
Borja Tarrasó Hueso

Improving Security of Ericsson Cloud

System

Helsinki Metropolia University of Applied Sciences

Master's Degree

Information Technology

Master's Thesis

November 7, 2016

Preface

I would like to express my gratitude to my supervisor Ville Jääskeläinen for the useful
comments, remarks, and engagement through the learning process of this master's
thesis. Furthermore, I would like to thank my mentor Lauri Mikkola for introducing
me to the topic as well for her support along the way.

I acknowledge my close friends for all the special moments I enjoy with you and
for helping me to be who I am: Miguel Ángel Martín, Jon Diéguez, Italo Madalozo,
Joan Yanini, Manuel Negre, Marcos Núñez, Germán Muñoz, Omar Benbouazza, Denis
Karpov, Antti Halttunen, Antonio Salueña, Aleksi Aalto, Graeme Mallard, Adrian
Yanes, David Fernandez, José Uceda, Ricardo Uceda, Pedro Ibañez, Marco Antonio
Rubio, Xavier Gost, Martin J. Sánchez, Mikel Etxeberria, Antonio Puchol, Xavier
Robles, Damian Rivera, David Vázquez, Guillem Martínez, Bruno Hernández, and
Samuel Navarro.

In addition, I would like to thank my loved ones - my parents, José Manuel Tarrasó
and Enriqueta Hueso who helped me in all things from the beginning of my life; my
brothers and sister Raul Belinchón, Sergio Belinchón, and Silvana Tarrasó.

Finally, I would like to thank my wife, Olga Andreichik, who has supported me
throughout the entire process, both by keeping me happy and helping me put the
pieces together. I will be forever grateful for your love.

`Uno llega a ser grande por lo que lee, y no por lo que escribe.
Porque escribe lo que puede, y lee lo que quiere.'

Jose Luis Borges.

Abstract

Author(s) Borja Tarrasó Hueso
Title Improving Security of Ericsson Cloud System (ECS)
Number of Pages 128 (85 + 43 of Appendices)
Date November 7, 2016
Degree Master of Engineering, Metropolia University
Degree Programme Information Technology
Specialization Software Engineering
Instructor Ville Jääskeläinen
Ericsson Cloud System (ECS) is an e�ort by Ericsson to provide a cloud solution
product.

The solution provides distributed cloud capabilities, such as computing and storage in
the network and more e�cient utilization of network resources. In addition, it includes
capabilities to control performance and decoupling of software from hardware. This
enables automatic orchestration of prede�ned services. The Ericsson Cloud Execution
Environment (CEE) is basically a Data Center (DC) within the ECS. The ECS allows
hardware virtualization for e�cient deployment of multiple applications sharing the
same infrastructure.

From the services ECS provides, the most relevant ones are Open Platform Network
Functions Virtualization (OPNFV), cloud storage as Platform as a Service (PaaS),
and new-generation hyperscale data centre hardware, using optical interconnect and a
new equipment manager for multi-vendor environments.

In order to provide this service e�ectively, the solution is trustable. Achieving that
goal by a secure deployable solution. New challenges from the security point of view
are covered, such as speci�c vector attacks for a cloud as well as conventional attacks.

Based on a general architectural solution and implementation, a set of security re-
quirements are essential. To cover those requirements, a set of tests were needed that
required several di�erent specialized testing tools and di�erent libraries to support
them, as well as choosing a correct testing framework.

This document focusing on the two main and fundamental problems that ECS will
expound once the cloud is deployed: hardening by removing the hardcoded creden-
tials, and a scalable and highly available method to authenticate users in the cloud.
Ericsson provided an elegant solution avoiding security threats using a secure and op-
timal method for authenticating and authorizing users in a distributed and virtual
environment.

The �nal goal of this thesis was improving the security of the ECS by hardening and en-
abling Authentication, Authorization, and Accounting (AAA). The solution has been
veri�ed by a full set of tests which were automated in a Continuous Integration (CI)
entity. Functional and non-functional tests for security features where implemented
within the project.
Keywords Cloud computing, security, con�guration manager

List of Figures

1 Expectations of new technologies during time (Architecting the cloud.
p. 32). 3

2 Security maturity evolution when adopting new technologies (Architect-
ing the cloud, p. 34). 4

3 Di�erent service models in cloud computing (Architecting the cloud, p.
45). 5

4 Centralized logging strategy (Architecting the cloud, p. 221). 16
5 Classic backup and restore (Architecting the cloud, p. 268). 20
6 Active-passive cold (Architecting the cloud, p. 270). 21
7 Active-passive cold (Architecting the cloud, p. 270). 21
8 Active-passive warm (Architecting the cloud, p. 272). 21
9 Active-passive warm (Architecting the cloud, p. 272). 22
10 Active-passive hot (Architecting the cloud, p. 274). 22
11 Active-passive hot (Architecting the cloud, p. 274). 22
12 Fuel architectural overview (Introduction to Fuel, openstack.org) 24
13 OpenStack architectural overview (Introduction to OpenStack, open-

stack.org) . 25
14 CEE architectural overview (Cloud Execution Environment, ericsson.com) 26

15 Example of port open discovered by TCP SYN stealth 35
16 Example of port closed discovered by TCP SYN stealth 35
17 Example of port �ltered discovered by TCP SYN stealth 35
18 Example of TCP connect scan . 35
19 Example of TCP idle scan . 39
20 Nessus product platform, (Nessus installation, tenable.com) 43
21 Nessus components in an integrated platform, (Nessus installation, ten-

able.com) . 44
22 Nessus unique underlying architecture, (Nessus Security Center Archi-

tecture, tenable.com) . 44
23 Nessus uni�ed security-monitoring architecture, (Nessus Security Cen-

ter Architecture, tenable.com) . 45
24 Nessus policy wizards, (Nessus installation and con�guration guide, ten-

able.com) . 46
25 Nessus advanced policies: plugins, (Nessus installation and con�gura-

tion guide, tenable.com) . 47
26 Nessus automating scans, (Nessus installation and con�guration guide,

tenable.com) . 47
27 Nessus report example, (Nessus installation and con�guration guide,

tenable.com) . 48

28 IxNetwork using IxVM placing them in di�erent networks, (Validation
virtualized asset and environment, ixia.com) 49

29 Example of IxNetwork component in IXIA, (IX Network VXLAN emu-
lation, ixia.com) . 49

30 IP manipulation packet in scapy, (Scapy documentation, secdev.org) . . 50
31 IP packet and ethernet frame manipulation and dump, (Scapy docu-

mentation, secdev.org) . 51
32 Load-captured �le and graphical dump, (Scapy documentation, secdev.org) 51
33 Graphical representation of a packet, (Scapy documentation, secdev.org) 52
34 Captured tra�c with tcpdump, (Tcpdump documentation, tcpdump.org) 53
35 Wireshark representation data of captured tra�c, (Wireshark documen-

tation, wireshark.org) . 53
36 Listening to open connections with netstat 55
37 List open �les with lsof . 55
38 Iptables �rewall rules . 56
39 System call trace with strace . 56
40 Example of basic test case using Nmap extension 59
41 Example of executing test cases with pybot 59

42 Design of con�guration manager applied to the ECS project 63

43 IdAM architectural overview . 66

44 Robot results for ECS running in CI 69

List of Tables

1 Net�lter and iptables states representation 34
2 Nmap interpretation for TCP scans . 35
3 Nmap interpretation for UDP scans . 35
4 Nmap interpretation for speci�c TCP SYN �ags scans 36
5 Nmap interpretation for TCP ACK scans 37
6 Nmap interpretation for TCP window scans 37
7 Nmap interpretation for TCP maimon scans 38
8 Nmap interpretation for IP protocol scans 40

Acronyms

3GPP Third-Generation Partnership Project

AAA Authentication, Authorization, and Accounting

ACK Acknowledgement �ag

ACL Access Control List

AD Active Directory

ADSI Active Directory Service Interfaces

ANSI American National Standards Institute

API Application Programming Interface

AppArmor Application Armor

ARP Address Resolution Protocol

ASN.1 Abstract Syntax Notation One

ATDD Acceptance Test-Driven Development

BSD Berkeley Software Distribution

CCM Cloud Controls Matrix

CEE Cloud Execution Environment

CI Continuous Integration

CIDR Classless Inter-Domain Routing

CISSP Certi�ed Information Systems Security Professional

CLI Command Line Interface

CM Con�guration Manager

CPU Central Processing Unit

CRAM Challenge-Response Authentication

CRM Customer Relationship Management

CSA Cloud Security Assurance

CSP Cloud Security Provider

DBMS Database Management System

DC Data Center

DHCP Dynamic Host Control Protocol

DNS Domain Name Server

DDoS Distributed Denial of Service

DoD Department of Defense

DoS Denial of Service

DSL Domain-Speci�c Language

EC Electronic Communications

ECS Ericsson Cloud System

ERP Enterprise Resource Planning

ETA Estimated Time of Arrival

E2E End-to-End

FedRAMP Federal Risk and Authorization Management Program

FIN Finalization �ag

FIPS Federal Information Processing Standards

FTP File Transfer Protocol

GDFL GNU Free Documentation License

GUI Graphical User Interface

GNU GNU's Not Unix

HA High Availability

HAVEGE HArdware Volatile Entropy Gathering and Expansion

HIPAA Health Insurance Portability and Accountability Act

HSM Hardware Security Module

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol over Secure Sockets Layer

IaaS Infrastructure as a Service

ICMP Internet Control Message Protocol

IdAM Identity and Access Management

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IGMP Internet Group Management Protocol

IDS Intrusion Detection System

IMAP Internet Message Access Protocol

IMPI Intelligent Platform Management Interface

IP Internet Protocol

IPID Internet Protocol ID

IPS Intrusion Prevention System

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

ISAKMP Internet Security Association and Key Management Protocol

ISC International Information Systems Security Certi�cation Consortium

ISO International Organization for Standardization

ISO/EIC International Organization for Standardization/International Electrotech-
nical Commission

ISP Internet Service Provider

IT Information Technology

I&V Integration and Veri�cation

IXOS IXIA Operating System

KPI Key Performance Indicators

L2 Layer 2

L3 Layer 3

LAN Local Area Network

LCE Log Correlation Engine

LDAP Lightweight Directory Access Protocol

LDAPS LDAP over SSL

LLC Logical Link Control

MAC Media Access Control

MDM Mobile Device Management

MD5 Message-Digest 5

MySQL My Structured Query Language

NAC Network Access Control

NAT Network Address Translation

NetBIOS Network Basic Input/Output System

NIST The National Institute of Standards and Technology

Nmap The Network Mapper

NSA National Security Agency

NSE Nmap Scripting Engine

NoSQL No Structured Query Language

NTP Network Time Protocol

NULL No �ags

OAuth Open Standard to Authorization

OID OpenID

OpenID Open Identi�er

OpenSSL Open-source Secure Sockets Layer

OPNFV Open Platform Network Functions Virtualization

OS Operating System

OVF Open Virtualization Format

OVFT Open Virtualization Format Tool

OWASP Open Web Application Security Project

PAM Pluggable Authentication Modules

PaaS Platform as a Service

PCI DSS Payment Card Industry Data Security Standard

PDF Portable Document Format

PDP Protection Detection Prevention

PDU Product Development Unit

PHI Protected Health Information

PII Personally Identi�able Information

PO Product Owner

POP Post O�ce Protocol

PPP Point-to-Point Protocol

PS Post Script

PSH Push �ag

PVS Passive Vulnerability Scanner

RADIUS Remote Authentication Dial In User Service

RFC Request For Comments

RIP Routing Information Protocol

RPO Recovery Point Objective

RPS Requests Per Second

RST Reset �ag

RTO Recovery Time Objective

SELinux Security Enhanced Linux

SQL Structured Query Language

SSAE Statement on Standards for Attestation Engagements

SaaS Software as a Service

SCM Secure Con�guration Management

SDLC Systems Development Life Cycle

SFTP Simple File Transfer Protocol

SIEM Security Information and Event Management

SLA Service Level Agreements

SNAP SubNetwork Access Protocol

SNMP Simple Network Management Protocol

SOCKS Socket Secure

SSH Secure Shell

SSL Secure Sockets Layer

SSO Single Sign-On

STP Spanning Tree Protocol

SunRPC Sun's Remote Procedure Call

SYN Synchronization �ag

TAB Tabulator

TCP Transmission Control Protocol

TLS Transport Layer Security

TPM Trusted Platform Module

TPS Transactions Per Second

TTL Time To Live

UDP User Datagram Protocol

URG Urgent �ag

US United States

VIC Cloud controller

VLAN Virtual Local Area Network

VIM Virtual Infrastructure Managing

VM Virtual Machine

VPN Virtual Private Network

WoW Ways-of-Work

Xmas Christmas �ags

XML Extensible Markup Language

XML-RPC XML-Remote Procedure Call

YAML YAML Ain't Markup Language

Table of contents

Preface

List of Figures

List of Tables

Acronyms

1 Introduction 1
1.1 Problem . 1
1.2 Solution . 1
1.3 Main Studies . 2

2 Cloud Computing 3
2.1 Service Models . 4

2.1.1 Infrastructure as a Service (IaaS) 4
2.1.2 Platform as a Service (PaaS) . 5
2.1.3 Software as a Service (SaaS) . 5

2.2 Deployment Models . 6
2.2.1 Public Cloud . 6
2.2.2 Private Cloud . 6
2.2.3 Hybrid Cloud . 7

3 Security 8
3.1 Security Domains . 8
3.2 Security Applied to Cloud . 9

3.2.1 Auditing Cloud . 10
3.2.2 Security Design in Cloud . 12
3.2.3 Cloud-Centralized Logging . 15
3.2.4 Monitoring Cloud . 16
3.2.5 Disaster Recovery in Cloud Computing 19

3.3 Openstack Components . 23
3.4 CEE Components . 25
3.5 Security Requirements . 26

3.5.1 Security Baseline Requirements 27
3.5.2 ECS Requirements . 27

4 Test Strategy 28
4.1 Test Coverage . 28
4.2 Priorities . 30
4.3 Testing Tools . 31

4.3.1 Nmap . 32
4.3.2 Hydra . 40
4.3.3 Nessus . 42
4.3.4 IXIA . 48
4.3.5 Scapy and Hping . 50
4.3.6 Tcpdump and Wireshark . 52
4.3.7 Binutils, Coreutils, GNU, and Other Utils 54

4.4 Test Frameworks . 56
4.4.1 Robot Framework Installation and Con�guration 57
4.4.2 Extensions . 58
4.4.3 Guidelines to Write Test Cases 59
4.4.4 Running Test Cases with Robot 59
4.4.5 Writing Extensions for Robot Framework 60

5 Hardening 61
5.1 Entropy for Random Generation . 61
5.2 Con�guration Manager . 62
5.3 Puppet Deployment . 62
5.4 Puppet Modules . 62

6 Centralized IdAM Solution 65
6.1 Multi-Master Architecture . 65
6.2 IdAM Implementation . 66
6.3 Testing Hardcoded Credentials . 67

7 Results 68

Conclusions 70

References 71

Appendices

Appendix Conventions

Appendix Implementation

Appendix Technologies used

1. Introduction

The study focuses mainly on the cloud world and the di�erent paradigms, including
Platform as a Service (PaaS), Infrastructure as a Service (IaaS), and Software as a
Service (SaaS). Services deployed within the system have also been studied; including
OpenStack services, message services such as RabbitMQ, database services such as
MySQL, and their security implications.

Centralized authentication with security options such as Identity and Access Man-
agement (IdAM) solutions and basic hardening are critical and fundamental topics
that need to be covered, and they are be part of the solution.

Other studies concerning test frameworks and capabilities are also investigated.

1.1 Problem

After deploying the Ericsson Cloud System (ECS), Ericsson must be sure that no
critical security issues occur, as this would lead to losses for the company in terms of
incidents, money, and reputation.

Most of the critical data for several customers will be stored in the cloud. This
includes a few million end customers. As the cloud is a complex system with several
services, there are several vector attacks to break the system.

The main problem that needs to be solved from Ericsson's perspective is how to
deploy in a secure way a complex service that contains a massive amount of critical
data.

1.2 Solution

All the installed services should be properly con�gured, secured, and tested.

For the con�guration part, to solve these issues, an appropriate con�guration man-
ager was selected. This covers implementation of the manifests and con�guration rules,
dependencies, and triggers.

Securing these services and the base Operating System (OS) includes hardening
by removing not needed con�gurations, insecure default parameters, default accounts,
hardcoded credentials, open ports, and services.

Testing forms the last part of the solution. Several health checks, port and vulner-

1

ability scannings, testing the implementation, and automation to avoid new regression
issues have been performed.

1.3 Main Studies

Cloud computing is described in the �rst chapters to explain the nature of this new
technology and group of services which this technology requires. The origin, need and
evolution of cloud has been also described.

Next chapters explain security in general terms, its importance, and how it is ap-
plied to cloud services for the next topics of discussion. After that, test strategies,
design and architecture of the system, and basic security requirements are the subse-
quent topics.

Finally, an explanation of hardening, the centralized login solution, and the results
are presented. The implementation details are attached in the Appendix to show that
this is not just a theoretical problem, in practice was solved. Implementation details
are also presented while excluding the company's con�dential information.

Two main studies were performed. These involved the Identity and Access Man-
agement (IdAM) solution and the Con�guration Manager (CM) tool.

The IdAM provides the triple Authentication, Authorization, and Accounting (AAA),
which gives security and a single entry point for users. Administrators from the sys-
tem, operators, and end users use the service as such. Some policies are discussed
and added as part of the solution. These include expiration accounts and password
complexity.

The CM provides a smooth way of deploying the system. It also maintains the
system�that is, it installs, con�gures, and updates or upgrades the system when
security issues a�ect the system. It also enables periodical updates and supports
upgrades when new features are introduced in later versions.

Security for these services are managed and handled by the CM, which can also be
referred to as the Secure Con�guration Management (SCM) when it includes, refers
to, or focuses on the security part.

2

2. Cloud Computing

The cloud is considered the natural evolution of computers. It marks a shift from
the administrators handling centralized servers to the distributed client-server world.
Administrators in a centralized world were often the bottleneck, as nothing could be
done without them. This gave rise to the new distributed client-server world where
multiple administrators can handle the new systems. It brings �exibility and gains
agility, but a drawback is that it decreases the e�ectiveness of security because of the
deployment of more non-standard applications and services. Applications are more
insecure, with more opportunities for malicious people to attack systems (B01, Kavis,
2014). Figure 1 illustratres the expectations of the new technologies within a given
timeframe.

Figure 1: Expectations of new technologies during time (Architecting the cloud. p.
32).

As a consequence of the technology expectations, i ist increased the opportunity
for a new business to consume resources. With demand rising, standards and security
have become key topics for mass adoption, see �gure 1. Cloud computing�such as
other technologies that have emerged in the past�are where companies are moving.
The di�cult question is how this move should be carried out. Currently, cloud comput-
ing is widely accepted by small and medium-sized businesses but its adoption by large

3

corporations will take some time. That is because of the complexities of legacy ar-
chitectures, existing infrastructures, and organizational challenges (B01, Kavis, 2014).
The graph in Figure 2 illustrates the security maturity.

Figure 2: Security maturity evolution when adopting new technologies (Architecting
the cloud, p. 34).

Cloud computing stills in a premature phase and, only in 2013 did it come to be
accepted widely. The success or failure of these companies will depend on choosing the
right cloud solutions for their business, which is a crucial factor governing whether these
corporations make the right investments (B01, Kavis, 2014). In telecommunication
companies like Ericsson, this adoption takes longer and it is still in implementation
phase.

2.1 Service Models

In a traditional data center, Information Technology (IT) has the responsibility of
building and managing everything. Cloud services can be deployed with di�erent
service models based on which layer the service providers and service consumers ad-
ministrate the system (B02, Bento A. and Aggarwal A. 2012). Figure 3 visualizes
di�erent existing services models in the cloud.

The service models are typically divided into three categories: Software as a Service
(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) depending
of stack components and the line where ends the customer and vendor responsibility
from the cloud stack and stack components point of view.

2.1.1 Infrastructure as a Service (IaaS)

In IaaS, the service delivered is the computer infrastructure, which is often a platform
virtualization environment together with control of storage and networking services ac-

4

Figure 3: Di�erent service models in cloud computing (Architecting the cloud, p. 45).

cessed using an Application Programming Interface (API). IaaS provides virtual data
center capabilities. Consumers would focus on building and managing applications.

Some examples of IaaS are related to managing and maintaining a physical data
center or physical infrastructure such as servers, disk storage, networking, and so on
(A02, Archer J. Cullinane D. Puhlmann N. Boehme A. Kurtz P. Reavis J., 2011).

2.1.2 Platform as a Service (PaaS)

PaaS abstracts standard application functions, providing it as a service. Consumers
are able to deploy cloud infrastructure, acquiring applications using programming
languages, libraries, services, and tools supported by the service provider. Consumers
will not control the cloud infrastructure such as networks, servers, operating systems,
or storage.

Some examples of PaaS solutions are databases, monitoring, logging, caching, se-
curity, email, analytics, and payments (A02, Archer J. Cullinane D. Puhlmann N.
Boehme A. Kurtz P. Reavis J., 2011).

2.1.3 Software as a Service (SaaS)

In SaaS, consumers only need to con�gure application-speci�c parameters and handling
users.

Some examples of SaaS include Customer Relationship Management (CRM), Enterprise
Resource Planning (ERP), accounting, payroll, and some other business software (A02,
Archer J. Cullinane D. Puhlmann N. Boehme A. Kurtz P. Reavis J., 2011).

5

Di�erent service models provides di�erent services for di�erent needs for the end
customers. Depending of which service model is used, it has di�erent implications
from the security point of view and impacts not only the development, but Service
Level Agreements (SLA) and has a direct impact from the business point of view.

2.2 Deployment Models

Apart from service models introduced in the previous section, cloud has also di�erent
deployment models. The service models represent the scope and visibility of the cloud.
This scope can be public, private or hybrid.

2.2.1 Public Cloud

The public cloud is a multi-tenant environment where the user pays for resources,
sharing them alongside other customers. The physical location of these resources is
abstracted for the end users, with the place of the physical hardware being hidden.
Public clouds have several advantages:

� Utility pricing: End users are charged for used resources. They use hardware
resources only when it is needed.

� Elasticity: End users have endless resources and are able to con�gure its software
solutions to dynamically allocate the amount of resources needed, being able to
react in real time for the spikes in tra�c.

� Core competency: End users outsource their data center and the management
of infrastructure to other companies with longer experience, spending less time
on those areas and focusing on their own core competency.

There are several bene�ts of a public cloud. However, there are also a few draw-
backs:

� Control: End users must rely on the public cloud vendor to meet their Service
Level Agreements (SLA) for performance and uptime.

� Regulatory issues: Regulations regarding security of payments by card or data
privacy can be challenging to deploy in the public cloud.

� Limited con�gurations: Public clouds have a standard set of infrastructure con-
�gurations to provide for general needs. The public cloud is not an option in
case some speci�c hardware requirements are needed (B01, Kavis, 2014).

2.2.2 Private Cloud

Private clouds are provisioned for exclusive use of single organizations that have mul-
tiple consumers such as business units.

� The private cloud addresses the disadvantages of public clouds; control, regula-
tory issues, and con�gurations.

6

� Private cloud end users deploy on a single tenancy environment, which is not
shared or commingled with other customers.

� Private clouds reduce regulatory risks with regard to data ownership, privacy
and security given the single-tenancy nature of the model.

Referring to the disadvantages, private clouds have less elasticity, resource pooling,
and higher cost. In private, cloud resources are limited as in the infrastructure, which
has a limited amount of resources (B01, Kavis, 2014).

2.2.3 Hybrid Cloud

Many organizations try to take advantage of both public and private clouds. This
new deployment model is called a hybrid cloud. Here, two or more distinct cloud
infrastructures are bound together, enabling data and application portability.

It is good practice to use public clouds for rapid elasticity and resource pooling,
and private clouds in case there are risk areas for data and privacy (B01, Kavis, 2014).

Di�erent approaches from the security point of view requires

By using a public, private or hybrid cloud, in IaaS, PaaS or SaaS requires a proper
analysis from the security perspective. Next chapter explains the di�erent security
domains and how this security is enforced in the cloud environment.

7

3. Security

When talking about IT security, it is necessary to distinguish between security do-
mains in traditional models and in cloud-based environments. The following chapter
introduces the di�erent security domains categorized by the most well known IT or-
ganizations about standardization.

3.1 Security Domains

In IT, there are several di�erent security domains depending on experts and organi-
zations. The most accepted list is the Certi�ed Information Systems Security Profes-
sional (CISSP) governed by the International Information Systems Security Certi�ca-
tion Consortium (ISC)2. The CISSP is accredited by American National Standards
Institute (ANSI) International Organization for Standardization/International Elec-
trotechnical Commission (ISO/EIC) Standard 12024:2003. It is formally approved by
the United States (US) Department of Defense (DoD) and adopted as a baseline in
the US National Security Agency (NSA).

CISSP splits security into 10 domains:

� Access Control: This is de�ned as a collection of mechanisms that work together
to create security architecture. It protects the assets of the information system.

� Telecommunications and Network Security: This includes network structures,
transmission methods, transport formats, and security measures that are used
to provide availability, integrity, and con�dentiality.

� Information Security Governance and Risk Management: This involves identi�-
cation of an organization's information assets, and the development, documen-
tation, and implementation of policies, standards, procedures, and guidelines.

� Software Development Security: This covers the controls included within systems
and applications software, and the steps used in their development.

� Cryptography: This includes principles, means, and methods of disguising infor-
mation to ensure its integrity, con�dentiality, and authenticity.

� Security Architecture and Design: This covers the concepts, principles, struc-
tures, and standards used to design, implement, monitor, and secure operating
systems, equipment, networks, applications, and controls used to enforce di�er-
ent levels of con�dentiality, integrity, and availability.

� Operations Security: This identi�es controls over hardware, media, and the op-
erators with access privileges of these resources.

� Business Continuity and Disaster Recovery Planning: This deals with safeguard-
ing the business in the face of major disruptions to normal business operations.

8

� Legal, Regulations, Investigations, and Compliance: This includes computer
crime laws and regulations, the measures and techniques that can be used to
determine if a crime has been committed, and methods to gather evidence.

� Physical (Environmental) Security: This comprises threats, vulnerabilities, and
countermeasures that can be utilized to physically protect resources and sensitive
information. (B03, Gordon A. 2015)

All security domains are taken into account when providing cloud services.

3.2 Security Applied to Cloud

Several areas need to be checked from the security point of view in addition to the
concerns from the conventional security domains. New vector attacks need to be taken
into account for cloud computing.

For cloud-based solutions, speci�c security domains have been designed by the
Cloud Security Assurance (CSA), which is currently the most widely accepted organi-
zation in the cloud world.

The Cloud Controls Matrix (CCM) is designed to provide fundamental security
principles to guide cloud vendors and to assist prospective cloud customers in assessing
the overall security risk of a cloud provider.

Some new vector attacks in the cloud are critical, especially in multi-tenancy. Some
examples are given below:

- Guest Virtual Machine (VM) breaks out of VM: It gains access to another VM
or attacks the hypervisor via kernel (if no Application Armor (AppArmor) or Security
Enhanced Linux (SELinux) protection is active between VMs or between VM and the
hypervisor).

- VM uses too many resources maliciously: Too much I/O or virtual Central Pro-
cessing Unit (CPU)'s excessive usage, produces huge log �les from the guest's console,
�lls up all available log space, or pushes gigabytes of logs per hour.

- VM gains access to wrong networks: It uses Virtual Local Area Network (VLAN)
hopping, Address Resolution Protocol (ARP) poisoning, or any network hacks.

Many other vector attacks appear in the cloud. CCM provides a controls framework
that gives a detailed understanding of security concepts and principles that are aligned
to the CSA guidance in 13 domains:

� AIS: Application and Interface Security.
� AAC: Audit Assurance and Compliance.
� BCR: Business Continuity Management and Operations Resilience.
� CCC: Change Control and Con�guration Management.
� DSI: Data Security and Information Lifecycle Management.
� DSC: Data center Security.
� EKM: Encryption and Key Management.
� GRM: Governance and Risk Management.

9

� HRS: Human Resources Security.
� IAM: Identity and Access Management.
� IVS: Infrastructure and Virtualization.
� IPY: Interoperability and Portability.
� MOS: Mobile Security.
� SEF: Security Incident Management, E-Disk and Cloud Forensics.
� STA: Supply Chain Management, Transparency and Accountability.
� TVM: Threat and Vulnerability Management.

In these 13 domains, there are currently 133 cloud controls. This number would
change with cloud evolution (W01, Several authors. 2015).

3.2.1 Auditing Cloud

In traditional computing, the data was stored behind corporate �rewalls. So, it was
easy to secure the perimeter, harden the infrastructure, and secure the databases.
Storing data in the cloud is di�erent, given shared responsibility between the company,
the Cloud Security Provider (CSP), and the chosen stack deployment. Nowadays,
the CSP can be responsible for core competencies, including security and compliance,
which includes encrypting data, hardening environments, and the backup and recovery
processes.

The CSP could provide secure and compliant cloud services. Nonetheless, it is still
up to the company to secure the overall application. Auditing the entire solution is a
very complex task, as auditing occurs across multiple entities, such as the cloud service
consumer and the cloud service provider (W02, Several authors, 2015).

Data and Cloud Security

Security is the most important concern for business and IT people in the cloud.

It is irrelevant where the data resides, as the threats are the same. Overall, there
are some constraints around auditing, laws, compliance, customer requirements, and
risks in terms of data stored in the cloud.

Auditing Cloud Applications

Auditors are responsible for validating the controls and processes for satisfying the
requirements of a given set of constraints de�ned by a governing set of laws. There
are many regulations today. Businesses need to determine which regulations must be
applied. Companies must understand the standards of industry, business processes,
and data requirements. In IT systems, the validation process is needed in di�erent
areas:

� Physical environment: perimeter security and data center controls.
� Systems and applications: security and controls of the network, databases, and
software.

10

� Systems Development Life Cycle (SDLC): deployments and change management.
� Personnel: background checks, drug testing, and security clearance.

In traditional computing, an auditor would check the physical infrastructure against
the di�erent controls and processes that need to be audited. The auditors could
concentrate on a physical machine and inspect the physical security of the data center.
In cloud computing, this is not the case. Certain controls and processes map to a
CSP. The auditor must rely on the auditing information produced and provided by
the CSP. Without proof of compliance, the CSP could cause the customers to fail the
audit. Companies do not accept that other companies have total control of their data
and processes. They are reluctant to rely on another entity when it concerns critical
aspects such as security, privacy, and regulations.

The IaaS provider in a public infrastructure will not allow an auditor of one of its
tenants to access the infrastructure. Its own auditors for perimeter security, processes,
and controls will be used instead. These auditors will not be given physical access.

In PaaS, the application stack is abstracted and managed by the CSP in addition
to the infrastructure, and in some cases, database access and user's administration.
The physical aspects of auditing are even more complex than in IaaS.

For SaaS, the provider is responsible for the entire application besides the infras-
tructure and the application stack. In these cases, consumers of SaaS have very limited
responsibilities.

Regulations such as Health Insurance Portability and Accountability Act (HIPAA)
or privacy levels such as Protected Health Information (PHI) are important because
many customers will not do business with companies that o�er cloud services that are
not in compliance with those standards (B01, Kavis, 2014).

Regulations in Cloud

When building cloud services, standard and industry-speci�c regulations and controls
need to be applied in cloud systems. The most important regulations relating to
software are:

� ISO27001: International Standards for computer systems.
� Federal Information Processing Standards (FIPS): United States (US) Govern-
ment standards for computer systems.

Security and privacy are more important when building cloud services:

� Statement on Standards for Attestation Engagements (SSAE)-16: Controls �-
nance, security, and privacy.

� Directive 95/46/ec! (ec!): European security and privacy controls.
� Directive 2002/58/Electronic Communications (EC): European e-privacy con-
trols.

� PCI DSS: Security and privacy of credit card information.

11

� Federal Risk and Authorization Management Program (FedRAMP): United
States (US) Government security standards for cloud computing.

Industry-speci�c regulations need to be taken into account, especially when critical
data or speci�c companies are using the cloud solution.

Audit Design Strategies

Before designing an audit design strategy in a new cloud application, one needs to
identify all possible regulations that could be applied based on requirements from the
customers and the industry.

Once the list of regulations is established, the next step is to create a work stream
in the product roadmap for auditing based on data management, security manage-
ment, centralized logging, SLA management, monitoring, disaster recovery, Systems
Development Life Cycle (SDLC) and automation, operations and support, and orga-
nizational change management.

Another factor in audit strategy is the maturity of the consumer. For start-ups,
getting to the markets quickly is much more important than passing the audits. So,
less e�ort would be devoted to auditability in these cases. The start-ups cannot ignore
auditing requirements, but e�orts can be made a later stage (B01, Kavis, 2014).

3.2.2 Security Design in Cloud

In a traditional model, vendors provide security in enterprises by storing data in ser-
vices such as Active Directory and providing Single Sign-On (SSO). The commercial
software products run within the buyer's perimeter behind the corporate �rewall.

In cloud computing, vendors have more responsibility to secure the software on be-
half of the cloud consumers. Since consumers are giving up control and often allowing
data to live outside of their �rewall, vendors need to comply with various regulations.

For this reason, there is a common myth that critical data cannot be secure in the
cloud. The reality is that security must be ensured regardless of where the data lives.
It is not a matter of where the data resides, but of how much security is built into the
cloud service.

Regulations such as Payment Card Industry Data Security Standard (PCI DSS)
and Health Insurance Portability and Accountability Act (HIPAA) do not declare
where the data may or may not reside. Regulations dictate that Personally Identi�able
Information (PII) must be encrypted (A03, Several authors, 2013).

How much Security is Required

The level of security required for cloud services depends on di�erent factors such as a
target industry, data sensitivity, customer requirements, and risk tolerance.

The target industry often determines what regulations are in scope. Customer
expectation is a factor that determines which security controls need to be in place.

12

The sensitivity of the data within cloud services has a major impact on the security
requirements. Risk tolerance can drive security requirements.

Once companies consider these factors to determine how much security is required
for their cloud service, security requirements will be evaluated to determine if a solution
is already available in the marketplace or if the requirement should be implemented
internally.

Responsibilities for each Cloud Security Model

For di�erent service models, providers will be responsible for supplying security in
di�erent dimensions. In IaaS, the vendor supplies infrastructure security. In PaaS,
the vendor supplies application stack security and infrastructure security. In SaaS,
the vendor supplies application security, application stack security, and infrastructure
security (B01, Kavis, 2014).

Security Strategies

There are three key strategies that manage security and an additional one for the areas
to focus in a cloud-based application:

� Centralization: It refers to the practice of consolidating a set of processes, secu-
rity controls, policies, and services, reducing the number of places where security
needs to be managed and implemented. All the security controls in relation to
the application stack should be administrated from one place. There should be
limited paths for users and systems to gain access. Customers must enter in the
same way so that they can be monitored. Appropriate controls and credentials
are required to enter parts of the systems that other users are not allowed into.
Policies should be centralized and con�gurable, so that changes are possible and
tracked easily.

� Standardization: Security should be thought of as a shareable core service across
the enterprise, instead of a solution for a speci�c application. Industry standards
use Open Standard to Authorization (OAuth) and OpenID (OID) when connect-
ing to third parties. Lightweight Directory Access Protocol (LDAP) for querying
and modifying directory services such as Active Directory (AD) are highly rec-
ommended. Standardization applies to three areas, thus subscribing to industry
best practices when implementing security solutions. Second, security should be
implemented as a standalone set of services shared across applications. Third,
all of the security data outputs should follow standard naming conventions and
formats.

� Automation: Development and deployments will take too much time if automa-
tion is not used. Automation is important, for it is possible to scale automat-
ically as demand increases or decreases; so, no human intervention is required.
All cloud infrastructure resources should be automated in order to ensure the
latest security patches and controls are automatically in place.

� Protection Detection Prevention (PDP): Protection is where all security con-
trols, policies, and processes are implemented to protect the system and the
company from security breaches. Detection is the process of mining logs, trig-
gering events, and proactively trying to �nd security vulnerabilities across the

13

systems. Prevention arises if some security issues are detected, which is when
actions need to be taken to prevent further damage (A04, Barker E. Barker W.
Burr W. Polk W. Smid M. 2012).

In order to secure cloud-based systems, there are di�erent areas where security
controls need to focus:

� Policy enforcement: These are rules used to manage security in a system. These
policies are maintained at every layer of the stack. The best practice is to create a
template for each unique machine image that contains all of the security policies
around access, port management, encryption, and so on.

� Encryption: Sensitive data processed in the cloud must be encrypted. Secure
protocols must be used not only for data transit, but also where the data is
stored�such as a database or a �le system.

� Key management: This refers to the cryptographic keys (public and private
keys). Objects are generally protected by a public key that can only be de-
crypted by the corresponding private key. This gives an advantage for an autho-
rized person granted access to a system. The data cannot be decrypted without
the corresponding key. Key management protects and stores these keys in a cen-
tralized place (never storing them on the same servers that they are protecting)
and supplies the usage of the keys based on a single secure method of requests.

� Web security: One common way to compromise a system is by breaking web-
based systems because web security is very dynamic. Attackers �gure out new
ways of attack: SQL injection, user session hijacking, and data in transit in-
terception are some examples of these attacks. Using updated and patched web
leverage frameworks is a good way to protect from web security threats. Another
way is running proactively and continuously web vulnerability-scanning services.

� Application Programming Interface (API) management: Some of the advantages
of the cloud-based architectures is how easily di�erent services can be integrated
by APIs. Moreover, this will create security challenges as each API in the system
might be accessed over the web. In this case, it is expected that those APIs
support OAuth or OpenID. In the worst case, some basic authentication over
SSL could be used.

� Patch management: Some of the regulations require patching servers at least
every 30 days. Auditors need to see proof that patching is applied properly and
log what has been applied. Automation is desired for the patching process. For
this purpose, a golden image method could be used. This will be an image of the
system with the latest software upgraded and security patches applied. Applying
patches in existing servers is not desired. It is suggested to create new servers
and destroy the old ones, as this is simpler and less risky. If major issues occur
when the new golden images are deployed, it will be safer to deploy the previous
images than to revert patches in an existing image.

� Logging: This refers to the collection of all system logs from the infrastructure,
application stack, and applications. As a good practice, it is recommended to
write a log entry for every event that occurs in the system, especially the events
related to users and systems requesting access.

� Monitoring: This refers to the process of watching over a system in order to
provide information about activities and status on a system. Monitoring involves
looking at real-time activity, but also mining log �les.

14

� Auditing: This involves reviewing security processes and controls to check that
the system is complying with the required controls of regulations, meeting secu-
rity requirements, and SLA (A04, Barker E. Barker W. Burr W. Polk W. Smid
M. 2012).

Controls in cloud computing are critical. Key management allows users and nodes
to connect to other nodes or services and perform operations. For each operation, a
policy enforcement is evaluated and logs this transaction, which is sent to a Cloud-
centralized logging entity for monitoring and auditing the activity within the system.

3.2.3 Cloud-Centralized Logging

After moving from traditional client-server architectures into the distributed cloud-
based architectures, the storing of logging information has to be separated from the
servers where logs are created. The dynamism and elasticity of cloud applications
ensures that information is not lost once cloud resources leave.

Log File uses

Log �les are useful pieces of information about di�erent behaviours of the systems�
such as database activity, error and debugging information, user access, and so on.
Log �les have many uses: troubleshooting while debugging information and error
messages, security when tracking user accesses, auditing by providing a trail of data,
or monitoring that will help to identify trends, anomalies, and thresholds.

However, in a distributed environment with several servers, �nding data in logs
could not be trivial.

On the other hand, locking down access to production servers is necessary. By
having a logging strategy that centrally maintains the logs on a separate server farm,
the administrators will be able to remove access from all servers if needed (B01, Kavis,
2014).

Logging Requirements

In centralized architectures, there are two key requirements: Direct all logs to a re-
dundant and isolated storage area, and standardize log formats.

First, all logs are directed to syslog instead of written directly to disk. Syslog on
each server pipes to a dedicated logging server farm. Once the data arrives on the
logging server farm, the data is transformed into a No Structured Query Language
(NoSQL) database, being able to search the logs, schedule jobs, trigger alerts, and
create reports for the end users. Figure 4 illustrates the centralized logging strategy.

This strategy has several bene�ts, allowing administrators to block access from all
servers in production environments. Auditing becomes simpler since all logs are in
one place. Data mining and trend analysis become feasible because of the NoSQL
database. Implementing Intrusion Detection System (IDS) becomes simpler because
the tools can run on top of the central logging database. Loss of log data is minimized
as it is not stored in the local disk of servers that may be de-provisioned at some point.

15

Figure 4: Centralized logging strategy (Architecting the cloud, p. 221).

Another option is to leverage an SaaS logging solution, sending the logs to a cloud-
based centralized logging database as a service solution. In this particular case, the
team no longer has to build, manage, and maintain logging functionality, and logs are
maintained on an o�-site scalable and reliable cloud infrastructure. In addition, if part
of the data center goes down, the logs service will not be impacted.

The second action is standardizing all log formats, and naming conventions, severity
levels, and error codes for all messages. This gives value to the data having a common
log message format. Request For Comments (RFC) 5424 explains the severity codes. It
will be necessary to create a common vocabulary for error descriptions, and including
tracking attributes such as date, time, server, module, or API name is crucial for
optimizing searches and producing consistent results.

Standardizing logs is a key strategy for increasing automation and proactive mon-
itoring leading to a higher SLA (B01, Kavis, 2014).

3.2.4 Monitoring Cloud

In general, cloud services are built to always be enabled. The customer expects to be
able to use the service 24 hours a day, 365 days a year. A huge amount of engineering
is required in order to provide high levels of uptime, reliability, and scalability.

There are two �avours of monitoring: proactive and reactive.

Reactive

The goal of reactive monitoring is to detect failures.

Tracking the consumption of memory, CPU, and disk space of the servers, ping
tools to check if websites are responding, and the throughput of the network to detect
symptoms of possible failures are reactive types of monitoring.

16

Proactive

The goal of proactive monitoring is to prevent failures.

To prevent failures, �rst it is necessary to de�ne baseline metrics for a healthy
system. Then, patterns must be monitored to detect when data is trending towards
an unhealthy system and �x the problem before reactive monitoring sounds warnings.

Reactive vs. Proactive

Combining reactive and proactive monitoring is the best practice when implementing
cloud services. Both monitoring strategies are needed to �nd and resolve issues early,
before system and customer are a�ected (B04, Henderson C. 2006).)

Monitoring Requirements

Monitoring helps to track the systems that are behaving with their expectations. These
expectations are de�ned in the SLA between the cloud provider and the cloud con-
sumer. In order to ensure the SLA is met, each SLA must be monitored, measured,
and reported.

Apart from SLA, many cloud services are distributed systems composed of many
parts, and all these parts of the system have a point of failure that needs to be moni-
tored.

Roles in the organization would need di�erent information from the system to en-
sure that the system functions properly: Front-end developers would need page-load
times, API performance, network performance, and other information. Database ar-
chitects may need metrics regarding database server, memory, cache, CPU utilization,
and metrics of SQL statements and response times. Administrators would need to see
metrics such as Requests Per Second (RPS), disk space, memory utilization, and CPU.
Product Owner (PO) might need to see visits per day, new users, cost per user, and
other business metrics.

These metrics will provide and determine if the system is behaving correctly and if
it has the desired behaviour. It would also help to know the success of each deployment
of software that could be compared against the baseline.

Di�erent categories must be monitored. These include performance, quality, through-
put, Key Performance Indicators (KPI), security, and compliance. However, not all
categories are applied in each layer of a cloud-based solution (B04, Henderson C. 2006).

Strategies

There are di�erent strategies of monitoring for the di�erent categories based on the
business model and target application.

Monitoring strategy metrics in user layer:

� Performance: This measures the behaviour of the customers using the system

17

(or in some cases, that of another system that interacts with the monitored one):

� Number of new customers.
� Number of unique visitors.
� Number of page visits.
� Average time spent on site.
� Revenue per customer.
� Bounce rate (users left without viewing pages).
� Conversion rate (users who performed desired actions based on direct mar-
keting).

� Throughput: This measures average rates of data moving through the system.

� Concurrent users.

� Quality: This measures the accuracy and success of user registration and access.

� Number of fails of process registration.
� Number of fails of accessing the system.

� KPI: This shows if the system is meeting the business goals.

� Revenue per customer.
� Revenue per time.
� Incoming customer calls in a certain period.
� Jobs completed in a certain period.
� Site tra�c.
� Shopping abandonment rate.

� Security: This focuses on mining log �les, and discovering patterns of successful
and unsuccessful attempts of attacking the system.

� Compliance: This provides alerts when parts of the system are falling out of
compliance.

� Track enforcement of policies mined in log �les.

Monitoring strategy metrics in application layer:

� Performance: The goal is to measure how the system responds:

� Time to load pages.
� Uptime.
� Response times for di�erent API, reports, or queries.

� Throughput: The goal is to measure how much data the system can transmit to
the end user.

� Transactions Per Second (TPS).
� RPS.
� Clicks per second.
� Page visits per second.

� Quality: This measures erroneous data.

� Failed transactions.
� Number of HTTP response codes between 400 and 500.

18

� KPI: The product team establishes what the metrics are, as each business model
is unique.

� Security:

� Failed authentication attempts for every component.

Monitoring strategy metrics in stack layer:

� Performance: The goal is to measure the components, such as the Operating
System (OS), application server, database server, and so on:

� Average response times between di�erent systems.

� Throughput: This diagnoses issues within the system:

� Nagios is used to gather various metrics.

Monitoring strategy metrics in infrastructure layer:

� Performance: This measures physical infrastructure, such as servers, networks,
routers, or switches.

� Summary health of their infrastructure with some basic indicators.

� Throughput: This measures the �ow from physical hardware and network devices
(B01, Kavis, 2014).

The metrics which are applied for monitoring the strategy depends in what layer
the cloud requires more tracking; user, application, stack or infrastructure.

3.2.5 Disaster Recovery in Cloud Computing

In distributed environments, such as cloud-based solutions, there are many parts on
the system that can fail. In cloud computing, systems should be designed expecting
everything can fail, so that the system is prepared for these potential failures.

Costs

Strategies for disaster recovery in the cloud are similar to those for traditional data
centers, but the implementation will be di�erent. There are mainly three variables
from the business perspective:

� Recovery Time Objective (RTO): This refers to the time within which the busi-
ness requires that the services be back up and running.

� Recovery Point Objective (RPO): This is the amount of time in which data loss
can be tolerated.

� Value of recovery: This is a measurement of how much it is worth to the company
to mitigate disaster scenarios.

The business should determine the RTO, RPO, and value of recovery for each
functional area of the system architecture (B01, Kavis, 2014).

19

Figure 5: Classic backup and restore (Architecting the cloud, p. 268).

Strategies in IaaS

In IaaS, disaster recovery strategies are much more involved than other service models
because the consumer is responsible for the application stack.

Having regions and availability zones is one strategy for IaaS, where the regions
are located across the globe while the zones are independent virtual data centers in a
region. Having redundancy across multiple zones will help to maintain uptime if there
are any outages.

An alternative is to build redundancy across regions. However, this method is
more complex and expensive, as moving data between zones incurs charges for the
data transfer and introduces extra latency.

There is a standard set of best practices for recovering from a disaster in IaaS.
Figure 5 shows the classic backup and restore: daily full and incremental backups are
created and stored to a disk service provided by the vendor, and copied in a secondary
data center and other third-party vendor.

Active-Passive cold: A secondary data center is waiting to take the primary data
center in case of a disaster. However, the secondary data center is not running. Instead,
it is waiting for a batch set of actions that will turn on in case of an emergency. Figures
6 and 7 show the Active-Passive cold scenario and its transition.

Active-Passive warm: A secondary data center is waiting to take the primary data
center in case of a disaster. The secondary data center is running, decreasing the
downtime if an outage occurs. This can be used to load balance using the secondary
data center. Figures 8 and 9 show the Active-Passive warm scenario and its transition.

Active-Active hot: All the compute resources are being used at all times and the
data center will not have any downtime at all, so that it does not miss any transaction.
The database uses master-slave replication between data centers. If a primary data
center fails, the database at the secondary data center becomes the master. Once all
data in di�erent data centers are in sync, the original primary data center will become
the master again (B01, Kavis, 2014). Figures 10 and 11 show the Active-Passive hot
scenario and its transition.

20

Figure 6: Active-passive cold (Architecting the cloud, p. 270).

Figure 7: Active-passive cold (Architecting the cloud, p. 270).

Figure 8: Active-passive warm (Architecting the cloud, p. 272).

21

Figure 9: Active-passive warm (Architecting the cloud, p. 272).

Figure 10: Active-passive hot (Architecting the cloud, p. 274).

Figure 11: Active-passive hot (Architecting the cloud, p. 274).

22

Strategies in PaaS

In public PaaS, the vendor is responsible for applications built on top of the platform.
When a disaster occurs, the consumer depends on the recovery plan from the PaaS
provider.

Private PaaS is a less risky alternative because the vendor abstracts the develop-
ment platform by installing and managing the application stack being simpler and
automated; however, the consumer has to manage the infrastructure. When a disaster
occurs, it is the consumer who controls the situation, as he manages the infrastructure
(B01, Kavis, 2014).

Strategies in SaaS

For SaaS, there should be a plan if the service is not available for a long time. At
least a software escrow is recommended, holding the Internet Protocol (IP) from the
vendor in an independent area hold of a third party, being able to release the vendor
from the buyer point of view in case of business impact. In other words, the buy is
ownership of the data.

Having two di�erent SaaS vendors to protect against outages could be feasible in
some cases, depending on the business impact.

From the risk mitigation point of view, it is highly recommended to extract data
regularly (B01, Kavis, 2014)).

Strategies in Hybrid

In a hybrid clouds, a company can split workloads between the public and private
clouds. For the workloads that run in the public cloud, the private cloud could be
con�gured to fail over data center; as for the workloads that run in the private cloud,
the public cloud could be used as the fail over data center. For this strategy, both
public and private clouds must run similar services (B01, Kavis, 2014).

The above strategies are applied over a cloud installation. Currently there is an
existing platform called Openstack which act as a base OS for providing cloud services.

3.3 Openstack Components

As OpenStack is a complex software, it is not only split in the VIC, VIM and Fuel.
There are additional required components. See Figure 12 for an architectural overview
of Openstack fuel component.

23

Figure 12: Fuel architectural overview (Introduction to Fuel, openstack.org)

OpenStack components are as follows:

� Neutron: This is an L2 and L3 networking environment for a VM.
� Nova: This represents computing resources of a VM, CPU, and memory.
� Cinder: This provides block storage devices to the VM.
� Glance: This provides image storage of boot images for VM.
� Ceilometer: This collects measurements of the utilization of the physical and
virtual resources.

� Heat: This orchestrates the installation of applications.
� Swift: This replicates storage of �les for internal use.
� Keystone: This provides identity, token catalogue, and policy services (W12.
Several authors. 2015).

The Openstack components and its interaction are shown in Figure 13.

24

Figure 13: OpenStack architectural overview (Introduction to OpenStack, open-
stack.org)

Openstack base will run the Cloud Execution Environment (CEE) for the ECS
solution.

3.4 CEE Components

CEE consists of three software components. The �rst part is the VIC, which provides
the needed infrastructure support for running a cloud environment. This manages
all activities in the CEE. All OpenStack services are included in the VIC, but also
functionality is included for maintaining and monitoring the CEE infrastructure.

The second part is Virtual Infrastructure Managing (VIM), which provides the
management interfaces, Command Line Interface (CLI) and Graphical User Interface
(GUI), for managing the virtual infrastructure. It also manages the system for the
CEE by HTTP access.

The last part is Fuel, which adds installation, upgrade, and management support
for an OpenStack region.

Fuel is an open-source development and management tool for OpenStack. Fuel is

25

delivered as an image that is used to boot a Fuel master image and docker contain-
ers are used to run the Fuel logic. Fuel provides GUI, CLI, and API interfaces for
management (W11. Several authors. 2015). See Figure 14 for CEE architectural
overview.

Figure 14: CEE architectural overview (Cloud Execution Environment, ericsson.com)

ECS provides external API allowing for north-bound applications to interact and
control the whole or parts of the infrastructure depending on whether the tenant or
the cloud operator interacts.

Openstack is interacting with the rest of cloud entities, and acts as an interface for
the installation, integration, and management of the cloud.

Understood the nature of the cloud and its principles; including the di�erent ser-
vices models, scope and components, it is time to elaborate the requirements concern-
ing the security.

3.5 Security Requirements

The implementation of the ECS is required to follow the company's security require-
ments and focus on the biggest possible threats. Being compliant within security
requirements requires proper testing to achieve this goal.

26

3.5.1 Security Baseline Requirements

Ericsson has generic baseline security requirements for every product that is delivered.
This guideline de�nes the level of security in di�erent areas to reach an acceptable
level of security.

The baseline security requirements document covers risk management, hardening,
access control, security event logging, tra�c protection, data protection, and packet
�ltering. Technical speci�cations are also de�ned based on the input material: Third-
Generation Partnership Project (3GPP), Internet Engineering Task Force (IETF),
American National Standards Institute (ANSI), The National Institute of Standards
and Technology (NIST), Common Criteria, International Organization for Standard-
ization (ISO), and Open Web Application Security Project (OWASP).

The risk management area refers to the risks for each product that should be
investigated and documented in the risk assessment. Unacceptable risks must be
mitigated with risk treatment actions.

Hardening refers to the process of securing a system by reducing its surface of
vulnerability. It is a design, a con�guration, and a deployment issue. Hardening in-
cludes removal of unnecessary software, installing the latest patches, disabling insecure
devices, and replacing default passwords.

Access control covers the protection of the system resources against unauthorized
access. Access control is regulated according to a security policy.

Security event logging requirements involve recognizing, recording, and storing in-
formation related to relevant events. The resulting event log can be examined to
determine which relevant events took place and who is responsible for them. It should
be possible to trace and log all the security-related events in a given node.

Tra�c protection contains requirements for security mechanisms of protecting IP-
based communication within a node.

Data protection covers requirements related to the protection of data at rest. Data
is an important corporate asset that needs to be safeguarded.

Packet �ltering includes the access control to and from a network by analysing the
incoming and outgoing packets and letting them pass or blocking them.

3.5.2 ECS Requirements

The two main areas that need to be covered from the security perspective in the
ECS project are: �rst, disabling and randomizing in real-time all the possible default
passwords for di�erent deployed systems in order to prevent unauthorized access; and
second, setting a proper system of authenticating e�ciently di�erent users for di�erent
roles and capabilities in a data center with a massive amount of nodes with di�erent
services and levels.

Other project-speci�c requirements regarding security are not evaluated in this
thesis, as other teams are responsible. These areas are not part of the purpose of this
thesis.

27

4. Test Strategy

In order to ful�l all the security requirements for the functionality provided in the
Ericsson cloud, a set of tests is required. First, it was necessary to choose the test
strategy.

The test strategy describes the testing approach of the software development cycle.
It helps to inform project managers, testers, and developers about some issues of the
testing process. This includes the testing objective, methods of testing new function-
alities, total time and resources required for the project, and the testing environment
(B05, Kaner C. Falk J. Nguyen H. 2006).

In this particular case, the test strategy is narrowed to the security scope.

4.1 Test Coverage

From the perspective in ECS, the following areas need to be covered in order to provide
a competent cloud product that is secure enough for the customers. The test coverage
is an outcome from the `Security requirements' chapter of this thesis.

� Services: This involves focusing on port scanning, listening services, expected
transport used protocols, and interface binding. Pre-requisites identify which
nodes need to be scanned as well as what services and protocols must be used.

� Verify services using netstat utility to see active connections.
� List services using The Network Mapper (Nmap) port scanner and see how
those ports appear.

� Document which ports and services are �ltered by a �rewall or system
con�guration.

� Check transport protocols used for these services (Transmission Control
Protocol (TCP) or User Datagram Protocol (UDP).

� Run version scanning using Nmap port scanner.
� Run OS �ngerprint using Nmap port scanner.
� Verify interface binding where services are mapped.
� Verify tra�c separation and ensure no leakage happens by using fuzzing
tools.

� Run dictionary and brute force attacks against services and verify Pluggable
Authentication Modules (PAM), Access Control List (ACL), and other se-
curity modules, features, or con�guration options, which ensure protection
against password cracking.

28

� Vulnerabilities and Denial of Service (DoS): This is a vulnerability scan based
on services version, fuzzing, and robustness protocols. As a pre-requisite, it is
necessary to identify possible DoS attacks that will a�ect the system.

� Run vulnerability scanners such as Nessus to not allow any critical bug
active in the system.

� Run fuzzing tools such as codenomics to check leakages and robustness of
protocols.

� Run tra�c generators such as IXIA to �ood the networks. This might detect
possible DoS and provides an output of performance of the networks.

� Generate malformed attacks using scapy or hping utilities that would help
to ensure the system is behaving properly and services are responsive.

� Malware testing that generates a fake virus could also be performed to
ensure Intrusion Detection System (IDS) and Intrusion Prevention System
(IPS) are responding as expected, as well as some alarms to isolate the
threat.

� Running additional tools regarding security in web services such as XSS.

� Hardening: This includes default passwords, services running by default, users
running services, con�guration and �le permissions, and administrator accounts
disabled. It is needed to identify which users and groups are allowed to do
di�erent actions in each system and to identify the list of default services that
systems run as a prerequisite. For each node, it is needed to verify:

� No default passwords are used.
� Administrator accounts are not enabled by default.
� There are no unexpected services by default.
� Services are not run as privileged accounts like root.
� Con�guration and �le permissions are set properly, as is the storage area.
� Password policies are followed (no weak passwords are allowed).
� Every account can be disabled.
� SELinux policy con�gurations are veri�ed after performing di�erent trans-
actions.

� Encryption: This includes encrypted tra�c, encrypted passwords, and usage of
secure protocols. To perform, the following checklist is needed to identify every
tra�c �ow between two components for the whole system.

� Not allowing plain text data to be transferred between two components of
the system.

� Passwords are not sent in plain text.
� Certi�cates for authentication are used if needed for some components.
� Critical data such as passwords are properly encrypted and not accessible
to other users.

� No unsecure protocol is used, (for example, Lightweight Directory Access
Protocol (LDAP) over Transport Layer Security (TLS) or LDAP over SSL
(LDAPS) instead of plain LDAP).

� Logging: Logging relates to security issues (local and remote logging). It is a
prerequisite to identify security incidences that will trigger the logs.

� Verify security incidences are reported to the log on the machine on which
it happens.

� Check security incidences are transferred to a remote centralized node, using
a log collector.

29

� Verify if it is possible to identify which security incident or action has been
performed by which user (needed for forensics).

� Verify how accurate logs based on incidents are and if they give valuable
information (quality and error standardized errors and incidents).

When performing these test operations, it is important to take into account:

- Tests should also be performed with tra�c in order to simulate having real CPU,
memory, and network usage from the di�erent systems. - SQL injection or XSS attacks
do not always need to be performed, as these services are not always provided via a
web interface. - Some tests could be di�cult to perform, such as hardware speci�c for
Hardware Security Module (HSM) or Trusted Platform Module (TPM) related with
Intelligent Platform Management Interface (IMPI).

These tests are applied to the following identi�ed entities:

� Hosts OS.
� Cloud controller (VIC) OS.
� Ethernet switches.
� Dashboard.
� LDAP Authentication system.
� Network protocols.
� EMC (storage).

De�ned the strategy and test coverage, it is a matter of priority to implement them.
Next chapter de�nes these priorities.

4.2 Priorities

Based on the input information from the Test Coverage, Test Strategy, and the Security
Requirements, the functionality is implemented �rst. Integration and Veri�cation
(I&V) team veri�es releases. Finally, test coordinators align with the rest of the
organization. The following priorities has been decided for the testing part:

Testing services in the di�erent nodes:

� Services listened to on the controllers and compute nodes in VIC.
� Services listened to in VIM Virtual Machine (VM).
� Services �ltered by the �rewall.
� Encryption between components.
� Auditability for incidences in di�erent services.

Testing the access control:

� Identity and Access Management (IdAM) as a centralized access control.
� Lightweight Directory Access Protocol (LDAP) databases that store system
users.

30

� Identity and Access Management (IdAM) tools used for administrate users.
� Group managing permissions is veri�ed.
� Remote Authentication Dial In User Service (RADIUS) for administrate switch
users.

Testing the hardening of the system:

� Password policies' strength.
� Password policies for history.
� Robustness of randomized passwords.
� Administrative and default accounts are disabled in di�erent nodes.
� Veri�cation of services running with their own user and domain.
� Veri�cation of default accounts has been disabled.

Given a list of services, access controls and which systems requires hardening, it is
time to describe the tools used to perform this goal. The following section describes
the tools which have been being used for that purpose.

4.3 Testing Tools

Once Test Coverage and Priorities have been decided on and described, it is necessary
to select which tools are powerful enough and most suitable to achieve the goal of
testing the ECS solution from the security point of view.

After some analysis and discussions with other members from cloud security and
I&V from the Product Development Unit (PDU) cloud, the following technologies and
tools have been selected to perform security tests:

� Nmap: Port and network scanning.
� Hydra: Password cracking tool for di�erent services.
� Nessus: Vulnerability scanner.
� IXIA: Packet generator, which could be used for tra�c leakage control and DoS
attacks due to the high performance.

� Scapy and hping: Interactive packet manipulation programs that could be used
for DoS attacks involving malformed and unexpected packets.

� Tcpdump and wireshark: Packet sni�er.
� Defensics codenomics: For fuzzing.
� Burp: Web vulnerability scanner.
� W3at: Analyses applications that communicate using the HTTP and HTTPS
protocols.

� Small built-in utilities: netstat, socklist, lsof, nc, iptraf, iperf, etc.
� Iptables: Not as a test tool but used and a�ecting results.

Some additional tools can be used in development phases or in Continuous Inte-
gration (CI):

31

� Lint, clint, or splint: Static code analysis.
� Valgrind and callgrind: Run-time code analysis.
� Puppet validate: Puppet syntax validation for manifests.

These tools can be used to prevent or indicate possible errors, mistakes, or bugs
in development phases rather than in testing phases. Some of them could be security
issues.

From the above highlighted testing tools, some of them are critical in terms of
testing and will be widely used. So, it is necessary to describe in detail the powerfulness
of these utilities:

4.3.1 Nmap

Nmap is not just a simple port scanner. It is a utility for network discovery and
security auditing. Many systems and network administrators also �nd it useful for
tasks such as network inventory, managing service upgrade schedules, and monitoring
host or service uptime.

Nmap has several features, such as host discovery for identifying hosts on a net-
work, port scanning that enumerates open ports on a target host, version detection
by interrogating network services on remote devices, OS detection that determines
the system and hardware characteristics of network devices, and scriptable interac-
tion with the target by using Nmap Scripting Engine (NSE) and Lua programming
language. Nmap follows a sequence described below:

1. Converts the target from a hostname into an Internet Protocol Version 4 (IPv4)
address using Domain Name Server (DNS).

2. Pings the host, by default with an Internet Control Message Protocol (ICMP)
echo request packet and a Transmission Control Protocol (TCP) Acknowledgement
�ag (ACK) packet to port 80 to determine if it is up and running.

3. Converts the target IP address back to the name using reverse DNS query.
4. Launches a TCP port scan of the 1,000 most popular ports listed in nmap-

services. A Synchronization �ag (SYN) stealth scan is usually used, but connect
in case for no privileged users.

5. Prints the results to standard output.

Nmap is divided into di�erent phases while performing the above actions:

1. Script pre-scanning: NSE uses a collection of special-purpose scripts to gain
more information about remote systems.

2. Target enumeration: Nmap researches the host speci�ers provided by the user.
Nmap resolves these speci�ers into a list of Internet Protocol Version 4 (IPv4)
or Internet Protocol Version 6 (IPv6) addresses for scanning.

3. Host discovery: This discovers which targets on the network are online and,
thus, worth deeper investigation.

32

4. Reverse DNS resolution: This looks up the reverse DNS names of all hosts
found online by the ping scan. Sometimes, a host's name provides clues to
its function, and names make reports more readable than providing only IP
numbers.

5. Port scanning: Probes are sent and the responses (or non-responses) to those
probes are used to classify remote ports into states such as open, closed, or
�ltered.

6. Version detection: If any ports are found to be open, Nmap may be able to
determine what server software is running on the remote system. It does this
by sending a variety of probes to the open ports and matching any responses
against a database.

7. OS detection: On measuring these di�erences, it is often possible to determine
the operating system running on a remote host.

8. Traceroute: Nmap contains an optimized traceroute implementation. It can
�nd the network routes to many hosts in parallel.

9. Script scanning: Scripts running during this phase generally run once for each
target host and port number that they interact with. They commonly perform
tasks such as detecting service vulnerabilities, malware discovery, collecting more
information from databases and other network services, and advanced version
detection.

10. Output: Nmap collects all the information it has gathered and writes it to the
screen or to a �le.

11. Script post-scanning: The scripts in this phase can process results and deliver
�nal reports and statistics.

Host discovery techniques used by Nmap:

� TCP SYN ping (-PS portlist): This sends an empty TCP packet with the
SYN �ag set. The packet attempts to establish a connection. If the port closed,
an Reset �ag (RST) packet is sent back. If the port is open, a TCP three-way
handshake begins. A TCP SYN/ACK packet will be the response from our
machine instead of an ACK packet. This is sent by the kernel and not by Nmap,
as a response to unexpected SYN/ACK. On UNIX boxes, sending raw TCP
packets requires privileges. So, a workaround is to use syscall connect() again
target port, if connect returns success or ECONNREFUSED the TCP stack
must receive a SYN/ACK or RST and host is marked available. If hanging until
timeout, host marked as down. The default port is 80.

� TCP ACK ping (-PA portlist): This sends a TCP ACK packet when no
connection exists, so that the remote host always responds with an RST packet,
disclosing its existence in the process. If an unprivileged user or IPv6 target is
speci�ed, the connect workaround will be used. This workaround is imperfect
because connect is actually sending a SYN packet rather than an ACK. The
reason for o�ering SYN and ACK probes is to maximize the chances of bypassing
�rewalls, as many admins just block incoming SYN. The default port is 80.

� UDP ping (-PU portlist): This sends an empty UDP packet to the given
ports (except if data-length is provided). A UDP probe should elicit an ICMP
port unreachable packet in return, which means the host is up and available.
Other ICMP errors, such as host/network unreachable or TTL exceeded, are
indicative of a down or unreachable host. If a port is reachable, most services

33

simply ignore it. This is why a high default port is chosen. But some services
such as chargen could reply to an empty UDP packet disclosing that the machine
is available. The default port is 31338.

� ICMP ping types (-PE,-PP,-PM): These send ICMP type 8 (echo request)
to the target, expecting a type 0 (echo reply) as a reply. An echo request can be
sent with a -PE option. The -PP option will send an ICMP with a timestamp
request (that could receive a timestamp reply that it is ICMP code 14). -PM
will send an ICMP with an address mask query (which could receive an address
mask reply that it is ICMP code 18).

� IP protocol ping (-PO protocollist): This sends IP packets with a speci�ed
protocol number set in their IP header. If no protocols are speci�ed, the default
is to send multiple IP packets for ICMP (protocol 1), IGMP (protocol 2), and
IP-in-IP (protocol 4). Note that for ICMP, IGMP, TCP (protocol 6), and UDP
(protocol 17), the packets are sent with the proper protocol headers, while other
protocols are sent with no additional data beyond the IP header (unless the
data-length option is speci�ed).

� ARP scan (-PR): In an ethernet Local Area Network (LAN), when Nmap tries
to send a raw IP packet, such as an ICMP echo request, the OS must determine
the destination hardware (ARP) address corresponding to the target IP, so it
can address the ethernet frame properly. This requires it to issue a series of ARP
requests. The �send-ip option tells Nmap to send IP-level packets (rather than
raw ethernet) even though it is a local network. So, performing an ARP scan
could help with regard to the question of time and avoiding adding an incomplete
ARP entry on the kernel ARP cache. You can spoof your MAC address with
�spoof-mac if you are using this scan in some conference room.

Net�lter/iptables state seen with the option �state, which categorizes packets based
on connection state. Di�erent packet states are display in Table 1:

Connection state Description
INVALID packet is associated with no known connection.
ESTABLISHED packet is associated with a connection that has seen

packets in both directions.
NEW packet has started a new connection or otherwise is as-

sociated with a connection that has not seen packets in
both directions.

RELATED packet is starting a new connection, but is associated
with an existing connection, such as an FTP data trans-
fer or ICMP error.

Table 1: Net�lter and iptables states representation

Port scan techniques used by Nmap:

� TCP SYN stealth scan (-sS): This scan never completes TCP connections.
It just sends TCP SYN segments.

Figures 15, 16 and 17 show an example of ports open, closed and �ltered
respectively.

34

Figure 15: Example of port open discovered by TCP SYN stealth

Figure 16: Example of port closed discovered by TCP SYN stealth

Figure 17: Example of port �ltered discovered by TCP SYN stealth

Nmap interpretation in TCP SYN stealth scans are shown in Figure 2:

Probe response State
TCP SYN/ACK response open
TCP RST response closed
No response �ltered
ICMP unreachable error (type 3, code 1, 2, 3, 9, 10 or 13) �ltered

Table 2: Nmap interpretation for TCP scans

� TCP connect scan (-sT): It uses connect syscall as this does not require root
privileges. However, Nmap has less control over the syscall connect than with
raw packets. TCP connections usually end with another handshake involving
the Finalization �ag (FIN) �ag, but Nmap asks the host OS to terminate the
connection immediately with an RST packet.

Figure 18: Example of TCP connect scan
� UDP scan (-sU): UDP scanning is generally slower and more di�cult than
TCP. A UDP scan works by sending an empty (no data) UDP header to every
targeted port. Based on the response or lack thereof, the port is assigned to one
of four states.

Nmap interpretation in UDP scans are shown in Figure 3:

Probe response State
Any UDP response from target port open
No response received open or �l-

tered
ICMP port unreachable error (type 3, code 3) closed
Other ICMP unreachable errors (type 3, code 1, 2, 9, 10, or 13) �ltered

Table 3: Nmap interpretation for UDP scans

35

Open ports rarely respond to these probes, as the TCP/IP stack simply passes
the empty packet up to the listening application, which usually discards it im-
mediately as invalid. That is why Nmap cannot determine whether the port is
open or �ltered when there is no response.

UDP services generally de�ne their own packet structure rather than adhere
to some common general format that Nmap could always send. So, an Simple
Network Management Protocol (SNMP) packet looks completely di�erent than
a SunRPC, Dynamic Host Control Protocol (DHCP), or DNS request packet.
So, to send a proper packet for every popular UDP service, Nmap would need
a large database de�ning their probe formats (located at nmap-service-probes).
So, if the version scanning with -sV is performed, Nmap will send UDP probes
to every open|�ltered or open ports.

To speed up UDP scans (they are extremely slow because normally probes are not
replied to and GNU/Linux is rate-limiting to avoid �ooding the network), it is
suggested to use options such as increase host parallelism (with �min-hostgroup
100), scan popular ports �rst (with �F option to scan the 100 most common
UDP ports), add version detection scan against a given port number (with �
version-intensity 0), scan from behind the �rewall if possible (as they can slow
down scans dramatically), skip slow hosts (with �host-timeout 900000), and use
verbosity level enabled (with -v) to provide ETA for scan completion of each
host.

� TCP FIN, NULL, and Xmas scans (-sF, -sN, -sX): Based on the Request
For Comments (RFC) 793, which says 'if the [destination] port is CLOSED... an
incoming segment not containing an RST causes an RST to be sent in response'
and the next page, which discusses packets sent to open ports without the SYN,
RST, or ACK bits set, saying 'you are unlikely to get here, but if you do, drop the
segment, and return'. So, when scanning systems are compliant with this RFC,
any packet not containing SYN, RST, or ACK bits will result in a returned RST
if the port is closed and no response at all if the port is open.

The following operations are performed to execute this scan:

� NULL scan will not set any bits (TCP �ag header is 0).
� FIN scan sets the TCP FIN bit.
� Xmas scan sets the FIN, PSH, and URG �ags, lighting the packet such as
a Christmas tree.

Nmap interpretation in the TCP FIN, NULL, and Xmas scans (see Figure 4):

Probe response State
No response received open or �l-

tered
TCP RST packet closed
ICMP unreachable errors (type 3, code 1, 2, 9, 10 or 13) �ltered

Table 4: Nmap interpretation for speci�c TCP SYN �ags scans

The advantage of this kind of scan is that they can sneak certain non-stateful
�rewalls and packet �ltering routers (because they are trying to block TCP
connections with an SYN bit set and ACK cleared).

� Custom scan types (�scan�ags): These are scans that allow the user to
specify any TCP �ag combinations.

36

� Custom SYN/FIN scan: This allows you to specify arbitrary TCP �ags
in order to bypass some �rewalls. Possible �ags can be used in mashing
together any of those combinations: URG, ACK, PSH, RST, SYN, and
FIN. For example, this one sets everything (being the order irrelevant).
In addition, it is possible to set the TCP scan type, telling Nmap how to
interpret responses.

� PSH scan: By trying a customized PSH/URG or FIN/PSH scan, it gets
a small chance of evading scan detection systems. So, the idea is to choose
the FIN scan as a base type -sF and specify one of those �ags.

� TCP ACK scan (-sA): This scan is used only to map out �rewall rules, deter-
mining if they are stateful or stateless and which ports are �ltered. It is a probe
packet that has only an ACK set, and when scanning systems:

� Open and closed ports returning an RST packet: Nmap will label them as
un�ltered (meaning they are reachable but it is undetermined).

� Ports that do not respond or send some ICMP error back are labelled as
�ltered.

Nmap interpretation in TCP ACK scans (see Figure 5):

Probe response State
TCP RST response un�ltered
No response received (even after retransmissions) �ltered
ICMP unreachable errors (type 3, code 1, 2, 9, 10, or 13) �ltered

Table 5: Nmap interpretation for TCP ACK scans

� TCP window scan (-sW): This scan exploits an implementation detail of
certain systems to di�erentiate an open port from closed ones, rather than always
printing un�ltered when an RST is returned (as it happens with an ACK scan).
This scan relies on an implementation detail of a minority of systems. So, it is
not always trustable. However, it could help in cases where the FIN scan cannot
distinguish between open and �ltered ports.

Nmap interpretation in TCP window scans (see Figure 6):

Probe response State
TCP RST response with non-zero window �eld open
TCP RST response with zero window �eld closed
No response received (even after retransmissions) �ltered
ICMP unreachable errors (type 3, code 1, 2, 9, 10, or 13) �ltered

Table 6: Nmap interpretation for TCP window scans

� TCP maimon scan (-sM): This described a technique in Phrack magazine 49
when it was invented by Uriel Maimon. The technique is exactly the same as for
the Xmas, NULL, or FIN scan except that the probe is FIN/ACK. According to
the RFC 793 (TCP), an RST packet should be generated in response to such as a
probe whether the port is open or closed. However, many BSD-derived systems
simply drop the packet if the port is open. So, Nmap is looking at exactly this.

Nmap interpretation in TCP maimon scans (see Figure 7):

37

Probe response State
No response received (even after retransmissions) open or �l-

tered
TCP RST packet closed
ICMP unreachable errors (type 3, code 1,2,9,10 or 13) �ltered

Table 7: Nmap interpretation for TCP maimon scans

� TCP idle scan (-sI): Antirez (author of hping2) published in Bugtraq a list of
ingenious port scanning techniques: a way that scans a target without sending
a single packet to the target from their own IP address, using a zombie host and
having IDS detect this one as an attacker.

1. Probe the zombie's IPID and record it (every IP packet on the internet has
a fragment identi�cation number called Internet Protocol ID (IPID)).

2. Create a SYN packet from the zombie and send it to the desired port on
target. Depending on the port state, the target would increase the zombie's
IPID or not.

3. Probe the zombie's IPID again. Compare the new IPID with the one
recorded in step 1.

This will determine the port state:

1. An increase of one indicates that the zombie has not sent out any packets,
except for its reply to the attacker's probe, which means that the port is
not open. This is because the target must have sent either an RST packet
(which was ignored) or nothing at all.

2. An increase of two indicates that the zombie has sent out a packet between
two probes. This extra packet usually means that the port is open. This
is because the target presumably sent the zombie a SYN/ACK packet in
response, which introduced an RST packet from the zombie.

3. An increase of more than two means it is not a good zombie host, as it has
no predictable IPID.

This type of scan cannot distinguish between closed and �ltered ports. So, when
Nmap sees an increase of one, it marks the port as closed or �ltered. The Figure
19 shows and example of TCP idle scan.

38

Figure 19: Example of TCP idle scan

To �nd a working idle scan zombie host, it is necessary to �nd one that assigns
IPID packets incrementally on a global basis (instead of per-host communica-
tion). It should be idle (it is why is call Nmap scan idle). Printer devices could
be great in acting as zombies.

It is also suggested to use -PN in order to avoid the �rst initial ping packet from
our machine against the target. That would reveal our IP address. The -sV
should never be speci�ed as it will also show the real IP address.

It is possible to specify the port on the zombie machine using a semicolon:

nmap -PN -p- -sI zombie.machine.com:113 target.machine.com

Nmap can parallelize an idle scan by sending probes in groups of up to 100 ports
and check IPID is increased N times. Later, it uses a binary search in order to
�nd the port state.

There are some cases in which IPID is increased by 256 instead of by one. This
is because some systems use little-endian when they do not convert IPID to
network byte order (big-endian).

� IP protocol scan (-sO): This scan allows you to determine which IP protocols
(TCP, ICMP, IGMP, etc) are supported by the target machines. It sends IP
packet headers and iterates through the 8 bit IP protocol �eld, without any data.
Protocol scan is looking for ICMP protocol unreachable messages.

Nmap interpretation in IP protocol scans (see Figure 8):

39

Probe response State
Any response in any protocol
from target host

open (for protocol used by re-
sponse, not necessarily probe pro-
tocol)

ICMP protocol unreachable error
(type 3, code 2)

closed

ICMP unreachable errors (type 3,
code 1, 3, 9, 10, or 13)

�ltered (through they prove
ICMP is open if sent from the
target machine)

No response received (even after
retransmissions)

open or �ltered

Table 8: Nmap interpretation for IP protocol scans

� TCP FTP bounce scan (-b): FTP protocol speci�ed by RFC 959 has a
feature called proxy FTP connections that allow a user to connect to one FTP
server, then ask that �les be sent to a third-party server. This is exploitable as
asking the FTP server to send a �le to each port of a target. In turn, the error
message will describe whether the port is open or not. The syntax for TCP FTP
bounce scan is (B06, Fyodor G. 2009):

nmap -PN -b login:password@server:port.servertarget

Discovering hosts and performing scans against the services are tasks that Nmap
perform well. However, attacks against user account services are achieved by other
tools such as Hydra.

4.3.2 Hydra

Hydra is a fast network logon cracker that supports many di�erent services. This
tool has many advantages in comparison to other similar network logon and password
cracker tools. It supports IPv6, HTTP proxy, and Socket Secure (SOCKS) proxy. It
also supports a wide number of protocols for performing the tests�47 currently.

For Ericsson's purpose of testing part of the ECS, Hydra is convenient as it supports
versions 2 and 3 of Lightweight Directory Access Protocol (LDAP) in combination
with AUTH Challenge-Response Authentication (CRAM)-Message-Digest 5 (MD5)
and AUTH DIGEST-MD5. It also supports MySQL, which will be the integration
point of puppet modules such as Open Virtualization Format Tool (OVFT) and heat
for con�guration management that will perform the action of removing the hardcoded
credentials in VIM VM. Additional protocols such as Secure Shell (SSH) and SSH
with keys that should be tested are also supported by this tool.

Usage of this tool it is quite simple, but powerful. The following example shows
how to perform a network logon attack against the localhost by SSH protocol at port
22 using overdrive as a username and foobar as a password. The -t option will use
a maximum of four threads to avoid congestion and massive resources usage. This
example will fail as the password is incorrect:

hydra -l overdrive -p 12345 ssh://localhost:22 -t 4

40

Hydra v8.2-dev (c) 2014 by van Hauser/THC - Please do not use in
military or secret service organizations, or for illegal
purposes.

Hydra (http://www.thc.org/thc-hydra) starting at 2015-03-08
20:31:30

[WARNING] Restorefile (./hydra.restore) from a previous session
found, to prevent overwriting, you have 10 seconds to abort...

[DATA] max 1 task per 1 server, overall 64 tasks, 1 login try
(l:1/p:1), ~0 tries per task

[DATA] attacking service ssh on port 22
1 of 1 target completed, 0 valid passwords found
Hydra (http://www.thc.org/thc-hydra) finished at 2015-03-08

20:31:42

The same example but performing a successful attack would be:

hydra -l overdrive -p foobar ssh://localhost:22 -t 4
Hydra v8.2-dev (c) 2014 by van Hauser/THC - Please do not use in

military or secret service organizations, or for illegal
purposes.

Hydra (http://www.thc.org/thc-hydra) starting at 2015-03-08
20:37:17

[DATA] max 1 task per 1 server, overall 64 tasks, 1 login try
(l:1/p:1), ~0 tries per task

[DATA] attacking service ssh on port 22
[22][ssh] host: localhost login: overdrive password: foobar
1 of 1 target successfully completed, 1 valid password found
Hydra (http://www.thc.org/thc-hydra) finished at 2015-03-08

20:37:17

The tool also allows passing a list of logins and passwords from a �le by using the
options -L for logins and -P for passwords. A full set of options would be described if
no parameter is passed to the binary:

hydra
Hydra v8.2-dev (c) 2014 by van Hauser/THC - Please do not use in

military or secret service organizations, or for illegal
purposes.

Syntax: hydra [[[-l LOGIN|-L FILE] [-p PASS|-P FILE]] | [-C
FILE]] [-e nsr] [-o FILE] [-t TASKS] [-M FILE [-T TASKS]] [-w
TIME] [-W TIME] [-f] [-s PORT] [-x MIN:MAX:CHARSET]
[-SuvVd46] [service://server[:PORT][/OPT]]

Options:
-l LOGIN or -L FILE login with LOGIN name, or load several

logins from FILE
-p PASS or -P FILE try password PASS, or load several passwords

from FILE
-C FILE colon separated "login:pass" format, instead of -L/-P

options

41

-M FILE list of servers to attack, one entry per line, ’:’ to
specify port

-t TASKS run TASKS number of connects in parallel (per host,
default: 16)

-U service module usage details
-h more command line options (COMPLETE HELP)
server the target: DNS, IP or 192.168.0.0/24 (this OR the -M

option)
service the service to crack (see below for supported protocols)
OPT some service modules support additional input (-U for

module help)

Supported services: asterisk cisco cisco-enable cvs ftp ftps
http[s]-{head|get} http[s]-{get|post}-form http-proxy
http-proxy-urlenum icq imap[s] irc ldap2[s]
ldap3[-{cram|digest}md5][s] mssql mysql(v4) nntp
oracle-listener oracle-sid pcanywhere pcnfs pop3[s] rdp redis
rexec rlogin rsh s7-300 sip smb smtp[s] smtp-enum snmp socks5
ssh sshkey teamspeak telnet[s] vmauthd vnc xmpp

Hydra is a tool to guess/crack valid login/password pairs.
Licensed under AGPL

v3.0. The newest version is always available at
http://www.thc.org/thc-hydra

Don’t use in military or secret service organizations, or for
illegal purposes.

Example: hydra -l user -P passlist.txt ftp://192.168.0.1

Hydra works really well for user account service attacks. Moreover, this is not
enough to verify the services are secured. Veri�cation of the services by using advanced
bu�ers over�ows, wrong con�gurations or DoS attacks is ful�ll by Nessus.

4.3.3 Nessus

Nessus is a vulnerability scanner developed by Tenable Network Security. Nessus allows
scans for the following types of vulnerabilities: vulnerabilities that allow a remote
hacker to control or access sensitive data on a system, miscon�gurations, default or
common non-strength passwords, black or absent passwords for accounts, DoS attacks
against TCP/IP suite, and Payment Card Industry Data Security Standard (PCI DSS)
audits.

There are di�erent Nessus products from Tenable.

� Nessus®
� Nessus Enterprise
� Nessus Enterprise Cloud
� Nessus Auditor Bundles
� Nessus Home

42

The Security Center is a comprehensive vulnerability, threat, and compliance man-
agement platform that alleviates the arduous and time-consuming tasks of security
forensic analysis, complex threat mitigation, and compliance management. It discovers
assets in the environment by monitoring them. Security Center combines vulnerability
scanning, network sni�ng, and event log correction into a single platform.

The Nessus product platform provides the Passive Vulnerability Scanner (PVS),
which identi�es hosts and services as they connect to the network and monitors the
network continuously for vulnerabilities.

Log Correlation Engine (LCE) is a component of the Security Center that provides
incident response and forensics functionality with SIEM technology that aggregates,
normalizes, correlates, and analyses event log data from raw network tra�c, IDS,
system, application logs, and user activity. Figure 20 shows the di�erent entities in
the Nessus product platform.

Figure 20: Nessus product platform, (Nessus installation, tenable.com)

Currently, Nessus Enterprise is the licensed software purchased by Ericsson, even
if the purpose would be more suitable for the Nessus Enterprise Cloud product. How-
ever, each of these component groups provides advanced malware protection, mobile
security and compliance, patch auditing, con�guration auditing, critical infrastructure
protection, and cloud security and compliance. Figure 21 illustrates the di�erent
components and software available in Nessus.

43

Figure 21: Nessus components in an integrated platform, (Nessus installation, ten-
able.com)

Nessus uses unique sensors, whereby it can run active scans or passive network
and log sensors gathering system data, enabling real-time analytics. The platform
incorporates an advanced analytics engine that integrates sensor data with threat
intelligence with Security Information and Event Management (SIEM). Figure 22
illustrates the Nessus unique underlying architecture.

Figure 22: Nessus unique underlying architecture, (Nessus Security Center Architec-
ture, tenable.com)

In further detail, Nessus uni�ed security monitors using internal databases for
rules, policies, targets, and con�gurations for di�erent components, and some Graph-
ical User Interface (GUI) are provided to interact with those components. Inter-
nally, Nessus communicates by using encrypted data over XML-Remote Procedure
Call (XML-RPC). Figure 23 illustrates the Nessus uni�ed security-monitoring archi-
tecture.

44

Figure 23: Nessus uni�ed security-monitoring architecture, (Nessus Security Center
Architecture, tenable.com)

Nessus basically operates with two types of users after installation: administrator
and normal users. Administrators can create users with di�erent capabilities and users
just operate the scans.

In Nessus, it is possible to create policies that consist of con�guration options re-
lated to performing a vulnerability scan. With these policies, it is possible to specify
parameters that control technical aspects such as timeouts, number of hosts, type of
port scanning, and so on. It could also be possible to specify credentials for local
scans such as Windows or Secure Shell (SSH) passwords or keys, and credentials to
authenticate databases, HTTP, FTP, POP, IMAP, or Kerberos authentication. Poli-
cies also de�ne the granularity and plugin-based scan speci�cations, policy checks for
databases, report verbosity, service detection, UNIX compliance checks, among other
things (W03. Several authors. 2015).

In Nessus, there are di�erent kinds of policies:

� Host discovery: This identi�es live hosts and open ports.
� Basic network scan: It is used for scanning internal and external hosts.
� Credentialed patch audit: It logs in to the systems and lists missing software
updates.

45

� Windows malware scan: It searches for malware on Windows systems.
� Heartbleed detection: It remote checks for the biggest Open-source Secure
Sockets Layer (OpenSSL) vulnerability.

� Web application tests: It performs generic web application scans.
� Mobile device scan: It launches scans against Apple Pro�le Manager, Active
Directory Service Interfaces (ADSI), MobileIron, and Mobile Device Manage-
ment (MDM).

� O�ine con�g auditing: It uploads and audits the con�guration �le of a net-
work device.

� Prepare for PCI DSS audits: It prepares a PCI DSS compliance audit.
� Advanced policy: This is for users who want total control for policy con�gu-
rations.

Figure 24 shows di�erent wizards available in Nessus.

Figure 24: Nessus policy wizards, (Nessus installation and con�guration guide, ten-
able.com)

From the advanced policy, it is possible to specify many details. However, one
detail that needs to be highlighted is the plugins option. Nessus allows you to enable
or disable a full set of families or speci�c plugins. Currently, there are more than
60,000 plugins covering local and remote �aws. Figure 25 shows a more advance view
for Nessus policies.

46

Figure 25: Nessus advanced policies: plugins, (Nessus installation and con�guration
guide, tenable.com)

With Nessus, it is also possible to automate scans, scheduling them at a certain
time. These could be launched immediately, on demand (running in the future as a
`scan template'), once at a speci�c time, daily, weekly, monthly, or yearly. Figure 26
shows how Nessus scans are scheduled.

Figure 26: Nessus automating scans, (Nessus installation and con�guration guide,
tenable.com)

After the scan is performed, when browsing the scan results, it is possible to observe
critical, high, medium, or low vulnerabilities, as well as some additional information
per scanned host. From each vulnerability, it is possible to expand the report to
some detailed information, which will provide not only a description, but an output
of an example of the vulnerability as a proof and commands executed, along with the
suggestion or recommendation to �x the vulnerability in the system. Figure 26 gives
an example of a Nessus scan report.

47

Figure 27: Nessus report example, (Nessus installation and con�guration guide, ten-
able.com)

All the reports from Nessus are saved in an encrypted database, as they would
contain con�dential information, vulnerabilities about the systems, and credentials
used to access hosts (W04. Several authors. 2015).

Load tra�c generators have been used for checking the robustness of the solution.
IXIA is a tool which accomplish this.

4.3.4 IXIA

IXIA provides products for testing tra�c across nodes. IXIA products can be divided
into di�erent components:

� IxNetwork: This provides wire-rate tra�c generation with service modelling that
builds realistic, dynamically controllable data-plane tra�c. It supports several
protocols for internet, video, voice, storage, wireless, infrastructure, and encap-
sulation, as well as security. IxNetwork also provides tra�c for published vulner-
abilities, malware, and high-performance Distributed Denial of Service (DDoS)

� IxLoad: This emulates data, voice, and video subscribers and their associated
protocols for ultra-high-performance testing.

� IxVM: This provides a software-based version of a traditional Ixia hardware port
that can be deployed in a virtualized environment.

� IxServer: This will control and communicate the Ixia chassis or IxVM through
IXOS.

� IxClient: This provides a low- and a high-level API to communicate with IxServer.
� IxExplore: This is a standard way to communicate with IxServer.
� IxAutomate: This provides automation for commanding Ixia with IxServer.
� IXOS: This refers to the OS running on Ixia chassis or IxVM.

Figure 28 clari�es how IxNetwork places IxVM in di�erent networks.

48

Figure 28: IxNetwork using IxVM placing them in di�erent networks, (Validation
virtualized asset and environment, ixia.com)

Additional components from Ixia are useful from the security perspective. The
main one is IxLoad-Attack, which addresses the testing of security devices with known
vulnerabilities, DDoS attacks, and IPsec encryption for Virtual Private Network (VPN)
gateways. Authentication mechanisms, including 802.1x and Network Access Con-
trol (NAC) (W05. Several authors. 2014). Figure 29 gives an example of IxNetwork
component in IXIA.

Figure 29: Example of IxNetwork component in IXIA, (IX Network VXLAN emula-
tion, ixia.com)

With Ixia, it is possible to test the performance of the ECS product, but also a
bunch of vulnerabilities across the nodes. With IxVM, it is possible to place the testing
source in di�erent interfaces, nodes, and components (W06. Several authors. 2014).

49

Tra�c analyzers and advanced packet manipulation has been performed to check
some the corner cases. Scapy and Hping tools will cover this area.

4.3.5 Scapy and Hping

Scapy is replacing hping as a command line tool that performs advanced packet ma-
nipulation. It can also handle tasks such as scanning, tracerouting, probing, unit tests,
attacks, and network discovery. This tool can be used for testing the robustness of the
system by manipulating frames, packets, and datagrams for a wide range of protocols.
Most of the important protocols supported are: ARP, DHCP, DNS, IEEE 802.1Q,
ethernet, ICMP, IP, ISAKMP, LLC, NTP, PPP, NetBIOS, RIP, RADIUS, SNAP,
STP, TCP, UDP, or raw sockets (W07. Biondi P. Scapy community. 2014). An IP
packet manipulation using scapy is shown in 30.

Figure 30: IP manipulation packet in scapy, (Scapy documentation, secdev.org)

With scapy, Figure 31 shows the capability to examine and manipulate any �elds
from the di�erent layers, and then send the command through some speci�c interface.

50

Figure 31: IP packet and ethernet frame manipulation and dump, (Scapy documenta-
tion, secdev.org)

Under scapy, it is possible to capture packets in some speci�c interface and load
later on a pcap (packet capture) �le as shown in 32.

Figure 32: Load-captured �le and graphical dump, (Scapy documentation, secdev.org)

Figure 33 shows scapy capability of graphical dumps, either in Post Script (PS)
or Portable Document Format (PDF) extensions.

51

Figure 33: Graphical representation of a packet, (Scapy documentation, secdev.org)

Next section describes some tools used for visualizing the tra�c captured from the
tra�c generated by IXIA, Scapy and Hping.

4.3.6 Tcpdump and Wireshark

Tcpdump and wireshark are other applications useful for capturing packets. Tcpdump
is a command-like tool. It allows the user to display TCP/IP and other packets
being transmitted or received over a network to which the computer is attached (B07.
Chappell L. Combs G. 2012). See Figure 34 for an example of captured tra�c used
with tcpdump.

52

Figure 34: Captured tra�c with tcpdump, (Tcpdump documentation, tcpdump.org)

Wireshark is similar to tcpdump, but it provides a graphical front-end, �lters, and
views that will help as a packet analyser tool as shown in Figure 35.

Figure 35: Wireshark representation data of captured tra�c, (Wireshark documenta-
tion, wireshark.org)

As seen in the above picture, Wireshark represents every packet by an identi�er.
Wireshark includes relevant information such as timestamp, source and destination

53

addresses, protocol, information and visualizes the packet encapsulation and decodes
the frame.

Other tools have been used to complement additional needs executed in the veri�ed
nodes. Next section describes these tools.

4.3.7 Binutils, Coreutils, GNU, and Other Utils

In GNU/Linux systems, several tools that come with the system are extremely power-
ful. The UNIX (and clones) philosophy says to make each program do one thing well,
and that the powerfulness comes from within their relationship.

There are di�erent sets of utils provided in big packages: binutils, coreutils, and
GNU utils mainly. The binutils are a set of programming tools for creating and
managing binary programs, object �les, libraries, pro�le data, and assembly source
code. The coreutils are a package of GNU software containing many of the basic tools,
such as cat, ls, and rm, needed for Unix-like operating systems. It is a combination
of a number of earlier packages, including textutils, shellutils, and �leutils, along with
some other miscellaneous utilities. The GNU utils is a toolchain that contains several
components such as GNU make, GNU compiler collection, GNU binutils, GNU bison,
GNU m4, GNU debugger, and GNU build system (W08. Several authors. 2014; W09.
Several authors. 2014).

Apart from these sets of utils, there are some other utils that would be useful to
verify the status of the system, as well as the security:

� netstat: This shows the network connections, routing tables, interface statistics,
masquerade connections, and multicast memberships.

� socklist or sockstat: These display the list of open sockets.
� lsof : This lists open �les.
� nc: This reads and writes data across the network connections using TCP or
UDP protocol.

� curl: This transfers data from or to a server.
� iptraf : This is the IP network monitoring software.
� iperf : This is the TCP/UDP bandwidth measurement tool.
� iptables: This is an administration tool for IPv4 packet �ltering and Network
Address Translation (NAT).

� strace: This traces system calls and signals.

Figure 36 shows the active connections:

54

Figure 36: Listening to open connections with netstat

Figure 37 illustrates the list current open �les:

Figure 37: List open �les with lsof

Firewall rules are shown in Figure 38:

55

Figure 38: Iptables �rewall rules

System calls can be traced with strace as illustrates Figure 39:

Figure 39: System call trace with strace

All the above binaries and tools used for testing have been included in the tests
cases. Test cases have been implemented within a speci�c test framework.

4.4 Test Frameworks

Several test frameworks can be chosen to use the Testing Tools (section 4.3). After
long discussions within the organization, the cloud security team decided to use the
Robot framework.

56

There were several reasons behind the decision; the main decision is that Robot
framework is Domain-Speci�c Language (DSL), with the bene�t of auto documenta-
tion when writing test cases. Another reason for choosing Robot is that testers and
developers do not need to learn another programming language or deal with debug-
ging in speci�c programming languages such as Java if tests are failing; instead, the
DSL focuses completely on the task and domain of the intended test, and not in the
paradigm of the programming languages for general purposes. The last bene�t from
this framework is that as it is free software (Apache License), it has an extended built-
in and full set of external libraries that will cover almost all the requirements as a
testing tool, but it will also be possible, if needed, to extend these existing libraries or
add new ones by using Python programming language.

The Robot framework will be used not only for End-to-End (E2E) testing, but
also for component test, acceptance testing, and Acceptance Test-Driven Development
(ATDD). This will allow developers, testers, PO, managers, and CI members to
understand the test cases (W10. Several authors. 2014).

4.4.1 Robot Framework Installation and Con�guration

The Robot framework is the test framework chosen for security testing. There are
several advantages and not many drawbacks.

For installing the Robot framework, a pip command line tool is used:

pip install robotframework

Before each test is run, the Robot framework will be upgraded, also using the pip
command line tool:

pip install --upgrade robotframework

To verify the installation, the following command is required:

pybot --version
Robot Framework 2.8.5 (Python 2.7.3 on apocalipsis)

The standard library provides functions to test the most common scenarios:

� Builtin: This provides a set of frequently needed generic keywords. It is always
automatically available without imports.

� Dialogs: The dialogs provide means for pausing the test execution and getting
input from users.

� Collections: This provides a set of keywords for handling Python lists and
dictionaries.

� OperatingSystem: This enables various operating system-related tasks to be
performed in the system where the Robot framework is running.

� Remote: This is a special library acting as a proxy between the Robot frame-
work and test libraries elsewhere.

� Screenshot: This provides keywords to capture screenshots of the desktop.

57

� String: This is used for generating, modifying, and verifying strings.
� Telnet: This makes it possible to connect to Telnet servers and execute com-
mands on the opened connections.

� XML: This is used for generating, modifying, and verifying XML �les.
� Process: This is used for running processes in the system.
� DateTime: This is used for date and time conversions.

Most of the required functions are included in the built-in libraries. The use of
extensions which provide additional libraries and functions is required in some cases.

4.4.2 Extensions

There are di�erent extensions that can be added to the standard functionality to test
more speci�c, but still important, scenarios.

� Archive: Archive library Library for handling zip- and tar-archives.
� Database: for database testing.
� Di� : di� to �les together.
� robotframework-faker: for Faker, a fake test data generator.
� FTP: for testing and using the FTP server with the Robot framework.
� HTTP livetest: for HTTP-level testing using the livetest tool internally.
� HTTP requests: for HTTP-level testing using Request internally.
� MongoDB: for interacting with MongoDB from the Robot framework using
pymongo.

� Rammbock Generic network protocol test: an easy way to specify network
packets and inspect the results of sent and received packets.

� SeleniumLibrary: web testing library that uses popular Selenium tool inter-
nally.

� Selenium2Library: web testing library that uses Selenium 2. For most parts,
drop-in-replacement for old SeleniumLibrary.

� SSHLibrary: enables executing commands on remote machines over an SSH
connection. Also supports transferring �les using SFTP.

There are additional extensions for the Robot framework; however, those are not
relevant for the goal of this project.

For installing any extension, it is also possible use a pip command line tool. In this
example, the SSHLibrary is installed:

pip install robotframework-sshlibrary

Set up the test framework, some guidelines have been created to write test cases
in an standard manner.

58

4.4.3 Guidelines to Write Test Cases

Before writing test cases for ECS, some rules and good practices have been described:

1. In order to write test cases, di�erent sections need to be created. These include
'Settings' and 'Test Cases'.

2. Hardcoded values must be avoided inside the test cases and should be moved to
con�guration.robot, where variables are allocated.

3. Avoid TABs (they are evil) and use spaces to separate keywords and parameters.
Four spaces are �ne, but they can also be aligned with previous lines.

4. Semantics is important. Test cases must be readable in a high-level domain.
5. Speci�c parameters for commands should not be included inside the test cases.

Please use keywords instead.

Figure 40 gives an example of a test case using the Nmap extension:

Figure 40: Example of basic test case using Nmap extension

Next section describes how to run test cases with Robot.

4.4.4 Running Test Cases with Robot

Normally, a test would be run with the pybot command line tool:

pybot file.robot

This will give an output with the current execution and a report in di�erent formats
(see Figure 41):

Figure 41: Example of executing test cases with pybot

Test cases for the IdAM solution have been described in ?? (??).

59

4.4.5 Writing Extensions for Robot Framework

In Robot, extensions can be written in case current features are not su�cient. However,
most of the cases could be covered by calling third-party binaries by invoking them
using Run Process and Execute Command from the Process library and the SSH
library, respectively.

Internally at Ericsson, a security team has been developed in addition to the 'Nmap'
and 'Hydra' libraries to cover needs from the ECS project:

� The Nmap library performs testing actions with regard to network port scanning
and services.

� The Hydra library performs testing actions with regard to dictionary attacks for
di�erent protocol families.

Before delivering a product to the customer, it is not enough that a set of passed
tests for a given functionality. Hardening actions (which are explained in the next
chapter) are critical in that sense.

60

5. Hardening

Every software project which requires a base operating system and third party prod-
ucts requires hardening. Hardening is the process of reduce the surface of security
vulnerabilities by remove unnecessary default functions and users, changing default
passwords and remove or disable software services.

This is the case for ECS, which uses OpenStack and GNU/Linux. Default users
must be disabled and default credentials must be randomized. Services should run
with speci�c separate own users to restrict capabilities.

5.1 Entropy for Random Generation

The �rst problem appears in the randomization of the passwords in a virtualized
environment. Entropy is insu�cient and prediction of the pseudo randomized values
increases signi�cantly.

A signi�cant part of the global state of the microprocessor is not architecturally
visible through the instruction set (caches, branch predictors, and bu�ers). HArdware
Volatile Entropy Gathering and Expansion (HAVEGE) leverages the uncertainty in-
troduced in the internal states of the processor-external events.

First, the hardware clock cycle counter of the processor can be used to gather part
of the uncertainty introduced by OS interruptions in the internal state of the processor.

As the HAVEG algorithm relies on the hardware clock cycle counter and combines
with simple pseudo random number generation with a very high throughput (more
than 100 Mbits/s of unpredictable random numbers), relying the security on its in-
ternal hardware state, not being accessible even for the user running the generator
(Seznec A. and Sendrier N., 2002, HArdware Volatile Entropy Gathering and Expan-
sion: Generating unpredictable random number at user level; A05. Seznec N. Sendrier
N. 2012).

HAVEGE will add entropy directly to /dev/random, where the processes fetch
entropy from the Linux kernel.

In order to install HAVEGE daemon (haveged) in a virtualized environment, the
vim install script should be modi�ed by adding: apt-get -y install haveged apg

The Apg tool was used to retrieve the random strings from /dev/random as a
source.

A generate password script is also provided in case a new set of credentials needs to

61

be generated for the given services from the YAML format. See Haveged integration
implementation in the Appendix Implementation; Haveged implementation.

5.2 Con�guration Manager

A second problem appeared in the deployment across nodes of these generated values
in case they need to share credentials for accessing remote services. A con�guration
manager was needed.

Con�guration managers focused on this particular problem. They are designed to
manage the installation, con�guration, deployment, and maintenance of the service,
as well as provide a full set of dependencies and triggers that keep the services up to
date and act depending on the events that occurred.

5.3 Puppet Deployment

For con�guration management, Puppet was selected for the ECS project.

In Puppet, the user describes system resources and their state, using Puppet declar-
ative language or a Ruby Domain-Speci�c Language (DSL). This information is stored
in �les called puppet manifests. Puppet discovers the system information and com-
piles the puppet manifests into a system-speci�c catalogue containing resources and
resource dependencies, which are applied against the target systems (W13. Several
authors. 2015).

Custom puppet manifests describes the system con�guration. These manifests
apply to the system that needs to be con�gured by using agents and specifying in a
high level of abstraction what con�guration applies to each node as shown in Figure
42.

Each puppet module uses the generate-passwords, password-for-service scripts in
order to access the passwords.yaml �le. The next section describes a list of puppet
modules implemented.

5.4 Puppet Modules

MySQL, OVFT, heat, and RabbitMQ puppet modules have been created to provide
con�gurations for di�erent services. In particular for the database which will store the
orchestration of a managed cloud.

OVFT

OVFT is a template format that follows the OVF standards for packaging and
distributing software to be run in virtual machines. This standard describes a secure,
open, portable, e�cient, and extensible format without being tied to any particular
hypervisor or processor architecture.

See OVFT implementation in the Appendix Implementation; OVFT implementa-

62

Figure 42: Design of con�guration manager applied to the ECS project

tion.

Heat

Heat is a software suite that de�nes functions to simplify and automate processes
in order to improve service quality.

See Heat implementation in the Appendix Implementation; Heat implementation.

RabbitMQ

RabbitMQ is an advance message queuing protocol for clustering and failover sce-
narios.

See RabbitMQ implementation in the Appendix Implementation; RabbitMQ im-
plementation.

MySQL

MySQL is an open-source relational database management system that provides
high-pro�le and large-scale database services.

See MySQL integration implementation in the Appendix Implementation; MySQL
implementation.

Apply-conf

Apply con�guration script is provided to run the installation and con�guration
deployment.

Password for services script is also provided. This will provide a simple but clean
mechanism of password retrieval.

63

See apply-conf implementation in the Appendix Implementation; Apply-conf im-
plementation.

Next chapter describes how centralized IdAM has been con�gured and integrated
to the ECS solution.

64

6. Centralized IdAM Solution

Every single node in ECS needs to be accessed for di�erent reasons. Several adminis-
trators requires access to the cloud. In order to provide a secure way of authentication,
and distinguish which administrator accessed which node, Lightweight Directory Ac-
cess Protocol (LDAP) has been integrated in the solution.

The LDAP is an internet protocol for accessing distributed directory services that
act in accordance with X.500 data and service models.

The general model adopted by LDAP is one of the clients performing protocol
operations against servers. A client transmits a protocol request describing the oper-
ation to be performed to a server, while the server is then responsible for performing
the necessary operations in the directory. The server returns a response containing
appropriate data to the requesting client.

Protocol operations are generally independent of one another. Each operation is
processed as an atomic action, leaving the directory in a consistent state.

Requests and responses for multiple operations generally may be exchanged be-
tween a client and server in any order. But if required, synchronous behaviour may
be controlled by client applications.

The core protocol operations are de�ned to a subset of the X.500: Directory Ab-
stract Service (X.511).

Infrastructure administrators are stored in LDAP, while OpenStack users are stored
in MariaDB and managed by a Keystone service.

6.1 Multi-Master Architecture

Each controller node has an LDAP instance installed. OpenLDAP has been used for
implementation. The initial LDAP content is provisioned within the primary controller
and replicated over to other instances. Next Figure gives a general idea about the
IdAM architecture.

65

Figure 43: IdAM architectural overview

As seen in �gure 43 and LDAP server is running as part of the CEE solution.
It is used mainly to provide access to the hypervisor, storage and network elements.
LDAP service is the main component of the IdAM solution. An LDAP service is
using Abstract Syntax Notation One (ASN.1) as a description language, which it is a
standard way to describe attributes through LDAP search.

6.2 IdAM Implementation

High Availability (HA) for LDAP has been implemented with the use of multi-master
replication between multiple LDAP instances and HA proxy con�guration.

HA proxy has been con�gured with the primary controller as the primary node and
other controllers as backups. Stickiness has been implemented based on the destination
to avoid �ip-�opping in case of the primary instance being cyclic.

OpenLDAP multi-master replication is used to keep all LDAP instances in sync.
Each LDAP instance acts as a provider to other instances.

The Remote Authentication Dial In User Service (RADIUS) server is implemented
by deploying and con�guring a FreeRADIUS server with a puppet on each controller.

The RADIUS server does not currently have any con�gurable parameters, except
the client network de�nitions to control where the access to radius server is allowed.

The LDAP client has been implemented by deploying and con�guring the GNU/Linux
Pluggable Authentication Modules (PAM) client and nscd daemon with LDAP con�g-
uration. Extreme switches may authenticate using the RADIUS towards the accounts

66

created in LDAP with RADIUS authentication enabled. Additional details about im-
plementation are not part of this thesis, as these have been covered by other developers.

See tests implementation for Identity and Access Management (IdAM) in the Ap-
pendix Implementation; IdAM tests implementation.

6.3 Testing Hardcoded Credentials

Apart from tests for IdAM, some other tests are needed to verify the default credentials
for already existing accounts. This will verify that default passwords and accounts are
disabled or randomized at deployment time.

See tests implementation for hardening in the Appendix Implementation; Harden-
ing tests implementation.

67

7. Results

The previous design and implementation was veri�ed by looking to the list and status of
the Puppet Modules. This is the veri�cation after migrating the services to the puppet
modules in VIM. Please note that passwords shown are not used in any deployments.

The idea of the Puppet modules here is to verify that all the functionality can
be automatically managed. Each module represents the handler for a speci�c service.
Administratively actions can be applied for a given service.

Below is shown a list of puppet modules executed in VIM. For listing puppet
modules installed in a system puppet module list retrieves that information:

root@vim:~# puppet module list
/etc/puppet/modules
+-- vim-heat (v0.1.0)
+-- vim-ovft (v0.1.0)
+-- vim-rabbitmq (v0.1.0)
+-- vim-role (v0.1.0)
+-- nanliu-staging (v1.0.3)
+-- puppetlabs-mysql (v3.2.0)
+-- puppetlabs-stdlib (v4.5.1)

Each module veri�cation details are shown in detail in the Appendix Implementa-
tion; Veri�cation of the Puppet Modules

More results are shown by running tests which are executed as part of the CI
process. Each test runs a set of instructions which veri�es the functionality and security
of the di�erent services managed by Puppet. All tests have been successfully run, which
means that VIC and compute nodes are working properly and securely. Figure 44
shows the results of the Robot test cases executed in CI.

68

Figure 44: Robot results for ECS running in CI

The �nal robot report from the above screenshot displayed in green, represents
a successful run. Each line of the report is a set of test cases. In total 52 test
cases in less than 16 minutes have been run. Automated tests were covering the
areas of: auditability, IdAM, networking, performance management, health check,
hardening, alarm handling and monitoring of the system. More complex tests from
the implementation point of view have been performed manually.

Automated test cases have been performed iteratively for each change merged into
the ECS software. Complex test cases were executed before releases. Each release was
representing the maturity of this project. Results presented in this Master's thesis
were representing the maturity of an ECS product release.

69

Conclusions

A lot of research was carried out in order to provide security for ECS. However, cloud
environments are complex and involve a huge infrastructure of di�erent devices of
virtualized and physical nodes. Di�erent networks are interconnected between them,
with additional deployment of network devices such as �rewalls, routers, and switches;
they can be also virtual or physical. Additional devices and components are added to
provide security, such as TPM and HSM. Some of the nodes are not always present
and could appear at deployment time but some others are in operational mode. A
full set of di�erent users such as cloud administrators, cloud tenants, service users,
and OpenStack services have di�erent roles and would have di�erent privilege levels as
well as partial visibility of the whole CEE. Di�erent systems for authenticating local
and remote users were implemented. Authentication and authorization levels were
deployed for di�erent purposes such as RADIUS, LDAP, and PAM interconnected
with an IdAM solution. Remote storage as well as several DBMS were installed for
di�erent purposes, and all of them need to be available for HA and replication. HA
also applies for other services and users. Remote logs identifying a user or service from
a particular host or node, or a device from a di�erent region are also important in order
to provide auditability. Security must also be provided in order to avoid attacks such
as VLAN hopping and bypassing the hypervisor from a virtualized node. Automatic
upgrades from software, con�guration deployments, and third-party software installed
by tenants are also adding new threats from cloud developers. DoS and DDoS need
to be considered as well.

For all of this, the cloud is an extremely complex world and there are too many
potential vector attacks. This thesis covered only a small portion of security imple-
mented in order to provide security. Still it included after a huge e�ort and discussions
regarding architecting and design. Implementation has been adapted for cloud needs
and tested su�ciently. But this only covers a small part, and even one mistake could
lead hackers to break into Ericsson's cloud, as hackers are always one step ahead. It
will be Ericsson's responsibility to provide a good level of security. The company can-
not blame security experts for �nding bugs and holes that Ericsson was unable to �nd
at the time of development.

70

Bibliography

[1] B01 Kavis, M. (2014). Architecting the cloud: design decisions for cloud com-
puting service models. Wiley.

[2] B02 Bento A. and Aggarwal A. (2012). Cloud Computing Service and Deployment
Models: Layers and Management. IGI Global.

[3] B03 Gordon A. (2015). O�cial (ISC)2 Guide to the CISSP CBK. (ISC)2 Press.

[4] B04 Henderson, C. (2006). Building Scalable Web Sites. Building, scaling, and
optimizing the Next Generation of Web Applications. O'Reilly.

[5] B05 Kaner C. Falk J. Nguyen H. (2006). Testing Computer Software. Wiley.

[6] B06 Fyodor G. (2009). Nmap Network Scanning: The O�cial Nmap Project
Guide to Network Discovery and Security Scanning. Nmap project.

[7] B07 Chappell L. Combs G. (2012). Wireshark Network Analysis (Second Edi-
tion): The O�cial Wireshark Certi�ed Network Analyst Study Guide. Laura
Chappell University.

[8] A01Mell, P. Grance T. (2011). The NIST de�nition of Cloud Computing, Special
Publication 800-145. National Institute of Standards and Technology.

[9] A02 Archer J. Cullinane D. Puhlmann N. Boehme A. Kurtz P. Reavis J. (2011).
Security Guidance for critical areas of focus in Cloud Computing V3.0, Special
Publication 800-145. Cloud Security Alliance. CSA.

[10] A03 Several authors. (2013). Payment Card Industry (PCI) Data Security Stan-
dard: Requirements security assessment procedures v3.0. PCI Security Standards
Council.

[11] A04 Barker E. Barker W. Burr W. Polk W. Smid M. (2012). Computer Security:
Recommendation for Key Management - Part 1: General, Special Publication
800-57. National Institute of Standards and Technology.

[12] A05 Seznec A. Sendrier N. (2012) HArdware Volatile Entropy Gathering and
Expansion: generating unpredictable random numbers at user level. Institut de
Recherche en Informatique et Systemes Aleatoire. IRISA.

[13] W01 Several authors. Website for Cloud Controls Matrix (CCM):
https://cloudsecurityalliance.org/research/ccm/ Accessed in 2015. Cloud
Security Alliance. CSA.

71

[14] W02 Several authors. Targeted attacks and oppor-
tunistic hacks: State of Cloud Security Report:
https://www.alertlogic.com/downloads/AlertLogic_CloudSecurityReport_Spring13.pdf
Accessed in 2015. Alertlogic. Security Compliance Cloud.

[15] W03 Several authors. Tenable Network Security: security center 4.4 architec-
ture http://static.tenable.com/prod_docs/SecurityCenter_4.4_Architecture.pdf
Accessed in 2015. Tenable.

[16] W04 Several authors. Tenable Network Security: Nessus 5.2 HTML5 User Guide:
http://static.tenable.com/documentation/nessus_5.2_HTML5_user_guide.pdf
Accessed in 2015. Tenable.

[17] W05 Several authors. IxVM: Validating Virtualized Assets and Environments:
https://www.ixiacom.com/sites/default/�les/resources/datasheet/ixvm_1.pdf
Accessed in 2014. IXIA Com.

[18] W06 Several authors. IXIA: IxNetwork VXLAN Emulation:
http://www.ixiacom.com/sites/default/�les/resources/datasheet/ixnetwork_vxlan_emulation.pdf
Accessed in 2014. IXIA Com.

[19] W07 Biondi P. Scapy community. O�cial Scapy website: Scapy v2.1.1-dev doc-
umentation. http://www.secdev.org/projects/scapy/doc/usage.html Accessed in
2014. Secdev.org.

[20] W08 Several authors. O�cial GNU website: GNU Core utils.
https://www.gnu.org/software/coreutils/manual/coreutils.html Accessed in
2014. Free Software Foundation (FSF).

[21] W09 Several authors. O�cial GNU website: GNU Bin utils.
https://sourceware.org/binutils/docs-2.25/binutils/index.html Accessed in
2014. Free Software Foundation (FSF).

[22] W10 Several authors. O�cial Robot framework website: User guide.
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
Accessed in 2014. Nokia Solutions and Networks.

[23] W11 Several authors. O�cial Mirantis website: Fuel: User guide.
http://docs.mirantis.com/openstack/fuel/fuel-6.0/pdf/Mirantis-OpenStack-
6.0-UserGuide.pdf Accessed in 2015. Mirantis Inc.

[24] W12 Several authors. O�cial OpenStack website: documentation.
http://docs.openstack.org/ Accessed in 2014. OpenStack powered by Rackspace
Cloud Computing.

[25] W13 Several authors. O�cial Puppetlabs website: Puppet documentation:
https://docs.puppetlabs.com/ Accessed in 2015. Puppet Labs.

[26] W14 Ericsson copyright. Ericsson Cloud system Portfolio:
http://www.ericsson.com/ourportfolio/products/cloud-system

[27] W15 Sverdlik Y. (2015) Announce and news about Ericsson Cloud System tech-
nologies. http://www.datacenterknowledge.com/archives/2015/03/03/ericsson-
cloud-system-to-use-abb-data-center-management/ Accessed in 2015. Datacen-
terknowledge journal

Appendices

Conventions

This thesis has been written entirely using free tools:

� LaTEXand TEXLive document markup language for professional quality docu-
ment processing.

� AUCTeX v11.87 for writing and formating TeX �les in GNU Emacs.
� PdfTex 3.14 with the following dependencies has been used to generate this pdf:
libpng 1.6.13, zlib 1.2.8, poppler 0.26.5 and kpathsea 6.2.1.

� GNU Emacs v24.3.50.1 environment as an editor and an Integrated Development
Environment (IDE).

� GNU Free Fonts has been used for the fonts.
� GNU Free Documentation License (GDFL) v1.3 (GNU Free Documentation Li-
cense) has been used to licensing this report.

� GNU Gimp 2.8.14 has been used for image manipulation program.
� Xwd 1.0.6 has been used for dumping images of an X window, making screen-
shots.

The systems involved in the thesis that are included in the document are using the
following technologies:

� GNU/Linux v3.x kernel are the systems used in the thesis.
� GNU bash version 4.2.37.

The following conventions has been used in this thesis:

� Regular content and explanations uses classic (OT1) font encoded computer
modern roman, medium weight, normal shape, 12pt font.

� Literal quoted text uses classic (OT1) font encoded computer modern roman,
medium weight, italic shape, 12pt font.

� Margings for the document are: text width used is 390 pt. Odd side margin is
39 pt. Even side margin is 40 pt. Top margin is 17 pt.

� Command line examples uses teletype family, courier, �xed font, 12pt font.

Harvard derived citation reference system has been used for referencing.

� Quoted text: "Quoted text in italic". Full name of the author.
� Referenced text from a book: (Reference ID, Author(s), Year).

� Referenced text from an article: (Reference ID, Author(s), Year).
� Referenced text from a website: (Reference ID, Author(s), Year).
� Referenced image from a book: (Image title, Book title, p. page number).
� Referenced image from an article or website: (Image title, Article or website
owner).

� Referenced internal Ericsson image or own image: (Image title).
� Articles will use reference ID as AXX format.
� Books will use reference ID as BXX format.
� Website will use reference ID as WXX format.
� Referenced texts will be detailed in Bibliography.
� Referenced Images will be detailed in List of Figures.
� Referenced tables will be detailed in List of Tables.

Implementation

Haveged

install.sh:

Install haveged and apg tool
apt-get -y install haveged
apt-get -y install apg
Configure haveged in boot time
chkconfig --add haveged

generate-passwords:

#!/usr/bin/env python

import argparse
import logging

import rand_passwds

class CliParser:

def parse(self):
description = ’Generate passwords for services in ’\

’{}’.format(rand_passwds.PASSWD_FILE)
parser = argparse.ArgumentParser(description=description)

parser.add_argument(’-d’, ’--debug’, action=’store_true’,
default=False, dest=’debug’,
help=’print extra information’)

parser.add_argument(’passwd_file’, action=’store’,
nargs=’?’,

default=rand_passwds.PASSWD_FILE,
help=’input YAML password file’)

parser.add_argument(’-s’, ’--stdout’, action=’store_true’,
default=False, dest=’stdout’,
help=’do not edit file, print to stdout’)

parser.add_argument(’-q’, ’--quiet’, action=’store_true’,
default=False, dest=’quiet’,
help=’print only errors’)

args = parser.parse_args()

if args.debug:
logging.getLogger().setLevel(logging.DEBUG)
logging.debug(’Setting log level to verbose’)

if args.quiet:
logging.getLogger().setLevel(logging.ERROR)

return args

def main():

rand_passwds.configure_logging()

p = CliParser()
args = p.parse()

passwords = rand_passwds.HieraYamlPasswordFile()
passwords.update()

if args.stdout:
passwords.write_to_stdout()

else:
passwords.write_to_file(args.passwd_file)
logging.info(’Passwords written to

{}’.format(args.passwd_file))

if __name__ == ’__main__’:
main()

OVFT

init.pp:

== Class: ovft
#
Class ovft.
#
=== Copyright
#
Copyright 2014 Custom modified.
#
class ovft (
$db_host = $ovft::params::db_host,
$db_name = $ovft::params::db_name,
$db_user = $ovft::params::db_user,
$db_pass = $ovft::params::db_pass,

$auth_key = $ovft::params::auth_key,

$rabbit_host = $ovft::params::rabbit_host,
$rabbit_pass = $ovft::params::rabbit_pass,

$keystone_admin_user = $ovft::params::keystone_admin_user,

$keystone_admin_pass = $ovft::params::keystone_admin_pass,
$keystone_admin_tenant = $ovft::params::keystone_admin_tenant,

$config_directory = $ovft::params::config_directory,

$engine_config_file = $ovft::params::engine_config_file,
$engine_config_template = $ovft::params::engine_config_template,

$api_config_file = $ovft::params::api_config_file,
$api_config_source = $ovft::params::api_config_source,

$policy_config_file = $ovft::params::policy_config_file,
$policy_config_source = $ovft::params::policy_config_source,

$cache_directory = $ovft::params::cache_directory,

$db_sync_command = $ovft::params::db_sync_command,

$service_name = $ovft::params::service_name,
$service_ensure = $ovft::params::service_ensure,
$service_enable = $ovft::params::service_enable,

$package_name = $ovft::params::package_name,
$package_ensure = $ovft::params::package_ensure,

) inherits ovft::params {
if $db_user == undef {
fail(’The parameter $db_user is undefined’)

}

if $db_pass == undef {
fail(’The parameter $db_pass is undefined’)

}

if $auth_key == undef {
fail(’The parameter $auth_key is undefined’)

}

if $rabbit_pass == undef {
fail(’The parameter $rabbit_pass is undefined’)

}

if $keystone_admin_pass == undef {
fail(’The parameter $keystone_admin_pass is undefined’)

}

contain ’ovft::install’
contain ’ovft::config’
contain ’ovft::service’

Class[’::ovft::install’] ->
Class[’::ovft::config’] ~>
Class[’::ovft::service’]

}

con�g.pp:

class ovft::config inherits ovft {
file { $config_directory:
ensure => directory,
owner => ’ovft_owner_password’,
group => ’ovft_group’,
mode => hidden_permissions_in_octal,

}

file { $engine_config_file:
ensure => file,
owner => ’ovft_owner’,
group => ’ovft_group’,
mode => ’hidden_permissions_in_octal’,
content => template($engine_config_template),

}

file { $api_config_file:
ensure => file,
owner => ’ovft_owner’,
group => ’ovft_group’,
mode => ’hidden_permissions_in_octal’,
source => $api_config_source,

}

file { $policy_config_file:
ensure => file,
owner => ’ovft_owner’,
group => ’ovft_group’,
mode => ’hidden_permissions_in_octal’,
source => $policy_config_source,

}

exec { $db_sync_command:
path => ’/bin:/sbin:/usr/bin:/usr/sbin’,
refreshonly => true,

}

File[$config_directory] ->
File[$engine_config_file, $api_config_file,

$policy_config_file] ~>
Exec[$db_sync_command]

}

params.pp:

class ovft::params {
$db_host = ’hidden_host’
$db_name = ’ovft_dbname’
$db_user = undef
$db_pass = undef

$auth_key = undef

$rabbit_host = ’hidden_host’
$rabbit_pass = undef

$keystone_admin_user = ’keystone_admin’
$keystone_admin_pass = undef
$keystone_admin_tenant = ’keystone_admin_tenant’

$config_directory = ’/etc/ovft’

$engine_config_file = "$config_directory/ovft.conf"
$engine_config_template = ’ovft/ovft.conf.erb’

$api_config_file = "$config_directory/api-paste.ini"
$api_config_source = ’puppet:///modules/ovft/api-paste.ini’

$policy_config_file = "$config_directory/policy.json"
$policy_config_source = ’puppet:///modules/ovft/policy.json’

$cache_directory = ’/var/cache/ovft’

$db_sync_command = ’ovft-manage db_sync’

$service_ensure = ’running’
$service_enable = true
$service_name = [’ovft-api’, ’ovft-engine’]

$package_name = ’python-ovft’
$package_ensure = ’latest’

}

service.pp:

class ovft::service inherits ovft {
if ! ($service_ensure in [’running’, ’stopped’]) {

fail(’service_ensure parameter must be running or stopped’)
}

service { $service_name:
ensure => $service_ensure,
enable => $service_enable,
hasrestart => true,

}
}

Module�le:

name ’vim-ovft’
version ’0.1.0’
author ’vim’
license ’Custom modified’
summary ’OVFT puppet module’

Add dependencies, if any:
dependency ’username/name’, ’>= 1.2.0’

metadata.json:

{
"source": "UNKNOWN",
"version": "0.1.0",
"author": "vim",
"project_page": "UNKNOWN",
"dependencies": [

],
"checksums": {
},
"description": "OVFT puppet module",
"summary": "OVFT puppet module",
"license": "Custom modified",
"name": "vim-ovft",
"types": [

]
}

ovft.conf.erb:

#
This file is managed by Puppet, please do not make any manual

changes
#

[database]
connection = mysql://<%= @db_user %>:<%= @db_pass %>@<%= @db_host

%>/<%= @db_name %>?charset=utf8

[DEFAULT]
network_vlan_ranges = default:200:4000
rabbit_hosts = <%= @rabbit_host %>
rabbit_password = <%= @rabbit_pass %>
rpc_backend = ovft.openstack.common.rpc.impl_kombu
auth_encryption_key = <%= @auth_key %>

[keystone_authtoken]
signing_dir = /var/cache/ovft
admin_password = <%= @keystone_admin_pass %>
admin_user = <%= @keystone_admin_user %>
admin_tenant_name = <%= @keystone_admin_tenant %>
auth_uri = http://vic-pub-api:5000/v2.0
auth_protocol = http
auth_port = 5000
auth_host = vic-pub-api

[ec2authtoken]
auth_uri = http://vic-pub-api:5000/v2.0

[ovft_api]
bind_port = 8888

Heat

init.pp:

== Class: heat
#
Class heat.
#
=== Copyright
#
Copyright 2014 Custom modified.
#
class heat (
$db_host = $heat::params::db_host,
$db_name = $heat::params::db_name,
$db_user = $heat::params::db_user,
$db_pass = $heat::params::db_pass,

$auth_key = $heat::params::auth_key,

$rabbit_hosts = $heat::params::rabbit_hosts,
$rabbit_pass = $heat::params::rabbit_pass,

$keystone_admin_user = $heat::params::keystone_admin_user,
$keystone_admin_pass = $heat::params::keystone_admin_pass,
$keystone_admin_tenant = $heat::params::keystone_admin_tenant,

$config_directory = $heat::params::config_directory,

$engine_config_file = $heat::params::engine_config_file,
$engine_config_template = $heat::params::engine_config_template,

$cache_directory = $heat::params::cache_directory,

$db_sync_command = $heat::params::db_sync_command,

$service_name = $heat::params::service_name,
$service_ensure = $heat::params::service_ensure,

) inherits heat::params {
if $db_user == undef {
fail(’The parameter $db_user is undefined’)

}

if $db_pass == undef {
fail(’The parameter $db_pass is undefined’)

}

if $auth_key == undef {
fail(’The parameter $auth_key is undefined’)

}

if $rabbit_pass == undef {
fail(’The parameter $rabbit_pass is undefined’)

}

if $keystone_admin_pass == undef {
fail(’The parameter $keystone_admin_pass is undefined’)

}

contain ’heat::install’
contain ’heat::config’
contain ’heat::service’

Class[’::heat::install’] ->
Class[’::heat::config’] ~>
Class[’::heat::service’]

}

con�g.pp:

class heat::config inherits heat {

file { $engine_config_file:
ensure => file,
owner => ’heat_ownwer’,
group => ’heat_group’,
mode => ’hidden_permissions_in_octal’,
content => template($engine_config_template),

}

exec { $db_sync_command:
path => ’/bin:/sbin:/usr/bin:usr/sbin’,
refreshonly => true,

}

File[$engine_config_file] ~>
Exec[$db_sync_command]

}

params.pp:

class heat::params {
$db_host = ’hidden_host’
$db_name = ’heat_dbname’
$db_user = undef
$db_pass = undef

$auth_key = undef

$rabbit_hosts = ’hidden_host’
$rabbit_pass = undef

$keystone_admin_user = ’keystone_admin_user’
$keystone_admin_pass = undef
$keystone_admin_tenant = ’keystone_admin_tenant’

$config_directory = ’/etc/heat’

$engine_config_file = "$config_directory/heat.conf"
$engine_config_template = ’heat/heat.conf.erb’

$cache_directory = ’/var/cache/heat’

$plugin_directory = ’/usr/share/pyshared/heat/plugins’
$plugin_test_directory =

’/usr/share/pyshared/heat/tests/heat_plugins_tests’

$db_sync_command = ’heat-manage db_sync’

$service_ensure = ’running’
$service_enable = true
$service_name = [’heat-api’, ’heat-api-cfn’,

’heat-api-cloudwatch’, ’heat-engine’]

$package_name = [’python-heat’, ’heat-api’, ’heat-engine’,
’heat-api-cfn’, ’heat-api-cloudwatch’, ’heat-common’]

$package_ensure = ’latest’
}

service.pp:

class heat::service inherits heat {
if ! ($service_ensure in [’running’, ’stopped’]) {
fail(’service_ensure parameter must be running or stopped’)

}

service { $service_name:
ensure => $service_ensure,
enable => $service_enable,
hasrestart => true,

}
}

Module�le:

name ’vim-heat’
version ’0.1.0’
author ’vim’
license ’Custom modified’
summary ’Heat puppet module’

Add dependencies, if any:
dependency ’username/name’, ’>= 1.2.0’

metadata.json:

{
"source": "UNKNOWN",
"version": "0.1.0",
"author": "vim",
"project_page": "UNKNOWN",
"dependencies": [

],
"checksums": {
},
"description": "Heat puppet module",
"summary": "Heat puppet module",
"license": "Custom modified",
"name": "vim-heat",
"types": [

]
}

heat.conf.erb:

#
This file is managed by Puppet, please do not make any manual

changes
#

[DEFAULT]
rabbit_hosts = <%= @rabbit_hosts %>
rabbit_password = <%= @rabbit_pass %>
rpc_backend = heat.openstack.common.rpc.impl_kombu
plugin_dirs = /usr/share/pyshared/heat/plugins
auth_encryption_key = <%= @auth_key %>
heat_watch_server_url = http://hidden_host:8003
heat_waitcondition_server_url =

http://hidden_host:8000/v1/waitcondition
heat_metadata_server_url = http://hidden_host:8000

[auth_password]

[clients]

[clients_ceilometer]

[clients_cinder]

[clients_heat]

[clients_keystone]

[clients_neutron]

[clients_nova]

[clients_swift]

[clients_trove]

[database]
connection=mysql://<%= @db_user %>:<%= @db_pass %>@<%= @db_host

%>/<%= @db_name %>?charset=utf8

[ec2authtoken]
auth_uri = http://vic-pub-api:5000/v2.0

[heat_api]
bind_port = 8004

[heat_api_cfn]
bind_port = 8000

[heat_api_cloudwatch]
bind_port = 8003

[keystone_authtoken]
signing_dir = /var/cache/heat
admin_password = <%= @keystone_admin_pass %>
admin_user = <%= @keystone_admin_user %>
admin_tenant_name = <%= @keystone_admin_tenant %>
auth_uri = http://vic-pub-api:5000/v2.0
auth_protocol = http
auth_port = 5000
auth_host = vic-pub-api

[matchmaker_redis]

[matchmaker_ring]

[paste_deploy]

[revision]

[rpc_notifier2]

[ssl]

RabbitMQ

init.pp:

== Class: rabbitmq
#
Class rabbitmq.
#
=== Copyright
#
Copyright 2014 Custom modified.
#
class rabbitmq (
$rabbitmq_host = $rabbitmq::params::rabbitmq_host,
$epmd_host = $rabbitmq::params::epmd_host,
$default_user = $rabbitmq::params::default_user,
$default_pass = $rabbitmq::params::default_pass,

$config_directory = $rabbitmq::params::config_directory,

$engine_config_file = $rabbitmq::params::engine_config_file,
$engine_config_template =

$rabbitmq::params::engine_config_template,

$env_config_file = $rabbitmq::params::env_config_file,
$env_config_template = $rabbitmq::params::env_config_template,

$plugins_config_file = $rabbitmq::params::plugins_config_file,
$plugins_config_source =

$rabbitmq::params::plugins_config_source,

$service_name = $rabbitmq::params::service_name,
$service_ensure = $rabbitmq::params::service_ensure,
$service_enable = $rabbitmq::params::service_enable,

$package_name = $rabbitmq::params::package_name,
$package_ensure = $rabbitmq::params::package_ensure,

$change_passwd_command = "rabbitmqctl change_password
$default_user $default_pass"

) inherits rabbitmq::params {
if $default_pass == undef {
fail(’The parameter $default_pass is undefined’)

}

contain ’rabbitmq::install’
contain ’rabbitmq::config’
contain ’rabbitmq::service’

Class[’::rabbitmq::install’] ->
Class[’::rabbitmq::config’] ~>
Class[’::rabbitmq::service’]

}

con�g.pp:

class rabbitmq::config inherits rabbitmq {
file { $engine_config_file:
ensure => file,
owner => ’rabbitmq_owner’,
group => ’rabbitmq_group’,
mode => ’hidden_permissions_in_octal’,
content => template($engine_config_template),

}

file { $env_config_file:
ensure => file,
owner => ’rabbitmq_owner’,
group => ’rabbitmq_group’,
mode => ’hidden_permissions_in_octal’,
content => template($env_config_template),

}

file { $plugins_config_file:
ensure => file,
owner => ’rabbitmq_owner’,
group => ’rabbitmq_group’,
mode => ’hidden_permissions_in_octal’,
source => $plugins_config_source,

}
}

params.pp:

class rabbitmq::params {
$rabbitmq_host = ’hidden_host’
$epmd_host = ’hidden_host’
$default_user = ’default_rabbitmq_user’
$default_pass = undef

$config_directory = ’/etc/rabbitmq’

$engine_config_file = "$config_directory/rabbitmq.config"
$engine_config_template = "rabbitmq/rabbitmq.config.erb"

$env_config_file = "$config_directory/rabbitmq-env.conf"
$env_config_template = "rabbitmq/rabbitmq-env.conf.erb"

$plugins_config_file = "$config_directory/enabled_plugins"
$plugins_config_source =

’puppet:///modules/rabbitmq/enabled_plugins’

$service_ensure = ’running’
$service_enable = true
$service_name = ’rabbitmq-server’

$package_name = ’rabbitmq-server’
$package_ensure = ’latest’

}

service.pp:

class rabbitmq::service inherits rabbitmq {
if ! ($service_ensure in [’running’, ’stopped’]) {
fail(’service_ensure parameter must be running or stopped’)

}

exec { $change_passwd_command:
path => ’/bin:/sbin:/usr/bin:/usr/sbin’,
refreshonly => true,

}

service { $service_name:
ensure => $service_ensure,
enable => $service_enable,
hasrestart => true,

}

Service[$service_name] ->
Exec[$change_passwd_command]

}

Module�le:

name ’vim-rabbitmq’
version ’0.1.0’
author ’vim’
license ’Custom modified’
summary ’RabbitMQ puppet module’

Add dependencies, if any:
dependency ’username/name’, ’>= 1.2.0’

metadata.json:

{
"source": "UNKNOWN",
"version": "0.1.0",
"author": "vim",
"project_page": "UNKNOWN",
"dependencies": [

],
"checksums": {

},
"description": "RabbitMQ puppet module",
"summary": "RabbitMQ puppet module",
"license": "Custom modified",
"name": "vim-rabbitmq",
"types": [

]

}

enabled_plugins.erb:

[rabbitmq_management].

rabbitmq-env.conf.erb:

export RABBITMQ_NODE_IP_ADDRESS=<%= @rabbitmq_host %>
export RABBITMQ_NODE_PORT=5672
export ERL_EPMD_ADDRESS=<%= @epmd_host %>

rabbitmq.con�g.erb:

[
{rabbit, [
{default_user, <<"<%= @default__user %>">>},
{default_pass, <<"<%= @default_pass %>">>}

]},
{rabbitmq_management,
[{listener, [

{ip, "<%= @rabbitmq_host %>"},
{port, 15671}]}

]},
{kernel, [
{inet_dist_use_interface, {<%= @rabbitmq_host.tr(’.’, ’,’) %>}}

]}
].
% EOF

MySQL

vim.pp:

class role::vim (
$mysql_ovft_user = $role::vim::params::mysql_ovft_user,
$mysql_ovft_pass = $role::vim::params::mysql_ovft_pass,
$mysql_ovft_db_name = $role::vim::params::mysql_ovft_db_name,
$ovft_auth_key = $role::vim::params::ovft_auth_key,

$mysql_heat_user = $role::vim::params::mysql_heat_user,
$mysql_heat_pass = $role::vim::params::mysql_heat_pass,
$mysql_heat_db_name = $role::vim::params::mysql_heat_db_name,
$heat_auth_key = $role::vim::params::heat_auth_key,

$rabbitmq_pass = $role::vim::params::rabbitmq_pass,

$keystone_admin_pass = $role::vim::params::keystone_admin_pass,
) inherits role::vim::params {

if $mysql_ovft_pass == undef {
fail(’The parameter $mysql_ovft_pass is undefined’)

}

if $ovft_auth_key == undef {
fail(’The parameter $ovft_auth_key is undefined’)

}

if $mysql_heat_pass == undef {
fail(’The parameter $mysql_heat_pass is undefined’)

}

if $heat_auth_key == undef {
fail(’The parameter $heat_auth_key is undefined’)

}

if $rabbitmq_pass == undef {
fail(’The parameter $rabbitmq_pass is undefined’)

}

if $keystone_admin_pass == undef {
fail(’The parameter $keystone_admin_pass is undefined’)

}

include ’::mysql::server’

mysql::db { $mysql_ovft_db_name:
user => $mysql_ovft_user,
password => $mysql_ovft_pass,
host => ’hidden_host’,
grant => [’ALL’],

}

mysql::db { $mysql_heat_db_name:
user => $mysql_heat_user,
password => $mysql_heat_pass,
host => ’hidden_host’,
grant => [’ALL’],

}

class { ’::rabbitmq’:
default_pass => $rabbitmq_pass,

}

class { ’::ovft’:
db_user => $mysql_ovft_user,
db_pass => $mysql_ovft_pass,
auth_key => $ovft_auth_key,
rabbit_pass => $rabbitmq_pass,
keystone_admin_pass => $keystone_admin_pass,

}

class { ’::heat’:

db_user => $mysql_heat_user,
db_pass => $mysql_heat_pass,
auth_key => $heat_auth_key,
rabbit_pass => $rabbitmq_pass,
keystone_admin_pass => $keystone_admin_pass,

}

Class[’::rabbitmq’] ->
Class[’::ovft’, ’::heat’]

Class[’::mysql::server’] ->
Mysql::Db[$mysql_ovft_db_name, $mysql_heat_db_name] ->
Class[’::ovft’, ’::heat’]

}

init.pp:

== Class: role
#
Full description of class role here.
#
=== Parameters
#
Document parameters here.
#
[*sample_parameter*]
Explanation of what this parameter affects and what it

defaults to.
e.g. "Specify one or more upstream ntp servers as an array."
#
=== Variables
#
Here you should define a list of variables that this module

would require.
#
[*sample_variable*]
Explanation of how this variable affects the funtion of this

class and if
it has a default. e.g. "The parameter enc_ntp_servers must be

set by the
External Node Classifier as a comma separated list of

hostnames." (Note,
global variables should be avoided in favor of class

parameters as
of Puppet 2.6.)
#
=== Examples
#
class { role:
servers => [’pool.ntp.org’, ’ntp.local.company.com’],
}
#
=== Authors

#
Author Name <author@domain.com>
#
=== Copyright
#
Copyright 2014 Custom modified.
#
class role {

}

params.pp:

class role::vim::params {
$mysql_ovft_user = ’mysql_ovft_user’
$mysql_ovft_pass = undef
$mysql_ovft_db_name = ’ovft_dbname’
$ovft_auth_key = undef

$mysql_heat_user = ’mysql_heat_user’
$mysql_heat_pass = undef
$mysql_heat_db_name = ’heat_dbname’
$heat_auth_key = undef

$rabbitmq_pass = undef

$keystone_admin_pass = undef
}

Module�le:

name ’vim-role’
version ’0.1.0’
source ’UNKNOWN’
author ’vim’
license ’Apache License, Version 2.0’
summary ’UNKNOWN’
description ’UNKNOWN’
project_page ’UNKNOWN’

Add dependencies, if any:
dependency ’username/name’, ’>= 1.2.0’

metadata.json:

{
"project_page": "UNKNOWN",
"types": [

],
"version": "0.1.0",
"license": "Apache License, Version 2.0",

"source": "UNKNOWN",
"author": "vim",
"summary": "UNKNOWN",
"dependencies": [

],
"checksums": {
"spec/spec_helper.rb": "a55d1e6483344f8ec6963fcb2c220372",
"Modulefile": "6a76335a9841605cd7106223c86341b7",
"tests/init.pp": "b9e27e86b26e44ffad77bd2db170e079",
"README": "9e0323e43ee03187d619d09c869aeef7",
"manifests/init.pp": "12643004cb1f59c1b82ed9c704e615cc"

},
"description": "UNKNOWN",
"name": "vim-role"

}

hiera.yaml:

:backends: yaml
:yaml:
:datadir: /etc/puppet/hieradata

:hierarchy:
- passwords
- common

:logger: console

common.yaml:

classes:
role::vim::keystone_admin_pass: keystone_admin_password

site.pp:

include role::vim

Apply-conf

apply-conf:

#!/bin/bash

set -o nounset
set -o errexit

export PATH="/bin:/sbin:/usr/bin:/usr/sbin"

readonly PUPPET_MAIN=’/etc/puppet/manifests/site.pp’

readonly SYSLOG_TAG=’apply-conf/puppet’
readonly SYSLOG_PRIORITY=’local4.info’

rm_terminal_colors() {
sed -r ’s/\x1B\[([0-9]{1,2}(;[0-9]{1,2})?)?[m|K]//g’

}

to_syslog() {
rm_terminal_colors | logger --priority "${SYSLOG_PRIORITY}" \

--tag "${SYSLOG_TAG}"
}

main() {
echo ’>>>’ | to_syslog
puppet apply $@ ${PUPPET_MAIN} 2>&1 | tee >(to_syslog)
echo ’<<<’ | to_syslog

}

main $@

passwords-for-service:

#!/usr/bin/env python

import argparse

import rand_passwds

VALID_SERVICES = rand_passwds.SERVICES.keys()

class CliParser:

def __init__(self):
description = ’Retrieve a password for a given service ’\

’from {}’.format(rand_passwds.PASSWD_FILE)
self.parser =

argparse.ArgumentParser(description=description)

def parse(self):
self.parser.add_argument(’-f’, ’--file’, action=’store’,

default=rand_passwds.PASSWD_FILE,
dest=’passwd_file’,
help=’input YAML password file’)

self.parser.add_argument(’-l’, ’--list’,
action=’store_true’,

default=False, dest=’list’,
help=’lists possible services’)

self.parser.add_argument(’service’, action=’store’,
nargs=’?’,

choices=VALID_SERVICES,
help=’service token’, default=None)

return self.parser.parse_args()

def print_help(self):
self.parser.print_help()

def main():

p = CliParser()
args = p.parse()

if args.list:
print ’\n’.join(VALID_SERVICES)

elif args.service:
passwords =

rand_passwds.HieraYamlPasswordFile(args.passwd_file)
passwords.read()
print passwords.find(args.service)

else:
p.print_help()

if __name__ == ’__main__’:
main()

generate-passwords:

#!/usr/bin/env python

import argparse

import rand_passwds

VALID_SERVICES = rand_passwds.SERVICES.keys()

class CliParser:

def __init__(self):
description = ’Retrieve a password for a given service ’\

’from {}’.format(rand_passwds.PASSWD_FILE)
self.parser =

argparse.ArgumentParser(description=description)

def parse(self):
self.parser.add_argument(’-f’, ’--file’, action=’store’,

default=rand_passwds.PASSWD_FILE,
dest=’passwd_file’,
help=’input YAML password file’)

self.parser.add_argument(’-l’, ’--list’,
action=’store_true’,

default=False, dest=’list’,
help=’lists possible services’)

self.parser.add_argument(’service’, action=’store’,
nargs=’?’,

choices=VALID_SERVICES,
help=’service token’, default=None)

return self.parser.parse_args()

def print_help(self):
self.parser.print_help()

def main():

p = CliParser()
args = p.parse()

if args.list:
print ’\n’.join(VALID_SERVICES)

elif args.service:
passwords =

rand_passwds.HieraYamlPasswordFile(args.passwd_file)
passwords.read()
print passwords.find(args.service)

else:
p.print_help()

if __name__ == ’__main__’:
main()

Tests Implementation

Idam test cases veri�es that AAA policies are applied properly.

01-idam.robot:

*** Settings ***
Library String
Library Collections
Resource idam-cee.robot
Resource common.robot
Force Tags idam
Suite Setup Run Keywords Select random target vic

... LDAP and nscd are up on vics
Test Setup Run Keywords Initialize random username

... The user is created
Test Teardown Run Keywords Remove user

... Reset all ssh connections

*** Test cases ***
User cannot set weak passwords

When a weak password is suggested
Then password update fails

User can set strong password and login to all nodes

When a strong password is set for the user
Then the user can authenticate successfully to ${vics}
And the user can authenticate successfully to ${hosts}

User cannot reuse the existing password
Given a strong password is set for the user
When the same password is suggested
Then password update fails

User is forced to change expired password after login
Given a strong password is set for the user
When password is forced to expire
Then the user is asked to change the password after login

User cannot set a historical password
When a historical password is suggested
Then password update fails

User in the sudo group can run sudo commands
When the user is added to sudo group
Then the user can execute sudo command in ${hosts}

User not in sudo group cannot run sudo commands
Given a strong password is set for the user
When the user is not added to sudo group
Then the user cannot execute sudo command in ${vics}
And the user cannot execute sudo command in ${hosts}

There are no groups left over after deleting the user
When the user is added to sudo group, deleted and created again
Then the user cannot execute sudo command in ${vics}
And the user cannot execute sudo command in ${hosts}

idam-cee.robot:

*** Variables ***
${ldap_service} slapd
${nscd_service} nscd

*** Keywords ***
Initialize random username

${user} Generate Random String 7 [LOWER]
Set Suite Variable ${user}

LDAP and nscd are up on vics
:FOR ${node} IN @{vics}
\ Switch Connection ${node.name}
\ ${stderr} ${ldap_service_rc} Execute Command service

${ldap_service} status return_stdout=False return_rc=True
return_stderr=True

\ ${stderr} ${nscd_service_rc} Execute Command service
${nscd_service} status return_stdout=False return_rc=True
return_stderr=True

\ Should Be Equal As Integers ${ldap_service_rc} 0
\ Should Be Equal As Integers ${nscd_service_rc} 0

Fail if the user does not exist
${stderr} ${rc} Execute command id ${user} return_stdout=False

return_rc=True return_stderr=True
Should Be Equal As Integers ${rc} 0

The user is created
Switch Connection ${target_vic.name}
${stderr} ${rc} Execute Command cee-idam user-create ${user}

return_stdout=False return_rc=True return_stderr=True
Should Be Equal As Integers ${rc} 0
Wait Until Keyword Succeeds 30 s 1 s Fail if the user does not

exist

Remove user
Switch Connection ${target_vic.name}
${stderr} ${rc} Execute Command cee-idam user-delete -l

${user} return_stdout=False return_rc=True
return_stderr=True

Should Be Equal As Integers ${rc} 0

Set password ${password} for the user
Switch Connection ${target_vic.name}
Write passwd ${user}
Read Until New password:
Write ${password}
Read Until Re-enter new password:
Write ${password}
${stdout} Read Until \#
${status} Run Keyword and Return Status Should Contain

${stdout} password updated
${rc} Convert To Boolean ${status}
[Return] ${status}

A weak password is suggested
${password} Generate Random String 7 [LETTERS][NUMBERS]
Set Test Variable ${password}

Password update fails
${rc} Run Keyword and continue on failure Set password

${password} for the user
Should Be True ${rc} == False

A strong password is set for the user
${password} Generate Random String 16 [LETTERS][NUMBERS]
Set Test Variable ${password}
${rc} Set password ${password} for the user
Should Be True ${rc} == True

The user can authenticate successfully to ${nodes}
:FOR ${node} IN @{nodes}

\ Open Connection ${node.address} port=${node.port}
\ ${can_login} Run Keyword And Return Status Login ${user}

${password}
\ Should Be True ${can_login}

The same password is suggested
No Operation

Password is forced to expire
Switch Connection ${target_vic.name}
Write cee-idam user-modify -l ${user} -e
Read Until User modification completed

The user is asked to change the password after login
Open Connection ${hosts[0].address} port=${hosts[0].port}
${login_stdout} Login ${user} ${password}
Should Contain ${login_stdout} You must change your password

now and login again!

Another password is set for the user
Set Test Variable ${historical_password} ${password}
A strong password is set for the user

A historical password is suggested
A strong password is set for the user
Another password is set for the user
${set_password} Run Keyword and continue on failure Set

password ${historical_password} for the user
Set Test Variable ${set_password}

The user is added to sudo group
A strong password is set for the user
${stderr} ${rc} Execute Command cee-idam user-modify -l

${user} -G sudo return_stdout=False return_rc=True
return_stderr=True

Should Be Equal As Integers ${rc} 0

The user can execute sudo command in ${nodes}
:FOR ${node} IN @{nodes}
\ Open Connection ${node.address} port=${node.port}
\ ${can_login} Run Keyword And Return Status Login ${user}

${password}
\ Should Be True ${can_login}
\ Write sudo id
\ Read Until [sudo] password for ${user}:
\ Write ${password}
\ ${stdout} Read Until \$
\ Should Contain ${stdout} uid=0(root) gid=0(root)

groups=0(root)

The user is not added to sudo group
No operation

The user cannot execute sudo command in ${nodes}
:FOR ${node} IN @{nodes}
\ Open Connection ${node.address} port=${node.port}
\ ${can_login} Run Keyword And Return Status Login ${user}

${password}
\ Should Be True ${can_login}
\ Write sudo id
\ Read Until [sudo] password for ${user}:
\ Write ${password}
\ ${stdout} Read Until \$
\ Should Contain ${stdout} ${user} is not in the sudoers

file.

Select random target vic
${total_nodes} Get Length ${vics}
${index} Evaluate random.randint(0, ${total_nodes}-1) random
Set Suite Variable ${target_vic} ${vics[${index}]}

The user is added to sudo group, deleted and created again
A strong password is set for the user
The user is added to sudo group
Remove user
The user is created
A strong password is set for the user
The user is not added to sudo group

Hardening tests veri�es the security of the system by reducing its surface of vul-
nerability; typically by randomizing default passwords, disable default accounts, close
unnecessary software and services.

01-hardening.robot:

*** Settings ***
Library String
Library Collections
Resource hardening-cee.robot
Resource common.robot
Force Tags wip hardening
Suite Setup Select random target vic
Test Setup Initialize random username
Test Teardown Run Keywords Remove user

... Reset all ssh connections

*** Test cases ***
No service accounts have a password set that matches the username

in vics
Given the user is created
And get all users existing in a random ${vics}
When login with same password as username, then it fails

No service accounts have a password set that matches the username
in computes
Given the user is created

And get all users existing in a random ${hosts}
When login with same password as username, then it fails

No service accounts have an empty password set in vics
Given the user is created
And get all users existing in a random ${vics}
When login with empty password for each service, then it fails

No service accounts have an empty password set in computes
Given the user is created
And get all users existing in a random ${hosts}
When login with empty password for each service, then it fails

hardening-cee.robot:

*** Keywords ***
Initialize random username

${user} Generate Random String 7 [LOWER]
Set Suite Variable ${user}

Fail if the user does not exist
${rc} Execute command id ${user} return_stdout=False

return_rc=True
Should Be Equal As Integers ${rc} 0

The user is created
Switch Connection ${target_vic.name}
${stderr} ${rc} Execute Command cee-idam user-create ${user}

return_stdout=False return_rc=True return_stderr=True
Should Be Equal As Integers ${rc} 0
Wait Until Keyword Succeeds 30 s 1 s Fail if the user does not

exist

Remove user
Switch Connection ${target_vic.name}
${stderr} ${rc} Execute Command cee-idam user-delete -l

${user} return_stdout=False return_rc=True
return_stderr=True

Should Be Equal As Integers ${rc} 0

Set password ${password} for the user
Switch Connection ${target_vic.name}
Write passwd ${user}
Read Until New password:
Write ${password}
Read Until Re-enter new password:
Write ${password}
${stdout} Read Until \#
${status} Run Keyword and Return Status Should Contain

${stdout} password updated
${rc} Convert To Boolean ${status}
[Return] ${status}

A strong password is set for the user
${password} Generate Random String 16 [LETTERS][NUMBERS]
Set Test Variable ${password}
${rc} Set password ${password} for the user
Should Be True ${rc} == True

Select random target vic
${total_nodes} Get Length ${vics}
${index} Evaluate random.randint(0, ${total_nodes}-1) random
Set Suite Variable ${target_vic} ${vics[${index}]}

Select random target from ${nodes}
${total_nodes} Get Length ${nodes}
${index} Evaluate random.randint(0, ${total_nodes}-1) random
Set Test Variable ${target_node} ${nodes[${index}]}

Get all users existing in a random ${node}
A strong password is set for the user
Select random target from ${vics}
Open Connection ${target_node.address} port=${target_node.port}
${can_login} Run Keyword And Return Status Login ${user}

${password}
Should Be True ${can_login}
${output} ${stderr} ${rc} Execute Command getent passwd|cut

-d’:’ -f1 return_stdout=True return_rc=True
return_stderr=True

Should Be Equal As Integers ${rc} 0
@{users} = Split To Lines ${output}
Set Test Variable ${users}
Close Connection

Login with same password as username, then it fails
:FOR ${userx} IN @{users}
\ Open Connection ${target_node.address}

port=${target_node.port}
\ ${output} Run Keyword And Expect Error * Login ${userx}

${userx}
\ Should Contain ${output} Authentication failed for user

’${userx}’.
\ Close Connection

Login with empty password for each service, then it fails
:FOR ${userx} IN @{users}
\ Open Connection ${target_node.address}

port=${target_node.port}
\ ${output} Run Keyword And Expect Error * Login ${userx}

${EMPTY}
\ Should Contain ${output} Authentication failed for user

’${userx}’.
\ Close Connection

Veri�cation of Puppet Modules

Verifying password generation and dump in yaml format by a generate-passwords
script. Simply run generate-passwords script:

root@vim:~# generate-passwords
root@vim:~# cat /etc/puppet/hieradata/passwords.yaml

role::vim::heat_auth_key: DodranMapChiUlg0
role::vim::mysql_heat_pass: ArpAijNunlyntAm7
role::vim::mysql_ovft_pass: SosaunIkfecysAk8
role::vim::ovft_auth_key: RieckHydyenPord7
role::vim::rabbitmq_pass: Mak2FuvReecWutgu

For checking di�erent services under a GNU/Linux system, the service <name
of the service> status command is used.

Check service status for heat service in VIM:

root@vim:/# service heat-api status
heat-api start/running, process 12697
root@vim:/# service heat-api-cloudwatch status
heat-api-cloudwatch start/running, process 12706
root@vim:/# service heat-api-cfn status
heat-api-cfn start/running, process 12685
root@vim:/# service heat-engine status
heat-engine start/running, process 12690

password-for-service <name of service> script is used to retrieve for a pass-
word of a given service. Veri�cation of password for heat service script and service is
accessed with the randomized credential and having restricted visibility. To check the
mysql database for the heat service mysql -u <user> -D <database name> -
p<password> command is used. Once connected to the database, show databases;
will show the accessible databases:

root@vim:/# password-for-service mysql-heat-pass
ArpAijNunlyntAm7
root@vim:/etc/puppet/hieradata# mysql -u heat -D heat

-pArpAijNunlyntAm7
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 41
Server version: 5.5.37-0ubuntu0.12.04.1 (Ubuntu)

Copyright (c) 2000, 2014, Oracle and/or its affiliates. All
rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the current
input statement.

mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| heat |
+--------------------+
2 rows in set (0.00 sec)

mysql> Bye

Check service status for OVFT service in VIM:

root@vim:/# service ovft-api status

* Checking for service OVFT API... * ovft-api is
running

root@vim:/# service ovft-engine status

* Checking for service OVFT ENGINE... * ovft-engine is
running

Same approach is done for the OVFT service. Veri�cation of password for OVFT
service script and service is accessed with the randomized credential and having re-
stricted visibility:

root@vim:/# password-for-service mysql-ovft-pass
SosaunIkfecysAk8
root@vim:/etc/puppet/hieradata# mysql -u ovft -D ovft

-pSosaunIkfecysAk8
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 40
Server version: 5.5.37-0ubuntu0.12.04.1 (Ubuntu)

Copyright (c) 2000, 2014, Oracle and/or its affiliates. All
rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the current
input statement.

mysql> show databases;
+--------------------+
| Database |
+--------------------+

| information_schema |
| ovft |
+--------------------+
2 rows in set (0.01 sec)

mysql> Bye

Check service status for RabbitMQ service in VIM:

root@vim:/# service rabbitmq-server status
Status of node rabbit@vim ...
[{pid,12474},
{running_applications,

[{rabbitmq_management,"RabbitMQ Management Console","3.3.5"},
{rabbitmq_management_agent,"RabbitMQ Management

Agent","3.3.5"},
{rabbit,"RabbitMQ","3.3.5"},
{os_mon,"CPO CXC 138 46","2.2.7"},
{rabbitmq_web_dispatch,"RabbitMQ Web Dispatcher","3.3.5"},
{webmachine,"webmachine","1.10.3-rmq3.3.5-gite9359c7"},
{mochiweb,"MochiMedia Web

Server","2.7.0-rmq3.3.5-git680dba8"},
{amqp_client,"RabbitMQ AMQP Client","3.3.5"},
{xmerl,"XML parser","1.2.10"},
{inets,"INETS CXC 138 49","5.7.1"},
{mnesia,"MNESIA CXC 138 12","4.5"},
{sasl,"SASL CXC 138 11","2.1.10"},
{stdlib,"ERTS CXC 138 10","1.17.5"},
{kernel,"ERTS CXC 138 10","2.14.5"}]},

{os,{unix,linux}},
{erlang_version,

"Erlang R14B04 (erts-5.8.5) [source] [64-bit] [smp:2:2]
[rq:2] [async-threads:30] [kernel-poll:true]\n"},

{memory,
[{total,32021176},
{connection_procs,160672},
{queue_procs,173600},
{plugins,368472},
{other_proc,9160720},
{mnesia,91232},
{mgmt_db,138712},
{msg_index,39904},
{other_ets,1082856},
{binary,190776},
{code,17261817},
{atom,1560961},
{other_system,1791454}]},

{alarms,[]},
{listeners,[{clustering,25672,"::"},{amqp,5672,"hidden_host"}]},
{vm_memory_high_watermark,0.4},
{vm_memory_limit,856801280},

{disk_free_limit,50000000},
{disk_free,7061319680},
{file_descriptors,

[{total_limit,924},{total_used,7},{sockets_limit,829},{sockets_used,5}]},
{processes,[{limit,1048576},{used,226}]},
{run_queue,0},
{uptime,356}]
...done.

Veri�cation of password for RabbitMQ service script and service is accessed with
the randomized credential and having restricted visibility. As this service it has dif-
ferent nature from the previous service, it was tested by requesting access to an API
through HTTP protocol by running curl command:

root@vim:/# password-for-service rabbitmq-pass
Mak2FuvReecWutgu
root@vim:/# curl -i -u guest:Mak2FuvReecWutgu

http://hidden_host:15671/api/whoami
HTTP/1.1 200 OK
Server: MochiWeb/1.1 WebMachine/1.10.0 (never breaks eye contact)
Date: Wed, 04 Mar 2015 11:44:21 GMT
Content-Type: application/json
Content-Length: 85
Cache-Control: no-cache

{"name":"guest","tags":"administrator","auth_backend":"rabbit_auth_backend_internal"}

Check service status for MySQL service in VIM:

root@vim:/# service mysql status
mysql start/running, process 1069

As OpenStack is mostly developed in Python programming language, most of the
services are executed as an interpreted python scripts. The best way to verify these
script services are run is by listing python related processes by executing pgrep <-
options> python command:

root@vim:/etc/mysql# pgrep -fl python
1261 /usr/bin/python /usr/bin/watchmen-history-api-server
6014 /usr/bin/python /usr/bin/heat-engine
6028 /usr/bin/python /usr/bin/heat-api-cloudwatch
6042 /usr/bin/python /usr/bin/heat-api-cfn
6056 /usr/bin/python /usr/bin/heat-api
6061 /usr/bin/python /usr/bin/ovft-engine --debug --config-file

/etc/ovft/ovft.conf --log-file /var/log/ovft-engine.log
6066 /usr/bin/python /usr/bin/ovft-api --debug --config-file

/etc/ovft/ovft.conf --log-file /var/log/ovft-api.log

Technologies Used

Protocols

� ARP: is a telecommunication protocol used for resolution of network layer ad-
dresses into link layer addresses, a critical function in multiple-access networks.
ARP is used to convert an IP address to a physical address such as an Ethernet
address (also known as a MAC address).
URL: https://tools.ietf.org/html/rfc826

� VLAN: de�nes a system of tagging for Ethernet frames and the accompanying
procedures to be used by bridges and switches in handling such as frames.
URL: http://www.ieee802.org/1/pages/802.1Q.html

� HTTP: is an application protocol for distributed, collaborative, hypermedia
information systems. Hypertext is structured text that uses logical links between
nodes containing text. HTTP is the protocol to transfer hypertext.
URL: http://tools.ietf.org/html/rfc2616

� IP: has the task of delivering packets from the source host to the destination
host based on the IP address in the packet headers. IP de�nes packet structures
that encapsulate the data to be delivered.
URL: https://www.ietf.org/rfc/rfc791.txt

� TCP: provides a communication service by providing host to host connectivity at
the transport layer of the internet model. The protocol handles all handshaking
and transmission details and presents an abstraction of the network connection
to the application.
URL: https://www.ietf.org/rfc/rfc793.txt

� UDP: uses a simple connectionless transmission model with a minimum of proto-
col mechanism. It has no handshaking dialogues and thus exposes any unreability
of the underlying network protocol to the user's program. There is no guarantee
of delivery, ordering or duplicate protection.
URL: https://www.ietf.org/rfc/rfc768.txt

� LDAP: protocol for accessing and maintaining distributed directory information
services over an Internet Protocol (IP) network. A common usage of LDAP is to
provide a single sign on where one password for a user is shared between many
services.
URL: https://tools.ietf.org/html/rfc4511

https://tools.ietf.org/html/rfc826
http://www.ieee802.org/1/pages/802.1Q.html
http://tools.ietf.org/html/rfc2616
https://www.ietf.org/rfc/rfc791.txt
https://www.ietf.org/rfc/rfc793.txt
https://www.ietf.org/rfc/rfc768.txt
https://tools.ietf.org/html/rfc4511

� RADIUS: networking protocol that provides Authentication, Authorization,
and Accounting (AAA) for users who connect and use a network service. It is
often used by Internet Service Provider (ISP) and enterprises to manage access
to the internet or networks, wireless and integrated services.
URL: https://tools.ietf.org/html/rfc2865

� SSL: cryptographic protocols designed to provide communications security over
a computer network. They use X.509 certi�cates and asymmetric cryptography
to authenticate the counterparty to negotiate a symmetric key.
URL: https://tools.ietf.org/html/rfc6101

� TLS: ancestor of SSL.
URL: https://tools.ietf.org/html/rfc5246

� HTTPS: communication protocol for secure communication over a computer
network, with especially wide deployment on the internet. It is a result of layering
the HTTP on top of SSL or TLS protocols. The main purpose is to provide
authentication on a website and protect the privacy and integrity of exchanged
data.
URL: http://tools.ietf.org/html/rfc2818

� ICMP: used by network devices to send error messages for diagnostic, control
purposes or in response to errors in IP operations.
URL: https://tools.ietf.org/html/rfc792

� DNS: translates domain names, which can be easily memorized by humans,
to the numerical IP addresses needed for the purpose of computer services and
devices.
URL: https://www.ietf.org/rfc/rfc1035.txt

� IPv4: fourth version in the development of the IP protocol.
URL: https://tools.ietf.org/html/rfc791

� IPv6: sixth version in the development of the IP protocol.
URL: https://www.ietf.org/rfc/rfc2460.txt

� SSH: cryptographic network protocol for initiating text-based shell sessions on
remote machines in a secure way.
URL: https://tools.ietf.org/html/rfc4253

� IGMP: communications protocol used by hosts and adjacent routers on IPv4
networks to establish multicast group memberships.
URL: https://tools.ietf.org/html/rfc2236

� FTP: network protocol used to transfer computer �les from one host to another
over a TCP based network.
URL: https://www.ietf.org/rfc/rfc959.txt

� SOCKS: internet protocol that routes network packets between a client and
server through a proxy server. Additionaly provides authentication, so only
authorized users may access a server.
URL: https://www.ietf.org/rfc/rfc1928.txt

https://tools.ietf.org/html/rfc2865
https://tools.ietf.org/html/rfc6101
https://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc792
https://www.ietf.org/rfc/rfc1035.txt
https://tools.ietf.org/html/rfc791
https://www.ietf.org/rfc/rfc2460.txt
https://tools.ietf.org/html/rfc4253
https://tools.ietf.org/html/rfc2236
https://www.ietf.org/rfc/rfc959.txt
https://www.ietf.org/rfc/rfc1928.txt

� CRAM MD5 SASL: challenge response authentication mechanism based on
the HMAC-MD5 algorithm, using SASL as a simple authentication and security
layer mechanism.
URL: https://tools.ietf.org/html/draft-ietf-sasl-crammd5-10

� MD5: algorithm used widely as a cryptographic hash function for verifying data
integrity.
URL: https://www.ietf.org/rfc/rfc1321.txt

� RPC: inter-process communication that allows a computer program to cause a
subrouting or procedure to execute in another address space.
URL: https://tools.ietf.org/html/rfc5531

� POP: application layer internet standard protocol used by local email clients to
retrieve email from a remote server over a TCP/IP connection.
URL: https://www.ietf.org/rfc/rfc1939.txt

� IMAP: protocol for email retrieval and storage that allows multiple clients si-
multaneously connected to the same mailbox.
URL: https://tools.ietf.org/html/rfc3501

� VPN: extends a private network across a public network, enabling a computer
or network enabled device to send and receive data across shared or public net-
works as if it were directly connected to the private network by establishing a
virtual point to point connection through the use of dedicated connections, vir-
tual tunneling protocols or tra�c encryption.
URL: https://tools.ietf.org/html/rfc4026

� ISAKMP: establishes security associations and cryptographic keys in an inter-
net environment. It provides a framework for authentication and key exchange
and is designed to be key exchange independent.
URL: https://www.ietf.org/rfc/rfc2408.txt

� LLC: upper sublayer of the data link layer. Provides multiplexing mechanisms
that make it possible for several network protocols to coexist within a multipoint
network and to be transported over the same network medium. It also provides
a �ow control and automatic repeat request error management mechanisms.
URL: http://www.networksorcery.com/enp/rfc/rfc1042.txt

� NTP: networking protocol for clock synchronization between computer systems
over packet siwtched, variable latency data networks.
URL: https://www.ietf.org/rfc/rfc5905.txt

� PPP: data link protocol used to establish a direct connection between two nodes.
It provides connection authentication, transmission encryption and compression.
URL: https://www.ietf.org/rfc/rfc1661.txt

� NetBIOS: provides services related to the session layer of the OSI model al-
lowing applications on separate computers to communicate over a local area
network.
URL: https://tools.ietf.org/html/rfc1002

https://tools.ietf.org/html/draft-ietf-sasl-crammd5-10
https://www.ietf.org/rfc/rfc1321.txt
https://tools.ietf.org/html/rfc5531
https://www.ietf.org/rfc/rfc1939.txt
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc4026
https://www.ietf.org/rfc/rfc2408.txt
http://www.networksorcery.com/enp/rfc/rfc1042.txt
https://www.ietf.org/rfc/rfc5905.txt
https://www.ietf.org/rfc/rfc1661.txt
https://tools.ietf.org/html/rfc1002

� RIP: is a distance vector routing protocol which employs the hop count as a
routing metric. RIP prevents routing loops by implementing a limit on the
number of hops allowed in a path from the source to a destination.
URL: https://tools.ietf.org/html/rfc2453

� SNAP: extension of the IEEE 802.2 logical link control to distinguish much
more protocols of the higher layer than using of the 8 bit service access point
�elds present in the IEEE 802.2 header.
URL: https://tools.ietf.org/html/rfc1103

� STP: network protocol that ensures a loop free topology for any bridged Eth-
ernet local area network. The basic function of STP is to prevent bridge loops
and broadcast radiation that results from them.
URL: https://tools.ietf.org/html/rfc4318

� Ethernet: family of computer networking technologies for local area networks
and metropolitan area networks.
URL: https://tools.ietf.org/html/rfc894

� 802.1x: IEEE standard for port based network access control. It provides au-
thentication mechanism to devices wishing to attach to a LAN or WLAN. It also
de�nes the encapsulation of the Extensible Authentication Protocol over IEEE
802.
URL: https://tools.ietf.org/html/rfc3580

� NAT: methodology of remapping one IP address space into another by modifying
network address information in IP datagram packet headers while they are in
transit across a tra�c routing device.
URL: https://tools.ietf.org/html/rfc2663

� SFTP: command line interface client program to transfer �les using the SSH �le
transfer protocol, which runs inside the encrypted secure shell connection.
URL: https://tools.ietf.org/html/rfc913

Software

� AppArmor: is an e�ective and easy-to-use Linux application security system.
AppArmor proactively protects the operating system and applications from ex-
ternal or internal threats, even zero-day attacks, by enforcing good behavior and
preventing even unknown application �aws from being exploited. AppArmor se-
curity policies completely de�ne what system resources individual applications
can access, and with what privileges.
URL: http://wiki.apparmor.net/index.php/Main_Page

� SELinux: is an implementation of mandatory access controls (MAC) on Linux.
Mandatory access controls allow an administrator of a system to de�ne how ap-
plications and users can access di�erent resources such as �les, devices, networks
and inter-process communication.
URL: http://selinuxproject.org/page/Main_Page

https://tools.ietf.org/html/rfc2453
https://tools.ietf.org/html/rfc1103
https://tools.ietf.org/html/rfc4318
https://tools.ietf.org/html/rfc894
https://tools.ietf.org/html/rfc3580
https://tools.ietf.org/html/rfc2663
https://tools.ietf.org/html/rfc913
http://wiki.apparmor.net/index.php/Main_Page
http://selinuxproject.org/page/Main_Page

� AD: directory service developed by Microsoft for Windows domain networks.
URL: https://msdn.microsoft.com/en-us/library/bb742424.aspx

� Puppet: open source con�guration management utility which includes its own
declarative language to describe system con�guration.
URL: https://puppetlabs.com/

� OVFT: tool for manage Open Virtualization Format; an open standard for
packaging and distributing virtual appliances.
URL: http://www.dmtf.org/standards/ovf

� Heat: service to orchestrate multiple composite cloud applications using tem-
plates.
URL: http://docs.openstack.org/developer/heat/

� RabbitMQ: open source message broker software that implements the Advanced
Message Queuing Protocol (AMQP).
URL: https://www.rabbitmq.com/

� Linux: Unix-like and mostly POSIX compliant computer operating system as-
sembled under the model of free and open source software development and
distribution. The de�ning component of Linux is the Linux kernel.
URL: https://www.linux.com/

� BSD: Unix operating system derivative developed and distributed from Univer-
sity of California, Berkeley.
URL: http://www.bsd.org/

� UNIX: family of multitasking, multiuser computer operating systems that derive
from the original AT&T Unix, developed in the 1970s at the Bell Labs research
center by Ken Thompson, Dennis Ritchie and others.
URL: http://www.unix.org/

� OpenSSL: open source implementation of the SSL and TLS protocols.
URL: https://www.openssl.org/

� OpenSSH: OpenBSD Secure Shell, is a suite of security related network level
utilities based on the SSH protocol, which help to secure network communications
via the encryption of network tra�c over multiple authentication methods and
providing secure tunneling capabilities.
URL: http://www.openssh.com/

� Openstack: free and open source cloud computing software platform. It consists
of a series of interrelated projects that control pools of processing, storage and
networking resources throughout a data center, which users manage through a
web based dashboard, command line tools or RESTful API.
URL: https://www.openstack.org/

� PAM: is a mechanism to integrate multiple low level authentication schemes into
a high level API, allowing programs that rely on authentication to be written
independently of the underlying authentication scheme.
URL: http://www.linux-pam.org/

� GNU: Unix like computer operating system composed wholly of free software.
URL: https://www.gnu.org/

https://msdn.microsoft.com/en-us/library/bb742424.aspx
https://puppetlabs.com/
http://www.dmtf.org/standards/ovf
http://docs.openstack.org/developer/heat/
https://www.rabbitmq.com/
https://www.linux.com/
http://www.bsd.org/
http://www.unix.org/
https://www.openssl.org/
http://www.openssh.com/
https://www.openstack.org/
http://www.linux-pam.org/
https://www.gnu.org/

Licenses

� Apache license: free software license written by the Apache Software Founda-
tion. Apache license requires preservation of the copyright notice and disclaimer.
This license allows the user of the software the freedom to use the software for
any purpose, to distribute and modify it, without concern for royalties.
URL: https://www.apache.org/licenses/LICENSE-2.0.html

� GPL: free software license which guarantees end users the freedoms to use, study,
share and modify the software.
URL: https://www.gnu.org/copyleft/gpl.html

� GFDL: copyleft license for free documentation. It is similar to the GPL, giving
readers the rights to copy, redistribute and modify a work and requires all copies
and derivatives to be available under the same license.
URL: https://www.gnu.org/copyleft/fdl.html

Other Terms

� ACL: is a list of permissions attached to an object. ACL speci�es which users
or system processes are granted access to objects as wel as what operations are
allowed on given objects.
URL: https://www.ietf.org/rfc/rfc2086.txt

� TPM: international standard for a secure crypto processor, which is a dedicated
microprocessor designed to secure hardware by integrating cryptographic keys
into devices.
URL: http://www.trustedcomputinggroup.org/resources/trusted_
platform_module_tpm_summary

� HSM: physical device that safeguards and manages digital keys for strong au-
thentication and provides cryptoprocessing.
URL: https://www.pcisecuritystandards.org/documents/PCI%20HSM%
20Security%20Requirements%20v1.0%20final.pdf

� LaTeX: document preparation system and document markup language widely
used for the communication and publication of scienti�c documents in di�erent
�elds.
URL: http://www.latex-project.org/

� SQL: special purpose programming language designed for managing data held in
a relation database management system or for stream processing in a relational
data stream management system.
URL: https://tools.ietf.org/html/rfc6922

https://www.apache.org/licenses/LICENSE-2.0.html
https://www.gnu.org/copyleft/gpl.html
https://www.gnu.org/copyleft/fdl.html
https://www.ietf.org/rfc/rfc2086.txt
http://www.trustedcomputinggroup.org/resources/trusted_platform_module_tpm_summary
http://www.trustedcomputinggroup.org/resources/trusted_platform_module_tpm_summary
https://www.pcisecuritystandards.org/documents/PCI%20HSM%20Security%20Requirements%20v1.0%20final.pdf
https://www.pcisecuritystandards.org/documents/PCI%20HSM%20Security%20Requirements%20v1.0%20final.pdf
http://www.latex-project.org/
https://tools.ietf.org/html/rfc6922

� ECS: The Ericsson Cloud System which refers to the combination of di�erent
cloud technologies for deliverable Ericsson product.
URL: http://www.ericsson.com/ourportfolio/products/cloud-system

� CEE: The Cloud Execution Environment, which refers a part of the ECS that
manages a region, which includes a data center with controllers, compute nodes,
vim and Fuel.
URL: http://www.ericsson.com/ourportfolio/products/cloud-execution-environment?
nav=productcategory008|fgb_101_0537

� HA: characteristic of a system that de�nes the up time over the total time
determining tolerable down time.
URL: http://en.wikipedia.org/wiki/High_availability

� OpenID: open standard and decentralized protocol by the non-pro�t OpenID
Foundation that allows users to be authenticated by certain cooperating sites
using a third party service.
URL: http://openid.net/

� OAuth: open standard for authorization. It provides client applications a secure
delegated access to server resources on behalf of a resource owner. Also speci�es
a process for resource owners to authorized third party access to their server
resources without sharing their credentials.
URL: http://oauth.net/

� OWASP: online community dedicated to web application security by creating
free available articles, methodologies, documentation, tools and technologies.
URL: https://www.owasp.org/index.php/Main_Page

� IMPI: multi-fabric message passing library that implements the Message Pass-
ing Interface speci�cation.
URL: http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.
html

� MAC: unique identi�er assigned to network interfaces for communications on
the physical network segment. MAC addresses are used as a network address for
most IEEE 802 network technologies which includes Ethernet and WiFi.
URL: https://tools.ietf.org/html/rfc3422

� XML: markup language that de�nes a set of rules for encoding documents in a
format which is both human readable and machine readable.
URL: http://www.w3.org/XML/

� NAC: approach to computer network security that attempts to unify endpoint
security technology, user or system authentication and network security enforce-
ment.
URL: http://www.ieee802.org/1/pages/802.1x-rev.html

� IdAM: describes the management of individual principals, their authentication,
authorization and privileges across system and enterprise boundaries with the
goal of increasing security.
URL: http://ciog6.army.mil/Portals/1/Architecture/2014/20140929-US_
Army_Identity_and_Access_Management_Reference_Architecture_
V4-0.pdf

http://www.ericsson.com/ourportfolio/products/cloud-system
http://www.ericsson.com/ourportfolio/products/cloud-execution-environment?nav=productcategory008|fgb_101_0537
http://www.ericsson.com/ourportfolio/products/cloud-execution-environment?nav=productcategory008|fgb_101_0537
http://en.wikipedia.org/wiki/High_availability
http://openid.net/
http://oauth.net/
https://www.owasp.org/index.php/Main_Page
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
https://tools.ietf.org/html/rfc3422
http://www.w3.org/XML/
http://www.ieee802.org/1/pages/802.1x-rev.html
http://ciog6.army.mil/Portals/1/Architecture/2014/20140929-US_Army_Identity_and_Access_Management_Reference_Architecture_V4-0.pdf
http://ciog6.army.mil/Portals/1/Architecture/2014/20140929-US_Army_Identity_and_Access_Management_Reference_Architecture_V4-0.pdf
http://ciog6.army.mil/Portals/1/Architecture/2014/20140929-US_Army_Identity_and_Access_Management_Reference_Architecture_V4-0.pdf

� PCI DSS: proprietary information security standard for organizations that han-
dle branded credit cards for the major card schemes.

� VIC: Virtual Machine which act as a cloud controller.
URL: Ericsson Internal.
URL: https://www.pcisecuritystandards.org/security_standards/

� VIM: Orchestration node from Ericsson as a part of the ECS solution which
manages interfaces and the virtual infrastructure.
URL: Ericsson Internal.

https://www.pcisecuritystandards.org/security_standards/

	Preface
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Problem
	Solution
	Main Studies

	Cloud Computing
	Service Models
	Infrastructure as a Service (IaaS)
	Platform as a Service (PaaS)
	Software as a Service (SaaS)

	Deployment Models
	Public Cloud
	Private Cloud
	Hybrid Cloud

	Security
	Security Domains
	Security Applied to Cloud
	Auditing Cloud
	Data and Cloud Security
	Auditing Cloud Applications
	Regulations in Cloud
	Audit Design Strategies

	Security Design in Cloud
	How much Security is Required
	Responsibilities for each Cloud Security Model
	Security Strategies

	Cloud-Centralized Logging
	Log File uses
	Logging Requirements

	Monitoring Cloud
	Reactive
	Proactive
	Reactive vs. Proactive
	Monitoring Requirements
	Strategies

	Disaster Recovery in Cloud Computing
	Costs
	Strategies in IaaS
	Strategies in PaaS
	Strategies in SaaS
	Strategies in Hybrid

	Openstack Components
	CEE Components
	Security Requirements
	Security Baseline Requirements
	ECS Requirements

	Test Strategy
	Test Coverage
	Priorities
	Testing Tools
	Nmap
	Hydra
	Nessus
	IXIA
	Scapy and Hping
	Tcpdump and Wireshark
	Binutils, Coreutils, GNU, and Other Utils

	Test Frameworks
	Robot Framework Installation and Configuration
	Extensions
	Guidelines to Write Test Cases
	Running Test Cases with Robot
	Writing Extensions for Robot Framework

	Hardening
	Entropy for Random Generation
	Configuration Manager
	Puppet Deployment
	Puppet Modules

	Centralized IdAM Solution
	Multi-Master Architecture
	IdAM Implementation
	Testing Hardcoded Credentials

	Results
	Conclusions
	References
	Appendices
	Appendix Conventions
	Appendix Implementation
	Appendix Technologies used

