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techniques that use textures to modify the appearance of models in 3D graphics. Some of these
techniques can be used to modify the actual shape of a model and some of them set up new
normal vectors, which are required for calculating light reflections. By combining proper lighting
and surface detail mapping, a 3D model can achieve a nearly realistic appearance. 

This thesis covers the basic principles of 3D modeling and introduces the most common vector
and matrix  mathematics used in 3D graphics.  It  also introduces the functionality of a basic
lighting model called the Blinn-Phong shading model and explains the relation between lighting
and surface detail mapping. In addition, it will also introduces the math behind normal mapping
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VALAISTUS JA NORMAALIKARTAT 
TIETOKONEGRAFIIKASSA

Tämän  opinnäytetyön  tarkoituksena  oli  tutkia  pintatekstuurien  ja  dynaamisen  valaistuksen
käyttöä 3D-grafiikassa, sekä selvittää näiden tekniikoiden yhteyttä toisiinsa. Pintatekstuurit ovat
tekstuureja, jolla saadaan luotua yksityiskohtia 3D-mallien pintaan, joko muokkaamalla mallin
pinnan verteksejä tai asettamalla mallin pinnoille useita valaistuksen laskemiseen käytettäviä
normaalivektoreita.  Pintatekstuureilla  saadaan  luotua  illuusioita,  jotka  yhdessä  valaistuksen
kanssa saavat mallin näyttämään tarvittaessa hyvinkin realistiselta. 

Työ aloitettiin tutkimalla teoriaa 3D-mallinnuksesta ja tähän liittyvästä matematiikasta. Tämän
jälkeen  työssä  tutkittiin  3D-grafiikassa  yleisesti  käytössä  olevaa  valaistustekniikkaa,  Blinn-
Phong-valaistusmallia  sekä  selvitettiin  erilaisten  valaistusmallien  yhteyttä  pintatekstuurien
toiminnassa. Työssä keskityttiin  normaalikarttojen teknilliseen toteutukseen,  jossa selvitetään
tämän pintateksturointimenetelmän toiminta matemaattisesti. 

Työn  käytännön  osuudessa  ohjelmoitiin  normaalikartoille  tuki  HactEngine-pelimoottorille.
Pelimoottori  on  pelinkehitystä  nopeuttava  työkalu.  HactEngine  on  Indium Games  -yrityksen
kehittämä  alustariippumaton  pelimoottori,  jolle  myönnettiin  Tekes-rahoitus  vuonna  2015.
Moottori julkaistaan avoimena lähdekoodina sen valmistuttua, jonka jälkeen moottoria voidaan
vapaasti käyttää pelien tai sovellusten kehittämiseen.
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LIST OF ABBREVIATIONS (OR) SYMBOLS

Aspect ratio Describes  the  proportional  relationship  between  image

width and height. 

C++ A high-performance,  cross-platform  object-oriented  high-

level programming language.

FBX FBX (Filmbox) is proprietary 3D file format. 

GLM Open source header only C++ mathematical library for the

OpenGL Shading Language (GLSL)

Lua Powerful,  efficient,  lightweight,  embeddable  scripting

language.

Material  in  3D

graphics

A combination of attributes which describes how a surface

of given material should look like.

Quaternions A quaternion is a four-element vector that can be used to

encode  any  rotation  in  a  3D  coordinate  system.  A

quaternion  is  composed  of  one  real  element  and  three

complex elements. 

SDL (Simple DirectMedia Layer) is a Cross-platform low-level

development library for game development.

SWIG Software development tool that connects programs written

in  C  or  C++  with  a  variety  of  high-level  programming

languages. 

Tekes Tekes is a organization that provides innovation funding for

companies,  research  organisations,  and  public  sector

service providers.



9

1 INTRODUCTION

Computer calculation and rendering power have evolved enormously in the past

20 years to a point where computers have become irreplaceable tools for many

industries. Computer graphics are now a widely used tool in a product’s design

and prototyping. Graphics processing units (GPUs) are constantly evolving and

in the near future they can be powerful enough to produce realistic looking real-

time pictures with technologies like ray tracing [1]. Until that time comes, there

are some other optimized methods that can be used to simulate the properties

of light in real-time computer graphics.

Blinn–Phong is  a  widely  used  shading model  that  was the default  shading

model  in  OpenGL until  version  3.1,  where  the  Fixed Function  Pipeline  was

removed [2].  Blinn–Phong shading uses model  planes and their  normals for

calculating light reflections. These calculations can be expensive for the GPU, if

the model has large amounts of planes and vertices. This is why surface detail

mapping has become a  widely  used  optimization  technique [3].  One  of  the

surface  detail  mapping  methods  is  normal  mapping,  which  can  be  used  to

reduce the amount of  vertex points  and planes of the 3D model  with minor

losses if any in rendering detail [3].

The focus of this thesis is to explain the use of normal mapping in real-time

computer graphics and to explain the theory and calculations behind it.  This

thesis a part of the HactEngine project, which is an open source game engine

being developed by  the Indium Games. The main goal was to learn the most

efficient  way  to  implement  normal  mapping  and  add  support  for  it  into  the

HactEngine game engine. All the source code from this thesis is open source

and can be used freely based on its licensing. The code is programmed with  

C++ and GLSL (OpenGL Shading Language). The reader should to have some

basic  experience  about  vector  and  matrix  calculations  before  reading  this

thesis.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula
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2 VECTORS AND MATRICES

This part of the thesis will cover some vector and matrix math that are widely

used in 3D graphics. This information is necessary in order to understand the

theory behind lighting and surface detail mapping. All calculations in this thesis

are performed in a right-handed coordinate system. The difference between left

and right handed systems will be presented later in this thesis in section “3.5

Right-handed and left-handed coordinate systems”.

2.1 Vectors

A vector is a geometric object that has a magnitude (or length) and a direction

[4]. In 3D graphics, each vector consist of 3 components: x, y and z. A vector

can be formed between two points by subtracting the end point position from

the start point position. All vectors have a head (represented as the arrow end)

and a tail (the non-arrow end). The head is the location where the vector ends

and represents the direction where the vector is pointing. The vector's tail is the

location where the vector starts [4]. In a right handed coordinate system vectors

are column vectors [4].

If P1 and P2 are points in a 3D space:

Equation 1: Vector formation

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

P1=[
x1

y1

z1
] P2=[

x2

y2

z2
]

P⃗1 P2 = P2−P1 = [
x2

y2

z2
]−[

x1

y1

z1
] = [

x2−x1

y2− y1

z2−z1
]
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The magnitude of a vector can be calculated with the equation: 

Equation 2: Vector magnitude

2.2 Unit vectors

Unit vectors are vectors that have a magnitude (length) of 1. The normalized

vector or versor û of a non-zero vector u is the unit vector in the direction of u.

Unit vectors are used for calculations that only require the direction of a certain

vector [6].

The normalized vector û  of any non-zero vector u can be calculated by:

1. first calculate the length of vector u, then,

2. divide each of the components (x, y and z) of vector u by its length. 

Equation 3: Unit vector

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

u⃗=[
x
y
z ]

|⃗u|=√(x ² + y ² + z2
)

u⃗ = [
2
1
2] |⃗u| = √(2² + 1² + 22

) = 3

û =
u⃗
|⃗u|

=
1
|⃗u|

u⃗ û = [
2
3
1
3
2
3
] |û|=1
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2.3 Vector dot product

The dot product is one of the most important operations in 3D graphics [6]. It is

used for many tasks, such as projecting a vector along another, and for finding

the magnitude of a vector. It can also be used to measure an angle between

two  vectors  [3].  The  dot  product  works  consistently  in  any  number  of

dimensions.  When the operation is used for calculating an angle between 2

vectors, it  can be simplified by using unit vectors.  This way, the dot product

results in the cosine of the angle between these 2 vectors and their magnitudes

can be ignored in the calculations [6].

Equation 4: Vector dot product

2.4 Vector cross product

The cross product  of  2 vectors results  in  a  vector  perpendicular  to  the two

vectors. This means that the cross product operation can be used to calculate

vectors that point either straight up or straight down from the surface that is

formed  by  the  2  vectors.  A  cross  product  with  2  unit  vectors  does  not

necessarily produce a unit vector. A unit vector is only produced if the cross

product vectors are in a 90 degree angle with each other. The cross product can

be used to calculate the normal vector for a plane in 3D models [6]. The cross

product needs a 3D space to work. 

Equation 5: Vector cross product

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

v⃗⋅⃗c=|⃗v||⃗c|cos( v⃗ , c⃗) v̂=
v⃗
|⃗v|

ĉ=
c⃗
|⃗c|

|v̂|=1 |ĉ|=1

v̂⋅ĉ=|v̂||̂c|cos ( v̂ , ĉ ) = v̂⋅ĉ=1∗1cos ( v̂ , ĉ ) = cos (v̂ , ĉ)

a⃗×b⃗=|⃗a||⃗b|sin( a⃗ , b⃗)
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2.5 Matrices

Matrices  are  arrays  in  mathematics  that  can  be  arranged  into  rows  and

columns. Matrices can be used to transform vectors and so to move, scale and

rotate 3D models [4].  Multiplying a model  matrix  a  with a proper  translation

matrix will move the positions of each of the model's points (vertices) and by

this way move the vectors (edges) and surfaces (faces) that form the model. All

example matrices in this thesis are for a right handed coordinate system, so

they will not work in left handed coordinate systems. More info about coordinate

system handedness can be read in section “3.5 Right-handed and left-handed

coordinate systems”.

2.6 Identity matrix

Identity  matrices,  or  unit  matrices,  can  be  used  to  reset  and  to  initialize

matrices. Multiplying a vector with an identity matrix results in exactly the same

vector [5].

Equation 6: Identity matrix

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

I=[
1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1
]
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2.7 Scaling matrix

Scaling matrices can be used to change the magnitude of each of the vector

components and so to scale 3D models. Vectors can be scaled by multiplying

them with a scaling matrix. The example matrix in equation 7 shows the location

of  each  component  for  separate  scaling  along  different  axes.  This  way  the

model can be scaled separately along each axis [5].

Equation 7: Scaling matrix

2.8 Translation matrix

Translation matrices can be used to move vectors in 3D space and so to move

3D  model  positions.  Each  component  is  presented  separately  so  that  the

vectors can be moved along each axis [5]. 
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Equation 8: Translation matrix

S=[
1
0
0
0

0
1
0
0

0
0
1
0

x
y
z
1
]

S=[
x
0
0
0

0
y
0
0

0
0
z
0

0
0
0
1
]
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2.9 Rotation matrix

A vector can be rotated by multiplying it with a rotation matrix. There are four

different types of rotation matrices, one for each axis (x, y and z) and one for

rotating around an arbitrary axis. In the below equations, alpha is the rotation in

radians [5]. These matrices can be used for rotating vectors and so to rotate 3D

models.

Equation 9: Axis rotation matrices

A matrix that  can be used for rotating a vector around an arbitrary axis is a bit

more complicated.

The rotation matrix looks like this:

Equation 10: Arbitrary rotation matrix

The vector  components  (x,  y, z)  which  represent  the  rotation  axis  must  be

normalized into unit vectors. In 3D graphics, these matrices are usually formed

with external mathematical libraries like GLM [8]. Quaternions can also be used

to calculate and to form rotation matrices, but they are not straightly related to

normal mapping, so they won't be presented in this thesis.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Rot x(α)=[
1
0
0
0

0
cos(α)

sin(α)

0

0
−sin(α)

cos (α)

0

0
0
0
1]Rot y (α)=[

cos(α)

0
−sin(α )

0

0
1
0
0

sin (α)

0
cos (α)

0

0
0
0
1]Rot z(α )=[

cos (α)

sin (α)

0
0

−sin(α )

cos(α)

0
0

0
0
1
0

0
0
0
1]

where : cα=cos (α) sα=sin (α)

Rotu(α )=[
x ² (1−cα )+cα
xy (1−cα )+ zsα
xz (1−cα)− ysα

0

xy (1−cα )−zsα
y ²(1−cα)+cα
yz (1−cα)+xsα

0

xz (1−cα)+ ysα
yz (1−cα)− xsα
z ²(1−cα)+cα

0

0
0
0
1]
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2.10 Matrix determinant

The determinants are useful values that can be computed from the elements of

square matrices. The determinant of a matrix D is denoted det(D), det D, or |D|.

Equation 11: Determinant

2.11 Matrix inverse

If a square matrix A is multiplied with another matrix B and their multiplication

results in an identity matrix, then B is called the inverse matrix of A and can be

written  as   A-1.  With  matrix  calculations,  there  is  no  concept  of  division.

However, with an inverse matrix the same kind of effect can be achieved. A

matrix has an inverse matrix if: 

Equation 12: Matrix inverse
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2x2 matrix determinant can be calculated:

D2=|a11

a21

a12

a22
|=a11 a22−a21a12

3x3 matrix determinant can be calculated:

D3=|
a11

a21

a31

a12

a22

a32

a13

a23

a33
|=a11|a22

a32

a23

a33
|−a12|a21

a31

a23

a33
|+a13|a21

a31

a22

a32
|

=a11a22a33−a11a32a23−a12a21a33+a12a31a23+a13a21a32−a13a31a22

B=A−1

A B=B A=I
Sometimes matrix has no inversed matrix:

First the positions of a and d is swapped, minus signs are put in front of b and c, and
everything is devided by the determinant (ad-bc)

A−1
=[abc d ]

−1

=
1

det (A) [d−b
−c a]=

1
ad−bc [d−b

−c a ]
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2.12 Matrix transpose

A matrix transpose can be used to swap the order of matrix rows and columns.

The same operation can be used for vectors by turning row vectors into column

vectors [5].

Equation 13: Matrix transpose

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

[1 2
3 4]

T

=[13
2 4]

[1 23
4 5 6]

T

=[
1 4
2 5
3 6]
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3 3D MODELING

To understand the basics of surface detail mapping one should understand

the basics of 3D modeling and 3D graphics. 3D modeling is a  process of

developing  a  mathematical  representation  of  three-dimensional  surface

objects  with  computers  [1].  They  have  become  an  irreplaceable  tool  for

many  industries  and  have  replaced  the  old  traditional  design  methods.

These models can also be found in various amounts in different media, like

movie special effects, animations, commercials and video games [1].

3.1 Vertices

3D models are formed from mathematical points in 3D space, called vertices.

Each vertex consists of three components called x, y and z, which represent the

location of a point in 3D space [4].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 1: 3D model of a dolphin [16]
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3.2 Edges

In 3D models, 2 vertex points can be thought to form a mathematical vector.

The connection between these 2 vertex points form a single edge of the model.

This is why these vectors are called edges. Like vectors, edges have a direction

and a magnitude. In 3D graphics, models can be rotated, scaled, and translated

with matrices. Each of these matrices can be used separately or they can be

combined  to  form  a  4x4  sized  transformation  matrix.  This  way,  model

transformations can be performed with a single operation. To be able to perform

calculations between 4x4 matrices and vectors,  a four-dimensional  vector  is

required.  This  is  why  many  3D  graphics  calculations  are  done  with  4-

dimensional vectors that consist of the components x, y, z and w [3]. Here, w

can hold special information about the vector. The components x, y, and z are

often divided with the w component in many calculations, in order to turn the 4D

vector into a 3D vector.

3.3 Faces

Three edges can be combined together to form a triangle, which is the simplest

surface in 3D space. These surfaces are called faces. A model gets formed

when multiple faces share the same edges and vertices. This can be seen in

Picture 1. Faces can have more than 3 edges. A group of multiple faces is

called a mesh.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula
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3.4 Indexing

Indexing vertex points is a memory optimization method used in 3D graphics.

3D  models  are  formed  by  finding  faces  that  have  the  same  vertex  points.

Without any optimization, each of the faces have a separate list of their own

vertex  points,  even if  these points  are  identical.  This  means that  the  same

vertex point location can be loaded to the memory multiple times. By indexing

vertices,  each of  these points  gets loaded into memory only once and their

location is indexed to reduce memory consumption [7].

3.5 Right-handed and left-handed coordinate systems

2D spaces have a coordinate system that has 2 axes: x and y. Here, y usually

increases towards the up direction and x usually increases towards the right

direction. 3D space is not much different. It has 3 axes instead of 2. The third

axis is named z and it represents depth in that coordinate system. However, this

z axis can increase into 2 different possible directions [4].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 2: 2D coordinate [17]
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There are 2 different types of 3D coordinate systems, which are left and right

handed coordinate systems. The systems get their names from hand positions

that  help  in  remembering  these  systems.  A  right  hand  system  can  be

demonstrated by placing the right hand into a position where the thumb points

to  the right,  the index finger  points  up and the middle finger  points  straight

toward the eyes. The left hand works so that the thumb points again to the right

and the index finger points up, but this time the middle finger points away from

the eyes [4]. The hand positions are shown in picture 3.

The  difference  between  these  systems is  that  a  right  handed  system uses

column vectors and matrices where as a left handed system uses row vectors

and matrices.  This causes a difference in  the order  how the model  scaling,

rotation and translation calculations need to be done. It is crucial to calculate

these in the correct order in both of these systems. In a right handed system,

the  calculations  are  done right-to-left,  and the model  scale and rotation get

calculated  before  translation.  A left  handed  system  uses  row  vectors  and

matrices and the calculations are done from left-to-right. Transformation order is

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 3: Right and left handed coordinate systems [18]
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the same but matrices are multiplied in reversed order. Picture 4 demonstrates

model transformation. 

OpenGL  is  an  open  source  graphical  framework  which  is  used  by  many

rendering  programs.  OpenGL  works  on  multiple  platforms  and  is  the  only

framework  that  supports  almost  every  platform  on  the  market.  In  order  to

simplify this thesis, all calculations are presented in a right-handed coordinate

system. By default, OpenGL uses a right-handed coordinate system where the z

axis  increases toward  the  screen.  Almost  every brand of  modeling software

(e.g.  Blender,  Maya  and  3ds  Max)  uses  a  right-handed  coordinate  system.

There are also many programs and frameworks that use a left-handed system

by default. One of these frameworks is Microsoft DirectX [7].

Coordinate axes can be modified in these systems. Most modeling software use

the z axis as the up axis. This does not make a huge difference, because every

3D model can be converted to any of these systems [4].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 4: Model transformation [19]
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3.6 3D spaces

There are multiple coordinate spaces involved in 3D graphics and each of these

has their own origin. These systems are [5]: 

• object space

• world space

• camera space

• screen space

3.7 Object space

Object  space  is  the  local  space  for  each  3D  model  object.  This  space  is

needed, so that every single object can be rotated, scaled, and translated freely.

Every object space has its own transformation matrix that keeps the information

about the rotations, translations and scales [5].

3.8 World space

Whenever  a 3D modeler  wants to  keep multiple separate 3D objects in  the

same scene,  and  to  be  able  to  scale,  rotate  or  translate  them individually,

another object space is required. These spaces are separated with a hierarchy

where rotating the parent object will also rotate its child objects. But rotating the

child element does not affect the parent object’s rotation [5]. 

Let's assume a modeler has made a model of a pool table. The model consist of

a parent object that is a table, which has 15 ball child objects. Each of these

balls has their separate object space where the origin is set to the center of the

ball.  The objects are rotated around their own object space origin, and if an

object is moved away from their origin point, they start to orbit around it. In real
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life, the balls are rotating around their center point. To be able to move these

balls correctly, they need to be moved into another object space. in this case to

the table's object space. Objects can be converted to new spaces by multiplying

their  transformation matrix with the new space's transformation matrix which

transforms the object's vertices into that object's space. After this, the balls are

moved to their new positions in the different space [5]. 

The modeler can also rotate the table and still keep the balls in their correct

positions.  This  can be done by rotating the whole model  in  the pool  table's

object space with a proper rotation matrix. There can be multiple object spaces

in each of the graphical scenes but the topmost one is usually called the world

space [5].

3.9 Camera space

 The next space is called the camera space, which is needed in order to move

the viewpoint into the world. There are no real cameras in 3D graphics. The

user can move the camera or the whole 3D world to get the same end result.

Multiplying vertices which are in world space with the camera's view matrix will

transform the vertices into the camera’s space. After this, the scene looks like

the user is looking at it through the camera [5].

3.10 Screen space

The last space is a projection space where the scene is projected onto the

screen. The coordinate space transformation changes the 3D coordinates onto

the 2D screen. The screen space transformation will also define the projection

with  which  the  models  are  viewed.  These  projections  are  usually  either

perspective or orthographic projections [5]. Also, the aspect ratio must be taken

into account in these calculations, so that the scene won't be distorted when the

user  is  changing  the  screen  size  from  widescreen  to  the  old  style  non-

widescreen view. This transformation is required as long the display machine
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uses 2D displaying [5]. In Picture 5, the changes between spaces can be seen.

After this multiplication the image can be rendered onto a screen. 
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Picture 5: Space matrix calculations [20]
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4 SHADERS AND RENDERING

4.1 Rendering

Rendering is the process of generating an image of a 2D or 3D model onto a

screen. In the early ages of computing, the CPU (central processing unit) also

called a processor, was responsible for calculating every stage of the rendering

process. The CPU is optimized for calculating complex equations but it isn't fast

when the request is to handle a huge stack of data and performing the same

operation multiple times [14]. Every pixel on the screen can be calculated in

slots and to make this fast a new device was required [10]. The GPU (Graphics

Processing Unit) was born. 

There are 2 major  types of  rendering  called  offline and real-time rendering.

Offline rendering, or pre-rendering, has been used in animations and realistic

images that take a long time to render before showing on the screen. Because

images get rendered offline, this system can use techniques that require heavy

calculations. One of these techniques is ray-tracing where the model gets hit by

millions of separate light-rays and every light reflection is calculated separately.

This technique is still much too heavy for real-time rendering but the quality of

the rendered scene can look almost like in real life [1].

Real-time rendering is widely used in programs like games that require a high

frame rate and cheaper rendering calculations. GPUs are constantly evolving,

which has made it possible to create better looking graphics each year. Both of

these  methods  can  be  used  with  rendering  paths  written  in  high-level

programming languages. These programs are called shaders. 

4.2 Shaders

One  of  the  biggest  changes  in  3D  graphics  has  been  the  growth  of  the

popularity  of  graphical  shader  programming  [10].  Before  shaders,  graphics
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programming was really limited and calculations were done with certain simple

formulas [10]. Then came the idea to create high-level programming languages

that provided more freedom to the programmers. Shaders are small programs

that can be used for modifying the geometries of 3D models and for calculating

and rendering a color of a single pixel onto the screen.

One of the first shading languages was called RenderMan, and was developed

by Pixar in the early 1980s. It was used in animation movies like Toy Story and

Bug’s Life [10]. RenderMan was an offline rendering language, but it showed

that the way of the future was real-time rendering shaders.

Currently, the most popular shading languages and frameworks are DirectX,

and  OpenGL,  which  have  slightly  different  shading  languages  and  support

different  platforms  [12].  This  thesis  focuses  on  OpenGL,  which  is  a  cross-

platform framework  that  supports  platforms like  Linux,  Windows and  OS X.

There  is  also  framework  called  OpenGL  ES,  which  is  meant  for  mobile

platforms. 

These systems are still really popular but next generation frameworks are also

coming to the market. In September of 2013, AMD announced a new, low-level

graphics framework called Mantle, designed to be an alternative to OpenGL and

Direct3D. The idea of Mantle was to allow direct access to AMD hardware with

minimum  driver  overhead.  Most  importantly,  it  paved  the  way  for  parallel

programming  in  shaders,  increasing  the  performance  available  to  graphics

programming. This was something that OpenGL and DirectX didn't really offer at

the time. After some time passed, Microsoft announced that it was developing

similar  support  for  its  new  DirectX  12.  In  2014,  Apple  followed  suit  and

announced  their  own  graphics  API  called  Metal  [12].  This  same  year  the

OpenGL holding company, Khronos Group Inc, announced their next generation

API, called Vulkan. Vulkan is currently the only cross-platform next generation

API on the market. Since the other next generation frameworks support only

limited  platforms,  it  will  surely  make  Vulkan  a  tempting  platform  for  future

developers.  Currently, there  is  still  a  limited  amount  of  devices that  support
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these  next  generation  frameworks.  Table  1  shows  platform  support  across

different frameworks.

Table 1 Supported platforms of different graphical frameworks 

Framework Windows Linux OS X Android iOS Other

DirectX   <=

v.11
✓ - - - - Xbox,

Windows 

Phone

OpenGL ✓ ✓ ✓ - - -

OpenGL ES ✓ ✓ ✓ ✓ ✓ PlayStation

3

Next

Generation:

Vulkan Since: 

OpenGL 

4.X

Since: 

OpenGL 

4.X

Since: 

OpenGL 4.X

Since: 

OpenGL ES 

3.1

Since: 

OpenGL 

ES 3.1

-

Metal - - Since: OS X

El Capitan 

version 

10.11

- Since 

Apple A7, 

iOS 8

-

Mantle - - - - - Only AMD

GPUs

DirectX 12 Windows 10 - - - - Xbox 

One,

Windows 

Phone
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4.3 OpenGL Shading Language (GLSL)

GLSL is the base programming language in the OpenGL framework. It is a C-

style language, and covers most of the features one would expect with such a

language [13].  It  is  simple  but  powerful.   Support  for  GLSL first  came with

OpenGL version 2.0 and the old Fixed Function Pipeline was first deprecated in

version 3.0 and finally  removed in  version 3.1. OpenGL provides 5 different

types of shader stages that can be used for different purposes. Some of them

are only available in newer versions of OpenGL [13]. Each stage has a set of

inputs and outputs, which are passed from a prior stage to subsequent stages

[13]. Shaders can pass values from one to another, and some shader programs

get run more often than others. The most common shader stages are vertex

and  fragment  shaders.  The  popular  surface  detail  mapping  system,  normal

mapping, requires the use of both of these shaders. This thesis will  present

these 2 most common shader stages.

Some of the graphic calculations are still made on the CPU side of the program.

OpenGL provides a way to pass these values into the shader program. There

are 2 different types of inputs that get passed through one stage to another [13].

These are uniforms and attributes.

4.4 Uniforms

A uniform is a global GLSL variable, which is sent from the CPU side of the

program  to  the  GPU.  They  are  called  uniforms,  because  their  values  are

“uniform”, i.e. they do not change between shader stages [13]. Variables that

are  static  during  the  whole  run  of  a  single  shader  program can be passed

around as uniform variables. The most common uniform variables are textures,

which cannot be used as attributes, the model matrix, camera matrix, projection

matrix and the light positions.
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4.5 Attributes

Attributes  are  user-defined input  values  which,  unlike  uniforms,  can change

between  shader  stages.  Attributes  are  used  for  passing  data  like  UV-

coordinates, vertices and their normal vectors.  After OpenGL version 3.0, came

support for vertex array objects (VAOs) and vertex buffer objects (VBOs), which

made it easier and faster to pass attributes into shaders. A VAO is an OpenGL

object,  which stores one or more VBO objects to supply vertex data. It  also

informs which VBO objects are currently in use and attached to which shader

variable. A VBO is an object which is used as the source for vertex array data,

like a list of float values [13]. There was also a third input called varying, but its

name  was  changed  to  in  and  out  qualifiers.  Variables  marked  with  the  in

qualifier can be used to pass data, which is created inside one shader stage, to

another [13]. 

4.6 Vertex shader

A vertex shader is a programmable shader stage that handles the processing of

individual vertices [13]. The shader stage gets fed with vertex data, where it

calculates its transformation into the post-projection space. The shader is also

used for  calculating  and sending vertex  data into  the fragment  shader. The

vertex shader will be executed roughly once for every vertex in the rendered

model.
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4.7 Fragment shader

The fragment shader is a shader stage that will process fragment data from the

vertex rasterization.  A fragment has a screen space position (x,  y),  a depth

value (z), and all the interpolated data from previous stages. Each sample of the

pixels covered by a primitive generates a fragment [13]. This shader can be

used for calculating a fragment color that gets hit by a light source. The most

common fragment shader outputs are the end color of a single fragment.
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5 SHADING MODELS

Before one can really understand the use of surface detail mapping they need

to know something about lighting in 3D graphics [3]. There are many kinds of

different lighting systems in 3D graphics where some of them give more realistic

lighting  than  others  [1].  More  realistic  techniques  require  much  calculation

power from the computer, so some of these realistic techniques can’t be used in

real-time rendering [1]. This thesis introduces a basic shading system that is

called the Phong shading model. However, surface detail mapping works with

any of these systems.

5.1 Light intensities

Most of these lighting systems are loosely based on the behavior of light in real

life [3]. The full implementation of light’s behavior is still much too heavy to be

calculated  in  real-time.  This  is  why  there  are  reflection  systems  that  try  to

imitate light’s behaviors, but are much faster to calculate and are therefore more

suitable for real time rendering [1].

5.2 Sunlight and RGB color

White light (sunlight) contains all the colors that humans can see [3]. This can

be  demonstrated  by  channeling  light  through  a  prism,  which  results  in  a

rainbow.  The  same  thing  can  be  seen  in  nature,  when  sunlight  is  shining

through drops of water. White light can also be constructed by taking red, green,

and blue light and pointing them on top of each other in a dark room, like is

shown in a Picture 6. It can be seen that the color in the center will be white. 
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More variations can be created by changing the color of one of the spotlights.

This same phenomenon is used in computer graphics in an RGB color system.

The  center  color  changes  when  one  of  the  light  components  changes

brightness. In the RGB color space, each of these color values are represented

as a value between 0 and 255 [3]. “RGB” stands for “red”, “green” and “blue”,

each of which point to the value of the specific color component. White color

can be formed when each of these components are 255. A bright red color can

be formed by setting the red value to 255 and the other values to 0 and so on.

In  computer  graphics,  the  color  values  can  also  be  represented  as  values

between 0 and 1, so they can be used in vector multiplication. The color can be

transformed to the 0 to 1 system by dividing the color component values by 255

[3]. RGB system has a 3 separate components, so it can be stored in a 3D

vector and use in vector and matrix calculations. The RGB system can also be

expanded to the RGBA system, which has an extra component presenting the

alpha channel (transparency).
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5.3 Absorption & reflection of color

There are lights that have different colors, but there are also surfaces that have

a certain color. What happens when a certain colored light will  hit  a certain

colored surface? If there is a red car that gets pointed at by a white light, the red

surface drains the blue and green components from the light and reflects a red

color out from the surface [3]. This can be seen in Picture 7.

This is simple to understand and can also been demonstrated with the RGB

color system by multiplying the surface color components with the light’s color

components. The multiplication is done by multiplying each of the components

individually.

Equation 14: Red surface reflect
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Picture 7: Color red reflection

white light = w⃗l= [1 ,1 ,1 ]T red surface = r⃗s=[ 1,0,0 ]T

reflected light=r⃗l=[w⃗lx∗r⃗s x , w⃗l y∗r⃗s y , w⃗lz∗r⃗sz ]
T
= [1∗1,1∗0,1∗0 ]

T
=[ 1,0,0 ]

T
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What happens when a red surface gets pointed at with cyan light with the color

value RGB(0, 255, 255)? This is interesting, because this time the surface does

not reflect any light out from the surface [3]. This can been seen in Picture 8.

This may sound odd, but it’s certainly true. This same phenomenon happens

whenever the reflected surface can’t reflect a certain kind of color. This can be

demonstrated again by multiplying the light color with the surface color [3].

Equation 15: Cyan surface reflect

5.4 Phong reflection model

The Phong shading model is one of the simplest reflection systems in computer

graphics. This system is also light-weight enough that it can be used in real-time

rendering. It does not produce fully realistic looking lighting, but it’s still good

enough for most cases and is simple to understand. The system consist of 3

components, which are the ambient, diffuse and specular components. All of
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Picture 8: Color cyan reflection

cyan light = c⃗l=[ 0,1,1 ]
T

red surface = r⃗s=[ 1,0,0 ]
T

reflected light=r⃗l=[ c⃗lx∗r⃗sx ,c⃗l y∗r⃗s y , c⃗lz∗r⃗sz]
T
= [0∗1,1∗0,1∗0 ]

T
= [0,0,0 ]

T
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these components require surface normals in order to work [3]. The effect of

each of component can be seen in Picture 9.

5.5 Surface normals

Surface normals are unit vectors, which point up from the model’s surface. Its

job is to inform the direction in which surface is facing. A 3D model gets formed

from faces, which share the same vertices and edges. Each of these faces has

their own normal vectors which point straight up from the face. These faces can

be oriented toward any direction in 3D space, and so a normal vector can point

to any direction in 3D space. The easiest way to calculate surface normals is to

calculate the cross product between 2 edge vectors from each face [3]. This is

demonstrated in Picture 10.
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Picture 9: Phong reflection model [22]

Picture 10: Cross product [23]



37

This normal vector is used for many calculations related to computer graphics

and is a really important component in 3D lighting. Normal mapping is a system

where these surface normals are modified so that each fragment coordinate on

a face has its own normal vector. More info about this technique can be read in

the section about normal mapping.

5.6 Ambient component

The  ambient  component  is  the  simplest  component  in  the  Phong  shading

model.  It  represents  the  base  color  of  a  model’s  surface.  Without  this

component,  unlighted  surfaces would  be colored  black,  which  usually  looks

unnatural.  The  ambient  component  can  be  formed  with  a  coefficient.  By

changing  the  value  of  the  coefficient,  the  user  can  modify  the  color  of  the

ambient component.  The ambient  color can be calculated by multiplying the

surface color with the light’s color and then multiplying the reflected color value

by the ambient coefficient with vector scalar multiplication [3].

Equation 16: Ambient component

In the above example, the end result is a dim red color that the surface is set to,

if it does not get hit by a light source.

5.7 Diffuse component

The diffuse component is the most important component in the Phong reflection

model. It determines the main color of the surface when it gets hit by a light. It is
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white light = w⃗l= [1,1,1 ]
T

red surface = r⃗s= [1,0,0 ]
T

ambient coefficient = c=0.1

reflected light=r⃗l=[w⃗lx∗r⃗s x , w⃗l y∗r⃗s y , w⃗lz∗r⃗sz ]
T
=[1,0,0]

T

ambient component = a⃗c = r⃗l∗c=[ 1,0,0 ]
T
∗0.1= [ 0.1,0,0 ]

T
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determined by the angle at which the rays of light hit the surface, called the

angle of incidence (AoI) [3]. One can imagine a person holding a white piece of

cardboard towards a flashlight in a dark room. The surface color of the piece of

cardboard will change depending on the angle between the surface normal and

the light source. The cardboard will be the brightest when it is facing straight

toward  the  light  and  gets  darker  when  the  angle  between  the  light  and

cardboard’s  surface  normal  increases.  This  is  demonstrated  in  Picture  11.

Surfaces that are not facing toward the light will be completely dark (apart from

the ambient component).

The  diffuse  component  mimics  this  phenomenon.  To  calculate  the  diffuse

component  one must  know which  direction  the  cardboard  is  facing  and the

direction of the light source. Each model  surface will  have their  own normal

vector, which is pointing away from the surface and shows the direction toward

which the cardboard is facing. This normal vector can be calculated by taking

the cross product of 2 vectors formed by the surface’s edges. The light source’s

direction can be calculated by creating a vector from the surface to the light’s

position.  Now  there  are  2  different  vectors  which  can  be  used  in  the

calculations.

Both of  these vectors should be normalized into  unit  vectors.  This  way, the

vector lengths can be ignored in dot product calculations and the dot product

directly results in the cosine of the angle between these 2 vectors. The actual
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Picture 11: Angle of incidence [24]
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angle is not very important with diffuse calculations. The cosine of the angle will

return the coefficient, which can be multiplied with the combined color of the

surface and the light. If the light is facing straight toward the surface, the angle

will  be  0.  The  cosine  of  0  is  1,  so  the  surface color  will  be  100  % of  the

combined color from the light and the surface. Angles bigger than 90 degrees

will  return a negative cosine value, so these faces are facing away from the

light. This means that the diffuse component coefficient has to be set to 0, in

order to get the correct result, and therefore the surface does not get color from

the diffuse component.

Equation 17: Diffuse component

5.8 Specular component

The  specular  component  is  used  to  calculate  the  shininess  of  a  surface.

Specular means a perfect mirror reflection, and gets its name from the real life

phenomenon, where light gets reflected away from a shiny surface, before it

can  get  mixed  with  the  surface’s  colored  layer  [3].  Again,  a  car  is  a  good
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Cosine examples:
cos (0 °)=1.0, cos (45 ° )=0.707, cos (−45 °)=0.707, cos (90 °)=0.0, cos (120°)=−0.5

surface to light unit vector=L̂
surface normal unit vector=N̂

white light = w⃗l= [1,1,1 ]
T

red Surface = r⃗c= [1,0,0 ]
T

reflected light=r⃗l=[w⃗lx∗r⃗c x , w⃗l y∗r⃗c y , w⃗lz∗r⃗c z]
T

Calculations without normalized unit vectors:
N⃗⋅L⃗

|⃗L||N⃗|
=cos( N⃗ , L⃗)

Calculation with normalized unit vectors:
N̂⋅L̂
1∗1

=cos(N̂ , L̂) = N̂⋅L̂=cos(N̂ , L̂)

Only the positive cosine angles counts negative values are set to zero:
diffuse component = d⃗c = max (0.0, N̂⋅L̂)∗r⃗l
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example of this phenomenon. When looking at a new red car in the sunlight,

some parts of the car are seen as red, but some other parts seem to reflect a

white light. At these parts, the light gets reflected away from the wax surface,

before it  hits  the red  paint  layer, and the surface ends up looking white.  A

perfect specular surface is like a mirror, where light gets reflected in the exact

same angle as it hits the surface. If light is hitting the surface at a 20 degree

angle, it  will  be reflected away from the surface with exact same 20 degree

angle [3]. If the angle between the person's eyes and the reflected light ray is

small enough, the color the person sees is a bright reflected color (e.g. white).

As with the diffuse component, the surface normal vector is important with these

calculations.  Calculating  the  specular  component  requires  vectors  from  the

surface toward the light and from the surface toward the camera. These vectors

are  shown in  Picture  12 as  the  L and  V  vectors  [3].  Vector  R is  a  perfect

reflection vector, i.e. a mirrored version of the direction of the light. The main

goal  here  is  to  calculate  the  angle  between the  reflected  R vector  and the

camera V vector. If the angle is small, light gets reflected toward the camera.

Like in real life, some objects are shinier than others [3]. This is why the angle

gets powered by a constant value that represents the material’s shininess. Each

surface also has its own specular color component. All of these vectors should

be normalized into unit vectors to get the correct result.
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Equation 18: Specular component

There is also an improved version of the Phong model, called the Blinn-Phong

reflection  model.  In  this  reflection  model,  one  calculates  a  halfway  vector

between the camera vector V and the light vector L. This is shown in Picture 12.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 12: Blinn-Phong reflection vectors [25]

surface to light unit vector=L̂
surface to camera unit vector=V̂
surface normal unit vector=N̂
reflection unit vector=R̂=normalize ( L̂−2 ∗ N̂⋅L̂ ∗ N̂ )

Again only the positive cosine angles count.The surface is on the wrong side of the model 
if cosine has a negative value and so it is set to zero to get the correct results.

constant material shininess = M=0.6 surface specular color = s⃗sc= [1,1,1 ]T

lightColor = l⃗c=[ 1,1,1 ]
T

reflected light=r⃗l=[ ⃗ssc x∗ ⃗lc x , ⃗ssc y∗
⃗lc y , ⃗ssc z∗ ⃗lc z]

T
=[1,1,1]

T

specular coefficient= s =max(0.0,V̂⋅R̂)
M

specular component = s⃗c = s ∗ r⃗l
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The half vector can be calculated with vector addition from L and V. Again, it is

important to normalize the vectors into unit vectors [10]. This is a more efficient

way,  because  the  half  vector  saves  one  relatively  expensive  dot  product

calculation process, which is otherwise used to calculate the  R vector [10]. In

this  method,  the  specular  coefficient  can  be  calculated  from taking  the  dot

product of H and N, instead of R and V [10].

Equation 19: Blinn-Phong reflection

5.9 Attenuation and final color

Now that there are 3 components which will form the end color of the surface,

which gets hit by a light source. The color gets formed by adding the value of

these components together. These components are vectors, so the final color

can be  achieved with vector addition. If the scene needs an alpha channel, the

final color can be converted to a 4-dimensional vector by adding the alpha value

as the last  component.  A value of  1  represents a fully  opaque surface and

values below this represent the percentage of the surface’s transparency. Some

texture formats automatically provide alpha channels. For these cases, an alpha

value  can  be  achieved  from  the  texture’s  alpha  channel. Also,  a  surface

material  can have an opacity  value.  The final  opacity  can be calculated  by

multiplying the material’s opacity with the texture’s alpha channel.
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surface normal unit vector=N̂
surface to camera unit vector=V̂
surface to light unit vector=L̂

half angle unit vector=Ĥ=normalize(V̂ + L̂)

constant material shininess:M=0.6

specular coefficient: s=max(0.0, Ĥ⋅N̂ )
M
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Equation 20: Final color

There is still one more thing that should be taken into account in this process.

Light loses its intensity when the distance between the light and the surface

increases [9]. This can be seen for example when a dark hall is lighted by a

single candle’s light. The light does not have enough intensity to light up the

whole hall. This loss of brightness over distance is called attenuation, and it

should be taken into account in the calculations to make lights behave like they

do in real life. One way to reduce the light’s intensity over distance is to simply

use a linear equation, so that the light will lose its intensity linearly when the

distance gets bigger [9]. In real life, however, light is much brighter at closer

ranges. Here is one equation that can be used to calculate this effect [9]. 

Equation 21: Attention

Equation  20  shows a  good  solution  to  calculate  attenuation.  Here,  kc is  a

constant  to  avoid  division  by  zero.  In  most  cases,  its  value  is  1.0,  but  the

brightness of the light can be increased by lowering the constant value [9]. kl is

a linear  term,  which gets multiplied by the distance  d, from the light  to  the

surface [9].  The last  value is  kq,  which represents the quadratic term of the

attenuation and gets multiplied by the distance squared [9]. This equation will

result  in  a  nicely  behaving  light  attenuation.  Good  values  for  the  equation

depend on many aspects,  but they are mostly floating point  values that are
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a⃗c=ambient component
d⃗c=diffuce component
s⃗c=specular component

Final color=a⃗c+d⃗c+ s⃗c

kc=constant
k l=linear term
kq=quadratic term
d=distance

Fatt=
1.0

kc+k l∗d+kq∗d ²
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between 1 and 0 and the quadratic component has the smallest value. Some

3D model file formats (like .fbx) support and provide these values as part of

their material data. This allows the modeler to determine the surface and light

data  inside  the  modeling  software.  Attenuation  can  be  added  by  simply

multiplying each of Phong components by the attenuation coefficient.
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6 TEXTURE MAPPING

Real life surfaces are rarely completely flat and this is why realistic looking 3D

surfaces must also have roughness, holes and bumps on them [9]. One way to

achieve this is to model these details straight into the 3D models. However, this

takes a lot of time and generates a lot of vertices and faces into the models.

The graphics card (GPU) needs to calculate each face separately and every

new vertex will increase the time it takes to render the picture onto the screen.

In real-time rendering, speed is important so that the program can maintain a

good  frame  rate.  If  the  frame  rate  drops  too  low  or  changes  rapidly,  the

rendered scene will  start  to annoy the user’s eyes and therefore lowers the

enjoyment of watching the screen. Still, the models should look good and run

smoothly in the program.

One good method for adding details to a model is to use surface detail mapping

and texture mappings. The most basic mapping is diffuse mapping, where the

model  gets its surface color from a texture. This can be seen on the left  in

Picture 13. However, this will just give a flat look to a model’s surface. A better

end result can be achieved by also adding surface detail mapping to the model.

There are many different types of surface detail  mapping systems. Some of

them will add new vertices to the models from textures like with displacement

mapping. These techniques usually give better end results, but not necessarily

more performance for  the program [9].  For  this  purpose,  there is  the bump

mapping method, which obtains the surface details from a gray-scale height

map, where darker shades of gray define the lower surfaces, like holes, and

brighter shades represent higher surfaces, like bolts in an iron door. However, a

better  end result  for  this  kind of  mapping can be achieved with  the  normal

mapping technique, which is a slightly improved version of height mapping or

bump mapping [9]. Table 2 shows a comparison between these systems. This

thesis will focus on normal mapping, because it’s the most used surface detail

mapping in real-time rendering.
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Table 2:  Comparison between different  surface detail mappings

Surface detail 

mapping

Effect on the 

model

From Effect on 

performance

End result

Height map 

Bump map

Calculate 

approximate 

normal vector 

for each model

fragments

Gray-scale height 

map 

Minor decrease 

on performance

Decent looking 

surface details 

when area is 

lighted.

Normal map Contains pre-

calculated 

normal vectors

for each model

fragment

RGB normal map Minor decrease 

on performance

Great looking 

surface details 

when area is 

lighted.

Displacement 

map

Modify model 

vertices from 

texture

Gray-scale height 

map 

Major decrease 

on performance

Great end result 

even when the 

area is not lighted

6.1 Normal mapping

The idea behind normal mapping is really simple. This thesis has shown that

each  of  a  model’s  faces  should  have  their  own  normal  vectors,  which  are

pointing  straight  away  from  the  surface.  This  normal  vector  is  used  for

calculating  the  light  reflections  and  the  angle  of  incidence  of  that  surface.

Normal mapping is a method where a surface can have multiple normal vectors

that  are obtained from a normal map texture.  This  way, the surface reflects

lights in multiple locations and so even a flat surface can look bumpy, like can

be seen in Picture 13. This effect is still  fake and the illusion of the detailed

surface will disappear, if the angle between the surface and the camera is small

enough. Normal mapping is still effective and a good solution for many cases.

Normal vectors consist of 3 components, so they can be stored in normal map
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textures with RGB color values. Each color value represent the position of the

normal vector on a certain coordinate axis [9]. There are 2 different kinds of

normal mapping techniques.
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Picture 13: Cube with diffuse mapping (left) and cube with diffuse and normal

mapping (right)
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6.2 Object space normal mapping

In the first method, normals are stored in a world or object space where the

normal can point  to any direction from the surface and surface normals are

calculated  in  the  same object  space where  the  model  exists.  Object  space

normal  mapping  can  be  recognized  from  the  rainbow  colored  texture.  This

method is simpler and slightly faster than tangent space normal mapping, but it

has disadvantages.  If  the model  that  contains world or object  space normal

mapping is  rotated or  gets deformed,  its  normals will  point  toward  a  wrong

direction and so has an incorrect end result [11]. This is why tangent space

normal  mapping  is  a  more  commonly  used  method.  Object  space  normal

mapping can be seen in Picture 14.
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Picture 14: Object space normal map [26]
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6.3 Tangent space normal mapping

With tangent space normal mapping, normals are stored in a tangent space and

the normal vectors are all closely pointing outwards towards the positive z-axis.

These vectors can hold values between -1 and 1. Normal vectors can be stored

in a texture as RGB values. However, color values have to be stored to the

texture between 0 and 1. For these normal vectors, values must be converted to

be between 0 and 1. This can be achieved with Equation 21. When the normals

are read from the texture they have to be converted back to the -1...1 system

[10].

Equation 22: Normal map texture conversion

The z axis is the last coordinate axis in 3D space and blue is the last color in the

RGB color space, which is why tangent space normal mapping contains a lot of

blueish colors.  This  system’s advantage is that  the normals exist  in tangent

space, and distorting or rotating the model does not affect the direction of the

normals. However, this requires that before any calculations, the normals have

to be converted to the same object space where the model exist [9]. A tangent

space normal map can be seen in Picture 15.
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Picture 15: Tangent space normal map

r=(x+1)/2
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Tangent space can be thought of as the local space of the normal map vectors.

Models can be converted to different object spaces by multiplying the model

transformation matrix with a proper transformation matrix. This matrix is called

TBN, where the letters depict  the tangent,  bitangent and normal vectors [9].

These 3 vectors are aligned in the surface of normal map, so that the normal

vector points out from the surface. The tangent vector points to the right of the

normal map and the bitangent points straight up.

Calculating the tangent and bitangent vectors is a little bit  more complicated

than calculating the normal vector. The tangent and bitangent vectors align on

the 2 edges of the normal map surface, as can be seen in Picture 16. This fact

can be used to form an equation that can be used to form these vectors.
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Picture 16: TBN vectors [27]
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Picture 17 shows that the texture coordinate differences of an edge  E2 of a

triangle shaped face (denoted as  ΔU2 and  ΔV2) are expressed in the same

direction as the red tangent vector  T and green bitangent vector  B. So, both

edges E1 and E2 can be written as a linear combination of the tangent vector T

and the bitangent vector B [9].
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Picture 17: Tangent space UV map [28]
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Equation 23: Formula for calculating tangent and bitangent

Storing  the  bitangent  vector  is  optional.  This  vector  can  also  be  easily

calculated with a cross product from the normal and tangent vectors. This can

be useful, if the goal is to reduce program memory consumption. Many 3D file

formats can store pre-calculated tangent and bitangent vectors and 3D model

importers like Assimp can calculate them when the model gets loaded into the

program [9].  This phase is done on the CPU side of  the program. These 3

vectors can now be sent to the GPU, where the program will render the image.
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Here is a start equation that can be formed:

E1=ΔU 1T +ΔV 1B

E2=ΔU 2T +ΔV 2B

These equations can also be opened to a form:

(E1 x , E1 y , E1 z)=ΔU 1(T x , T y ,T z)+ΔV 1(B x ,B y ,B z)

(E2 x , E2 y , E2 z)=ΔU 2(T x ,T y ,T z)+ΔV 2(Bx ,B y , Bz)

E vectors can be calculated as difference vector between two vector positions
and ΔU and ΔV as the texture coordinate differences.

Last equations can be written in a different form: that of matrix multiplication:

[E1xE1 yE1 z

E2x E2 yE2 z
]=[ΔU 1ΔV 1

ΔU 2 ΔV 2
][T xT y T z

BxB yB z
]

Bouth sides can now be multiplied with inverse of ΔU ΔU matrix.

[E1xE1 yE1 z

E2x E2 yE2 z
][ΔU 1 ΔV 1

ΔU 2 ΔV 2
]
−1

= [T xT yT z

BxB yBz
]

Inversed delta texture coordinate matrix can now be calculated
and tangent T and bitangent B can be solved from this equation.

[T xT yT z

BxB yB z
]= 1

ΔU 1ΔV 2−ΔU2 ΔV 1 [
ΔV 2−ΔV 1

−ΔU2 ΔU 1
] [E1xE1 yE1 z

E2xE2 yE2 z
]

This is the end formula that can be used to calculate Tangent vector T and bitangent
vector B for a single triangle.
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The GPU uses shader programs, where the vectors can be used to form a TBN

matrix, which can be used to change the vectors to the tangent space.

There are 2 different ways the TBN matrix can be used for normal mapping. The

first way is to create a TBN matrix that will  convert any vector from tangent

space to world space. With this matrix, a normal vector that is obtained from a

normal map can now be converted to world space [9]. 

Equation 24: Tangent space to world space matrix

This however is usually a less efficient way to use normal mapping. Each model

fragment has its own individual normal vector that is obtained from the normal

map.  In  Picture  17  is  a  triangle  that  gets  formed between  3  vertices.  This

triangle is textured with a diffuse texture and a normal map. With this method,

the world space matrix multiplication must be done for each fragment that are

inside the  triangle which is a lot of multiplications.

The second way is to create a TBN matrix that converts vectors from world to

tangent space. This matrix can be used to convert all  calculated vectors like

lights, camera, and model vertices to tangent space. After this, lighting can be

calculated in tangent space [9]. These conversions need to be done once for

each vertex. In a triangle, there are 3 vertices and in this case there are total of
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TBN matrix from tangent to world space in right handed cordinate system:

world space matrix = M
tangent unit vector=T̂
bitangent unit vector=B̂
normal unit vector=N̂

world space tangent vector =ŴT= normalize(M * T̂ )
world space bitangent vector =ŴB=normalize(M * B̂ ) 
world space normal vector =ŴN =normalize(M * N̂ )

TBN=[
^WT x

^WT y

^WT z

^WBx

^WB y

ŴBz

^WN x

^WN y

^WN z
]
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9 conversions. There are hundreds of conversions in the first system. There are

almost always more fragments than vertices, and this is why the second system

is usually a better option than the first system [9].

Equation 25: World space to tangent space matrix
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TBN matrix from world to tangent space in right handed cordinate system:

world space matrix = M
tangent unit vector=T̂
bitangent unit vector=B̂
normal unit vector=N̂

First calculate inversed world matrix by inverting and transposing world space matrix

normal matrix=M−T

After this vectors get multiplyed with this inversed matrix:
tangent space tangent unit vector = T̂T  = normalize(M−T  *T̂ )
tangent space bitangent unit vector = T̂B= normalize(M−T  * B̂ )
tangent space normal unit vector = ^TN = normalize(M−T  * N̂ )

TBN=[
^TT x

^TT y

^TT z

^TB x

^TB y

^TB z

^TN x

^TN y

^TN z
]

World space to tangent space TBN matrix can be created by transposing TBN matrix

TBN T
=[

^TT x

^TBx

^TN x

^TT y

^TB y

^TN y

^TT z

^TB z

^TN z
]
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7 NORMAL MAPPING IN HACTENGINE

This thesis is a small part of the HactEngine project. It is a documentation of the

research  process  for  implementing  support  for  normal  mapping  into  the

HactEngine game engine. After this research process, HactEngine supports the

surface detail mapping:  normal mapping.

7.1 HactEngine introduction

HactEngine  is  a  multi-platform  3D  game  engine  developed  by  the  Finnish

company Indium Games.  The engine’s core is  written in  C++ and uses the

popular SDL library as its base. The engine uses the Lua scripting language,

which is extremely easy to learn, but also incredibly powerful. Thanks to Lua,

almost everything in the game can be modified while the program is running,

saving  a  lot  of  development  time  for  the  engine’s  user.  HactEngine  uses

OpenGL as its graphical framework. The engine got Tekes funding in 2015, and

the company will release the engine as open source after the engine is finished.

7.2 Entity and Properties

HactEngine has a system where every object in the game world are stored in a

hierarchic container class called Entity. Entities can be anything in the game

world, like a game state, a 3D model, a camera, or a light or sound source. An

entity can also be a combination of multiple resources. Entities are based on a

hierarchic structure where the first existing element is called the root entity. The

root entity can contain child entities, which can have their own child entities and

so on. The engine calls the currently assigned root entity to update and render

each frame.  These function calls are recursive, so that they are called for each

child entity in the entity hierarchy. 

Each entity holds a property container that is used for storing data for each

entity. These properties can be vectors,  matrices, integers, floats,  strings, or
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references  to  engine  assets.  Each  entity  can  be  modified  by  adding  new

properties to them. A user can create a camera from any entity by adding a

camera matrix to it.  These entities can be modified in the engine’s scripting

language,  Lua.  The  engine  provides  various  different  classes,  which  create

entities that hold the correct property values for certain use-cases. These will

speed up development time when the user can create entities like cameras and

lights without worrying about the correct property values for them.

Lua  does  not  support  object  oriented  programming  by  default.  HactEngine

provides this feature to Lua. HactEngine’s Lua objects can use inheritance and

they can also be inherited from C++ classes. The user can call C++ functions

from inherited Lua classes in the same way that the user would call standard

Lua  functions.  This  is  made  possible  with  Lua  metatables  and  the  SWIG

wrapper generator software. Metatables will also make it easy to get and set

property values with a metatable call. The user can read a property value by

calling  the  metamethod  and  create  a  new  property  or  set  the  value  of  an

existing property by assigning a value to it.

HactEngine is thread-safe, and any property can be read or written to from any

thread.  This  way,  a  user  can  send  data  from  one  thread  to  another,  and

rendering, input and game logic can all run on different threads. Threading is a

powerful tool, where the user can separate some expensive calculations like

physics  simulation  from other  calculations.  This  way, a  separate thread can

calculate different calculations simultaneously and one thread does not need to

wait for another thread to finish its calculations. HactEngine makes it easy for

the user to use threading. A new thread can be created just with one line of

code in Lua scripting. Threading also enables the user to run and load new

content to the game with a hidden loading thread. This way, the user does not

need  long  loading  screen  during  game  sessions.  Properties  have  a  render

mask,  which  tell  if  the  property  value  should  be  sent  to  a  certain  shader

program.

Entities can also  be created with  3D modeling  software,  by  exporting a 3D

scene  into  the  game  engine.  The  engine  currently  supports  more  than  40
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different 3D file formats. The engine can create automatic entity objects from

unmerged 3D objects existing in the scene. This way, single objects become a

separate entity, which can be controlled inside the engine. The user can even

design a whole game scene inside a modeling program. Some file formats can

store UV-coordinates and different kinds of surface detail mappings like normal

mapping.  HactEngine  supports  multi-texturing  and  is  able  to  parse  different

kinds  of  surface  detail  mappings.  The  engine  can  also  read  cameras  and

different light objects from these scenes.

7.3 Materials

Some file formats can store the materials of 3D meshes. Materials are various

variables, which are used to define the visual behavior of 3D surfaces. These

variables  are  sent  to  a  shader  program,  where  they  can  be  used  for

calculations.  Creating  different  materials  can be used  to  improve the  visual

quality of a 3D scene. HactEngine can read these materials from 3D file formats

and link them to the 3D object meshes. Materials are automatically sent to the

shader program.

7.4 Mesh

HactEngine stores each 3D object’s vertices as Mesh object, where the vertices

are indexed to minimize the memory consumption of  the game engine. The

class also stores UV-coordinates, normals, tangents and bitangents of each of

the model’s vertices. The Entity class holds a property reference value to a

Mesh object, so that multiple 3D objects can use the same 3D mesh. This way,

the game scene can have multiple copies of the same 3D object with minimal

memory  consumption.  The  Mesh  class  sends  vertex  data  to  the  shader

program, where it can be used to render the model to the screen. When there

are no more entities that hold a reference to a Mesh object, the engine uses its

asset management system and removes the mesh from memory.
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7.5 Asset manager

HactEngine  has  an  AssetManager  class,  which  manages  the  loading  and

unloading of  game assets.  These can be e.g.  3D model  meshes,  music,  or

textures.  The  AssetManager  maintains  a  system  where  the  asset  will  be

unloaded automatically, if it has not been in use for a certain time period. If the

asset is requested again after unloading it, the engine uses a separate thread to

load that asset back into the program automatically. This way, the engine user

does not need to worry about the memory and asset management during the

development process.

HactEngine uses Assimp (Open Asset Import Library) as its 3D model loader

[15]. Assimp is a popular open source asset importer that supports more than

40 different 3D model file formats [15]. It also has a lot of useful features that

can be enabled and disabled by the user. One of these features is that the

library  calculates  normals,  tangents  and  bitangents  automatically  for  every

model vertex that gets loaded with the library. Using Assimp as a model loader,

the developer can ignore the tangent and bitangent vector calculation that can

be seen in Equation 22. The engine handles the sending of normal and tangent

vectors  into  the  shader  program.  The  engine  does  not  store  or  send  the

bitangent  vector  to the shader. This vector gets calculated inside the vertex

shader program with a simple cross product.

To simplify the example code in this thesis, shader programs are written for a

forward  rendering  system.  In  this  system,  every  light  gets  calculated  for  all

vertices that are loaded into the shader. A more efficient way is to use deferred

rendering,  which is implemented in  HactEngine.  This  is a more complicated

system, but enables the use of huge amounts of different light sources. In this

system, the first shader run will just create the geometry of the scene and the

lighting  is  calculated  with  a  second  shader  run.  This  way,  lighting  can  be

calculated for every pixel in the screen instead of every fragment of every face.
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7.6 C++ implementation

HactEngine has a namespace called AssetManager::Model, which is used to

load 3D models into the engine. Implementing normal mapping into the engine

required  very  little  additional  code  into  the  C++  side  of  the  game  engine.

Assimp calculates the normal and tangent vectors for each model automatically

and the only modification was to save these 2 vectors into the Mesh class and

sending  them  to  the  shader  program.  HactEngine  uses  GLM  (OpenGL

Mathematics)  as  its  mathematical  library  [8].  GLM is  a  popular  mathematic

library that provides support for variables like vectors and matrices to the C++

environment.  HactEngine also provides GLM on the Lua side of the engine.

This makes it really fast to modify OpenGL code or shader programs while the

game is running.

7.7 GLSL implementation

The GLSL side of the normal mapping implementation required the rewrite of

the  vertex  and  fragment  shaders.  The  shaders  are  written  for  a  forward

rendering system in order to demonstrate the use of normal mapping as it is

presented in  this  thesis.  HactEngine uses a  more  advanced version  of  this

rendering system, called deferred rendering.  In deferred rendering, the TBN

matrix calculation is made on the first run of the vertex and fragment shaders,

when the scene gets formed without any lighting. This way, the light calculation

can be done in world space and the TBN matrix can be ignored on second

vertex and fragment shader run.

Appendices 1 and 2 show the vertex and fragment shaders used for normal

mapping. The GLSL implementation uses the world to tangent space matrix that

is  calculated  during  the  vertex  shader  stage.  This  TBN  matrix  is  used  to

transform the camera, light and model vertex position into tangent space. After

this, the vertex shader calculates the vertex position in screen space so that the
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image can be seen on the screen. After this, it will send vertex data and the

converted attributes into fragment shader.

During fragment shader stage, the first step is to obtain the normal vector from

the normal map and turn it from the stored 0 to 1 system to the correct -1 to 1

system. This shader also calculates gamma correction for the diffuse texture.

After this, the vector from the surface to the camera gets calculated in tangent

space.  The final step is to calculate the color of a fragment with the Blinn-

Phong shading model and the final color is returned from the shader.
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8 CONCLUSION

The use of different surface detail mapping methods are a popular optimization

method in both offline and real-time rendering. The theory behind them is very

broad  and  therefore  this  thesis  just  scratches  the  surface  of  surface  detail

mapping. The same goes for the different shading models. HactEngine provides

a  various  amount  of  different  shading  models  including  models  that  are

showcased in this thesis. The Blinn-Phong shading model is old, but still a great

example of a 3D shading model. Understanding the functionality of this model

will surely help the user to understand and to learn new shading techniques.

Game  engines  provide  a  lot  different  types  of  shading  models,  where  the

developer  can use them without  knowing the theory or  mathematics behind

them. But it will surely never give the user trouble by knowing what’s going on

inside the shader programs.

HactEngine now supports normal mapping, but in the future it should provide

support  for  various  amounts  of  different  surface  detail  mapping  models.

However, normal mapping is one of the most popular of these mapping models

and  is  still  one  of  the  most  effective  optimization  methods  in  3D  graphics.

Indium Games uses normal mapping for their upcoming game, by mixing 3D

models  and  2D skeleton  animations.  With  normal  mapping,  even  a  flat  2D

skeleton animation can obtain more details from the normals obtained from a

normal map and by interacting with lights around the game scene.
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1 #version 330 core
2  
3 // VERTEX SHADER (main.vert)
4  
5 // Coordinates
6 layout(location = 1) in vec3 v_vertex;
7 layout(location = 2) in vec3 v_normal;
8 layout(location = 3) in vec3 v_tangent;
9 layout(location = 5) in vec2 v_uv;

10 layout(location = 7) in vec2 v_uv2;
11 layout(location = 6) in vec4 v_color;
12 layout(location = 8) in vec4 v_color2;
13  
14 out Properties {
15     vec3 f_vertex;
16     vec3 f_normal;
17     vec2 f_uv;
18     vec4 tangentScreenPosition;
19     vec3 tangentLightPosition;
20 } properties;
21  
22 // Light properties struct
23 struct Light {
24     vec4 position;
25     vec3 color;
26     float attenuationConstant;
27     float attenuationLinear;
28     float attenuationQuadratic;
29     float ambientCoefficient;
30 };
31  
32 // Light uniform
33 uniform Light light;
34  
35 // Model material struct
36 struct Material {
37     float opacity;
38     float shininess;
39     
40     vec3 diffuse;
41     vec3 ambient;
42     vec3 specular;
43     vec3 emissive;
44 };
45  
46 // Material uniform
47 uniform Material material;
48  
49 // Texture
50 struct Textures {
51     sampler2D diffuse;
52     sampler2D normal;
53 };
54  
55 uniform Textures textures;
56  
57 // Matrices
58 uniform mat4 projection;
59 uniform mat4 camera;
60 uniform mat4 model;
61  
62  
63 /*!
64  * Vertex shader main function.
65  */
66 void main(void) {
67     // Set Identity matrix as TBN matrix
68     mat3 TBN = mat3(1);
69     
70     // Calculate world to tangent space matrix
71     mat3 normalMatrix =  transpose(inverse(mat3(model)));
72     // Calcuate tangent space if it exists
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73     if (v_tangent != vec3(0.0)) {
74         // World space to tangent space matrix
75         vec3 N = normalize(normalMatrix * v_normal);
76         vec3 T = normalize(normalMatrix * v_tangent);
77         
78         // Use Gram-Schmidt process and re-orthogonalize tangent with respect to normal
79         T = normalize(T - dot(T, N) * N);
80         
81         // T and N are in 90 degree angle cross product return unit vector
82         vec3 B = cross(T, N);
83         
84         // Create matrix from TBN vectors and transpose matrix
85         TBN = transpose(mat3(T, B, N));
86     }
87     
88     // Push uv cordinate to fragment shader
89     properties.f_uv = v_uv;
90         
91     // Calculate vertex position in tangent space
92     properties.f_vertex = TBN * (model * vec4(v_vertex, 1.0)).xyz;
93     
94     // Calculate normal for surfaces that does not have normal mapping
95     properties.f_normal = TBN * normalize(mat3(model) * normalize(v_normal));
96     
97     // Obtain camera position from camera matrix
98     properties.tangentScreenPosition = vec4(-transpose(mat3(camera)) * camera[3].xyz, 1.0);
99     

100     // Set camera to tangent space
101     properties.tangentScreenPosition = vec4(TBN * vec3(properties.tangentScreenPosition.xyz), 

1.0);
102     
103     // Light position in tangent space
104     properties.tangentLightPosition = TBN * light.position.xyz;
105     
106     // Calculate the vertex position
107     gl_Position = projection * camera * model * vec4(v_vertex.xyz, 1.0);
108 }
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1 #version 330 core
2  
3 // FRAGMENT SHADER (main.frag)
4  
5  
6 // Coordinates
7 in Properties {
8     vec3 f_vertex;
9     vec3 f_normal;

10     vec2 f_uv;
11     vec4 tangentScreenPosition;
12     vec3 tangentLightPosition;
13 } properties;
14  
15  
16 // Light properties struct
17 struct Light {
18     vec4 position;
19     vec3 color;
20     float attenuationConstant;
21     float attenuationLinear;
22     float attenuationQuadratic;
23     float ambientCoefficient;
24 };
25  
26 // Light uniform
27 uniform Light light;
28  
29 // Model material struct
30 struct Material {
31     float opacity;
32     float shininess;
33     
34     vec3 diffuse;
35     vec3 ambient;
36     vec3 specular;
37     vec3 emissive;
38 };
39  
40 // Model material uniform
41 uniform Material material;
42  
43  
44 // Texture
45 struct Textures {
46     sampler2D diffuse;
47     sampler2D normal;
48 };
49  
50 uniform Textures textures;
51  
52 // Matrices
53 uniform mat4 projection;
54 uniform mat4 camera;
55 uniform mat4 model;
56  
57 // Out color
58 out vec4 outColor;
59  
60  
61 /*!
62  * Blinn–Phong shading model.
63  *
64  * :param normal          Surface normal.
65  * :param diffuseFragment Original surface color.
66  * :param surfaceToCamera Surface to camera direction.
67  * :param surfacePos      Surface position.
68  *
69  * :return Original color mixed with light color.
70  */
71 vec3 BlinnPhong(const in vec3 normal, const in vec4 diffuseFragment, const in vec3 

surfaceToCamera, const in vec3 surfacePos) {
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72     // Calculate light direction
73     vec3 lightDirection = properties.tangentLightPosition.xyz - surfacePos;
74  
75     // Calculate attenuation
76     float lightDistance = length(lightDirection);
77     float attenuation = (1.0f / (
78         light.attenuationConstant + // constant
79         light.attenuationLinear * lightDistance + // linear component
80         light.attenuationQuadratic * lightDistance * lightDistance // Quadratic component
81     ));
82     
83     // Normalize light direction
84     lightDirection = normalize(lightDirection);
85     
86     // Ambient
87     vec3 ambient = light.ambientCoefficient * diffuseFragment.rgb * light.color.rgb;
88     
89     
90     // Diffuse
91     float diffuseCoefficient = max(0.0, dot(normal, lightDirection));
92     vec3 diffuse = diffuseCoefficient *  diffuseFragment.rgb * light.color.rgb;
93  
94     
95     // Specular (Blinn–Phong)
96     vec3 halfVector = normalize(surfaceToCamera + lightDirection);
97     float specularCoefficient = pow(max(0.0, dot(normal, halfVector)), material.shininess);
98     vec3 specular = specularCoefficient * material.specular * light.color.rgb;
99     

100     // Return final color
101     return ambient + attenuation * (diffuse + specular);
102 }
103  
104  
105 /*!
106  * Fragment shader main function.
107  */
108 void main(void) {
109     // Obtain fragment cololor from texture
110     vec4 diffuseFragment = texture(textures.diffuse, properties.f_uv);
111     
112     // Discard pixel that have opacity from depth buffer
113     if (diffuseFragment.a <= 0.1) {
114         discard;
115     }
116     
117     // Normal without normal mapping
118     vec3 normal = properties.f_normal;
119     
120     // Obtain normal from normal map in range [0, 1]
121     vec3 normalFragment = texture(textures.normal, properties.f_uv).rgb;
122     if (normalFragment != vec3(0.0f)) {
123         // Transform normal vector to range [-1, 1]
124         normalFragment = normalize(normalFragment * 2.0 - 1.0);
125         
126         // Get normal from normal map
127         normal = normalFragment;
128     }
129     
130     // Camera in tangent space
131     vec3 cameraPos = properties.tangentScreenPosition.xyz;
132     
133     // set gamma correction to texture
134     float gamma = 2.2;
135     diffuseFragment = pow(diffuseFragment, vec4(vec3(1.0 / gamma), 1.0));
136     
137     // Calculate tangent space surface to camera vector
138     vec3 surfaceToCamera = cameraPos - properties.f_vertex;
139     
140     // Normalize camera to surface vector
141     surfaceToCamera = normalize(surfaceToCamera);
142     
143     // No texture use material diffuse color
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144     if (diffuseFragment.rgb == vec3(0.0f)) {
145         diffuseFragment = vec4(material.diffuse, material.opacity);
146     }
147     
148     // Set empty color black
149     vec3 color = vec3(0);
150     
151     // Calculate single point light
152     color += BlinnPhong(
153         normal,
154         diffuseFragment,
155         surfaceToCamera,
156         properties.f_vertex
157     );
158     
159     // Final color
160     outColor = vec4(color, diffuseFragment.a * material.opacity);
161 }
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