
CONSTRUCTING ALMOST ABELIAN SQUARE-FREE WORDS ON THREE
LETTERS IN C LANGUAGE

Hailu Nahom

Thesis
Lapland University of Applied Sciences

Information Technology
Bachelor of Engineering

2016

2

Author Nahom Hailu
Supervisor Veikko Keränen
Title of Thesis Constructing Almost Abelian Square-Free Words on

Three Letters in C Language
Number of pages 32 + 3

In this thesis, the process for extending almost abelian square-free words using
the C program and the method used to implement parallel computing for faster
execution time was reported. Moreover the method in checking for almost abelian
square-freeness of a word was discussed as well. However main concern for this
thesis was the programming task and optimizing the program finally obtained.
The research final program does not make use of parallel computing. However
the method to implement parallel computing for this program was discussed in
hope to be used for future researches and improvements.

This research was supervised by principal lecturer of mathematics, Veikko
Keränen. Material for this research were based on his previous research papers,
programming books and websites such as tutorialpoint.com that facilitated the
implementation of the program.

Through this research a program for extending almost abelian square-free words
using suffix extension, i.e., extending a word by adding a letter at the suffix, were
achieved. Additionally the implementation for parallel computing was discussed.
Almost abelian square-free words were found for words of length over one
thousand and three hundred. This result can be improved by making use of
parallel computing, with the implementation of threads.

Key words: abelian square-free, C program, parallel computing,
threads.

3

CONTENT

1. INTRODUCTION ...5

2. EXTENDING A WORD..7

2.1 Abelian Square Test ...7

2.2 Mathematical Strategies Used..9

2.3 Avoiding a Set of Vectors ...9

3. ALOGORITHM IN USE ...11

4. COMPUTING ANALYSIS OF THE PROGRAM ..14

5. PARALLEL COMPUTING ...16

6. THREADS OF PTHREAD LIBRARY...19

6.1 Design for Threaded Programs ..19

6.2 Thread Routines ...20

6.3 Thread Management ..21

7. THREADS SYNCHRONIZATION AND LIMITS OF THREADS23

7.1 Thread Synchronization..23

7.2 Condition Variables ..28

7.3 Thread Limits ..28

8. CONCLUSION...29

BIBLIOGRAPHY ..30

APPENDICES..31

4

LIST OF FIGURES

Figure 1. Example of the Extension Process for a Word9

Figure 2. Main Component of the Program ...11

Figure 3. A Representation of a Double Linked List ..12

Figure 4. The abelianSquareAvoidance header file...13

Figure 5. Graph of Memory Allocation in Function of Time14

Figure 6. A Representation of Parallel Computing ..16

Figure 7. A Representation of Serial Computing ...16

Figure 8. Example Code of a Threaded Program..21

Figure 9. Output of the Program in Figure 7 ..21

Figure 10. Example for Joining Threads..23

Figure 11. Program without the Use of Synchronization25

Figure 12. Program Using Mutex...26

5

 SYMBOLS AND ABBREVIATIONS

Alphabet a set of symbols called letters (Keränen 2009, 3894)

Word a sequence of letters belonging to the alphabet

(Keränen 2009, 3894)

Parikh vector a vector indicating the number occurrences of a letter

in a word (Keränen 2009, 3894)

Data structure a method of organizing data to use it efficiently for

programming (Tutorials Point 2016)

Memory leak a class of bug where a program does not release

memory slots that are no longer needed (Microsoft

2016)

Flow of control the order how instructions, function calls, and

statement are evaluated or executed when the program

is running (Oxford University Press 2016)

Overhead resources that are not used directly to obtain the end

result but are required by the technology or method

used (TechTarget 2016)

API Application program interface, is a set of routines

protocols and tools used for building a software

program (QuinStreet Inc 2016)

6

1. INTRODUCTION

In 1961 Paul Erdös raised the question whether it is possible to avoid abelian

squares for arbitrarily long words. This question in the case of four letter

alphabets was open until 1992 when Veikko Keränen presented an abelian

square-free endomorphism. An abelian square word is by definition a non-empty

word uv, where u and v are permutations (anagrams) of each other. For instance,

word = abcbac is an abelian square word, since abc and bac are anagrams of

each other. The word abbbcbabca is also another example of an abelian square

word, here the end of the word, cbabca is composed of cba and bca that are

anagrams of each other. Anyhow in this research aa, bb, cc, aaa, bbb, ccc have

to be allowed when constructing almost abelian square-free words. Hence the

use of the term almost abelian square-free instead of abelian square-free.

(Keränen 2009, 3893.)

The goal of this research is to construct long almost abelian square-free words

over three letter alphabet. To find these long words a program must be

developed. This thesis will discuss and explain the method used for developing

this program. It will primarily focus on the applied and development aspects of

the program instead of the theoretical concept of abelian square avoidance.

There are three main parts in this thesis. At first it will introduce the almost abelian

square-freeness test and the method used for extending words, then it will

discuss and explain concepts of parallel computing and finally it will show ways

of implementing parallel computing in C language with the use of Portable

Operating System Interface (POSIX).

7

2. EXTENDING A WORD

2.1 Abelian Square-Freeness Test

This research aimed to find arbitrarily long almost abelian square-free words over

three letter alphabet. In order to achieve the above goal a c program was

developed. This program is supposed print on a file each time it finds a longer

almost abelian square-free word. Then the programme is shared over github.com

and Veikko Keränen computes it with a quite powerful computer available to him.

A powerful computer is required when running the program, since it requires a

larger memory beyond the capacity of a normal personal computer. The run time

is mostly spent in checking for abelian square-freeness in the word. The test

method used to check for abelian square freeness is elaborated next.

The method used, to check for abelian square freeness is a suffix test. A suffix

test is to check for an abelian square freeness by going backward, from the last

letter of the word. The testing is continued till the first letter of the word, however

the test is stopped if an abelian square has been detected before reaching the

first letter.

To perform a suffix test one must create two Parikh vectors. And then it should

be checked whether the difference of the two vectors is a zero vector. However

in this research abelian square words aa, bb, cc, aaa, bbb, ccc are allowed The

example below illustrates this test. (Keränen 2016.)

Let u and v be Parikh vectors for the word: abababb

Phase 1:) 𝑢 = (1,1,0), 𝑣 = (0,2,0

Phase 2: = (1,2,0), = (1,2,0) 𝑢 𝑣

Phase 3: = (1,2,0), = (1,3,0)𝑢 𝑣

To check for abelian square-freeness of a word one needs to test if vector () 𝑣 – 𝑢

or are zero vectors. If true then it has an abelian square. This means at (𝑢 ‒ 𝑣)

each phase () or should be calculated. Note that it does not matter if 𝑣 – 𝑢 (𝑢 ‒ 𝑣)

one check only for in this case since the target result is zero vector.(𝑢 ‒ 𝑣)

8

phase1: = (1, -1, 0) (𝑢 ‒ 𝑣)

phase2: = (0, 0, 0) (𝑢 ‒ 𝑣)

At phase 2 an abelian square is detected hence the test is terminated.

On the other hand a prefix test, does not start from the last letter as a suffix test

does but instead it starts from the first letter. However beside the starting point

and the direction to which Parikh vectors assign their value, both test use the

same method to check for abelian square-freeness. (Keränen 2016.)

Once the word is tested and accepted, next task is to extend the word. This task

may seem simple however a strategy is required in order to obtain a longer almost

abelian square-free word, as fast as possible. But also in terms of memory use

the program must be efficient since it requires high performance from the

computer.

2.2 Mathematical Strategies Used

The method used in this research is to extend a word, by adding a suffix to it.

That is, the extension take place only at the end of the word, the beginning of the

word stays the same. Suffix test is faster than a prefix test for this case, since the

extension take place at the end of the word, a suffix test identifies if the added

new letter has created an abelian square word before the prefix test because it

can find an abelian square without testing the whole word.

According to Veikko, the chosen method to extend a word defined over the

alphabet, abc, is to insert the letter a first. Then if the above create a word that is

not almost abelian square-free word, a is deleted and replaced by b if b also result

a non-almost abelian square-free word, it is replaced by c. But if c causes a non-

almost abelian square-free word, then the last two letters of the word are deleted.

In case where the last block letters are all of letter c then they will be deleted until

the next non c letter.

9

Figure 1. Example of the Extension Process for a Word

As illustrated in Figure 1, the words with an invalid suffix are put to backtrack to

then obtain an almost abelian square-free word.

2.3 Avoiding a Set of Vectors

After the user have given the base word that he would like to extend, the program

will ask if he would like to avoid some set of vectors. This is an optional feature

of the program, executed only if the user gives the vectors to be avoided. Once

an almost abelian square-free word is obtained, the program will check whether

the vector difference and are not found inside the given set. 𝑢 ‒ 𝑣 𝑣 – 𝑢

Where vector and are all possible combination of two Parikh vectors found in 𝑢 𝑣

the concern word. If the program indeed finds a match inside the set, the word is

rejected hence the program will return to backtracking. However if the user does

not want to give any vectors then the program will proceed without executing the

function vectors_to_avoid() . For instance, if one has a word = abcb, and a set of

vectors given by the user is, Set = { (0,2,1), (0,-1,1) }. The vectors and 𝑢 𝑣

changes their value as described in the table below. Hence the program starts to

check if and are not in the set as the following, at phase1 = (0, 1, 𝑢 ‒ 𝑣 𝑣 – 𝑢 𝑢 ‒ 𝑣

0) and = (0,-1, 0). Both vectors and do not belong to the set hence 𝑣 – 𝑢 𝑢 ‒ 𝑣 𝑣 – 𝑢

it continues to the next phase, phase 2. This process is repeated untill all possible

combinations are checked or until a match is found in the set for or .𝑢 ‒ 𝑣 𝑣 – 𝑢

Table 1. Values of vector and at the beginning phases.𝑢 𝑣

Phase 𝒖 𝒗

10

1 (0,1,0) (0,0,0)

2 (0,1,1) (0,0,0)

3 (0,2,1) (0,0,0)

4 (1,2,1) (0,0,0)

5 (0,1,0) (0,1,0)

6 (0,1,1) (0,1,0)

11

3. ALOGORITHM IN USE

An algorithm in this research is implemented in a software program, to extend

and print long almost abelian square-free words. The software program

developed is in C programming language. C has been selected since this

language allows faster computing compare to high level languages such as Java

or C#. C programs runs as a native code without using a virtual machine.

Additionally, C gives more memory access and control over the programmer

compared to other languages. This means, dynamically programming for

instance could be done more efficiently since the programmer can free and

allocate memory space at any time. Secondly the thesis candidate is more

comfortable in programming in C. Moreover, the thesis advisor suggested to

develop a program written in C.

The program is composed of a main function and a component

abelianSquareAvoidance. The main function is simply few lines of codes

abstracting the process of the program. The figure 2 shows the implementation

of this main component. The program begins by asking the user to enter the

number of letters in the word that he plans to extend. Then after saving the words

length, the program asks the user to enter the word to be extended. Afterwards,

the program checks almost abelian square-freeness in the input word, if it the

word is almost abelian square-free the extension begins, if the input word

however is not an almost abelian square-free word, the program will inform the

user immediately and refrains from starting the extension process.

Figure 2. Main Component of the Program

12

As illustrated in Figure 2 user is required to give base word length. This function

is necessary, although it is possible to use the built in function 'scanf' to read the

input word without requiring the user to give the word's length. However, getting

the number of letters from the user is preferable than scanning an input word

without a length limit. Not fixing a length will cause the program to fix the length

automatically. When the length exceeds the fixed amount, scanf will store the

remaining characters on another memory slot which may already be in use. This

leads to an unexpected behaviour of the program or memory leeks. (Washington

State University.)

To save or store the words the program uses a double linked list data structure.

A linked list is a sequence of data structures connected by links. These data

structures are often referred as nodes. Nodes carry a data but also a link to the

next node. A linked list is called a double linked list, when nodes of the linked list

are connected to the previous and next node. This allows to navigate backward

and forward through the linked list. (Tutorials Point 2016.)

 A linked list is the best method for storing the word since the size of the word is

changing dynamically. The word gets longer as we extend it and also shrink back,

since it deletes the last letter when the word is not almost abelian square-free.

Each node of the linked list contains one letter and one link to the next node and

another one to the previous node. Figure 3 illustrates this concept.

Figure 3. A Representation of a Double Linked List

13

As seen in Figure 1 the word lengths changes during the computing of the

program. And a double linked list allows to go through backward and forward in

the list. During the extending process it is necessary to go forward from previous

node to the next node. And when checking for almost abelian square-freeness of

a word, it is necessary to go backwards from a node to the previous node. Each

node contains one letter of the word and a key that allows it to be identified or

distinguished from the other nodes. Identifying the nodes help to track the node

and see the letter saved in it. This is useful when checking if the program is

repeating the same path of extension, resulting to a dead end.

After setting the length for the input word, programs reads and save each of the

word letters in a node of the double linked list. Figure 4 shows the tasks realised

in abelianSquareAvoidance component.

Figure 4. The abelianSquareAvoidance header file

Once the program executes the task at hand it is best to think of optimizing it. In

this case the main concerns are the speed and the memory use. It is important

to have a faster run time in order to obtain very long words in a shorter time

interval. The memory use is also a concern as it may limit the machine from

executing the program when the process demands memory space beyond the

machine capacity. Before leaping to the optimization of the program it is good

practice to analyze it first.

14

4. COMPUTING ANALYSIS OF THE PROGRAM

The Program profiling allows the developer to understand the program behaviour

at run time. Profiling is used in this research to measure the space and time

complexity. That is the memory space and the time used by the program are

monitored. Profiling helps to optimize the program since the developer will

discover the most important areas that needs to be optimized. For instance if a

program calls a function only once during the run time and ends the function with

a relatively small amount of time then, it is not necessary to focus on optimizing

that function. Program profiling guides the developer where to optimize in order

to produce a faster version of the program. (The MathWorks Inc 2016.)

Figure 5. Graph of Memory Allocation in Function of Time

The Figure 5 shows the change in memory allocation by the program and memory

leaks in function of time. The research program starts running twenty second after

the profiling began.

This graph was obtained by the Mac profiler called Instruments. The profiler

used as seen in this graph, is a memory leak template profiler. This profiler is

focussed at monitoring the memory allocation and leaks. This clearly shows

that, there are no memory leaks occurring when the program is running.

As illustrated in this graph the memory allocation size grows when the program

is running. The memory allocation draws an increasing straight line. Therefore it

can be defined as a linear function, where is the time, is the 𝑓 (𝑡) = 𝑎 ∗ 𝑆 𝑡 𝑆

allocated memory size and is a coefficient. Hence it can be deduced that 𝑎

allocated memory is directly proportional to time in this program.

15

The program may be optimised by extending with parallel computing method, this

method will be elaborated later in this thesis. In order to implement parallel

computing in C, one needs to distribute the programming tasks into threads.

Threads allows the program to execute multiple tasks with greater speed. As a

result the extension of the words would take less time. Additionally some of the

program loops may be merged or replaced with a recursive functions but one

must remember to keep the source code readable since program features may

be added or modified by other research participants as long as this research topic

is open.

16

5. PARALLEL COMPUTING

6.1 Parallel Computing and Serial Computing

Parallel computing is the alternative of serial computing. In serial computing a

problem is solved by executing a series of instructions in a sequential manner.

On the other hand, parallel computing is a simultaneous use of multiple compute

resources to solve a computational problem. (Barney 2016a.)

Figure 6. A Representation of Parallel Computing

Figure 7. A Representation of Serial Computing

17

In order to use parallel computing method efficiently the application or program

must be designed well. The first task is to define the problem to be solved by the

program then, one must divide the problem into parts that can be solved

simultaneously as illustrated in Figure 6. Only then the instructions should be

written for the specific problem part. Once implemented in the program, these

series of instruction will be functions that will be executed on a different

processor. (Barney 2016a.)

 6.2 Implementation of Parallel Computing In A C Program

After the design is done the following step is the implementation. One of the tools

used to implement parallel computing in C and C++, is the threads model. The

IEEE POSIX 1003.1c standard specified a programming interface allowing to use

threads in C. In this application interface, a program can have multiple concurrent

threads, which are simply running tasks of the program. Each thread run

independently to one another however, they all share memory space, hence it is

possible for threads to communicate and share information. A thread has a

lifetime, it can be created and killed in the main program. Threads can be

synchronized as well. (Barney 2016b.)

Understanding UNIX process will leads one to better understand how threads

function. The operating system creates a process, when the creation of a process

occurs the following requires already some amount of overhead. And the process

itself contain information about the program execution state and the program

resource. Such information includes, Process ID, Environment, working directory,

registers and File description. Threads exist inside a process, however they are

able to run independently and can also be scheduled by the operating system.

This is due to the fact that threads keep an independent flow of control and

duplicate only the most important resources allowing them to continue existing

as an executable code. To have an independent flow of control threads maintain

their own stack pointer, registers, scheduling properties such as policy or

priorities, a set of pending or blocked signals and their own specific data given by

18

the developer. As discussed earlier threads are created inside the process when

most of the overhead is already accomplished, hence they are lightweight that is

they take relatively small amount of space and operate faster when executed.

(Barney 2016b.)

In order to start using POSIX threads or Pthreads in C one must include the

header file Pthread.h. POSIX threads is the standard interface for the c

programming language although other library may exist according to the

hardware vendor POSIX library allows to use threads for all IEEE standard

hardware. Sometimes some hardware may offer their own thread library but they

would also offer Pthreads. (Barney 2016b.)

Threaded application have some noticeable advantages over non threaded

applications. For instance, in the case where a program has a section performing

a long Input or output operation. The other task are not required to wait until the

above operation ends. Instead a threaded application allows an overlap of Input

or output process with a central processing unit work (CPU work) other thread

may be used to perform the central processing unit work. Another advantage of

threaded applications is the priority or real time scheduling feature, with it

important tasks can interrupt other task that are of lower importance. This allow

the developer a chance to prioritize running tasks which benefits him when the

program is exhausted of resource such as time or memory space. Additionally

threaded applications allow an asynchronous event handling meaning some

tasks can be executed concurrently when the program is running. One most

common application of this feature is used in the process of a web server. It can

transfer previously received data while receiving and managing new data arriving.

(Barney 2016b.)

19

6. THREADS OF PTHREAD LIBRARY

6.1 Design for Threaded Programs

The design of threaded programs consider similar principles as of general parallel

computing. For a program to use threads efficiently, it must be organized into

separated and independent task, able to run simultaneously. To identify a task

that is a good candidate to be executed with a thread. One needs to check if the

task uses separate resource from others, if its execution is dependant of other

tasks or if others task are dependant of the task's result. At the designing phase

one needs to limit the need for synchronization between threads and maximize

concurrent running. (Barney, 2016b.)

Threaded programs have some common design models. One of these models is

called the manager/worker model also known as the boss/worker model. In this

model the manager thread creates all worker threads and assign a task to each

of them. The manager thread handles inputs and according to the input it passes

tasks to worker threads. This models comes commonly in two forms static work

pool and dynamic work pool. The use of work pools is favourable when the

program has a large number of short tasks to be done. Thread work pools are

group of threads pre-instantiated and ready to be given work. This method

prevents overhead caused by creating a large amount of new thread. Instead it

assign task to existing threads on idle state without a need of creating a new one.

Static and Dynamic work pool main difference is that static work pool size does

not change, the number of threads stays the same however in dynamic work pool

it is possible to destroy and create threads.(Buttlar, Farrell & Nichols 1996, 31-

37.)

Pipeline is another design model common for threaded programs. This model is

used when there is a long stream of input, many series of sub operations or

stages in which each input is processed and when these sub operations are able

to process different type of input unit. The best analogy that describes this model

20

is the car assembly line. Each car goes through different series of stages before

it is ready. Even though these stages are in series but it is able to work on many

cars at different stages concurrently. The assembly line does need to complete

assembling the first car it took, to start assembling another car. Instead it takes

another car while the previous one is in some stage of completion. Similarly in

the Pipeline model a unit of input pass through different stages, at each stage

work is performed on the input unit by a thread. Each thread process and prepare

the input unit for the next stage. Multiple inputs at different stages can be

processed simultaneously. (Buttlar, Nichols & Farrell 1996, 31-37.)

Peer design model, initially has a thread creating all other worker threads,

however this thread does not delegate task, instead it participate in the work. All

threads may process request from one input stream shared among them or each

of them may have their own input stream. Nevertheless they are all equally

responsible of the process.

(Buttlar, Farrell & Nichols 1996, 31-37.)

6.2 Thread Routines

The Ptherad API present different functionalities, all of them can be put into a

group of four subroutines. At first there is the thread management routine this

routine includes functions such as creating, detaching and joining threads. Then

we have the Mutexes routine, mutexe is the short form of mutual exclusion. This

routine has functionality such as creating, destroying, locking and unlocking

mutexes. Mutex are used for synchronizing threads. Shared resource among

threads will not be consistent since one thread might modify before the second

one get to access it, mutex solves this issues by limiting access of a data at one

thread at a time. Thirdly there is the subroutine of condition and variables this

subroutine deals with communication between threads sharing the same mutex.

Condition variables are mainly a signalling mechanism associated with mutexes.

Finally there is the subroutine of synchronization this encompass routine manage

21

the reading or writing of mutexes and barriers. Where a barrier is a point in the

program that threads stop and wait for every other thread to reach that point.

Once all threads reach the barrier they can then continue executing the rest of

the code. (Barney 2016b.)

6.3 Thread Management

The program has already a single thread which is the main thread. To create

additional thread and execute it, one must use the syntax pthread_create.

pthread_create function has four arguments. The first argument is threads, it is

an opaque identifier of the newly created thread. Then there is attribute, which is

an opaque attribute object used for setting attributes for the new thread. Thirdly

there is start_routine, which is the routine the thread will executed once created.

Finally there is arg, which is an argument object that will be passed to

start_routine. All attributes of the pthread_create function must be passed by

reference. (Barney 2016b.)

Figure 8. Example Code of a Threaded Program

22

Figure 9. Output of the Program in Figure 7

 To create a simple threaded program as illustrated in Figure 8, one must import

the pthread.h library, then one must declare the threads using pthread_t data type

syntax. One have the option of declaring threads in form of arrays if needed by

using pthread_t followed by the name of threads and brackets. For example

pthread_t tid[3], declare an array of threads called tid of size 3. After declaring

the threads to be used, one must have a function ready to be passed as a

start_routine for the corresponding thread. The function must be of a reference

type. For instance as shown in Figure 8 the routine printHelloWithThreads is of

type void * , since pthread_create attributes must all be of reference types or

value types passed by reference. As seen Figure 8 tid[i] is a value type but it is

passed by reference in this function. Once created, threads will have default

attributes but this attributes may be initialized or deleted using the functions

pthread_init and pthread_destroy. (Barney 2016b.)

Threads may be terminated in different ways and scenarios. The most natural

way is when a thread has finished its work it will terminate and return back to the

function that called it. Secondly, calling pthread_exit() inside a thread will

terminate it even if the thread's work is not done. However this call will not make

the thread release the process shared resources such as mutexes, condition

variables and file descriptors. Another scenario which terminates a thread, is

calling pthread_cancel() from another thread and specifying corresponding

threads id as an argument. This function will return zero if it were successful, but

if it fails it would return the error number.

23

A thread is also terminated if the process or the program is terminated since

thread is part of the process. Finally if main thread finishes before the thread the

concerned thread will be terminated. (Barney 2016b.

24

7. THREADS SYNCHRONIZATION AND LIMITS OF THREADS

7.1 Thread Synchronization

Joining threads is one way of synchronizing threads, to join threads one must use

the subroutine pthread_join. When this subroutine is called, it blocks the

execution of the calling thread and wait until the thread called completes its

operation. One example in the use of this subroutine is to join threads inside the

main thread, this ensures that all threads will complete their operations before the

main threads terminates. For instance, as illustrated in Figure 10 the main thread

will wait thread tid[0], tid[1], tid[2] to finish their operation before terminating the

program. However threads are not joinable if they are created detached. To

create a detached thread, one needs to set the pthread_attr_setdetachstate() to

PTHREAD_CREATE_DETACHED after creating the thread and initializing its

attributes with pthread_create() and pthread_init(). One can also detach a

joinable thread by using the function pthread_detach(). (Barney 2016b; The

Open Group 1997a)

Figure 10. Example for Joining Threads

Mutex, or mutual exclusion are the main methods used for synchronizing threads

and protecting shared data as mentioned earlier. Mutex ensures that shared data

are accessed by only one thread at a time, this means that when multiple threads

update the same shared variable, mutex will ensure that the final result will be

25

the same as if a single thread updated the variable. A mutex variable is locked or

owned by only one thread. This means a mutex variable could lock with a new

thread if and only if the mutex has been unlocked by the previous thread, until

then all attempt of locking this mutex is denied. The process of use of mutex goes

as follows, a mutex variable is created and initialized, then several threads try to

lock with this mutex and all but one fails, the successful thread locks the mutex

and perform its operation on the shared resource, when done it unlocks the

mutex, then the mutex is free and again the other threads attempt to access it.

This process repeat itself until all threads sharing the same mutex are able to lock

it or own it turn by turn, one at time. Finally the mutex is destroyed. (Butenhof

1997,47&48.)

A mutex variable is declared using the syntax pthread_mutex_t. Once declared

a mutex variable needs to be initialized before its use. There are two way of

initializing a mutex, statically and dynamically. To statically initialize a mutex one

calls the routine PTHREAD_MUTEX_INITIALIZER. For example:

pthread_mutex_t newMutex = PTHREAD_MUTEX_INITIALIZER.

In the example above a mutex called newMutex is created and initalized statically.

On the other hand dynamically initializing a mutex is done with the use of

pthread_mutex_init(). This method allows also to set the mutex attribute objects.

When the mutex is no longer needed in the program, it is freed with

pthread_mutex_destroy(). (Butenhof 1997,49-51.)

In relation to threads, for a thread to lock a mutex it uses the syntax

pthread_mutex_lock() and specifiy the mutex variable inside the brackets. It is

also possible to make use of pthread_mutex_trylock() function which does the

same task but also returns an error code when the mutex is locked. To unlock a

mutex one must use pthread_mutex_unlock() funtion.

 Figure bellow show the contrast of using synchronization with mutex and without

any synchronization with two examples. The output on Figure 11 is not as

expected since main threads terminates. In Figure 12 however a mutex is used

to lock thread_deposit and thread_withdraw. Since both thread modify the value

of the variable balance which is a shared variable. By locking the threads it is

26

ensured that the threads won't alter the value in unexpected way but access this

shared variable turn by turn. Hence program produces a final result that would

have been the same if only a single thread were to be used. (Barney 2016b.)

27

Figure 11. Program without the Use of Synchronization

28

Figure 12. Program Using Mutex

7.2 Condition Variables

Condition variables are useful when communicating the state of the shared data.

They allow a signaling mechanism for threads. This variables are needed for

instance in situation where queue is no longer empty or that it’s empty. These

variables allow to associate a condition to a thread. The routine

pthread_cond_wait, makes the calling thread wait until the specified condition is

satisfied.

29

The routine pthread_cond_signal() is a routine used to signal or wake up other

threads when the condition is satisfied, this routine should only be called if the

thread is blocked by pthread_cond_wait(), and after this routine is called the

mutex should be unlocked. Mutex should be locked before calling

pthread_cond_wait(). If one fails to lock the concern mutex before calling these

routines, it may not be able to block the thread as pthread_cond_wait() supposed

to do. And if one fails to unlock the mutex after pthread_cond_signal() call, the

following may not work, the threads may still be blocked.

 The routine pthread_cond_broadcasting should be used when there is more than

one waiting thread and if the developer wants to signal all of them.

(Barney 2016b; The Open Group 1997b.)

7.3 Thread Limits

Using multiple threads present challenges for the programmer. Even though

Pthread Api is ANSI/IEEE standard, the implementation could be different

according to the hardware. For instance one need to consider the number of

threads allowed or the default stack size for the specific hardware when designing

a multiple threaded program. Additionally there are two issues that the developer

needs to consider when working with threads. The first issue is collision. As seen

earlier all threads share memory space, hence if the developer is not careful,

multiple threads may write to the same memory location. This will result a corrupt

data. Another issue is the race condition. Race condition occurs when multiple

threads can access a shared data, and they try to change or access the data at

the same time. Threads will race to access the data because the scheduler of

threads may prioritize different threads at different times. This leads into

unexpected modification of the shared data. (Barney 2016b.)

30

8. CONCLUSION

Almost abelian square-free words were found for words of length over one

thousand and three hundred, if the program were computed on a powerful

computer it would be possible to get longer words. Since the limit for such result

was the memory space when run on a normal personal computer. This result can

also be improved by making use of parallel computing, with the implementation

of threads. Threads will improve the run time, if one does prefix extension and

suffix extensions concurrently. And run other functions concurrently. The POSIX

API is advised to use since it allows multiple operations on threads, facilitating

threads implementation in C. The program of this research is written to be easily

read and understood if ever a future research candidate is interested in improving

it, or to use it to further the theoretical research of avoidance of Abelian Square.

This paper will expedite his research.

31

BIBLIOGRAPHY

Barney,B. 2016a. Introduction to Parallel Computing. Accessed 20 April 2016

https://computing.llnl.gov/tutorials/parallel_comp.

Barney,B. 2016b. POSIX Threads Programming. Accessed 4 May 2016

https://computing.llnl.gov/tutorials/pthreads.

Butenhof, D. R. 1997. Programming with POSIX Threads. Boston: Addison-

Wesley Professional.

Buttlar. D., Farrell. J,P& Nichols. B. 1996. Pthreads Programming.

Sebastopol,CA. O’Reilly Media Inc.

Keränen, V. 2009. A Powerful AbelianSquare-Free Substitution over 4 Letters.

Theoretical Computer Science. 410/2009, 3893-3900.

Keränen, V. 2016. Lapland University of Applied Sciences. Principal Lecturer of

Mathematics’s discussion 22 March 2016.

Microsoft 2016. Preventing Memory Leak in Windows Application. Accessed 6

May 2016

https://msdn.microsoft.com/en-

us/library/windows/desktop/dd744766(v=vs.85).aspx.

Oxford University Press 2016. Control Flow. Accessed 16 May 2016

http://www.oxforddictionaries.com/definition/english/control-flow?q=control+flow.

QuinStreet Inc 2016. API – application program interface. Accessed 12 May

2016

http://www.webopedia.com/TERM/A/API.html.

TechTarget 2016. Overhead. Accessed 17 May 2016

http://whatis.techtarget.com/definition/overhead.

https://computing.llnl.gov/tutorials/parallel_comp
https://computing.llnl.gov/tutorials/pthreads
https://msdn.microsoft.com/en-us/library/windows/desktop/dd744766(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd744766(v=vs.85).aspx
http://www.oxforddictionaries.com/definition/english/control-flow?q=control+flow
http://www.webopedia.com/TERM/A/API.html
http://whatis.techtarget.com/definition/overhead

32

The MathWorks Inc 2016. Profile to Improve Performance. Accessed 18 May

2016 http://se.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-

performance.html?requestedDomain=www.mathworks.com.

The Open Group 1997a. Accessed 7 May 2016

http://pubs.opengroup.org/onlinepubs/007908799/xsh/pthread_cond_wait.html.

The Open Group 1997b. Accessed 5 May 2016

http://pubs.opengroup.org/onlinepubs/007908799/xsh/pthread_detach.html

Tutorials Point 2016. Data Structures - Basic Concepts. Accessed 16 April 2016

http://www.tutorialspoint.com/data_structures_algorithms/data_structures_basic

s.htm.

Washington State University. Input and the scanf Function. Accessed 18 April

2016 http://www.eecs.wsu.edu/~cs150/reading/scanf.htm.

http://se.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html?requestedDomain=www.mathworks.com
http://se.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html?requestedDomain=www.mathworks.com
http://pubs.opengroup.org/onlinepubs/007908799/xsh/pthread_cond_wait.html
http://pubs.opengroup.org/onlinepubs/007908799/xsh/pthread_detach.html
http://www.tutorialspoint.com/data_structures_algorithms/data_structures_basics.htm
http://www.tutorialspoint.com/data_structures_algorithms/data_structures_basics.htm
http://www.eecs.wsu.edu/~cs150/reading/scanf.htm

33

APPENDICES

Appendix 1

AbelianSquareAvoidance.C

34

35

