOS Game Development Platform Introduction 9	

2.2 iOS Game Development History 9	

2.3 Comparing with Other Platform 10	

2.4 Tools, Technologies and Capabilities. 12	

2.4.1 Xcode 12	

2.4.2 Apple Game Development Framework 13	

2.4.3 Programming Language 14	

3 AN INTRODUCTION TO SPRITE KIT FRAMEWORK 15	

3.1 Description 15	

3.2 Elements of Sprite Kit 15	

3.2.1 Scene 15	

3.2.2 Nodes 15	

3.2.3 Actions 17	

3.3	Features of Sprite Kit 17	

3.3.1 Particle Emitter Editor 17	

3.3.2 Texture atlas generator 18	

3.3.3	Shaders 18	

3.3.4	Lighting and Shadows 18	

3.3.5	Simulating Physics 19	

3.3.6 The Game Loop 20	

4 INTRODUCTION TO LAPLAND 23	

4.1 Game Description 23	

4.2 Art and Sound 24	

4.3 Result 25	

4.4 Future Development 27	

 6

5 WORKING WITH SPRITE KIT FRAMEWORK 28	

5.1 Description 28	

5.2 Scenes in Sprite Kit 29	

5.3 Working with Sprites 31	

5.4 Physics in Sprite Kit 31	

5.5 Animation and Texture 33	

5.6 Controlling the Game 35	

5.7 Gameplay Kit 37	

6 CONCLUSION 39	

REFERENCES 40	

 7

VOCABULARY

TERM

MEANING

iOS

2D

3D

App

WWDC

iPAD

Mac

Apple TV

Apple Watch

GPU

OpenGL

IDE

LLVM

Lapland

Cocao Touch

iPhone Operating System

2-dimensional

3-dimensional

Application

Apple Worldwide Developers Conference

iOS-based line of tablet computer

Macintosh

A digital media player and a micro console

Smartwatch developed by Apple

Graphics Procressing Unit

Open Graphics Library

Integrated Development Environment

Low Level Virtual Machine

Game Title

User Interface framework for building software

programs to run on iOS

 8

1 INTRODUCTION

Games are the most popular app category in mobile stores like Apple App store

and Google Play. App downloaders are also most willing to pay for games. The

increase in popularity of mobile games has allowed an increased distribution on

gaming platforms such as Android, iOS, Windows Phone and other Multiplat-

form support.

The aim of this thesis was to find suitable game development tools for begin-

ners to make a 2D-game on the iOS platform. Apple’s own native game frame-

work SpriteKit was chosen to develop the game with the Swift programming lan-

guage. The decision was made on the basis of a native performance, a platform

integration, a future proof development and a developer friendliness.

This thesis is divided into four chapters; Evaluating iOS game development plat-

form, An Introduction to SpriteKit Framework, Introduction to Lapland and Work-

ing with SpriteKit Framework.

 9

2 EVALUATING IOS GAME DEVELOPMENT PLATFORM

2.1 iOS Game Development Platform Introduction

iOS has become a great platform for developers to develop games [3]. In

WWDC 2013, Apple finally understood the significance of games for their

platforms and announced Sprite Kit followed by Scene Kit and Metal in com-

ing. iOS games are better every year with the advancements in game

development frameworks. iOS 9 provides powerful gaming technologies to

build better quality games.

2.2 iOS Game Development History

In early days, game developers used OpenGL API to make 2D and 3D

graphics on the screen [4]. Foundation and CocoaTouch was on the upper

level to manipulate UIKit objects. The development features like Sprite,

partical emitters, maps, bounding boxes requires lower level structuring. In

2011, Apple introduced GLKit framework to reduces the effort provided by

earlier version of OpenGL. Third-party frameworks, such as Unity,

GameMaker, Unreal Engine, Cocos2D also made the game development

easier for the developers by keeping the design aspect of the game more

focus. Since none of these third-framework were supported by Apple, there

would be integration problem with new version of iOS. Finally, Apple

introduced SpriteKit framework for making 2D games in 2013.

 10

2.3 Comparing with Other Platform

iOS Games can be made in other third party platform engines like Unity,

Unreal, Cocos2D and so on. Third party platform engines are especially

popular among the indie developers. Third party platforms are closed

source and mostly cost money for full version.

Before the launch of SpriteKit, Cocos2D was a popular third party

framework for creating iOS games. Being Apple’s native game development

engine for iOS platform, SpriteKit has emerged as a serious challenger to

Cocos2D. Gaming Platforms are compared in Table 1.

 11

TABLE 1. Comparing SpriteKit, Cocos2D and Unity2D [5]

Platform

Pros

Cons

SpriteKit

• Native framewrok,

supported by Apple

• Built in to Xcode

• Easier for beginners

• New framework, still

more upgrades to

come.

Cocos2D

• Perfect fo casual

games

• Free and open

source

• Hardware

accelerated

graphics and good

performance

• No large commercial

entity support and

bug fixes

• APIs are somewhat

unorthodox

Unity2D

• Cross platform

• strong community of

asset and plugin

creators

• Need to pay for full

licence.

• Collaboration is

difficult

• Performance is not

great

• The engine source

code is not available.

 12

2.4 Tools, Technologies and Capabilities.

2.4.1 Xcode

The Xcode is an integrated development environment (IDE) for developing

applications for Mac, iPhone, iPad, Apple Watch, and Apple TV [6]. Xcode

is integrated with the Cocoa and Cocoa Touch frameworks. Xcode comes

with a new interactive environment called Playground. This allows devel-

opers to interactively try out content as well as seeing both the final results

and intermediate calculations, leading to some impressive possibilities.

Figure 1 shows a window showing code in action.

 FIGURE 1. A 3 panel window showing code in action.

 13

2.4.2 Apple Game Development Framework

Apple provides three game development frameworks to make games for

iOS platform [7]. They are SpriteKit, SceneKit and Metal. iOS games are

better than ever with the latest advancements in Sprite Kit, Scene Kit and

Metal. iOS 9 provides more powerful and easy to use gaming

technologies like GameplayKit, ReplayKit, and Model I/O. Table 2 shows

the differences between SpriteKit, SceneKit and Metal.

TABLE 2. Differences between SpriteKit, SceneKit and Metal.

Sprite Kit

Scene Kit

Metal

• Designed for 2D

games

• Focus on simplicity

and automation

• Fast to learn

• Can show 3D

objects from

scenekit

• Create 3D Games

• Similar style to

spritekit

• Requires higher

resources

• A great next step

from spritekit

• Full control over the

GPU to do whatever

you can imagine

• Not a beginner friendly

• Making games takes a

lot longer

• Possibly less

resources available

SpriteKit is the best framework to start learning and developing games.

After SpriteKit, we can surely start developing games with SceneKit and

Metal in future.

 14

2.4.3 Programming Language

SpriteKit games can be written in two programming languages –

Objective-C and Swift.

Objective-C is not a friendly language to learn. It has an insane amount of

history and it adds a lot of complexity to beginners. Swift is defined as a

modern language which was designed to run smoothly and be efficient

and friendly with newcomers.

Advandage of Swift Programming Language [8]:

• Error handling model and syntax improvements.

• Swift is open source.

• Swift is new programming language, combined with years of

experience building Apple platforms.

• Playgrounds make writing swift code very easy.

• Swift was designed to be safe.

• Swift is very fast. It uses Using high-performance LLVM compiler.

• Interoperability with Objective-C.

 15

3 INTRODUCTION TO SPRITE KIT FRAMEWORK

3.1 Description

Sprite Kit is a framework for developing 2D games for iOS devices [9]. It

is easy to learn, powerful and fully supported by Apple, which makes it

more reliable to use than third-party game development engines. As

Sprite Kit is a native framework of iOS, it has an in-build support for

using the particle effects, texture effects, and physics simulations. The

performance of Sprite Kit is better than, that of other third-party

frameworks or engines.

3.2 Elements of SpriteKit

SpriteKit game consists of many scenes which are made of nodes, and

the functioning of nodes in a scene is determined by actions.

3.2.1 Scene

A level in a game is called as a Scene [10]. It holds all the contents, i.e.

nodes and sprites that are to be rendered. A scene in Sprite Kit is

represented by SKScene objects [11].

3.2.1 Nodes

The basic building blocks for all the content in a scene is called Node.

The SKNode acts like a blueprint for all other nodes. The SKNode have

attributes like position, rotation, scale and alpha. The Figure 2 shows the

properties of SKNode and the link with other nodes.

 16

FIGURE 2. SKNode properties.

The SKNode class does not draw anything on a scene by itself, but applies

its properties to its descendants. There are node subclasses as follows [12]:

• SKSpriteNode: This can be used for drawing textured sprites and

playing video content.

• SK3DNode: This can be used for rendering a SceneKit scene as a

2D textured image.

• SKVideoNode: This can be used for playing video content.

• SKLabelNode: This can be used for rendering a text string.

• SKShapeNode: This can be used for rendering a shape, based on a

core graphics path.

• SKEmitterNode: This can be used for creating and rendering

particles.

• SKCropNode: This can be used for cropping child nodes using a

mask.

• SKEffectNode: This can be used for applying a core image filter to its

child node.

• SKLightNode: This can be used for applying lighting and shadows to

a scene.

• SKFieldNode: This can be used for applying physics effects to a

specific portion of the scene.

 17

3.2.3 Actions

In SpriteKit, Action is used to animate scenes. An action is an object

which is used to change the structure of the node in the scene. All

actions are implemented by the SKAction class. The most common

things that an action can do are as follows [13]:

• Changing a node’s position and orientation.

• Changing a node’s size or scaling properties.

• Changing a node’s visibility or making it translucent.

• Changing a sprite node’s contents so that it animates through

a series of textures.

• Colorizing a sprite node.

• Playing simple sounds.

• Removing a node from the node tree.

• Calling a block.

• Invoking a selector on an object.

3.3 Features of Sprite Kit

SpriteKit provides many features to facilitate the development of a game.

These features can be used for enhancing the experience as well as the

performance of the game.

3.3.1 Particle Emitter Editor

Particle emitters are used to create special effects like rain, fire, snow

that change over the time [14]. Emitters controls the position and motion

of the particle. The following emitter items can be controlled in SpriteKit:

• The location and duration of the particle.
• The amount of particles.
• The size and color of the particle, throughout its lifetime.
• The direction and rotation of the particle from its origin point.

 18

3.3.2 Texture Atlas Generator

Texture atlas is a large image which consists of atlases. Texture

atlas is used to enhance the performance of the game [15]. The

performance is improved by drawing multiple mages with a single

draw call. While building, the compiler search for the name.atlas

format files in the folder and all the images within those folders are

combined to form a large image files.Figure 3 shows the Artwork

folder.

FIGURE 3. Artwork folder

3.3.3 Shaders

Shaders are used to produce a variety of special effects. They

calculate rendering effects on a graphic hardware with a high degree

of flexibility. In Sprite Kit, shaders are represented by the

SKShaderNode class object [16].

3.3.4 Lighting and Shadows

Lighting and shaders effects are produced using the SKLightNode

class object [17]. The SKLightNode object can:

• spread a lighting effect at any desirable position on the scene

• add lightning in any sprite

• support colors and shadows

 19

3.3.5 Simulating Physics

In order to imitate the physics, we need to add physics bodies to

the scenes [18]. A physics body property uses the SKPhysicsBody

class object. In the life cycle of the frame, the didSimulatePhysics

function is called just after actions are evaluated. The work of this

function is to calculate the physical properties, such as gravity,

velocity, friction, restitution, collision. There are three kinds of

physics bodies. They are Dynamic, Static and Edge.

TABLE 3. Differences between physics bodies.

 Dynamic Volume Static Volume Edge

• Physical objects

with volume and

mass which can be

affected by forces

and collisions.

• It is unaffected by

forces or

collisions.

• It is a static

volume-less

body.

• It is used to move

and collide physics

bodies.

• It can be used to

take up space in

the scene.

• It can be used to

represent the

boundries in the

scene.

 20

Figure 4 shows the standard shapes provided by SpriteKit.

FIGURE 4. Volume-based and Edge-based physics bodies

3.3.6 The Game Loop

The game loop is a important part of every game. The game loop

allows the game to run efficiently. Figure 5 shows the rendering loop,

which is used by SpriteKit.

 21

FIGURE 5. The Game Loop

The following game loop steps are explained in SpriteKit Programming

Guide provided by Apple [19]:

1. The update function is the place to implement in-game simulation like

running nodes, input handling, artificial intelligence, game scripting,

and other game logic.

2. The scene processes actions on all the nodes in the tree. It finds all

running actions and applies those changes to the tree.

3. The scene’s didEvaluateActions method is called after all actions for

the frame have been processed.

4. The scene simulates physics on nodes in the tree that have physics

bodies.

5. The scene’s didSimulatePhysics method is called after all physics for

the frame has been simulated.

6. The scene applies any contraints associated with nodes in the scene.

Contraints are used to establish relationships in the scene.

7. The scene calls its didApplyConstraints method.

 22

8. The scene calls its didFinishUpdate method. This is the last chance

to make changes to the scene.

9. Finally, SKView renders the scene. The frame is complete and it

continues 60 times per second.

 23

4 INTRODUCTION TO LAPLAND

4.1 Game Description

Lapland is a beautiful looking platformer game in a cold and icy winter

tileset. The free running player task is to jump between suspended

platforms and obstacles to advance the game. The player also has to collect

gems to unlock the next level.

FIGURE 6. Start Game

 24

4.2 Art and Sound

Art and sound are legally downloaded and purchased from gameart2d [20].

The art and sound are under public domain [21]. We can use them for

personal and commercial use.

FIGURE 7. Game's background, tiles and objects

 25

FIGURE 8. Female and Male Characters

4.3 Result

The end result is a landscape mode arcade game made with SpriteKit and

Swift 2. The game is sucessfully tested and running in iPad air and iPhone

5s. The gameplay trailer can be found in youTube -

https://www.youtube.com/watch?v=za0bcRH-DZ0

 26

FIGURE 9. Game running in iPad Air

FIGURE 10. Game running in iPhone 5s

 27

4.4 Future Development

The game demo was created. The game currently consists of two complete

levels. More levels, enemy characters, tiles and objects in the game will be

added in future. Also, a new interested game developer mainly an artist and

a programmer will be recruited.

FIGURE 11. Level Select Screen

 28

5 WORKING WITH SPRITEKIT FRAMEWORK

5.1 Description

With the release of iOS 7.0, Apple introduced its own native 2D game

framework called SpriteKit. SpriteKit is a great 2D game engine which has

e.g. support for sprite, animations, filters, masking, physics and many more.

The Xcode IDE makes it easier for everyone to build apps and run them

directly on their Apple devices. The Swift programming language is

becoming faster and easier to write with every new update. Apple also

provides the SpriteKit Programming Guide [22] and the official Apple

developer documentation for the developers.

 29

FIGURE 12. Workspace Window Overview in Xcode 7.2

5.2 Scenes in SpriteKit

Scene is a the content that is rendered by SKView objects. The Scene is a

root node which runs the action and simulates physics. We need to present

it from SKView objects to display a scene. In Figure 5 i.e. Game loop, each

frame is processed by scene.

In the game, different scenes are created for each interface. For example,

creating a scene for the main menu and other scene for the gameplay.

Figure 13 shows the different scenes file in the scene folder.

 30

FIGURE 13. Scenes in the project

A transition is used to perform animation while shifting from one scene to

another. An object called SKTransition [23] is used to perform this action.

Scenes are the basic building blocks of the game so the transitioning from

one scene to another is necessary in the game.

For example, the GameScene.swift file of the project looks as the following:

 31

The MainMenu.swift file begins in the following way:

5.3 Working with Sprites

Sprites are the basic building blocks used to create the majority of our

scene’s content. Sprites are represented by SKSpriteNode [24] objects.

The SKSpriteNode class is a root node class which is used to draw

texture images with many customizations.

The following is an example of creating a textured sprite.

 5.4 Physics in Sprite Kit

SKPhysicsBody [25] object is used to add physics body in the game. The

properties like volume-based, egde-based, force and shape are defined in

each class. The following is an example of using a SKPhysicsBody object.

 32

The following is the list of physical properties of the physics body [26]:

SpriteKit uses two kinds of interactions between physics bodies, Contact

and Collision. Contact is used to find out if two bodies are in contact or not.

 33

Whereas, Collision is used to avoid two objects from hitting each other. The

following are the list of collision control properties [27]:

5.5 Animation and Texture

All the images in the same atlas folder are animated multiple times to

make animation. Texture atlases is used to collect all the images

together. The SKTexture [28] object is attached with the sprites and

loads all the texture data when sprite node is in the scene. Some

texture data used in the game is listed in Figure 14.

 34

FIGURE 14. Texture atlas in Artwork folder

The following is an example of animating a texture:

Also, a parallax scrolling background is added to slower the movement

of background images than foreground images. Parallax scrolling is

especially used in 2D game to make a smooth dynamic game

environment [29].

 35

The following swift class takes care of parallax scrolling:

5.6 Controlling the Game

The controls in SpriteKit can be implemented by using methods like

Tapping, Gesture recognitions and Moving sprites using the

accelerometer. In this game Tapping methods were used. In them the

character will jump when the screen is tapped.

There are four override methods for handling touch events with a

UIResponder class [30], which is part of UIKit provided by Apple. They

are:

 36

To implement an action when someone taps on a node on the scene,

first the tapped location will be got on the scene. And if the tapped loca-

tion is within the node’s co-ordinates axis points, then the actions for that

tap can be defined. This is implemented in the touchesBegan() method.

The tapping methods look as the following:

 37

5.7 GameplayKit

In iOS9, Apple introduced a new framework called GameplayKit.

GameplayKit provides tools and technologies for developing complex rule-

based games. As Gameplaykit is a high level game engine technology, it

can be combined with SpriteKit, SceneKit and other third party game engine

too. The following example shows how to import GamePlayKit.

Figure 15 shows the seven core areas of GameplayKit which can be used in

the game.

 38

FIGURE 15. Seven core areas of GameplayKit [31]

 39

7 CONCLUSION

The main advantage of SpriteKit is that it is build into iOS. There is no need

to download any other third-party libraries or depend on external resources

to develop 2D games. It is also written by Apple, so we can be sure that it

will be well supported and updated moving forward in future. I think it is the

best game engine, especially for beginners who want to develop 2D games.

With Sprite Kit, we are going to be locked into the iOS ecosystem. If we

want to develop a for cross-platform, Sprite Kit is not the right one.

 40

REFERENCES

1. Oulu Game Lab. Date of retrieval 1.4.2016
http://www.oulugamelab.net/

2. Android Game Demo. Date of retrieval 20.4.2016

https://www.youtube.com/watch?v=8e--S3gsCGI

3. Apple Platform. Date of retrieval 3.4.201

https://developer.apple.com/platforms/

4. iOS Game Development Essentials. By Chuck Gaffney. Date of retrieval

4.4.2016

https://books.google.fi/books?id=AvWoCwAAQBAJ&pg=PA64&lpg=PA6

4&dq=ios+game+development+history&source=bl&ots=PqWbWT90vV&

sig=4GmPzu4DPfeamn19DcUyJgkxHno&hl=en&sa=X&redir_esc=y#v=o

nepage&q=ios%20game%20development%20history&f=false

5. Cocos2D VS SpriteKit vs Unity 2D. Date of retrieval 5.4.2016

https://www.raywenderlich.com/67585/cocos2d-vs-sprite-kit-vs-unity-2d-

tech-talk-video

6. Apple Developer Xcode. Date of retrieval 6.4.2016

https://developer.apple.com/xcode/

7. Developing for iOS. Date of retrieval 6.4.2016

https://developer.apple.com/ios/

8. Swift. Date of retrieval 6.4.2016

https://developer.apple.com/swift/

9. Sprite Kit. Date of retrieval 8.4.2016

https://developer.apple.com/spritekit/

10. Building Your Scene. Date of retrieval 9.4.2016

https://developer.apple.com/library/ios/documentation/GraphicsAnimation

/Conceptual/SpriteKit_PG/Nodes/Nodes.html -

//apple_ref/doc/uid/TP40013043-CH3-SW1

11. SKScene. Date of retrieval 9.4.2016

https://developer.apple.com/library/ios/documentation/SpriteKit/Referenc

e/SKScene_Ref/index.html#//apple_ref/occ/cl/SKScene

12. SKNode. Date of retrieval 10.4.2016

 41

https://developer.apple.com/library/ios/documentation/SpriteKit/Referenc

e/SKNode_Ref/index.html - //apple_ref/occ/cl/SKNode

13. SKAction. Date of retrieval 9.4.2016

https://developer.apple.com/library/ios/documentation/SpriteKit/Referenc

e/SKAction_Ref/index.html - //apple_ref/occ/cl/SKAction

14. Particle Emitter. Date of retrieval 10.4.2016

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/x

code_guide-particle_emitter/Introduction/Introduction.html

15. Texture Atlases. Date of retrieval 11.4.2016

https://developer.apple.com/library/ios/recipes/xcode_help-

texture_atlas/AboutTextureAtlases/AboutTextureAtlases.html

16. SKShader. Date of retrieval 12.4.2016

https://developer.apple.com/library/ios/documentation/SpriteKit/Referenc

e/SKShader_Ref/

17. SKLightNode. Date of retrieval 13.4.2016

https://developer.apple.com/library/ios/documentation/SpriteKit/Referenc

e/SKLightNode_Ref/

18. Simulating Physics. Date of retrieval 14.4.2016

https://developer.apple.com/library/ios/documentation/GraphicsAnimation

/Conceptual/SpriteKit_PG/Physics/Physics.html#//apple_ref/doc/uid/TP4

0013043-CH6-SW1

19. Advanced Scene Processing. Date of retrrieval 14.4.2016

https://developer.apple.com/library/ios/documentation/GraphicsAnimation

/Conceptual/SpriteKit_PG/Actions/Actions.html -

//apple_ref/doc/uid/TP40013043-CH4-SW1

20. Game Art 2D. Date of retrieval 14.4.2016

http://www.gameart2d.com/

21. Game Art 2D item license. Date of retrieval 15.4.2016

http://www.gameart2d.com/license.html

22. SpriteKit Programming Guide. Date of retrieval 16.4.2016

https://developer.apple.com/library/ios/documentation/GraphicsAnimation

/Conceptual/SpriteKit_PG/Introduction/Introduction.html

23. SKTransition. Date of retrieval 16.4.2016

 42

https://developer.apple.com/library/ios/documentation/SpriteKit/Referenc

e/SKTransition_Ref/index.html - //apple_ref/occ/cl/SKTransition

24. SKSpriteNode. Date of retrieval 18.4.2016

https://developer.apple.com/library/ios/documentation/SpriteKit/Referenc

e/SKSpriteNode_Ref/index.html - //apple_ref/occ/cl/SKSpriteNode

25. SKPhysicsBody. Date of retrieval 19.4.2016

https://developer.apple.com/library/ios/documentation/SpriteKit/Referenc

e/SKPhysicsBody_Ref/index.html - //apple_ref/occ/cl/SKPhysicsBody

26. Defining a Body’s Physical Properties. Date of retrieval 20.4.2016

https://developer.apple.com/library/ios/documentation/SpriteKit/Referenc

e/SKPhysicsBody_Ref/index.html - //apple_ref/doc/uid/TP40013032-

CH1-SW35

27. Working with Collisions and Contacts. Date of retrieval 21.4.2016

https://developer.apple.com/library/ios/documentation/SpriteKit/Referenc

e/SKPhysicsBody_Ref/index.html - //apple_ref/doc/uid/TP40013032-

CH1-SW22

28. SKTexture. Date of retrieval 22.4.2016

https://developer.apple.com/library/ios/documentation/SpriteKit/Referenc

e/SKTexture_Ref/index.html - //apple_ref/occ/cl/SKTexture

29. Parallax Scrolling in SpriteKit. Date of retrieval 23.4.2016

https://digitalleaves.com/blog/2013/12/parallax-scrolling-in-spritekit-

made-easy/

30. UIResponder. Date of retrieval 24.4.2016

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UI

Responder_Class/

31. GameplayKit. Date of retrieval 25.4.2016

https://developer.apple.com/library/ios/documentation/General/Concep-

tual/GameplayKit_Guide/

