
Bachelor's thesis

Information Technology

Digital Media

2016

Antti Tujula

LIGHTING AND NORMAL
MAPPING IN COMPUTER
GRAPHICS
– Implementing normal mapping in HactEngine

BACHELOR'S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology | Digital Media

2016 | 62

Instructor: Principal Lecturer Mika Luimula, Adj.Prof.

Antti Tujula

LIGHTING AND NORMAL MAPPING IN
COMPUTER GRAPHICS

This Bachelor's thesis examines the use of surface detail mapping and dynamic lighting in 3D
graphics and explains the relation between these techniques. Surface detail mapping refers to
techniques that use textures to modify the appearance of models in 3D graphics. Some of these
techniques can be used to modify the actual shape of a model and some of them set up new
normal vectors, which are required for calculating light reflections. By combining proper lighting
and surface detail mapping, a 3D model can achieve a nearly realistic appearance.

This thesis covers the basic principles of 3D modeling and introduces the most common vector
and matrix mathematics used in 3D graphics. It also introduces the functionality of a basic
lighting model called the Blinn-Phong shading model and explains the relation between lighting
and surface detail mapping. In addition, it will also introduces the math behind normal mapping
that is one of the most common surface detail mapping in 3D graphics.

This thesis is a part of the HactEngine project, which is an open source multi-platform game
engine developed by Indium Games, a Finnish game development company. A Game engine is
a tool that will speed up the process of developing games and applications. This thesis
introduces the implementation of normal mapping in this game engine. HactEngine received
Tekes funding in 2015 and it will be released as open source when it is ready.

KEYWORDS:

Normal mapping, lighting, surface detail mapping, shader, Blinn-Phong shading model

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tietotekniikka | Mediatekniikka

2016 | 62

Ohjaaja: yliopettaja Mika Luimula, dos.

Antti Tujula

VALAISTUS JA NORMAALIKARTAT
TIETOKONEGRAFIIKASSA

Tämän opinnäytetyön tarkoituksena oli tutkia pintatekstuurien ja dynaamisen valaistuksen
käyttöä 3D-grafiikassa, sekä selvittää näiden tekniikoiden yhteyttä toisiinsa. Pintatekstuurit ovat
tekstuureja, jolla saadaan luotua yksityiskohtia 3D-mallien pintaan, joko muokkaamalla mallin
pinnan verteksejä tai asettamalla mallin pinnoille useita valaistuksen laskemiseen käytettäviä
normaalivektoreita. Pintatekstuureilla saadaan luotua illuusioita, jotka yhdessä valaistuksen
kanssa saavat mallin näyttämään tarvittaessa hyvinkin realistiselta.

Työ aloitettiin tutkimalla teoriaa 3D-mallinnuksesta ja tähän liittyvästä matematiikasta. Tämän
jälkeen työssä tutkittiin 3D-grafiikassa yleisesti käytössä olevaa valaistustekniikkaa, Blinn-
Phong-valaistusmallia sekä selvitettiin erilaisten valaistusmallien yhteyttä pintatekstuurien
toiminnassa. Työssä keskityttiin normaalikarttojen teknilliseen toteutukseen, jossa selvitetään
tämän pintateksturointimenetelmän toiminta matemaattisesti.

Työn käytännön osuudessa ohjelmoitiin normaalikartoille tuki HactEngine-pelimoottorille.
Pelimoottori on pelinkehitystä nopeuttava työkalu. HactEngine on Indium Games -yrityksen
kehittämä alustariippumaton pelimoottori, jolle myönnettiin Tekes-rahoitus vuonna 2015.
Moottori julkaistaan avoimena lähdekoodina sen valmistuttua, jonka jälkeen moottoria voidaan
vapaasti käyttää pelien tai sovellusten kehittämiseen.

ASIASANAT:

normaalikartat, valaistus, pintateksturointi, sävytinohjelmointi, Blinn-Phong-sävytysmalli

CONTENT

1 INTRODUCTION...9

2 VECTORS AND MATRICES...10

2.1 Vectors..10

2.2 Unit vectors...11

2.3 Vector dot product...12

2.4 Vector cross product...12

2.5 Matrices...13

2.6 Identity matrix..13

2.7 Scaling matrix...14

2.8 Translation matrix..14

2.9 Rotation matrix..15

2.10 Matrix determinant..16

2.11 Matrix inverse..16

2.12 Matrix transpose...17

3 3D MODELING..18

3.1 Vertices...18

3.2 Edges..19

3.3 Faces..19

3.4 Indexing..20

3.5 Right-handed and left-handed coordinate systems......................................20

3.6 3D spaces...23

3.7 Object space...23

3.8 World space..23

3.9 Camera space...24

3.10 Screen space..24

4 SHADERS AND RENDERING..26

4.1 Rendering...26

4.2 Shaders...26

4.3 OpenGL Shading Language (GLSL)..29

4.4 Uniforms..29

4.5 Attributes...30

4.6 Vertex shader..30

4.7 Fragment shader...31

5 SHADING MODELS..32

5.1 Light intensities...32

5.2 Sunlight and RGB color..32

5.3 Absorption & reflection of color...34

5.4 Phong reflection model...35

5.5 Surface normals..36

5.6 Ambient component..37

5.7 Diffuse component..37

5.8 Specular component...39

5.9 Attenuation and final color..42

6 TEXTURE MAPPING..45

6.1 Normal mapping..46

6.2 Object space normal mapping..48

6.3 Tangent space normal mapping..49

7 NORMAL MAPPING IN HACTENGINE..55

7.1 HactEngine introduction..55

7.2 Entity and Properties..55

7.3 Materials...57

7.4 Mesh...57

7.5 Asset manager..58

7.6 C++ implementation..59

7.7 GLSL implementation...59

8 CONCLUSION...61

Appendix 1. Normal mapping vertex shader (normal.vert)
Appendix 2. Normal mapping fragment shader (normal.frag)

PICTURES

Picture 1: 3D model of a dolphin 18
Picture 2: 2D coordinate 20
Picture 3: Right and left handed coordinate systems 21
Picture 4: Model transformation 22
Picture 5: Space matrix calculations 25
Picture 6: Color combinations 33
Picture 7: Color red reflection 34
Picture 8: Color cyan reflection 35
Picture 9: Phong reflection model 36
Picture 10: Cross product 36
Picture 11: Angle of incidence 38
Picture 12: Blinn-Phong reflection vectors 41
Picture 13: Cube with diffuse mapping (left) and cube with diffuse and normal
mapping (right) 47
Picture 14: Object space normal map 48
Picture 15: Tangent space normal map 49
Picture 16: TBN vectors 50
Picture 17: Tangent space UV map 51

TABLES

Table 1: Supported platforms of different graphical frameworks 28
Table 2: Comparison between different surface detail mappings 46

EQUATIONS

Equation 1: Vector formation 10
Equation 2: Vector magnitude 11
Equation 3: Unit vector 11
Equation 4: Vector dot product 12
Equation 5: Vector Cross product 12
Equation 6: Identity matrix 13
Equation 7: Scaling matrix 14
Equation 8: Translation matrix 14
Equation 9: Axis rotation matrices 15
Equation 10: Arbitrary rotation matrix 15
Equation 11 Determinant 16
Equation 12: Matrix inverse 16
Equation 13: Matrix transpose 17
Equation 14: Red surface reflect 34
Equation 15: Cyan surface reflect 35
Equation 16: Ambient component 37
Equation 17: Diffuse component 39
Equation 18: Specular component 41
Equation 19: Blinn-Phong reflection 42
Equation 20: Final color 43
Equation 21: Attention 43
Equation 22: Normal map texture conversion 49
Equation 23: Formula for calculating tangent and bitangent 52
Equation 24: Tangent space to world space matrix 53
Equation 25: World space to tangent space matrix 54

LIST OF ABBREVIATIONS (OR) SYMBOLS

Aspect ratio Describes the proportional relationship between image

width and height.

C++ A high-performance, cross-platform object-oriented high-

level programming language.

FBX FBX (Filmbox) is proprietary 3D file format.

GLM Open source header only C++ mathematical library for the

OpenGL Shading Language (GLSL)

Lua Powerful, efficient, lightweight, embeddable scripting

language.

Material in 3D

graphics

A combination of attributes which describes how a surface

of given material should look like.

Quaternions A quaternion is a four-element vector that can be used to

encode any rotation in a 3D coordinate system. A

quaternion is composed of one real element and three

complex elements.

SDL (Simple DirectMedia Layer) is a Cross-platform low-level

development library for game development.

SWIG Software development tool that connects programs written

in C or C++ with a variety of high-level programming

languages.

Tekes Tekes is a organization that provides innovation funding for

companies, research organisations, and public sector

service providers.

9

1 INTRODUCTION

Computer calculation and rendering power have evolved enormously in the past

20 years to a point where computers have become irreplaceable tools for many

industries. Computer graphics are now a widely used tool in a product’s design

and prototyping. Graphics processing units (GPUs) are constantly evolving and

in the near future they can be powerful enough to produce realistic looking real-

time pictures with technologies like ray tracing [1]. Until that time comes, there

are some other optimized methods that can be used to simulate the properties

of light in real-time computer graphics.

Blinn–Phong is a widely used shading model that was the default shading

model in OpenGL until version 3.1, where the Fixed Function Pipeline was

removed [2]. Blinn–Phong shading uses model planes and their normals for

calculating light reflections. These calculations can be expensive for the GPU, if

the model has large amounts of planes and vertices. This is why surface detail

mapping has become a widely used optimization technique [3]. One of the

surface detail mapping methods is normal mapping, which can be used to

reduce the amount of vertex points and planes of the 3D model with minor

losses if any in rendering detail [3].

The focus of this thesis is to explain the use of normal mapping in real-time

computer graphics and to explain the theory and calculations behind it. This

thesis a part of the HactEngine project, which is an open source game engine

being developed by the Indium Games. The main goal was to learn the most

efficient way to implement normal mapping and add support for it into the

HactEngine game engine. All the source code from this thesis is open source

and can be used freely based on its licensing. The code is programmed with

C++ and GLSL (OpenGL Shading Language). The reader should to have some

basic experience about vector and matrix calculations before reading this

thesis.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

10

2 VECTORS AND MATRICES

This part of the thesis will cover some vector and matrix math that are widely

used in 3D graphics. This information is necessary in order to understand the

theory behind lighting and surface detail mapping. All calculations in this thesis

are performed in a right-handed coordinate system. The difference between left

and right handed systems will be presented later in this thesis in section “3.5

Right-handed and left-handed coordinate systems”.

2.1 Vectors

A vector is a geometric object that has a magnitude (or length) and a direction

[4]. In 3D graphics, each vector consist of 3 components: x, y and z. A vector

can be formed between two points by subtracting the end point position from

the start point position. All vectors have a head (represented as the arrow end)

and a tail (the non-arrow end). The head is the location where the vector ends

and represents the direction where the vector is pointing. The vector's tail is the

location where the vector starts [4]. In a right handed coordinate system vectors

are column vectors [4].

If P1 and P2 are points in a 3D space:

Equation 1: Vector formation

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

P1=[
x1

y1

z1
] P2=[

x2

y2

z2
]

P⃗1 P2 = P2−P1 = [
x2

y2

z2
]−[

x1

y1

z1
] = [

x2−x1

y2− y1

z2−z1
]

11

The magnitude of a vector can be calculated with the equation:

Equation 2: Vector magnitude

2.2 Unit vectors

Unit vectors are vectors that have a magnitude (length) of 1. The normalized

vector or versor û of a non-zero vector u is the unit vector in the direction of u.

Unit vectors are used for calculations that only require the direction of a certain

vector [6].

The normalized vector û of any non-zero vector u can be calculated by:

1. first calculate the length of vector u, then,

2. divide each of the components (x, y and z) of vector u by its length.

Equation 3: Unit vector

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

u⃗=[
x
y
z]

|⃗u|=√(x ² + y ² + z2
)

u⃗ = [
2
1
2] |⃗u| = √(2² + 1² + 22

) = 3

û =
u⃗
|⃗u|

=
1
|⃗u|

u⃗ û = [
2
3
1
3
2
3
] |û|=1

12

2.3 Vector dot product

The dot product is one of the most important operations in 3D graphics [6]. It is

used for many tasks, such as projecting a vector along another, and for finding

the magnitude of a vector. It can also be used to measure an angle between

two vectors [3]. The dot product works consistently in any number of

dimensions. When the operation is used for calculating an angle between 2

vectors, it can be simplified by using unit vectors. This way, the dot product

results in the cosine of the angle between these 2 vectors and their magnitudes

can be ignored in the calculations [6].

Equation 4: Vector dot product

2.4 Vector cross product

The cross product of 2 vectors results in a vector perpendicular to the two

vectors. This means that the cross product operation can be used to calculate

vectors that point either straight up or straight down from the surface that is

formed by the 2 vectors. A cross product with 2 unit vectors does not

necessarily produce a unit vector. A unit vector is only produced if the cross

product vectors are in a 90 degree angle with each other. The cross product can

be used to calculate the normal vector for a plane in 3D models [6]. The cross

product needs a 3D space to work.

Equation 5: Vector cross product

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

v⃗⋅⃗c=|⃗v||⃗c|cos(v⃗ , c⃗) v̂=
v⃗
|⃗v|

ĉ=
c⃗
|⃗c|

|v̂|=1 |ĉ|=1

v̂⋅ĉ=|v̂||̂c|cos (v̂ , ĉ) = v̂⋅ĉ=1∗1cos (v̂ , ĉ) = cos (v̂ , ĉ)

a⃗×b⃗=|⃗a||⃗b|sin(a⃗ , b⃗)

13

2.5 Matrices

Matrices are arrays in mathematics that can be arranged into rows and

columns. Matrices can be used to transform vectors and so to move, scale and

rotate 3D models [4]. Multiplying a model matrix a with a proper translation

matrix will move the positions of each of the model's points (vertices) and by

this way move the vectors (edges) and surfaces (faces) that form the model. All

example matrices in this thesis are for a right handed coordinate system, so

they will not work in left handed coordinate systems. More info about coordinate

system handedness can be read in section “3.5 Right-handed and left-handed

coordinate systems”.

2.6 Identity matrix

Identity matrices, or unit matrices, can be used to reset and to initialize

matrices. Multiplying a vector with an identity matrix results in exactly the same

vector [5].

Equation 6: Identity matrix

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

I=[
1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1
]

14

2.7 Scaling matrix

Scaling matrices can be used to change the magnitude of each of the vector

components and so to scale 3D models. Vectors can be scaled by multiplying

them with a scaling matrix. The example matrix in equation 7 shows the location

of each component for separate scaling along different axes. This way the

model can be scaled separately along each axis [5].

Equation 7: Scaling matrix

2.8 Translation matrix

Translation matrices can be used to move vectors in 3D space and so to move

3D model positions. Each component is presented separately so that the

vectors can be moved along each axis [5].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Equation 8: Translation matrix

S=[
1
0
0
0

0
1
0
0

0
0
1
0

x
y
z
1
]

S=[
x
0
0
0

0
y
0
0

0
0
z
0

0
0
0
1
]

15

2.9 Rotation matrix

A vector can be rotated by multiplying it with a rotation matrix. There are four

different types of rotation matrices, one for each axis (x, y and z) and one for

rotating around an arbitrary axis. In the below equations, alpha is the rotation in

radians [5]. These matrices can be used for rotating vectors and so to rotate 3D

models.

Equation 9: Axis rotation matrices

A matrix that can be used for rotating a vector around an arbitrary axis is a bit

more complicated.

The rotation matrix looks like this:

Equation 10: Arbitrary rotation matrix

The vector components (x, y, z) which represent the rotation axis must be

normalized into unit vectors. In 3D graphics, these matrices are usually formed

with external mathematical libraries like GLM [8]. Quaternions can also be used

to calculate and to form rotation matrices, but they are not straightly related to

normal mapping, so they won't be presented in this thesis.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Rot x(α)=[
1
0
0
0

0
cos(α)

sin(α)

0

0
−sin(α)

cos (α)

0

0
0
0
1]Rot y (α)=[

cos(α)

0
−sin(α)

0

0
1
0
0

sin (α)

0
cos (α)

0

0
0
0
1]Rot z(α)=[

cos (α)

sin (α)

0
0

−sin(α)

cos(α)

0
0

0
0
1
0

0
0
0
1]

where : cα=cos (α) sα=sin (α)

Rotu(α)=[
x ² (1−cα)+cα
xy (1−cα)+ zsα
xz (1−cα)− ysα

0

xy (1−cα)−zsα
y ²(1−cα)+cα
yz (1−cα)+xsα

0

xz (1−cα)+ ysα
yz (1−cα)− xsα
z ²(1−cα)+cα

0

0
0
0
1]

16

2.10 Matrix determinant

The determinants are useful values that can be computed from the elements of

square matrices. The determinant of a matrix D is denoted det(D), det D, or |D|.

Equation 11: Determinant

2.11 Matrix inverse

If a square matrix A is multiplied with another matrix B and their multiplication

results in an identity matrix, then B is called the inverse matrix of A and can be

written as A-1. With matrix calculations, there is no concept of division.

However, with an inverse matrix the same kind of effect can be achieved. A

matrix has an inverse matrix if:

Equation 12: Matrix inverse

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

2x2 matrix determinant can be calculated:

D2=|a11

a21

a12

a22
|=a11 a22−a21a12

3x3 matrix determinant can be calculated:

D3=|
a11

a21

a31

a12

a22

a32

a13

a23

a33
|=a11|a22

a32

a23

a33
|−a12|a21

a31

a23

a33
|+a13|a21

a31

a22

a32
|

=a11a22a33−a11a32a23−a12a21a33+a12a31a23+a13a21a32−a13a31a22

B=A−1

A B=B A=I
Sometimes matrix has no inversed matrix:

First the positions of a and d is swapped, minus signs are put in front of b and c, and
everything is devided by the determinant (ad-bc)

A−1
=[abc d]

−1

=
1

det (A) [d−b
−c a]=

1
ad−bc [d−b

−c a]

17

2.12 Matrix transpose

A matrix transpose can be used to swap the order of matrix rows and columns.

The same operation can be used for vectors by turning row vectors into column

vectors [5].

Equation 13: Matrix transpose

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

[1 2
3 4]

T

=[13
2 4]

[1 23
4 5 6]

T

=[
1 4
2 5
3 6]

18

3 3D MODELING

To understand the basics of surface detail mapping one should understand

the basics of 3D modeling and 3D graphics. 3D modeling is a process of

developing a mathematical representation of three-dimensional surface

objects with computers [1]. They have become an irreplaceable tool for

many industries and have replaced the old traditional design methods.

These models can also be found in various amounts in different media, like

movie special effects, animations, commercials and video games [1].

3.1 Vertices

3D models are formed from mathematical points in 3D space, called vertices.

Each vertex consists of three components called x, y and z, which represent the

location of a point in 3D space [4].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 1: 3D model of a dolphin [16]

19

3.2 Edges

In 3D models, 2 vertex points can be thought to form a mathematical vector.

The connection between these 2 vertex points form a single edge of the model.

This is why these vectors are called edges. Like vectors, edges have a direction

and a magnitude. In 3D graphics, models can be rotated, scaled, and translated

with matrices. Each of these matrices can be used separately or they can be

combined to form a 4x4 sized transformation matrix. This way, model

transformations can be performed with a single operation. To be able to perform

calculations between 4x4 matrices and vectors, a four-dimensional vector is

required. This is why many 3D graphics calculations are done with 4-

dimensional vectors that consist of the components x, y, z and w [3]. Here, w

can hold special information about the vector. The components x, y, and z are

often divided with the w component in many calculations, in order to turn the 4D

vector into a 3D vector.

3.3 Faces

Three edges can be combined together to form a triangle, which is the simplest

surface in 3D space. These surfaces are called faces. A model gets formed

when multiple faces share the same edges and vertices. This can be seen in

Picture 1. Faces can have more than 3 edges. A group of multiple faces is

called a mesh.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

20

3.4 Indexing

Indexing vertex points is a memory optimization method used in 3D graphics.

3D models are formed by finding faces that have the same vertex points.

Without any optimization, each of the faces have a separate list of their own

vertex points, even if these points are identical. This means that the same

vertex point location can be loaded to the memory multiple times. By indexing

vertices, each of these points gets loaded into memory only once and their

location is indexed to reduce memory consumption [7].

3.5 Right-handed and left-handed coordinate systems

2D spaces have a coordinate system that has 2 axes: x and y. Here, y usually

increases towards the up direction and x usually increases towards the right

direction. 3D space is not much different. It has 3 axes instead of 2. The third

axis is named z and it represents depth in that coordinate system. However, this

z axis can increase into 2 different possible directions [4].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 2: 2D coordinate [17]

21

There are 2 different types of 3D coordinate systems, which are left and right

handed coordinate systems. The systems get their names from hand positions

that help in remembering these systems. A right hand system can be

demonstrated by placing the right hand into a position where the thumb points

to the right, the index finger points up and the middle finger points straight

toward the eyes. The left hand works so that the thumb points again to the right

and the index finger points up, but this time the middle finger points away from

the eyes [4]. The hand positions are shown in picture 3.

The difference between these systems is that a right handed system uses

column vectors and matrices where as a left handed system uses row vectors

and matrices. This causes a difference in the order how the model scaling,

rotation and translation calculations need to be done. It is crucial to calculate

these in the correct order in both of these systems. In a right handed system,

the calculations are done right-to-left, and the model scale and rotation get

calculated before translation. A left handed system uses row vectors and

matrices and the calculations are done from left-to-right. Transformation order is

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 3: Right and left handed coordinate systems [18]

22

the same but matrices are multiplied in reversed order. Picture 4 demonstrates

model transformation.

OpenGL is an open source graphical framework which is used by many

rendering programs. OpenGL works on multiple platforms and is the only

framework that supports almost every platform on the market. In order to

simplify this thesis, all calculations are presented in a right-handed coordinate

system. By default, OpenGL uses a right-handed coordinate system where the z

axis increases toward the screen. Almost every brand of modeling software

(e.g. Blender, Maya and 3ds Max) uses a right-handed coordinate system.

There are also many programs and frameworks that use a left-handed system

by default. One of these frameworks is Microsoft DirectX [7].

Coordinate axes can be modified in these systems. Most modeling software use

the z axis as the up axis. This does not make a huge difference, because every

3D model can be converted to any of these systems [4].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 4: Model transformation [19]

23

3.6 3D spaces

There are multiple coordinate spaces involved in 3D graphics and each of these

has their own origin. These systems are [5]:

• object space

• world space

• camera space

• screen space

3.7 Object space

Object space is the local space for each 3D model object. This space is

needed, so that every single object can be rotated, scaled, and translated freely.

Every object space has its own transformation matrix that keeps the information

about the rotations, translations and scales [5].

3.8 World space

Whenever a 3D modeler wants to keep multiple separate 3D objects in the

same scene, and to be able to scale, rotate or translate them individually,

another object space is required. These spaces are separated with a hierarchy

where rotating the parent object will also rotate its child objects. But rotating the

child element does not affect the parent object’s rotation [5].

Let's assume a modeler has made a model of a pool table. The model consist of

a parent object that is a table, which has 15 ball child objects. Each of these

balls has their separate object space where the origin is set to the center of the

ball. The objects are rotated around their own object space origin, and if an

object is moved away from their origin point, they start to orbit around it. In real

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

24

life, the balls are rotating around their center point. To be able to move these

balls correctly, they need to be moved into another object space. in this case to

the table's object space. Objects can be converted to new spaces by multiplying

their transformation matrix with the new space's transformation matrix which

transforms the object's vertices into that object's space. After this, the balls are

moved to their new positions in the different space [5].

The modeler can also rotate the table and still keep the balls in their correct

positions. This can be done by rotating the whole model in the pool table's

object space with a proper rotation matrix. There can be multiple object spaces

in each of the graphical scenes but the topmost one is usually called the world

space [5].

3.9 Camera space

 The next space is called the camera space, which is needed in order to move

the viewpoint into the world. There are no real cameras in 3D graphics. The

user can move the camera or the whole 3D world to get the same end result.

Multiplying vertices which are in world space with the camera's view matrix will

transform the vertices into the camera’s space. After this, the scene looks like

the user is looking at it through the camera [5].

3.10 Screen space

The last space is a projection space where the scene is projected onto the

screen. The coordinate space transformation changes the 3D coordinates onto

the 2D screen. The screen space transformation will also define the projection

with which the models are viewed. These projections are usually either

perspective or orthographic projections [5]. Also, the aspect ratio must be taken

into account in these calculations, so that the scene won't be distorted when the

user is changing the screen size from widescreen to the old style non-

widescreen view. This transformation is required as long the display machine

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

25

uses 2D displaying [5]. In Picture 5, the changes between spaces can be seen.

After this multiplication the image can be rendered onto a screen.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 5: Space matrix calculations [20]

26

4 SHADERS AND RENDERING

4.1 Rendering

Rendering is the process of generating an image of a 2D or 3D model onto a

screen. In the early ages of computing, the CPU (central processing unit) also

called a processor, was responsible for calculating every stage of the rendering

process. The CPU is optimized for calculating complex equations but it isn't fast

when the request is to handle a huge stack of data and performing the same

operation multiple times [14]. Every pixel on the screen can be calculated in

slots and to make this fast a new device was required [10]. The GPU (Graphics

Processing Unit) was born.

There are 2 major types of rendering called offline and real-time rendering.

Offline rendering, or pre-rendering, has been used in animations and realistic

images that take a long time to render before showing on the screen. Because

images get rendered offline, this system can use techniques that require heavy

calculations. One of these techniques is ray-tracing where the model gets hit by

millions of separate light-rays and every light reflection is calculated separately.

This technique is still much too heavy for real-time rendering but the quality of

the rendered scene can look almost like in real life [1].

Real-time rendering is widely used in programs like games that require a high

frame rate and cheaper rendering calculations. GPUs are constantly evolving,

which has made it possible to create better looking graphics each year. Both of

these methods can be used with rendering paths written in high-level

programming languages. These programs are called shaders.

4.2 Shaders

One of the biggest changes in 3D graphics has been the growth of the

popularity of graphical shader programming [10]. Before shaders, graphics

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

27

programming was really limited and calculations were done with certain simple

formulas [10]. Then came the idea to create high-level programming languages

that provided more freedom to the programmers. Shaders are small programs

that can be used for modifying the geometries of 3D models and for calculating

and rendering a color of a single pixel onto the screen.

One of the first shading languages was called RenderMan, and was developed

by Pixar in the early 1980s. It was used in animation movies like Toy Story and

Bug’s Life [10]. RenderMan was an offline rendering language, but it showed

that the way of the future was real-time rendering shaders.

Currently, the most popular shading languages and frameworks are DirectX,

and OpenGL, which have slightly different shading languages and support

different platforms [12]. This thesis focuses on OpenGL, which is a cross-

platform framework that supports platforms like Linux, Windows and OS X.

There is also framework called OpenGL ES, which is meant for mobile

platforms.

These systems are still really popular but next generation frameworks are also

coming to the market. In September of 2013, AMD announced a new, low-level

graphics framework called Mantle, designed to be an alternative to OpenGL and

Direct3D. The idea of Mantle was to allow direct access to AMD hardware with

minimum driver overhead. Most importantly, it paved the way for parallel

programming in shaders, increasing the performance available to graphics

programming. This was something that OpenGL and DirectX didn't really offer at

the time. After some time passed, Microsoft announced that it was developing

similar support for its new DirectX 12. In 2014, Apple followed suit and

announced their own graphics API called Metal [12]. This same year the

OpenGL holding company, Khronos Group Inc, announced their next generation

API, called Vulkan. Vulkan is currently the only cross-platform next generation

API on the market. Since the other next generation frameworks support only

limited platforms, it will surely make Vulkan a tempting platform for future

developers. Currently, there is still a limited amount of devices that support

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

28

these next generation frameworks. Table 1 shows platform support across

different frameworks.

Table 1 Supported platforms of different graphical frameworks

Framework Windows Linux OS X Android iOS Other

DirectX <=

v.11
✓ - - - - Xbox,

Windows

Phone

OpenGL ✓ ✓ ✓ - - -

OpenGL ES ✓ ✓ ✓ ✓ ✓ PlayStation

3

Next

Generation:

Vulkan Since:

OpenGL

4.X

Since:

OpenGL

4.X

Since:

OpenGL 4.X

Since:

OpenGL ES

3.1

Since:

OpenGL

ES 3.1

-

Metal - - Since: OS X

El Capitan

version

10.11

- Since

Apple A7,

iOS 8

-

Mantle - - - - - Only AMD

GPUs

DirectX 12 Windows 10 - - - - Xbox

One,

Windows

Phone

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

29

4.3 OpenGL Shading Language (GLSL)

GLSL is the base programming language in the OpenGL framework. It is a C-

style language, and covers most of the features one would expect with such a

language [13]. It is simple but powerful. Support for GLSL first came with

OpenGL version 2.0 and the old Fixed Function Pipeline was first deprecated in

version 3.0 and finally removed in version 3.1. OpenGL provides 5 different

types of shader stages that can be used for different purposes. Some of them

are only available in newer versions of OpenGL [13]. Each stage has a set of

inputs and outputs, which are passed from a prior stage to subsequent stages

[13]. Shaders can pass values from one to another, and some shader programs

get run more often than others. The most common shader stages are vertex

and fragment shaders. The popular surface detail mapping system, normal

mapping, requires the use of both of these shaders. This thesis will present

these 2 most common shader stages.

Some of the graphic calculations are still made on the CPU side of the program.

OpenGL provides a way to pass these values into the shader program. There

are 2 different types of inputs that get passed through one stage to another [13].

These are uniforms and attributes.

4.4 Uniforms

A uniform is a global GLSL variable, which is sent from the CPU side of the

program to the GPU. They are called uniforms, because their values are

“uniform”, i.e. they do not change between shader stages [13]. Variables that

are static during the whole run of a single shader program can be passed

around as uniform variables. The most common uniform variables are textures,

which cannot be used as attributes, the model matrix, camera matrix, projection

matrix and the light positions.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

30

4.5 Attributes

Attributes are user-defined input values which, unlike uniforms, can change

between shader stages. Attributes are used for passing data like UV-

coordinates, vertices and their normal vectors. After OpenGL version 3.0, came

support for vertex array objects (VAOs) and vertex buffer objects (VBOs), which

made it easier and faster to pass attributes into shaders. A VAO is an OpenGL

object, which stores one or more VBO objects to supply vertex data. It also

informs which VBO objects are currently in use and attached to which shader

variable. A VBO is an object which is used as the source for vertex array data,

like a list of float values [13]. There was also a third input called varying, but its

name was changed to in and out qualifiers. Variables marked with the in

qualifier can be used to pass data, which is created inside one shader stage, to

another [13].

4.6 Vertex shader

A vertex shader is a programmable shader stage that handles the processing of

individual vertices [13]. The shader stage gets fed with vertex data, where it

calculates its transformation into the post-projection space. The shader is also

used for calculating and sending vertex data into the fragment shader. The

vertex shader will be executed roughly once for every vertex in the rendered

model.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

31

4.7 Fragment shader

The fragment shader is a shader stage that will process fragment data from the

vertex rasterization. A fragment has a screen space position (x, y), a depth

value (z), and all the interpolated data from previous stages. Each sample of the

pixels covered by a primitive generates a fragment [13]. This shader can be

used for calculating a fragment color that gets hit by a light source. The most

common fragment shader outputs are the end color of a single fragment.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

32

5 SHADING MODELS

Before one can really understand the use of surface detail mapping they need

to know something about lighting in 3D graphics [3]. There are many kinds of

different lighting systems in 3D graphics where some of them give more realistic

lighting than others [1]. More realistic techniques require much calculation

power from the computer, so some of these realistic techniques can’t be used in

real-time rendering [1]. This thesis introduces a basic shading system that is

called the Phong shading model. However, surface detail mapping works with

any of these systems.

5.1 Light intensities

Most of these lighting systems are loosely based on the behavior of light in real

life [3]. The full implementation of light’s behavior is still much too heavy to be

calculated in real-time. This is why there are reflection systems that try to

imitate light’s behaviors, but are much faster to calculate and are therefore more

suitable for real time rendering [1].

5.2 Sunlight and RGB color

White light (sunlight) contains all the colors that humans can see [3]. This can

be demonstrated by channeling light through a prism, which results in a

rainbow. The same thing can be seen in nature, when sunlight is shining

through drops of water. White light can also be constructed by taking red, green,

and blue light and pointing them on top of each other in a dark room, like is

shown in a Picture 6. It can be seen that the color in the center will be white.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

33

More variations can be created by changing the color of one of the spotlights.

This same phenomenon is used in computer graphics in an RGB color system.

The center color changes when one of the light components changes

brightness. In the RGB color space, each of these color values are represented

as a value between 0 and 255 [3]. “RGB” stands for “red”, “green” and “blue”,

each of which point to the value of the specific color component. White color

can be formed when each of these components are 255. A bright red color can

be formed by setting the red value to 255 and the other values to 0 and so on.

In computer graphics, the color values can also be represented as values

between 0 and 1, so they can be used in vector multiplication. The color can be

transformed to the 0 to 1 system by dividing the color component values by 255

[3]. RGB system has a 3 separate components, so it can be stored in a 3D

vector and use in vector and matrix calculations. The RGB system can also be

expanded to the RGBA system, which has an extra component presenting the

alpha channel (transparency).

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 6: Color combinations [21]

34

5.3 Absorption & reflection of color

There are lights that have different colors, but there are also surfaces that have

a certain color. What happens when a certain colored light will hit a certain

colored surface? If there is a red car that gets pointed at by a white light, the red

surface drains the blue and green components from the light and reflects a red

color out from the surface [3]. This can be seen in Picture 7.

This is simple to understand and can also been demonstrated with the RGB

color system by multiplying the surface color components with the light’s color

components. The multiplication is done by multiplying each of the components

individually.

Equation 14: Red surface reflect

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 7: Color red reflection

white light = w⃗l= [1 ,1 ,1]T red surface = r⃗s=[1,0,0]T

reflected light=r⃗l=[w⃗lx∗r⃗s x , w⃗l y∗r⃗s y , w⃗lz∗r⃗sz]
T
= [1∗1,1∗0,1∗0]

T
=[1,0,0]

T

35

What happens when a red surface gets pointed at with cyan light with the color

value RGB(0, 255, 255)? This is interesting, because this time the surface does

not reflect any light out from the surface [3]. This can been seen in Picture 8.

This may sound odd, but it’s certainly true. This same phenomenon happens

whenever the reflected surface can’t reflect a certain kind of color. This can be

demonstrated again by multiplying the light color with the surface color [3].

Equation 15: Cyan surface reflect

5.4 Phong reflection model

The Phong shading model is one of the simplest reflection systems in computer

graphics. This system is also light-weight enough that it can be used in real-time

rendering. It does not produce fully realistic looking lighting, but it’s still good

enough for most cases and is simple to understand. The system consist of 3

components, which are the ambient, diffuse and specular components. All of

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 8: Color cyan reflection

cyan light = c⃗l=[0,1,1]
T

red surface = r⃗s=[1,0,0]
T

reflected light=r⃗l=[c⃗lx∗r⃗sx ,c⃗l y∗r⃗s y , c⃗lz∗r⃗sz]
T
= [0∗1,1∗0,1∗0]

T
= [0,0,0]

T

36

these components require surface normals in order to work [3]. The effect of

each of component can be seen in Picture 9.

5.5 Surface normals

Surface normals are unit vectors, which point up from the model’s surface. Its

job is to inform the direction in which surface is facing. A 3D model gets formed

from faces, which share the same vertices and edges. Each of these faces has

their own normal vectors which point straight up from the face. These faces can

be oriented toward any direction in 3D space, and so a normal vector can point

to any direction in 3D space. The easiest way to calculate surface normals is to

calculate the cross product between 2 edge vectors from each face [3]. This is

demonstrated in Picture 10.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 9: Phong reflection model [22]

Picture 10: Cross product [23]

37

This normal vector is used for many calculations related to computer graphics

and is a really important component in 3D lighting. Normal mapping is a system

where these surface normals are modified so that each fragment coordinate on

a face has its own normal vector. More info about this technique can be read in

the section about normal mapping.

5.6 Ambient component

The ambient component is the simplest component in the Phong shading

model. It represents the base color of a model’s surface. Without this

component, unlighted surfaces would be colored black, which usually looks

unnatural. The ambient component can be formed with a coefficient. By

changing the value of the coefficient, the user can modify the color of the

ambient component. The ambient color can be calculated by multiplying the

surface color with the light’s color and then multiplying the reflected color value

by the ambient coefficient with vector scalar multiplication [3].

Equation 16: Ambient component

In the above example, the end result is a dim red color that the surface is set to,

if it does not get hit by a light source.

5.7 Diffuse component

The diffuse component is the most important component in the Phong reflection

model. It determines the main color of the surface when it gets hit by a light. It is

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

white light = w⃗l= [1,1,1]
T

red surface = r⃗s= [1,0,0]
T

ambient coefficient = c=0.1

reflected light=r⃗l=[w⃗lx∗r⃗s x , w⃗l y∗r⃗s y , w⃗lz∗r⃗sz]
T
=[1,0,0]

T

ambient component = a⃗c = r⃗l∗c=[1,0,0]
T
∗0.1= [0.1,0,0]

T

38

determined by the angle at which the rays of light hit the surface, called the

angle of incidence (AoI) [3]. One can imagine a person holding a white piece of

cardboard towards a flashlight in a dark room. The surface color of the piece of

cardboard will change depending on the angle between the surface normal and

the light source. The cardboard will be the brightest when it is facing straight

toward the light and gets darker when the angle between the light and

cardboard’s surface normal increases. This is demonstrated in Picture 11.

Surfaces that are not facing toward the light will be completely dark (apart from

the ambient component).

The diffuse component mimics this phenomenon. To calculate the diffuse

component one must know which direction the cardboard is facing and the

direction of the light source. Each model surface will have their own normal

vector, which is pointing away from the surface and shows the direction toward

which the cardboard is facing. This normal vector can be calculated by taking

the cross product of 2 vectors formed by the surface’s edges. The light source’s

direction can be calculated by creating a vector from the surface to the light’s

position. Now there are 2 different vectors which can be used in the

calculations.

Both of these vectors should be normalized into unit vectors. This way, the

vector lengths can be ignored in dot product calculations and the dot product

directly results in the cosine of the angle between these 2 vectors. The actual

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 11: Angle of incidence [24]

39

angle is not very important with diffuse calculations. The cosine of the angle will

return the coefficient, which can be multiplied with the combined color of the

surface and the light. If the light is facing straight toward the surface, the angle

will be 0. The cosine of 0 is 1, so the surface color will be 100 % of the

combined color from the light and the surface. Angles bigger than 90 degrees

will return a negative cosine value, so these faces are facing away from the

light. This means that the diffuse component coefficient has to be set to 0, in

order to get the correct result, and therefore the surface does not get color from

the diffuse component.

Equation 17: Diffuse component

5.8 Specular component

The specular component is used to calculate the shininess of a surface.

Specular means a perfect mirror reflection, and gets its name from the real life

phenomenon, where light gets reflected away from a shiny surface, before it

can get mixed with the surface’s colored layer [3]. Again, a car is a good

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Cosine examples:
cos (0 °)=1.0, cos (45 °)=0.707, cos (−45 °)=0.707, cos (90 °)=0.0, cos (120°)=−0.5

surface to light unit vector=L̂
surface normal unit vector=N̂

white light = w⃗l= [1,1,1]
T

red Surface = r⃗c= [1,0,0]
T

reflected light=r⃗l=[w⃗lx∗r⃗c x , w⃗l y∗r⃗c y , w⃗lz∗r⃗c z]
T

Calculations without normalized unit vectors:
N⃗⋅L⃗

|⃗L||N⃗|
=cos(N⃗ , L⃗)

Calculation with normalized unit vectors:
N̂⋅L̂
1∗1

=cos(N̂ , L̂) = N̂⋅L̂=cos(N̂ , L̂)

Only the positive cosine angles counts negative values are set to zero:
diffuse component = d⃗c = max (0.0, N̂⋅L̂)∗r⃗l

40

example of this phenomenon. When looking at a new red car in the sunlight,

some parts of the car are seen as red, but some other parts seem to reflect a

white light. At these parts, the light gets reflected away from the wax surface,

before it hits the red paint layer, and the surface ends up looking white. A

perfect specular surface is like a mirror, where light gets reflected in the exact

same angle as it hits the surface. If light is hitting the surface at a 20 degree

angle, it will be reflected away from the surface with exact same 20 degree

angle [3]. If the angle between the person's eyes and the reflected light ray is

small enough, the color the person sees is a bright reflected color (e.g. white).

As with the diffuse component, the surface normal vector is important with these

calculations. Calculating the specular component requires vectors from the

surface toward the light and from the surface toward the camera. These vectors

are shown in Picture 12 as the L and V vectors [3]. Vector R is a perfect

reflection vector, i.e. a mirrored version of the direction of the light. The main

goal here is to calculate the angle between the reflected R vector and the

camera V vector. If the angle is small, light gets reflected toward the camera.

Like in real life, some objects are shinier than others [3]. This is why the angle

gets powered by a constant value that represents the material’s shininess. Each

surface also has its own specular color component. All of these vectors should

be normalized into unit vectors to get the correct result.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

41

Equation 18: Specular component

There is also an improved version of the Phong model, called the Blinn-Phong

reflection model. In this reflection model, one calculates a halfway vector

between the camera vector V and the light vector L. This is shown in Picture 12.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 12: Blinn-Phong reflection vectors [25]

surface to light unit vector=L̂
surface to camera unit vector=V̂
surface normal unit vector=N̂
reflection unit vector=R̂=normalize (L̂−2 ∗ N̂⋅L̂ ∗ N̂)

Again only the positive cosine angles count.The surface is on the wrong side of the model
if cosine has a negative value and so it is set to zero to get the correct results.

constant material shininess = M=0.6 surface specular color = s⃗sc= [1,1,1]T

lightColor = l⃗c=[1,1,1]
T

reflected light=r⃗l=[⃗ssc x∗ ⃗lc x , ⃗ssc y∗
⃗lc y , ⃗ssc z∗ ⃗lc z]

T
=[1,1,1]

T

specular coefficient= s =max(0.0,V̂⋅R̂)
M

specular component = s⃗c = s ∗ r⃗l

42

The half vector can be calculated with vector addition from L and V. Again, it is

important to normalize the vectors into unit vectors [10]. This is a more efficient

way, because the half vector saves one relatively expensive dot product

calculation process, which is otherwise used to calculate the R vector [10]. In

this method, the specular coefficient can be calculated from taking the dot

product of H and N, instead of R and V [10].

Equation 19: Blinn-Phong reflection

5.9 Attenuation and final color

Now that there are 3 components which will form the end color of the surface,

which gets hit by a light source. The color gets formed by adding the value of

these components together. These components are vectors, so the final color

can be achieved with vector addition. If the scene needs an alpha channel, the

final color can be converted to a 4-dimensional vector by adding the alpha value

as the last component. A value of 1 represents a fully opaque surface and

values below this represent the percentage of the surface’s transparency. Some

texture formats automatically provide alpha channels. For these cases, an alpha

value can be achieved from the texture’s alpha channel. Also, a surface

material can have an opacity value. The final opacity can be calculated by

multiplying the material’s opacity with the texture’s alpha channel.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

surface normal unit vector=N̂
surface to camera unit vector=V̂
surface to light unit vector=L̂

half angle unit vector=Ĥ=normalize(V̂ + L̂)

constant material shininess:M=0.6

specular coefficient: s=max(0.0, Ĥ⋅N̂)
M

43

Equation 20: Final color

There is still one more thing that should be taken into account in this process.

Light loses its intensity when the distance between the light and the surface

increases [9]. This can be seen for example when a dark hall is lighted by a

single candle’s light. The light does not have enough intensity to light up the

whole hall. This loss of brightness over distance is called attenuation, and it

should be taken into account in the calculations to make lights behave like they

do in real life. One way to reduce the light’s intensity over distance is to simply

use a linear equation, so that the light will lose its intensity linearly when the

distance gets bigger [9]. In real life, however, light is much brighter at closer

ranges. Here is one equation that can be used to calculate this effect [9].

Equation 21: Attention

Equation 20 shows a good solution to calculate attenuation. Here, kc is a

constant to avoid division by zero. In most cases, its value is 1.0, but the

brightness of the light can be increased by lowering the constant value [9]. kl is

a linear term, which gets multiplied by the distance d, from the light to the

surface [9]. The last value is kq, which represents the quadratic term of the

attenuation and gets multiplied by the distance squared [9]. This equation will

result in a nicely behaving light attenuation. Good values for the equation

depend on many aspects, but they are mostly floating point values that are

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

a⃗c=ambient component
d⃗c=diffuce component
s⃗c=specular component

Final color=a⃗c+d⃗c+ s⃗c

kc=constant
k l=linear term
kq=quadratic term
d=distance

Fatt=
1.0

kc+k l∗d+kq∗d ²

44

between 1 and 0 and the quadratic component has the smallest value. Some

3D model file formats (like .fbx) support and provide these values as part of

their material data. This allows the modeler to determine the surface and light

data inside the modeling software. Attenuation can be added by simply

multiplying each of Phong components by the attenuation coefficient.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

45

6 TEXTURE MAPPING

Real life surfaces are rarely completely flat and this is why realistic looking 3D

surfaces must also have roughness, holes and bumps on them [9]. One way to

achieve this is to model these details straight into the 3D models. However, this

takes a lot of time and generates a lot of vertices and faces into the models.

The graphics card (GPU) needs to calculate each face separately and every

new vertex will increase the time it takes to render the picture onto the screen.

In real-time rendering, speed is important so that the program can maintain a

good frame rate. If the frame rate drops too low or changes rapidly, the

rendered scene will start to annoy the user’s eyes and therefore lowers the

enjoyment of watching the screen. Still, the models should look good and run

smoothly in the program.

One good method for adding details to a model is to use surface detail mapping

and texture mappings. The most basic mapping is diffuse mapping, where the

model gets its surface color from a texture. This can be seen on the left in

Picture 13. However, this will just give a flat look to a model’s surface. A better

end result can be achieved by also adding surface detail mapping to the model.

There are many different types of surface detail mapping systems. Some of

them will add new vertices to the models from textures like with displacement

mapping. These techniques usually give better end results, but not necessarily

more performance for the program [9]. For this purpose, there is the bump

mapping method, which obtains the surface details from a gray-scale height

map, where darker shades of gray define the lower surfaces, like holes, and

brighter shades represent higher surfaces, like bolts in an iron door. However, a

better end result for this kind of mapping can be achieved with the normal

mapping technique, which is a slightly improved version of height mapping or

bump mapping [9]. Table 2 shows a comparison between these systems. This

thesis will focus on normal mapping, because it’s the most used surface detail

mapping in real-time rendering.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

46

Table 2: Comparison between different surface detail mappings

Surface detail

mapping

Effect on the

model

From Effect on

performance

End result

Height map

Bump map

Calculate

approximate

normal vector

for each model

fragments

Gray-scale height

map

Minor decrease

on performance

Decent looking

surface details

when area is

lighted.

Normal map Contains pre-

calculated

normal vectors

for each model

fragment

RGB normal map Minor decrease

on performance

Great looking

surface details

when area is

lighted.

Displacement

map

Modify model

vertices from

texture

Gray-scale height

map

Major decrease

on performance

Great end result

even when the

area is not lighted

6.1 Normal mapping

The idea behind normal mapping is really simple. This thesis has shown that

each of a model’s faces should have their own normal vectors, which are

pointing straight away from the surface. This normal vector is used for

calculating the light reflections and the angle of incidence of that surface.

Normal mapping is a method where a surface can have multiple normal vectors

that are obtained from a normal map texture. This way, the surface reflects

lights in multiple locations and so even a flat surface can look bumpy, like can

be seen in Picture 13. This effect is still fake and the illusion of the detailed

surface will disappear, if the angle between the surface and the camera is small

enough. Normal mapping is still effective and a good solution for many cases.

Normal vectors consist of 3 components, so they can be stored in normal map

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

47

textures with RGB color values. Each color value represent the position of the

normal vector on a certain coordinate axis [9]. There are 2 different kinds of

normal mapping techniques.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 13: Cube with diffuse mapping (left) and cube with diffuse and normal

mapping (right)

48

6.2 Object space normal mapping

In the first method, normals are stored in a world or object space where the

normal can point to any direction from the surface and surface normals are

calculated in the same object space where the model exists. Object space

normal mapping can be recognized from the rainbow colored texture. This

method is simpler and slightly faster than tangent space normal mapping, but it

has disadvantages. If the model that contains world or object space normal

mapping is rotated or gets deformed, its normals will point toward a wrong

direction and so has an incorrect end result [11]. This is why tangent space

normal mapping is a more commonly used method. Object space normal

mapping can be seen in Picture 14.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 14: Object space normal map [26]

49

6.3 Tangent space normal mapping

With tangent space normal mapping, normals are stored in a tangent space and

the normal vectors are all closely pointing outwards towards the positive z-axis.

These vectors can hold values between -1 and 1. Normal vectors can be stored

in a texture as RGB values. However, color values have to be stored to the

texture between 0 and 1. For these normal vectors, values must be converted to

be between 0 and 1. This can be achieved with Equation 21. When the normals

are read from the texture they have to be converted back to the -1...1 system

[10].

Equation 22: Normal map texture conversion

The z axis is the last coordinate axis in 3D space and blue is the last color in the

RGB color space, which is why tangent space normal mapping contains a lot of

blueish colors. This system’s advantage is that the normals exist in tangent

space, and distorting or rotating the model does not affect the direction of the

normals. However, this requires that before any calculations, the normals have

to be converted to the same object space where the model exist [9]. A tangent

space normal map can be seen in Picture 15.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 15: Tangent space normal map

r=(x+1)/2

50

Tangent space can be thought of as the local space of the normal map vectors.

Models can be converted to different object spaces by multiplying the model

transformation matrix with a proper transformation matrix. This matrix is called

TBN, where the letters depict the tangent, bitangent and normal vectors [9].

These 3 vectors are aligned in the surface of normal map, so that the normal

vector points out from the surface. The tangent vector points to the right of the

normal map and the bitangent points straight up.

Calculating the tangent and bitangent vectors is a little bit more complicated

than calculating the normal vector. The tangent and bitangent vectors align on

the 2 edges of the normal map surface, as can be seen in Picture 16. This fact

can be used to form an equation that can be used to form these vectors.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 16: TBN vectors [27]

51

Picture 17 shows that the texture coordinate differences of an edge E2 of a

triangle shaped face (denoted as ΔU2 and ΔV2) are expressed in the same

direction as the red tangent vector T and green bitangent vector B. So, both

edges E1 and E2 can be written as a linear combination of the tangent vector T

and the bitangent vector B [9].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Picture 17: Tangent space UV map [28]

52

Equation 23: Formula for calculating tangent and bitangent

Storing the bitangent vector is optional. This vector can also be easily

calculated with a cross product from the normal and tangent vectors. This can

be useful, if the goal is to reduce program memory consumption. Many 3D file

formats can store pre-calculated tangent and bitangent vectors and 3D model

importers like Assimp can calculate them when the model gets loaded into the

program [9]. This phase is done on the CPU side of the program. These 3

vectors can now be sent to the GPU, where the program will render the image.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Here is a start equation that can be formed:

E1=ΔU 1T +ΔV 1B

E2=ΔU 2T +ΔV 2B

These equations can also be opened to a form:

(E1 x , E1 y , E1 z)=ΔU 1(T x , T y ,T z)+ΔV 1(B x ,B y ,B z)

(E2 x , E2 y , E2 z)=ΔU 2(T x ,T y ,T z)+ΔV 2(Bx ,B y , Bz)

E vectors can be calculated as difference vector between two vector positions
and ΔU and ΔV as the texture coordinate differences.

Last equations can be written in a different form: that of matrix multiplication:

[E1xE1 yE1 z

E2x E2 yE2 z
]=[ΔU 1ΔV 1

ΔU 2 ΔV 2
][T xT y T z

BxB yB z
]

Bouth sides can now be multiplied with inverse of ΔU ΔU matrix.

[E1xE1 yE1 z

E2x E2 yE2 z
][ΔU 1 ΔV 1

ΔU 2 ΔV 2
]
−1

= [T xT yT z

BxB yBz
]

Inversed delta texture coordinate matrix can now be calculated
and tangent T and bitangent B can be solved from this equation.

[T xT yT z

BxB yB z
]= 1

ΔU 1ΔV 2−ΔU2 ΔV 1 [
ΔV 2−ΔV 1

−ΔU2 ΔU 1
] [E1xE1 yE1 z

E2xE2 yE2 z
]

This is the end formula that can be used to calculate Tangent vector T and bitangent
vector B for a single triangle.

53

The GPU uses shader programs, where the vectors can be used to form a TBN

matrix, which can be used to change the vectors to the tangent space.

There are 2 different ways the TBN matrix can be used for normal mapping. The

first way is to create a TBN matrix that will convert any vector from tangent

space to world space. With this matrix, a normal vector that is obtained from a

normal map can now be converted to world space [9].

Equation 24: Tangent space to world space matrix

This however is usually a less efficient way to use normal mapping. Each model

fragment has its own individual normal vector that is obtained from the normal

map. In Picture 17 is a triangle that gets formed between 3 vertices. This

triangle is textured with a diffuse texture and a normal map. With this method,

the world space matrix multiplication must be done for each fragment that are

inside the triangle which is a lot of multiplications.

The second way is to create a TBN matrix that converts vectors from world to

tangent space. This matrix can be used to convert all calculated vectors like

lights, camera, and model vertices to tangent space. After this, lighting can be

calculated in tangent space [9]. These conversions need to be done once for

each vertex. In a triangle, there are 3 vertices and in this case there are total of

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

TBN matrix from tangent to world space in right handed cordinate system:

world space matrix = M
tangent unit vector=T̂
bitangent unit vector=B̂
normal unit vector=N̂

world space tangent vector =ŴT= normalize(M * T̂)
world space bitangent vector =ŴB=normalize(M * B̂)
world space normal vector =ŴN =normalize(M * N̂)

TBN=[
^WT x

^WT y

^WT z

^WBx

^WB y

ŴBz

^WN x

^WN y

^WN z
]

54

9 conversions. There are hundreds of conversions in the first system. There are

almost always more fragments than vertices, and this is why the second system

is usually a better option than the first system [9].

Equation 25: World space to tangent space matrix

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

TBN matrix from world to tangent space in right handed cordinate system:

world space matrix = M
tangent unit vector=T̂
bitangent unit vector=B̂
normal unit vector=N̂

First calculate inversed world matrix by inverting and transposing world space matrix

normal matrix=M−T

After this vectors get multiplyed with this inversed matrix:
tangent space tangent unit vector = T̂T = normalize(M−T *T̂)
tangent space bitangent unit vector = T̂B= normalize(M−T * B̂)
tangent space normal unit vector = ^TN = normalize(M−T * N̂)

TBN=[
^TT x

^TT y

^TT z

^TB x

^TB y

^TB z

^TN x

^TN y

^TN z
]

World space to tangent space TBN matrix can be created by transposing TBN matrix

TBN T
=[

^TT x

^TBx

^TN x

^TT y

^TB y

^TN y

^TT z

^TB z

^TN z
]

55

7 NORMAL MAPPING IN HACTENGINE

This thesis is a small part of the HactEngine project. It is a documentation of the

research process for implementing support for normal mapping into the

HactEngine game engine. After this research process, HactEngine supports the

surface detail mapping: normal mapping.

7.1 HactEngine introduction

HactEngine is a multi-platform 3D game engine developed by the Finnish

company Indium Games. The engine’s core is written in C++ and uses the

popular SDL library as its base. The engine uses the Lua scripting language,

which is extremely easy to learn, but also incredibly powerful. Thanks to Lua,

almost everything in the game can be modified while the program is running,

saving a lot of development time for the engine’s user. HactEngine uses

OpenGL as its graphical framework. The engine got Tekes funding in 2015, and

the company will release the engine as open source after the engine is finished.

7.2 Entity and Properties

HactEngine has a system where every object in the game world are stored in a

hierarchic container class called Entity. Entities can be anything in the game

world, like a game state, a 3D model, a camera, or a light or sound source. An

entity can also be a combination of multiple resources. Entities are based on a

hierarchic structure where the first existing element is called the root entity. The

root entity can contain child entities, which can have their own child entities and

so on. The engine calls the currently assigned root entity to update and render

each frame. These function calls are recursive, so that they are called for each

child entity in the entity hierarchy.

Each entity holds a property container that is used for storing data for each

entity. These properties can be vectors, matrices, integers, floats, strings, or

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

56

references to engine assets. Each entity can be modified by adding new

properties to them. A user can create a camera from any entity by adding a

camera matrix to it. These entities can be modified in the engine’s scripting

language, Lua. The engine provides various different classes, which create

entities that hold the correct property values for certain use-cases. These will

speed up development time when the user can create entities like cameras and

lights without worrying about the correct property values for them.

Lua does not support object oriented programming by default. HactEngine

provides this feature to Lua. HactEngine’s Lua objects can use inheritance and

they can also be inherited from C++ classes. The user can call C++ functions

from inherited Lua classes in the same way that the user would call standard

Lua functions. This is made possible with Lua metatables and the SWIG

wrapper generator software. Metatables will also make it easy to get and set

property values with a metatable call. The user can read a property value by

calling the metamethod and create a new property or set the value of an

existing property by assigning a value to it.

HactEngine is thread-safe, and any property can be read or written to from any

thread. This way, a user can send data from one thread to another, and

rendering, input and game logic can all run on different threads. Threading is a

powerful tool, where the user can separate some expensive calculations like

physics simulation from other calculations. This way, a separate thread can

calculate different calculations simultaneously and one thread does not need to

wait for another thread to finish its calculations. HactEngine makes it easy for

the user to use threading. A new thread can be created just with one line of

code in Lua scripting. Threading also enables the user to run and load new

content to the game with a hidden loading thread. This way, the user does not

need long loading screen during game sessions. Properties have a render

mask, which tell if the property value should be sent to a certain shader

program.

Entities can also be created with 3D modeling software, by exporting a 3D

scene into the game engine. The engine currently supports more than 40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

57

different 3D file formats. The engine can create automatic entity objects from

unmerged 3D objects existing in the scene. This way, single objects become a

separate entity, which can be controlled inside the engine. The user can even

design a whole game scene inside a modeling program. Some file formats can

store UV-coordinates and different kinds of surface detail mappings like normal

mapping. HactEngine supports multi-texturing and is able to parse different

kinds of surface detail mappings. The engine can also read cameras and

different light objects from these scenes.

7.3 Materials

Some file formats can store the materials of 3D meshes. Materials are various

variables, which are used to define the visual behavior of 3D surfaces. These

variables are sent to a shader program, where they can be used for

calculations. Creating different materials can be used to improve the visual

quality of a 3D scene. HactEngine can read these materials from 3D file formats

and link them to the 3D object meshes. Materials are automatically sent to the

shader program.

7.4 Mesh

HactEngine stores each 3D object’s vertices as Mesh object, where the vertices

are indexed to minimize the memory consumption of the game engine. The

class also stores UV-coordinates, normals, tangents and bitangents of each of

the model’s vertices. The Entity class holds a property reference value to a

Mesh object, so that multiple 3D objects can use the same 3D mesh. This way,

the game scene can have multiple copies of the same 3D object with minimal

memory consumption. The Mesh class sends vertex data to the shader

program, where it can be used to render the model to the screen. When there

are no more entities that hold a reference to a Mesh object, the engine uses its

asset management system and removes the mesh from memory.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

58

7.5 Asset manager

HactEngine has an AssetManager class, which manages the loading and

unloading of game assets. These can be e.g. 3D model meshes, music, or

textures. The AssetManager maintains a system where the asset will be

unloaded automatically, if it has not been in use for a certain time period. If the

asset is requested again after unloading it, the engine uses a separate thread to

load that asset back into the program automatically. This way, the engine user

does not need to worry about the memory and asset management during the

development process.

HactEngine uses Assimp (Open Asset Import Library) as its 3D model loader

[15]. Assimp is a popular open source asset importer that supports more than

40 different 3D model file formats [15]. It also has a lot of useful features that

can be enabled and disabled by the user. One of these features is that the

library calculates normals, tangents and bitangents automatically for every

model vertex that gets loaded with the library. Using Assimp as a model loader,

the developer can ignore the tangent and bitangent vector calculation that can

be seen in Equation 22. The engine handles the sending of normal and tangent

vectors into the shader program. The engine does not store or send the

bitangent vector to the shader. This vector gets calculated inside the vertex

shader program with a simple cross product.

To simplify the example code in this thesis, shader programs are written for a

forward rendering system. In this system, every light gets calculated for all

vertices that are loaded into the shader. A more efficient way is to use deferred

rendering, which is implemented in HactEngine. This is a more complicated

system, but enables the use of huge amounts of different light sources. In this

system, the first shader run will just create the geometry of the scene and the

lighting is calculated with a second shader run. This way, lighting can be

calculated for every pixel in the screen instead of every fragment of every face.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

59

7.6 C++ implementation

HactEngine has a namespace called AssetManager::Model, which is used to

load 3D models into the engine. Implementing normal mapping into the engine

required very little additional code into the C++ side of the game engine.

Assimp calculates the normal and tangent vectors for each model automatically

and the only modification was to save these 2 vectors into the Mesh class and

sending them to the shader program. HactEngine uses GLM (OpenGL

Mathematics) as its mathematical library [8]. GLM is a popular mathematic

library that provides support for variables like vectors and matrices to the C++

environment. HactEngine also provides GLM on the Lua side of the engine.

This makes it really fast to modify OpenGL code or shader programs while the

game is running.

7.7 GLSL implementation

The GLSL side of the normal mapping implementation required the rewrite of

the vertex and fragment shaders. The shaders are written for a forward

rendering system in order to demonstrate the use of normal mapping as it is

presented in this thesis. HactEngine uses a more advanced version of this

rendering system, called deferred rendering. In deferred rendering, the TBN

matrix calculation is made on the first run of the vertex and fragment shaders,

when the scene gets formed without any lighting. This way, the light calculation

can be done in world space and the TBN matrix can be ignored on second

vertex and fragment shader run.

Appendices 1 and 2 show the vertex and fragment shaders used for normal

mapping. The GLSL implementation uses the world to tangent space matrix that

is calculated during the vertex shader stage. This TBN matrix is used to

transform the camera, light and model vertex position into tangent space. After

this, the vertex shader calculates the vertex position in screen space so that the

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

60

image can be seen on the screen. After this, it will send vertex data and the

converted attributes into fragment shader.

During fragment shader stage, the first step is to obtain the normal vector from

the normal map and turn it from the stored 0 to 1 system to the correct -1 to 1

system. This shader also calculates gamma correction for the diffuse texture.

After this, the vector from the surface to the camera gets calculated in tangent

space. The final step is to calculate the color of a fragment with the Blinn-

Phong shading model and the final color is returned from the shader.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

61

8 CONCLUSION

The use of different surface detail mapping methods are a popular optimization

method in both offline and real-time rendering. The theory behind them is very

broad and therefore this thesis just scratches the surface of surface detail

mapping. The same goes for the different shading models. HactEngine provides

a various amount of different shading models including models that are

showcased in this thesis. The Blinn-Phong shading model is old, but still a great

example of a 3D shading model. Understanding the functionality of this model

will surely help the user to understand and to learn new shading techniques.

Game engines provide a lot different types of shading models, where the

developer can use them without knowing the theory or mathematics behind

them. But it will surely never give the user trouble by knowing what’s going on

inside the shader programs.

HactEngine now supports normal mapping, but in the future it should provide

support for various amounts of different surface detail mapping models.

However, normal mapping is one of the most popular of these mapping models

and is still one of the most effective optimization methods in 3D graphics.

Indium Games uses normal mapping for their upcoming game, by mixing 3D

models and 2D skeleton animations. With normal mapping, even a flat 2D

skeleton animation can obtain more details from the normals obtained from a

normal map and by interacting with lights around the game scene.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

62

REFERENCES

[1] Intel converts ET: Quake Wars to ray-tracing, [www document]. available

http://www.tgdaily.com/trendwatch-features/37925-intel-converts-et-quake-wars-

to-ray-tracing 2008. (read 28.09.2015)

[2] Fixed Function Pipeline, [www document]. available

https://www.opengl.org/wiki/Fixed_Function_Pipeline 2015. (read 28.09.2015)

[3] Tom Dalling, Modern OpenGL Series, [www document]. available

http://www.tomdalling.com/blog/modern-opengl/08-even-more-lighting-

directional-lights-spotlights-multiple-lights 2014. (read 29.09.2015)

[4] Puhakka, Antti. 2008. 3D-grafiikka.Talentum Media Helsinki: 29 - 40s. ISBN

978-952-14-1192-2.

[5] Coordinate Systems in OpenGL, [www document]. available

http://www.matrix44.net/cms/notes/opengl-3d-graphics/coordinate-systems-in-

opengl 2016. (read 23.03.2016)

[6] Vector, [www document]. available http://www.wildbunny.co.uk/blog/vector-

maths-a-primer-for-games-programmers/vector/#Dot. (read 23.03.2016)

[7] OpenGL, [www document]. available https://www.opengl.org/sdk/docs/. (read

23.03.2016)

[8] GML, [www document]. available http://glm.g-truc.net/. (read 23.03.2016)

[9] Learn OpenGL, [www document]. available http://learnopengl.com/. (read

23.04.2016)

[10] Puhakka, Antti. 2008. 3D-grafiikka.Talentum Media Helsinki: 201 - 258s.

ISBN 978-952-14-1192-2.

[11] Jonathan Kreuzer, Object Space Normal Mapping with Skeletal Animation

Tutorial, [www document]. available http://www.3dkingdoms.com/tutorial.html.

(read 23.04.2016)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

http://www.tomdalling.com/blog/modern-opengl/08-even-more-lighting-directional-lights-spotlights-multiple-lights
http://www.tomdalling.com/blog/modern-opengl/08-even-more-lighting-directional-lights-spotlights-multiple-lights
https://www.opengl.org/wiki/Fixed_Function_Pipeline

63

[12] Tom Dalling, OpenGL in 2014, [www document]. available

http://www.tomdalling.com/blog/modern-opengl/opengl-in-2014/. (read

18.04.2016)

[13] GLSL, [www document]. Available

https://www.opengl.org/wiki/Core_Language_(GLSL). (read 20.04.2016)

[14] What’s the Difference Between a CPU and a GPU, [www document].

Available https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-

between-a-cpu-and-a-gpu/ (read 19.05.2016)

[15] Assimp official web page, [www document]. Available

http://www.assimp.org/ (read 21.05.2016)

[16] Polygon mesh, [www document]. Available

https://en.wikipedia.org/wiki/Polygon_mesh#/media/File:Dolphin_triangle_mesh.

png (read 21.05.2016)

[17] Cartesian Coordinates.PNG, [www document] Available

https://commons.wikimedia.org/wiki/File:2D_Cartesian_Coordinates.PNG

[18] Cartesian coordinate system.JPG, [www document] Available

https://en.wikipedia.org/wiki/Cartesian_coordinate_system#/media/File:3D_Cart

esian_Coodinate_Handedness.jpg (read 21.05.2016)

[19] Object transformation.PNG, [www document]. Available

http://www.matrix44.net/cms/wp-

content/uploads/2011/03/object_rot_trans_1.png (read 21.05.2016)

[20] Ogl vertex life.PNG, [www document]. Available

http://www.matrix44.net/cms/wp-content/uploads/2011/03/ogl_vertex_life.png

(read 21.05.2016)

[21] Rgb-light2.PNG, [www document]. Available

http://www.tomdalling.com/images/posts/modern-opengl-06/rgb-light2.png (read

21.05.2016)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

64

[22] Cross product.PNG, [www document]. Available https://encrypted-

tbn2.gstatic.com/images?q=tbn:ANd9GcR-Joka0-

PqDoJqUrQFacpa7pusAlfMd6cPg8uDeKf5hhe6b0nCFA (read 21.05.2016)

[23] Phong components version 4.PNG, [www document]. Available

https://en.wikipedia.org/wiki/File:Phong_components_version_4.png (read

21.05.2016)

[24] aoi_min_max.PNG, [www document]. Available

http://www.tomdalling.com/images/posts/modern-opengl-06/aoi_min_max.png

(read 21.05.2016)

[25] Blinn Vectors.SVG, [www document]. Available

https://commons.wikimedia.org/wiki/File:Blinn_Vectors.svg (read 21.05.2016)

[26] Gargoyle-uv world space.JPG, [www document]. Available

http://www.surlybird.com/tutorials/TangentSpace/images/gargoyle-

uv_world_space.jpg (read 21.05.2016)

[27] Normal_mapping_tbn_vectors.PNG, [www document]. Available

http://learnopengl.com/img/advanced-lighting/normal_mapping_tbn_vectors.png

(read 21.05.2016)

[28] normal_mapping_surface_edges.PNG, [www document]. Available

http://learnopengl.com/img/advanced-

lighting/normal_mapping_surface_edges.png (read 21.05.2016)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Tujula

Tiedosto: /home/antti/normal.vert Sivu 1 / 2

1 #version 330 core
2
3 // VERTEX SHADER (main.vert)
4
5 // Coordinates
6 layout(location = 1) in vec3 v_vertex;
7 layout(location = 2) in vec3 v_normal;
8 layout(location = 3) in vec3 v_tangent;
9 layout(location = 5) in vec2 v_uv;

10 layout(location = 7) in vec2 v_uv2;
11 layout(location = 6) in vec4 v_color;
12 layout(location = 8) in vec4 v_color2;
13
14 out Properties {
15 vec3 f_vertex;
16 vec3 f_normal;
17 vec2 f_uv;
18 vec4 tangentScreenPosition;
19 vec3 tangentLightPosition;
20 } properties;
21
22 // Light properties struct
23 struct Light {
24 vec4 position;
25 vec3 color;
26 float attenuationConstant;
27 float attenuationLinear;
28 float attenuationQuadratic;
29 float ambientCoefficient;
30 };
31
32 // Light uniform
33 uniform Light light;
34
35 // Model material struct
36 struct Material {
37 float opacity;
38 float shininess;
39
40 vec3 diffuse;
41 vec3 ambient;
42 vec3 specular;
43 vec3 emissive;
44 };
45
46 // Material uniform
47 uniform Material material;
48
49 // Texture
50 struct Textures {
51 sampler2D diffuse;
52 sampler2D normal;
53 };
54
55 uniform Textures textures;
56
57 // Matrices
58 uniform mat4 projection;
59 uniform mat4 camera;
60 uniform mat4 model;
61
62
63 /*!
64 * Vertex shader main function.
65 */
66 void main(void) {
67 // Set Identity matrix as TBN matrix
68 mat3 TBN = mat3(1);
69
70 // Calculate world to tangent space matrix
71 mat3 normalMatrix = transpose(inverse(mat3(model)));
72 // Calcuate tangent space if it exists

Tiedosto: /home/antti/normal.vert Sivu 2 / 2

73 if (v_tangent != vec3(0.0)) {
74 // World space to tangent space matrix
75 vec3 N = normalize(normalMatrix * v_normal);
76 vec3 T = normalize(normalMatrix * v_tangent);
77
78 // Use Gram-Schmidt process and re-orthogonalize tangent with respect to normal
79 T = normalize(T - dot(T, N) * N);
80
81 // T and N are in 90 degree angle cross product return unit vector
82 vec3 B = cross(T, N);
83
84 // Create matrix from TBN vectors and transpose matrix
85 TBN = transpose(mat3(T, B, N));
86 }
87
88 // Push uv cordinate to fragment shader
89 properties.f_uv = v_uv;
90
91 // Calculate vertex position in tangent space
92 properties.f_vertex = TBN * (model * vec4(v_vertex, 1.0)).xyz;
93
94 // Calculate normal for surfaces that does not have normal mapping
95 properties.f_normal = TBN * normalize(mat3(model) * normalize(v_normal));
96
97 // Obtain camera position from camera matrix
98 properties.tangentScreenPosition = vec4(-transpose(mat3(camera)) * camera[3].xyz, 1.0);
99

100 // Set camera to tangent space
101 properties.tangentScreenPosition = vec4(TBN * vec3(properties.tangentScreenPosition.xyz),

1.0);
102
103 // Light position in tangent space
104 properties.tangentLightPosition = TBN * light.position.xyz;
105
106 // Calculate the vertex position
107 gl_Position = projection * camera * model * vec4(v_vertex.xyz, 1.0);
108 }

Tiedosto: /home/antti/normal.frag Sivu 1 / 3

1 #version 330 core
2
3 // FRAGMENT SHADER (main.frag)
4
5
6 // Coordinates
7 in Properties {
8 vec3 f_vertex;
9 vec3 f_normal;

10 vec2 f_uv;
11 vec4 tangentScreenPosition;
12 vec3 tangentLightPosition;
13 } properties;
14
15
16 // Light properties struct
17 struct Light {
18 vec4 position;
19 vec3 color;
20 float attenuationConstant;
21 float attenuationLinear;
22 float attenuationQuadratic;
23 float ambientCoefficient;
24 };
25
26 // Light uniform
27 uniform Light light;
28
29 // Model material struct
30 struct Material {
31 float opacity;
32 float shininess;
33
34 vec3 diffuse;
35 vec3 ambient;
36 vec3 specular;
37 vec3 emissive;
38 };
39
40 // Model material uniform
41 uniform Material material;
42
43
44 // Texture
45 struct Textures {
46 sampler2D diffuse;
47 sampler2D normal;
48 };
49
50 uniform Textures textures;
51
52 // Matrices
53 uniform mat4 projection;
54 uniform mat4 camera;
55 uniform mat4 model;
56
57 // Out color
58 out vec4 outColor;
59
60
61 /*!
62 * Blinn–Phong shading model.
63 *
64 * :param normal Surface normal.
65 * :param diffuseFragment Original surface color.
66 * :param surfaceToCamera Surface to camera direction.
67 * :param surfacePos Surface position.
68 *
69 * :return Original color mixed with light color.
70 */
71 vec3 BlinnPhong(const in vec3 normal, const in vec4 diffuseFragment, const in vec3

surfaceToCamera, const in vec3 surfacePos) {

Tiedosto: /home/antti/normal.frag Sivu 2 / 3

72 // Calculate light direction
73 vec3 lightDirection = properties.tangentLightPosition.xyz - surfacePos;
74
75 // Calculate attenuation
76 float lightDistance = length(lightDirection);
77 float attenuation = (1.0f / (
78 light.attenuationConstant + // constant
79 light.attenuationLinear * lightDistance + // linear component
80 light.attenuationQuadratic * lightDistance * lightDistance // Quadratic component
81));
82
83 // Normalize light direction
84 lightDirection = normalize(lightDirection);
85
86 // Ambient
87 vec3 ambient = light.ambientCoefficient * diffuseFragment.rgb * light.color.rgb;
88
89
90 // Diffuse
91 float diffuseCoefficient = max(0.0, dot(normal, lightDirection));
92 vec3 diffuse = diffuseCoefficient * diffuseFragment.rgb * light.color.rgb;
93
94
95 // Specular (Blinn–Phong)
96 vec3 halfVector = normalize(surfaceToCamera + lightDirection);
97 float specularCoefficient = pow(max(0.0, dot(normal, halfVector)), material.shininess);
98 vec3 specular = specularCoefficient * material.specular * light.color.rgb;
99

100 // Return final color
101 return ambient + attenuation * (diffuse + specular);
102 }
103
104
105 /*!
106 * Fragment shader main function.
107 */
108 void main(void) {
109 // Obtain fragment cololor from texture
110 vec4 diffuseFragment = texture(textures.diffuse, properties.f_uv);
111
112 // Discard pixel that have opacity from depth buffer
113 if (diffuseFragment.a <= 0.1) {
114 discard;
115 }
116
117 // Normal without normal mapping
118 vec3 normal = properties.f_normal;
119
120 // Obtain normal from normal map in range [0, 1]
121 vec3 normalFragment = texture(textures.normal, properties.f_uv).rgb;
122 if (normalFragment != vec3(0.0f)) {
123 // Transform normal vector to range [-1, 1]
124 normalFragment = normalize(normalFragment * 2.0 - 1.0);
125
126 // Get normal from normal map
127 normal = normalFragment;
128 }
129
130 // Camera in tangent space
131 vec3 cameraPos = properties.tangentScreenPosition.xyz;
132
133 // set gamma correction to texture
134 float gamma = 2.2;
135 diffuseFragment = pow(diffuseFragment, vec4(vec3(1.0 / gamma), 1.0));
136
137 // Calculate tangent space surface to camera vector
138 vec3 surfaceToCamera = cameraPos - properties.f_vertex;
139
140 // Normalize camera to surface vector
141 surfaceToCamera = normalize(surfaceToCamera);
142
143 // No texture use material diffuse color

Tiedosto: /home/antti/normal.frag Sivu 3 / 3

144 if (diffuseFragment.rgb == vec3(0.0f)) {
145 diffuseFragment = vec4(material.diffuse, material.opacity);
146 }
147
148 // Set empty color black
149 vec3 color = vec3(0);
150
151 // Calculate single point light
152 color += BlinnPhong(
153 normal,
154 diffuseFragment,
155 surfaceToCamera,
156 properties.f_vertex
157);
158
159 // Final color
160 outColor = vec4(color, diffuseFragment.a * material.opacity);
161 }

	1 Introduction
	2 VECTORS AND MATRICES
	2.1 Vectors
	2.2 Unit vectors
	2.3 Vector dot product
	2.4 Vector cross product
	�2.5 Matrices�
	2.6 Identity matrix
	2.7 Scaling matrix
	2.8 Translation matrix
	2.9 Rotation matrix
	2.10 Matrix determinant
	2.11 Matrix inverse
	2.12 Matrix transpose

	3 3D MODELING
	3.1 Vertices
	3.2 Edges
	3.3 Faces
	3.4 Indexing
	3.5 Right-handed and left-handed coordinate systems
	3.6 3D spaces
	3.7 �Object space�
	�3.8 World space�
	�3.9 Camera space�
	�3.10 Screen space�

	4 Shaders and RENDERING
	4.1 Rendering
	4.2 Shaders
	4.3 OpenGL Shading Language (GLSL)
	4.4 Uniforms
	4.5 Attributes
	4.6 Vertex shader
	4.7 Fragment shader

	5 SHADING MODELS
	5.1 Light intensities
	5.2 Sunlight and RGB color
	5.3 Absorption & reflection of color
	5.4 Phong reflection model
	5.5 Surface normals
	5.6 Ambient component
	5.7 Diffuse component
	5.8 Specular component
	5.9 Attenuation and final color

	6 TEXTURE MAPPING
	6.1 Normal mapping
	6.2 Object space normal mapping
	6.3 Tangent space normal mapping

	7 Normal mapping in Hactengine
	7.1 HactEngine introduction
	7.2 Entity and Properties
	7.3 Materials
	7.4 Mesh
	7.5 Asset manager
	7.6 C++ implementation
	7.7 GLSL implementation

	8 Conclusion

