

Scaling Agile Methods

Petteri Karesma

 Bachelor’s Thesis

 Degree Programme in ICT

 2016

Abstract

 21 November 2016

Author
Petteri Karesma

Degree programme
Degree Programme in ICT

Thesis title
Scaling Agile Methods

Number of pages
and appendix pages
22 + 2

The purpose of this thesis was to give an impartial view on some of the prevailing scaling
agile frameworks. As well as provide a general portrayal of how agile scaling is generally
done and what it means.

The thesis was compiled by reviewing material found online from various different
individuals and resources. The thesis goes through the basic principle of scaling agile as
well as few of the most prevailing frameworks supporting it. Chosen frameworks are also
studied by reviewing case studies concerning them.

The report showed that implementing a framework to scale agile might be challenging and
often proper training and coaching is needed. The study also showed that frameworks
have differences that need to be considered when choosing the one to implement.

The report concludes that scaling agile already has and will continue to have an important
role in software and product development. Some frameworks are better suited in some
environments than others and some environments fit in multiple different frameworks.

Keywords
Scaling, Agile, LeSS, SAFe, Spotify, Scrum

Abstract

 21 November 2016

Tekijä
Petteri Karesma

Koulutusohjelma
Tietojenkäsittely

Opinnäytetyön otsikko
Skaalautuvat ketterät menetelmät
(Scaling Agile Methods)

Sivu- ja liitesivu-
määrä
22 + 2

Tämän työn tarkoitus oli antaa puolueeton katsaus huomiota saaneisiin skaalautuviin
ketteriin menetelmiin. Sekä tarjota yleiskuvaus siitä kuinka ketterän menetelmän skaalaus
yleensä tehdään ja mitä se ylipäätään tarkoittaa.

Työ on koostettu käymällä läpi usean eri henkilön ja resurssin julkaisemaa internetistä
löytyvää materiaalia. Tutkimus selittää skaalautuvan ketterän mentelmän käsitteen sekä
muutaman sitä tukevan viitekehyksen toimintaperiaatteen. Valittuja viitekehyksiä tutkittiin
myös niihin liittyvien käytännön esimerkkitapausten kautta.

Selvitys osoitti että skaalautuvan ketterän menetelmän käyttöönotto ja toteuttaminen voi
olla haastavaa ja monesti oikeanlainen kouluttaminen ja valmentaminen on tarpeellista.
Työ osoitti myös sen että viitekehyksillä on eroja, jotka pitää ottaa huomioon menetelmää
valittaessa.

Selvitys päättelee että skaalautuvat menetelmät ovat ja tulevat olemaan tärkeässä roolissa
ohjelmisto- ja tuotekehityksessä. Jotkin viitekehykset soveltuvat paremmin joihinkin
ympäristöihin kuin toiset ja jotkin ympäristöt sopivat moneen eri viitekehykseen.

Asiasanat
Scaling, Agile, LeSS, SAFe, Spotify, Scrum

Table of contents

1 Introduction ... 1

2 Scaling Agile ... 2

3 Frameworks that Scale Agile ... 3

3.1 Scaled Agile Framework ... 4

3.2 Large-Scale Scrum ... 5

3.2.1 LeSS Framework ... 6

3.2.2 LeSS Huge... 7

3.3 Spotify “Model” .. 7

4 Existing Studies on Agile Scaling .. 9

4.1 SAFe at Nordea .. 9

4.1.1 Development Process .. 10

4.1.2 Learning Points .. 10

4.2 LeSS at Nokia Siemens Networks... 11

4.2.1 Implementing LeSS Framework ... 12

4.2.2 Moving to LeSS Huge .. 13

4.2.3 Structure and Process Thereafter .. 14

4.3 Spotify Engineering Culture... 14

4.3.1 Structure and Architecture .. 15

4.3.2 Development Environment ... 15

4.3.3 Hardships and Challenges ... 17

5 Discussion ... 18

5.1 Comparing the Frameworks .. 18

5.2 Implementation Phase .. 19

5.3 The Conclusion ... 20

References .. 21

Appendices .. 23

Appendix 1. Agile Scaling KnowledgebaseTM (ASK) Decision Matrix – Custom

Criteria .. 23

Appendix 2. Agile Scaling KnowledgebaseTM (ASK) Decision Matrix – Approach

Comparison ... 23

1

1 Introduction

In this thesis I explore the phenomenon of scaling agile frameworks and delivery methods.

I chose to focus on three different agile scaling methods for this study and see how they

work and approach the subject. There are multiple different frameworks available but I

chose these three because I felt they are the most prominent ones at the moment and

provoking most of the discussion.

In the first section of this study I will provide an overview on scaling agile as a whole and

on the chosen frameworks individually in hopes to make it easier to understand the con-

cept behind it. But in this thesis I expect that the basic procedures and principles of agile

development, like scrum, are already understood and assimilated by the reader.

There are actually quite many case studies, at least from the better known frameworks

like Large-Scale Scrum (LeSS) and Scaled Agile Framework (SAFe). In the second part I

will go through one case study per each framework I cover in this thesis, and that way try

to give a clearer picture of how the said framework works and how it’s implemented.

In the last part of the study I will analyse the findings and form a conclusive summary of it.

I personally have no experience in working with scaled agile models but I believe that will

help me to form an unbiased opinion of the methods. This thesis is meant to present an

introductory portrayal of scaling agile to those that want to learn what it means. And per-

haps generate some thoughts on what to keep in mind when choosing which method to

implement.

2

2 Scaling Agile

Research foresees that agile methodologies will be needed in the majority of the software

projects by 2018. So agile is not used just by startups anymore, but bigger enterprises

too. And to solve the challenges that come when implementing agile in large organiza-

tions, it has to scale. (Weston Rowell 2016.)

Usually five to ten persons makes a typical team in agile environment, and it’s the same in

scaled agile. Instead of adding more people in teams you increase the number of teams.

That’s important because it is still the team’s responsibility to deliver the results, that fulfill

customer’s expectations and needs. And also that way teams will stay as self-managing

and self-organizing empowered units. The increasing number of teams will need in-

creased transparency, flow efficiency and learning, and for that purpose some layered-in

practices are needed. (Weston Rowell 2016.)

Weston Rowell (2016) speaks about three key practices that are:

 Cadence and synchronization.

 Managing WIP (work in process).

 Collaboration in solving the biggest problems.

For the teams to have regular chances to adjust, check and plan together, learning cycles

and a consistent cadence of planning needs to be established. Synchronization between

related programs and teams is also needed. (Weston Rowell 2016.)

Managing WIP becomes even more important when work in progress increases due to

more teams being involved. And without good WIP management, flow efficiency can’t be

maximized. To accomplish this the responsibility for flow management and work prioritiza-

tion need to be properly assigned to specific roles. Scrum masters and coaches are also

in key roles to help teams and organizations reduce friction between all sides. (Weston

Rowell 2016.)

Scaling the agile can hamstring the progress and get stressful for teams when facing de-

pendencies and trying to understand their own role in the bigger picture. For that it is ex-

tremely important to increase collaboration for the project across the whole organization.

One other thing to remember is that different cultures and time zones can be a big chal-

lenge in communication and collaboration, so the tools and technology as well as facilita-

tion need to be handled exceptionally well. (Weston Rowell 2016.)

3

3 Frameworks that Scale Agile

Agile coaches Richard Dolman and Steve Spearman (2014a) compare different scaling

agile frameworks in their website. Their goal is to provide comprehensive information

about comparing the most prevalent frameworks of scaled agile. They present this infor-

mation in a comparison matrix and offer it to free use – with proper citation. (Dolman &

Spearman 2014a.) Sample image of the comparison matrix is shown below. The whole

image can be found in the attachments. And download link for the excel -file of the matrix

is found at Dolman and Spearman’s website.

Image 1. ASK: Agile Scaling Knowledge – The Matrix (Dolman & Spearman 2014b)

I will cover few of these frameworks that Dolman and Spearman compares in their matrix

and compare my findings with their criteria in mind. Dolman and Spearman (2014a) also

include email commentary from the authors of the frameworks in their website, and I will

reference one of those. Although it should be noted that there is no mention of the year

when those inquiries were made. Also noteworthy is that even though Dolman and Spear-

man talk about ‘authors of the frameworks’, Henrik Kniberg posted a blog post (2015)

about how he is not the inventor of Spotify Model, but how it is the result of everyone try-

ing out different things and collaborating in the Spotify organization.

4

3.1 Scaled Agile Framework

Scaled Agile Framework, also known as SAFe, was first released in 2011. Since then it

has had several major updates and the current up-to-date version is 4.0. SAFe is a

knowledge base of patterns for implementing Lean-Agile development at large scale. The

framework is freely revealed online. (Scaled Agile, Inc. 2016a.)

Image 2. 3-level and 4-level SAFe (Scaled Agile, Inc. 2016b, 1)

SAFe can be used with two different types of configurations. The image above shows the

overview of those two types. The left side of the image shows the 3-level view, which is

good for largely independent smaller systems, products and services, but also supports

solutions requiring a modest number of teams. Building and maintaining large, integrated

systems engaging hundreds of people is supported by the 4-level view on the right. Inter-

active version of the picture is provided in the SAFe website, and it allows the user to find

information on every topic by clicking the desired icon. (Scaled Agile, Inc. 2016b, 1.)

In addition to the four organizational levels in SAFe – shown in the picture above and ex-

plained below – SAFe also includes a Foundation layer (Scaled Agile, Inc. 2016b, 2).

 Team level – SAFe teams are agile teams that use Scrum or Kanban methods in itera-
tive development environment. Practices are derived from eXtreme Programming and
Lean product development.

 Program level – 5 to 12 teams are put together to make a team of teams called an Ag-
ile Release Train (ART). This virtual program structure provides alignment, guidance
and facilitation.

 Value Stream level – Large and complex solution development that require multiple
synchronized ARTs is supported by Value Stream level.

 Portfolio level – Provides funding to solution development and also funds and organ-
izes value streams.

 Foundation layer – Includes elements like Lean-Agile Leaders, Core Values and Prin-
ciples among others that support development.

5

SAFe has four core values, which are alignment, built-in quality, transparency and pro-

gram execution. These values work as a guideline on how to behave and take action as

well as help people target their focus and do the right things. Values also help the com-

pany stay on the right path. (Scaled Agile, Inc. 2016b, 3.)

“SAFe’s practices are grounded on nine fundamental principles that have evolved from

Agile principles and methods, Lean product development, systems thinking, and observa-

tion of successful enterprises.” (Scaled Agile, Inc. 2016b, 6). These Lean-Agile Principles

are listed below verbatim (Scaled Agile, Inc. 2016b, 6-8).

 Take an economic view

 Apply systems thinking

 Assume variability; preserve options

 Build incrementally with fast, integrated learning cycles

 Base milestones on objective evaluation of working systems

 Visualize and limit WIP, reduce batch sizes, and manage queue lengths

 Apply cadence, synchronize with cross-domain planning

 Unlock the intrinsic of knowledge workers

 Decentralize decision-making

3.2 Large-Scale Scrum

In 2005 increasing requests and their own interest to apply Scrum to offshore, multi-site

and large development projects, led Craig Larman and Bas Vodde teaming up and work

with clients to scale up Scrum. And nowadays big groups in different domains worldwide

have adopted the two Large-Scale Scrum (LeSS) frameworks – ‘smaller’ LeSS and LeSS

Huge. (The LeSS Company B.V. 2016a.)

6

3.2.1 LeSS Framework

“Scaled Scrum is not a special scaling framework that happens to include Scrum only at

the team level. Truly scaled Scrum is Scrum scaled” (The LeSS Company B.V. 2016a).

The idea of LeSS is to find out how, and then incorporate the purpose, principles, ele-

gance and elements of Scrum as simply as possible in a large scale development. (The

LeSS Company B.V. 2016a.)

Image 3. LeSS Framework (The LeSS Company B.V. 2016b)

The image above shows the basic structure of LeSS. Because LeSS is one-team Scrum

scaled it uses lot of the same ideas and practices as basic Scrum. For example, it has one

Product Owner and a single Product Backlog. For every team there’s one common Defini-

tion of Done and at the end of every sprint there’s one shared Potentially Shippable Prod-

uct Increment. (The LeSS Company B.V. 2016b.)

7

3.2.2 LeSS Huge

LeSS Huge is meant to be used when development project has more than eight teams.

LeSS Huge basically means that LeSS is scaled up even further by stacking multiple

smaller LeSS frameworks on top of each other (Image 4). (The LeSS Company B.V.

2016c.)

Image 4. LeSS Huge Framework (The LeSS Company B.V. 2016c)

In LeSS Huge there’s still only one Potentially Shippable Product Increment but couple

changes in roles are needed. Every stacked up LeSS Framework has a product owner

called Area PO and above them is a Product Owner who oversees the whole project.

There is no single backlog created for the whole project, instead every stacked up LeSS

has their Area Backlog. And understandably with more people in the project, organizing

and having meetings require some changes. (The LeSS Company B.V. 2016c)

3.3 Spotify “Model”

“Spotify's approach to agile scaling is not really about our process or structure, it's all

about the culture” (Kniberg). Spotify’s scaling method may not be the easiest one to adopt

in other organizations but is still worth discussing about. Although the described scaling

method to agile in Spotify was actually never meant to be a framework, just a depiction of

their agile journey’s present shape. (Kniberg.)

8

Spotify Model’s uniqueness lies in their principle of having very few mandatory practices

or hard rules, and their pursuit of aligned autonomy. With aligned autonomy in practice

they believe it’s possible to keep the autonomy of teams, but still stay collaborative and

continue working to achieve the same high-level goal. Spotify Model also aims to have

short interval between releases to collect user data more often, so that developers can in-

novate and improve the product faster. Another important thing is not to utilize failure

avoidance but to invest in failure recovery. (Kniberg.)

Image 5. Scaling Agile @ Spotify with Tribes, Squads, Chapters & Guilds (Kniberg &

Ivarsson 2012)

Spotify’s Scaling Agile method has its own way of addressing and organizing its workforce

(Image 5). At Spotify a development team is called a Squad. Squads are self-organizing

and get to decide themselves how they want to work. Though they do have their own

long-term mission to take responsibility for. As the picture above shows, a Tribe consists

of multiple squads. All the squads in the same tribe work in a related field. Chapter is

made of people that have similar skillsets and are working in the same tribe in similar ca-

pacity. Guild is like a community with people that share same interests. They share things

like knowledge, tools and code with each other. (Kniberg & Ivarsson 2012.)

9

4 Existing Studies on Agile Scaling

In this section I will go through case studies involving the aforementioned frameworks. It

will give a more in depth view on how these frameworks function and make it easier to an-

alyse the different features and practices they implement. Worth mentioning is that the ref-

erenced material involving the Spotify Model is not really a case study, and is made by

Henrik Kniberg, who is one of the many people behind the realisation of Spotify Model.

But I deem it beneficial for this thesis because it gives very detailed depiction of how the

method works. Besides there’s not much case studies available involving Spotify Model.

4.1 SAFe at Nordea

In 2014 Nordea decided to improve their digital banking services and concluded that

adopting agile development methodology would be the best way to achieve it. To provide

coaching and training during the adoption and development process they chose to use the

services of Ivar Jacobson International. So in that year Nordea was introduced to SAFe in

a two-day session with management and stakeholders. (Ivar Jacobson International 2015,

1.) Total of 80 people from two existing delivery streams formed Nordea’s Agile Release

Train that was composed of five development teams, a system team and several other

roles (Ivar Jacobson International 2015, 2).

Using simulation-based training and exercises they realized that the proper way to start

would be on a single program. The training was also useful for Program Increment plan-

ning by helping teams to prepare program backlog better and giving Release Train Engi-

neers (RTEs) support in practical matters concerning the PI planning. (Ivar Jacobson In-

ternational 2015, 2.) According to the Head of Test & Quality Management Maria Lloyd of

Nordea’s Digital Banking in the Nordics, all this increased their efficiency by helping every-

one understand the work cycle and thereby know what to do and how to do it (Ivar Jacob-

son International 2015, 3).

10

4.1.1 Development Process

Development was done in 10 week cycles. One cycle, called Program Increment, con-

sisted of a release planning session, four development iterations, an innovation iteration

and a planning iteration. Each increment was planned in a Nordea RTE facilitated PI plan-

ning session with the teams and key stakeholders present. There was also a consultant

from Ivar Jacobson International (IJI) attending to provide support. (Ivar Jacobson Interna-

tional 2015, 2.) To complete the first PI planning IJI provided the needed knowledge in a

training session. All members participated in the first and second PI planning to identify

interdependencies, so that they could establish objectives for team-level and program-

level increments. (Ivar Jacobson International 2015, 3.)

After that with each PI they continued to evolve and learn. They structured their work in a

way that it could be planned without creating premature work breakdown structure or big

upfront designs. They also created the backlog on their own instead of getting a list of

tasks and features. In PI sessions they identified dependencies with a proper plan and

broke down the features themselves. All in all, the delivery system greatly improved. (Ivar

Jacobson International 2015, 3.)

The management also became agile, and now on the management level they have a pro-

gram management team and a program portfolio management board, with both having

their own backlog. They also have a program management portfolio on a program level.

Even though their backlog may differ from that of a normal agile team’s, they still work

similarly to the development teams. (Ivar Jacobson International 2015, 4.)

4.1.2 Learning Points

One big benefit of PI sessions was that it helped identify dependencies between teams.

And overall implementing agile principles in practice was enabled by PI sessions. At the

beginning when the two delivery streams were combined to form the release train, teams

were frustrated and didn’t work in unison. It got working only after the first PI planning ses-

sion. They learned that you need people to elaborate the features and transfer knowledge

to the teams so that they can pick the required features when needed. (Ivar Jacobson In-

ternational 2015, 4.)

The program and SAFe implementation was a success and inspired Nordea to scale agile

in other departments too. Maria Lloyd believes that they can now confidently continue for-

ward and give best possible support to the agile teams, and deliver value to customers.

(Ivar Jacobson International 2015, 4.)

11

4.2 LeSS at Nokia Siemens Networks

When first discussions about building a high capacity network gateway for Nokia Siemens

Networks were happening in 2007, it was decided to choose LeSS as a framework to use.

There were two major risks is this project and LeSS seemed to be a suitable way to man-

age this. The risks were that it was a completely new technology and had never been

used in the company before that, and learning based feature content needed to be

adapted throughout the process. Choosing a framework capable of agile development

proved advantageous in the first few months already. They realized that the broadband

network gateway in development needed to be changed for a mobile network that enabled

2G/3G and long-term evolution (LTE), so the flexibility of agile framework made the

change of direction go smoothly. (Nyman 2015.)

Even though it was easy to choose LeSS as the framework to use in development, it

needed hard work to adopt in practice. Convincing everyone involved that the wanted re-

duction in cycle time and increase in flexibility would be achieved by preferring feature

teams over component teams was the first challenge. Forming the teams had some diffi-

culties at first because the people thought that feature teams lead to a bad software qual-

ity. But after some discussion with an agile coach present they agreed to try feature teams

and see what happens to the quality of the software. Scrum Masters were chosen from

the teams after they realised that the managers chosen before as Scrum Masters were

not capable of this role. Instead the managers started to help in other ways by working as

free agents. (Nyman 2015.)

After that the development began. They started with two teams, and they had people with

traditional waterfall experience and people with scrum experience. But having people with

two different backgrounds in the teams created arguments within teams and even more so

between teams. They had difficulties to agree on how the architecture and infrastructure

should be built because of many dissenting opinions. Even though they managed to help

the situation a little by having a shared design session, there still was so many moving

parts that the teams actually created conflicting solutions. The positive outcome was that

by trying to convince the other team that their solution is better, they actually covered mul-

tiple possible ways to design the architecture. Other thing they had difficulties in the begin-

ning was that the teams felt that they couldn’t plan things enough. But the thing was that

the development issue they had couldn’t be solved with any amount of planning; the only

option was the work, and design and plan when new issues arise. (Nyman 2015.)

12

4.2.1 Implementing LeSS Framework

In the first LeSS implementation they had a joint planning session held with both teams

present for both Sprint Planning 1 and 2. The collaboration between teams helped defin-

ing the architecture and solve dependencies. Each team had their own Sprint Backlog and

those were managed by visualizing it on a wall. This ‘cards on a wall’ method proved pop-

ular and all later teams adopted it too. At first Product Backlog Refinement (PBR) was

done by the teams themselves during the sprints. But even though they could do this

since requirements and priorities were clear in the beginning, there were conflicts between

teams because they lacked collaboration in refinement. Later they changed the practice

so that each team would meet the Product Owner and have a proper PBR session. At the

end of a sprint they arranged a Sprint Review with both teams involved, individual Retro-

spectives for each team and a common Overall Retrospective with both teams. (Nyman

2015.)

When they added the total number of teams to four, they faced challenges again because

the people were transferred from a traditional organization. For several sprints one team

couldn’t produce anything that could be considered as done, because they refused to

adopt the new testing tools and the new way of doing things. It was acknowledged that

there should have been more training and reasoning provided to the people in the ways of

how iterative development works. Around this time, they also added people to do the doc-

umentation who worked with the teams directly during sprints. (Nyman 2015.)

Continuing after integrating the new teams, the project-wide Sprint Planning 1 and team-

level Sprint Planning 2 were held in the same place with all team members present. This

was made to increase collaboration and relieve the decision process in the planning.

Sprint Reviews went okay, even with six teams, but the Overall Retrospective was a big

challenge. Improvements were happening slowly because teams were inefficient and

managers lacked real focus and often immediate control of the improvements. (Nyman

2015.)

13

4.2.2 Moving to LeSS Huge

At the next phase they started to add teams at a second site. They wanted to speed up

the development with more teams because the market demand was emerging for the

product. They chose to use a subcontractor to provide the teams, and then trained them

by putting them to work as team members in the local teams. Both locations had the same

coding and testing rules in practice. The biggest challenge was the communication be-

tween the locations. They decided to use a Product Owner proxy to keep the misunder-

standings in requirements at a minimum. (Nyman 2015.)

At this phase they saw that one Product Owner became burdened too much, so they

started to categorize teams to work in specific requirement areas so that Product Backlog

items could be categorized too. It was a step in the right direction, although they did real-

ise later on that they should have put more teams in a particular area, not just two teams

for example. The Product Owner was having trouble getting more detailed view on what

each team was doing, so they tried to add some Area Product Owners but without suc-

cess. It failed mainly because the Product Owner didn’t want to give anyone else much

authority to make decisions. So they spent considerable amount of time trying to convince

specification people in product management to work with the teams. They ended up in a

situation where teams would work with several feature experts corresponding to their fea-

ture area. (Nyman 2015.)

At this point, the Sprint Planning 1 was already working well. Since Product Backlog Re-

finement was done properly with the feature experts, there only had to be a few represent-

atives from every team present. But by the time there was more than eight teams on one

site, it started to feel too heavy to have only one big Sprint Review. So they changed it to

a series of smaller and shorter meetings. Product Owner and feature experts would visit

every team in turn, and they would present what they had done. And other teams could

follow the reviews that they were interested in. Product Owner proxy did the review for the

remote teams in a separate event and others followed it using teleconferencing. (Nyman

2015.)

14

4.2.3 Structure and Process Thereafter

Eventually they got to over 20 teams. Most of those teams are developing and document-

ing features, but they also have some teams in supporting roles like Continuous Integra-

tion System (CIS) team. Some other examples include teams that concentrate on things

like coaching and different kinds of testing. Most of the managers that were working as

free agents before actually formed a team and started to take work from the Product

Backlog, which worked because most of the managers had a strong background in soft-

ware development. (Nyman 2015.)

Even though a few managers – that didn’t want to be in the development team – focused

on Scrum Master management, there was still some traditional project managers that

didn’t really have anything to do. They sometimes helped Product Owner and helped re-

move impediments, but mostly they just had free time. (Nyman 2015.)

And although the overall LeSS adoption worked, they couldn’t apply it to the whole organi-

zation. It worked on that project and it changed the lowest level of the organization, which

now consists of feature teams, but the first level and above still remained the same with

traditional team managers and so on. (Nyman 2015.)

4.3 Spotify Engineering Culture

In 2008 when Spotify was first launched the organization basically just used Scrum. But

over time when it grew and more and more teams were added, some of the Scrum prac-

tices began hindering the development process. And so changes needed to happen. For

them agile and agile principles were more important than Scrum and specific practices, so

they decided that rules can be used as a starting point, but they can be broken if needed.

So autonomy became their main force to move forward. (Kniberg 2014a.)

Earlier it was mentioned how Spotify consists of autonomous squads. Naturally those

squads do have some limits in what they can do, like the overall mission and product

strategy and negotiated short term goals. But within those limits they can do pretty much

anything they want and decide themselves what to build and how. The autonomy keeps

the teams motivated and fast. It also minimizes the bureaucracy so scaling becomes eas-

ier. But squads also must be aligned with other squads, product strategies and company’s

priorities. An individual squad can’t be considered more important than Spotify’s overall

mission, so that’s where aligned autonomy comes into place. (Kniberg 2014a.)

15

4.3.1 Structure and Architecture

Spotify focuses on keeping themselves as a community and try to avoid hierarchical struc-

tures. That’s the reason for the aforementioned Tribes, Chapters and Guilds. In addition to

these the squads are divided in three different types with their own specialty; Client App

Squads, Feature Squads and Infrastructure Squads. This came to be when they decided

to change the original desktop client’s architecture to support decoupled releases. Now

their software consists of over a hundred separate systems, and each squad can easily

release their product directly. That’s possible because each system is coded and de-

ployed independently and thus needs less synchronization with other squads and prod-

ucts. To make this even more easier they have Internal Open-Source Model in practice

and everybody can edit every system. This of course needs good communication, collabo-

ration and more importantly a culture of peer code review. (Kniberg 2014a.)

Regardless of the different types of squads none are supposed to serve others by putting

code into production for others etc. The idea is to avoid handoffs and instead follow the

Self-Service Model by enabling others and give them support to make it easier for them to

release themselves. To support this and make it easier to manage and sync the releases

they use Release Trains and Feature Toggles. Every application has a release train that

departs regularly at predefined times. The idea is to keep releases small and frequent, so

it happens routinely and easily. Release train releases all the features and feature toggles

are used to hide the unfinished ones. Unfinished features are released and hidden so that

it will shed light on integration problems that can then be addressed and fixed. It will also

make it easier to identify and find other problems and bugs when testing the application.

(Kniberg 2014a.)

4.3.2 Development Environment

Spotify keeps their environment fail friendly where fast recovery from failure means more

than avoiding the failure. The idea is that you are bound to make mistakes when building

something great so it’s better to fail fast and learn from it. The learning part in that is very

important so failing is generally followed by a post-mortem. Only when all the learnings

from the failure are captured so that the problem can be avoided in the future, can the in-

cident ticket be closed. “Fix the process not just the product.” And on top of that all squads

talk about what is working well and what needs to be improved in retrospectives held

every few weeks. All this relates to Spotify’s drive to promote a ‘culture of continuous im-

provement’. (Kniberg 2014b.)

16

On the other hand, even though failing is not frowned upon, the failing has to happen non-

lethally or it might be the last thing they ever make. That’s why the ‘concept of limited blast

radius’ is strongly promoted. The decoupled architecture supports this environment; even

if a mistake is made it normally only affects a small portion of the system and the rest will

stay operational. And because there’s no handoffs the squad’s end to end responsibility

generally means that the problem gets fixed fast. Another thing to limit the impact of

something going wrong is that it only affects a small percent of all users, because new

features are rolled out step by step and rigorously tracked. So the limited blast radius ena-

bles squads to experiment a lot and thereby learn fast, when they don’t have to use so

much time trying to control and predict all possible risks. (Kniberg 2014b.)

So Spotify’s approach to product development is based on principles of lean start-up. But

because building the wrong thing is always a bad thing, the risk must be taken into ac-

count. Spotify tries to mitigate this risk by informing themselves with research when decid-

ing if new proposed deliverable should be built. They try to answer questions like does us-

ers want it, what are the benefits of it, how will it impact the user behaviour etc. If proto-

types give good feedback from users and it seems like the product is worth building, they

make a Minimum Viable Product (MVP). Then the MVP is tested with a small part of the

users and monitored closely. The squad improves and modifies the product until they see

what they want from the user data. After that it can be gradually rolled out to all users.

This process guarantees that only useful products and features are released because

non-successful products are simply not rolled out. (Kniberg 2014b.)

Sometimes there’s things like marketing events or partner integrations where making de-

livery commitments are needed, but overall Spotify focuses more on innovation than pre-

dictability and strict schedules. That way squads can operate more freely and concentrate

more on delivering value and new ideas. Having new ideas and trying out stuff is encour-

aged by letting everyone have hack time to experiment, build and think up anything they

want. It’s a fun way to learn new things and once in a while there’s something truly great

that comes out of it. They also organize companywide ‘Spotify Hack Week’ twice a year to

endorse this behaviour. All in all, Spotify has a very experiment-friendly culture. (Kniberg

2014b.)

17

4.3.3 Hardships and Challenges

Spotify’s culture is also waste-repellent which means that if something works, keep it, but

if something hinders the work get rid of it. They also consider big projects a waste, but

that’s not something you can totally get rid of. Sometimes the benefits of a big project are

possibly more worthwhile than avoiding the risk. In those cases, Spotify uses Progress

Visualization, Daily Sync Meetings and Demoing the product every week or so to reduce

risk and waste. But that’s still an area where they are experimenting a lot and need to im-

prove. (Kniberg 2014b.)

One other thing they face challenges is growth pain. As the company grows it needs to

balance between chaos and bureaucracy. Agile mind-set and waste-repellent culture are

helping them to find the balance and figure out what’s the least amount of bureaucracy to

stay out of chaos. The fast growth also creates lots of possible problems when today’s

seemingly great solution causes a new problem tomorrow. But even though Spotify has a

long list of problems and pain-points, it’s not that big of an issue because they have peo-

ple who actually do something about it and problems get fixed quite fast. “Healthy culture

heals broken process.” (Kniberg 2014b.)

18

5 Discussion

The first thing that I realised when figuring out these frameworks was that it’s worth going

through at least couple different ones before deciding which one is the best suited for you.

As I started with the Spotify Method and to be honest at first I was really impressed and

felt that it would be the best method by far. But as I learned more about the other frame-

works, I started to see the whole picture and how there’s actually lot in common between

all these frameworks. So I think that you actually have to find the differences that matter

and that way decide the right one to implement in your project. I think that Henrik Kniberg

said it well in the presentation about SAFe at LEGO he and Lars Roost gave in GOTO

Conferences 2015. He explained that when people learn little bit about something they are

fast to form opinions about it, but that doesn’t necessarily mean that those opinions are

based on facts or experiences. So you have to be careful when you are in the beginning

of a learning curve and eager to gain interest and form opinions, in other words when you

are at the top of ‘Mount Stupid’ as Kniberg (& Roost 2015) named this point in his graph.

5.1 Comparing the Frameworks

After writing this study and exploring the ASK matrix I would say that the biggest differ-

ence between Spotify Model and the other two frameworks (LeSS and SAFe) is that

Spotify doesn’t really have that many specific practices and procedures. It’s more about

the autonomy and people deciding themselves what to do and how to do it. SAFe and

LeSS are little bit more alike, but there is differences between those two also. SAFe is

more rigid than LeSS or Spotify Model. But SAFe also has more detailed information and

support available, maybe due to it being little bit better known than LeSS and especially

Spotify Model. SAFe and LeSS being proper frameworks are offering pretty extensive and

comprehensive training and coaching. They also have certification programs. When in the

case of Spotify Model, you pretty much have to do it on your own.

In their ASK matrix Dolman and Spearman state that SAFe is typically more expensive

than any other framework mentioned, but I would argue that it is extremely hard to com-

pare the possible expenses between the frameworks because of the possible variation in

implementation environments and means. Though it is stated that SAFe is more focused

in large and enterprise scale projects and the other frameworks tend to be implemented in

a little bit smaller scale.

19

5.2 Implementation Phase

One of the most important thing I gathered from this study is that whichever framework

you choose to implement you have to have proper coaching and guidance in the process.

In the case of Nordea’s SAFe implementation Maria Lloyd mentions in the Ivar Jacobson

International’s (2015) report that the involvement of IJI in the process was of great help to

them. And secondly Ran Nyman (2015) acknowledges in his report that they had in-

stances where they didn’t provide sufficient training and knowledge, and those proved to

be challenging phases in the process. Coaching is also an important role in the Spotify

Model.

Another important thing to consider is the organizational structure and how widely you

want the organization to change. Changing the methodologies and development practices

in a large organization on a big scale won’t happen just like that, it could be very hard, es-

pecially if the background is in the traditional waterfall development. And I think this re-

lates to what Kniberg said in his email (‘Spotify Author Verbatim Feedback’) to Dolman

and Spearman how it would be hard to transfer Spotify’s approach across organizations.

In his blogpost Kevin Goldsmith (2014) goes through some important points what to keep

in mind when thinking of applying Spotify’s method in other organizations. I do agree with

Goldsmith that if you want to implement Spotify Model in whole it requires a certain type of

environment, like already accustomed in agile methodologies and willing to give autonomy

to teams, but personally I don’t see why you couldn’t incorporate practices and processes

from a couple different frameworks, including Spotify’s Model, and in a way make your

own framework. But is it worth it, when there’s already fully functional frameworks availa-

ble? On the other hand, frameworks could also be looked at being a big toolbox for prod-

uct development, just like Kniberg and Roost (2015) described SAFe in their presentation,

so aren’t you going to modify the process anyway? I guess in the end it comes down to

how willing the organization is to change and their commitment to scaling agile, so the im-

plementation process needs to be planned and adjusted accordingly.

20

5.3 The Conclusion

To conclude I would say that agile scaling already has an important role in software devel-

opment and it will grow even more in the future. I believe that smaller organizations and

especially start-ups understand the importance of agile and for them it might be easier so

scale in the future. The bigger challenge lies in large organizations; either they don’t real-

ise how important and useful agile could be or they might have difficulties to convince the

key personnel to commit to the change.

To summarise the three frameworks covered in this thesis: SAFe is suited for large enter-

prises as it provides extensive guidance and coaching by being already well known in de-

velopment circles. LeSS is a good choice for a medium size or a big organization as it will

support and cope with the growth of the organization. Though SAFe and LeSS could be

as good as any other choice concerning smaller companies, I would say that implement-

ing Spotify Model in a smaller company or especially in start-up as early as possible could

prove to be extremely beneficial in the long run.

There are more frameworks to scaling agile and this study was just a scratch in the sur-

face, but hopefully this raised some interest in you as a reader and helps cultivate some

ideas and questions for further analysis and studying. Personally for me this was an inter-

esting learning experience and definitely helped me to understand scaling agile better.

21

References

Dolman, R. & Spearman, S. 2014a. Comparing Agile Scaling Frameworks. URL:

http://www.agilescaling.org/home.html. Accessed: 25 October 2016.

Dolman, R. & Spearman, S. 2014b. ASK: Agile Scaling – The Matrix. URL: http://www.ag-

ilescaling.org/ask-matrix.html. Accessed: 21 November 2016.

Goldsmith, K. 2014. Thoughts on Emulating Spotify’s Matrix Organization in Other Com-

panies. URL: http://blog.kevingoldsmith.com/2014/03/14/thoughts-on-emulating-spotifys-

matrix-organization-in-other-companies/. Accessed: 16 November 2016.

Ivar Jacobson International 2015. Nordea – A Uniform Heartbeat with Help from Scaled

Agile Framework® and IJI. Ivar Jacobson International SA. URL: http://scaledagileframe-

work.com/nordea-case-study-2/. Accessed: 15 November 2016.

Kniberg, H. Spotify Author Verbatim Feedback. URL:

https://app.box.com/s/bqcui8p60fn33bs60e2o. Accessed: 16 November 2016.

Kniberg, H. 2014a. Spotify Engineering Culture – Part 1. URL:

https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/. Accessed: 26 Oc-

tober 2016.

Kniberg, H. 2014b. Spotify Engineering Culture – Part 2. URL:

https://labs.spotify.com/2014/09/20/spotify-engineering-culture-part-2/. Accessed: 27 Oc-

tober 2016

Kniberg, H. 2015. No, I didn’t Invent the Spotify Model. URL:

http://blog.crisp.se/2015/06/07/henrikkniberg/no-i-didnt-invent-the-spotify-model. Ac-

cessed: 26 October 2016.

Kniberg, H & Ivarsson, A. 2012. Scaling Agile @ Spotify with Tribes, Squads, Chapters &

Guilds. URL: https://dl.dropboxusercontent.com/u/1018963/Articles/SpotifyScaling.pdf. Ac-

cessed: 25 October 2016.

Kniberg, H. & Roost, L. 2015. Is SAFe Evil? URL:

https://www.youtube.com/watch?v=TolNkqyvieE. Accessed: 14 November 2016.

22

The LeSS Company B.V. 2016a. Introduction to LeSS. URL: http://less.works/less/frame-

work/introduction.html. Accessed: 18 October 2016.

The LeSS Company B.V. 2016b. LeSS Framework. URL: https://less.works/less/frame-

work/index.html. Accessed: 25 October 2016.

The LeSS Company B.V. 2016c. LeSS Huge. URL: https://less.works/less/less-huge/in-

dex.html. Accessed: 25 October 2016.

Nyman, R. 2015. Developing a High Capacity Network Gateway with LeSS. URL:

https://www.infoq.com/articles/network-gateway-less. Accessed: 15 November 2016.

Scaled Agile, Inc. 2016a. Welcome to Scaled Agile Framework® V4.0! URL:

http://scaledagileframework.com/about/. Accessed: 3 November 2016.

Scaled Agile, Inc. 2016b. SAFe® 4.0 Introduction – Overview of the Scaled Agile Frame-

work® for Lean Software and Systems Engineering. Scaled Agile, Inc. Boulder. URL:

http://scaledagileframework.com/videos-and-presentations/. Accessed: 7 November 2016.

Weston Rowell, R. 2016. How to Scale Agile for Your Enterprise. URL:

https://www.youtube.com/watch?v=gmz4yF-XHUA. Accessed: 19 October 2016.

23

Appendices

Appendix 1. Agile Scaling KnowledgebaseTM (ASK) Decision Matrix – Custom Crite-

ria

Appendix 2. Agile Scaling KnowledgebaseTM (ASK) Decision Matrix – Approach

Comparison

24

