

Cross-platform mobile software development with React
Native

Janne Warén

 Bachelor’s thesis

 Degree Programme in ICT

 2016

 Abstract

 9.10.2016

Author
Janne Warén

Degree programme
Business Information Technology

Thesis title
Cross-platform mobile software development with React Native

Number of
pages and ap-
pendix pages
27 + 0

The purpose of this study was to give an understanding of what React Native is and how it
can be used to develop a cross-platform mobile application.

The study explains the idea and key features of React Native based on source literature.
The key features covered are the Virtual DOM, components, JSX, props and state.

I found out that React Native is easy to get started with, and that it’s well-suited for a web
programmer. It makes the development process for mobile programming a lot easier com-
pared to traditional native approach, it’s easy to see why it has gained popularity fast.

However, React Native still a new technology under rapid development, and to fully under-
stand what’s happening it would be good to have some knowledge of JavaScript and per-
haps React (for the Web) before jumping into React Native.

Keywords
React Native, Mobile application development, React, JavaScript, API

Table of contents

1	 Introduction ... 1	

1.1	 Goals and restrictions ... 1	
1.2	 Definitions and abbreviations ... 2	

2	 Background ... 4	
2.1	 JavaScript ... 4	
2.2	 React .. 5	

3	 iOS and Android development with React Native ... 6	
3.1	 Rendering ... 6	
3.2	 Components ... 7	
3.3	 JSX and styling ... 8	
3.4	 Behaviour of the application: props and state .. 9	

4	 Case study: A React Native application .. 11	
5	 Backend Ruby on Rails server application ... 13	

5.1	 Database design .. 13	
5.2	 API specification ... 14	

6	 iOS application .. 16	
6.1	 Hello world .. 16	
6.2	 User registration and login ... 18	
6.3	 Viewing available workers .. 21	

7	 Results and conclusions ... 24	
8	 Sources ... 26	

1

1 Introduction

Global smartphone market is heavily dominated by two major operating systems, Google's

Android and Apple's iOS. In Q2 of 2016, 87.6% of smartphones shipped worldwide on Q2

2015 were Android devices, and 13,9% were iOS Devices. That doesn’t leave much room

for competitors like Windows Phone. (IDC 2016.)

Developing applications for iOS or Android devices normally requires one to learn the lan-

guage and development tools for each platform. For iOS development one has to learn

the Objective-C programming language and be able to use the Xcode development envi-

ronment. For Android, one needs to learn Java and use the Android Studio environment.

(Sansonetti, 2015.)

React Native is an open source JavaScript framework for building mobile applications for

both iOS and Android devices. It was open-sourced on March 2015 by Facebook, and it's

based on the React framework published a few years earlier. (Facebook 2015.)

1.1 Goals and restrictions

With this thesis, I’m trying to answers the following questions:

• What is React Native and how does it work?
• How to develop a cross-platform mobile application with React Native?

The goal is to create a fully working mobile application with React Native, complete with a

working backend server using Ruby on Rails. This thesis focuses strongly on the front-end

side and the API is just assumed to work flawlessly the way it's described to.

I chose React Native because alongside with React it has been gaining popularity fast and

it’s backed up by Facebook, one of the biggest players in tech industry. Originally I started

this thesis with a different technology called RubyMotion, which is a framework making it

possible to develop both iOS and Android applications using the Ruby programming lan-

guage.

After trying RubyMotion out and looking at the popularity of these technologies, I thought

it’s safer to go with React Native for multiple reasons. First, I trust React Native to work

properly and even just to exist in the future a lot more than RubyMotion. Second, it’s a skill

looked for by many employers in the industry, whereas RubyMotion is a very niche tech-

nology and probably there are not many RubyMotion jobs available even worldwide. Third,

2

if this project continues later with multiple developers, it will be easier to find React Native

developers than RubyMotion developers.

Some other options would have been hybrid technologies like Cordova, Phonegap or

Xamarin, but I was personally most interested in React Native so I chose that.

I have never programmed with JavaScript before, so it will be interesting to see how fast

and easy is React Native to get started with, and if you can actually do something useful

without properly learning pure JavaScript first.

This thesis is written for readers with a strong background in programming, either for the

Web or mobile platforms. It’s not meant to be a beginner’s step-by-step guide to get

started with React Native.

Majority of the source material used in this thesis are electronic Amazon Kindle books that

don’t have page numbers, for this reason there are no page numbers listed when referring

to sources.

1.2 Definitions and abbreviations

JavaScript is the programming language of the Web. Originally used to provide visual ef-

fects and functionality to websites in desktop browsers, today JavaScript is used every-

where for anything, even in server-side processing.

ES2015 or ECMAScript 2015 is the standardization of JavaScript, approved by ECMA in

2015. It’s the first is a significant update to the language since 2009.

MVC (Model-View-Controller) is a software architectural pattern, where given software is

divided to three pars that are connected to each other. Model is the part closes to the da-

tabase layer, containing the business logic and the actual data of the application. View is

the layer closes to the user, displaying the data to the user. Controller is the component in

between, taking input from the user to the model or the view.

Java is the programming language Google has used to build its mobile operating system

Android. It’s a general-purpose language supporting object-oriented programming, con-

currency and classes with inheritance. Traditional mobile development for Android is done

using Java.

3

Objective-C is the programming language Apple has used to build its mobile operating

system iOS. Traditional mobile development for iOS is done using Objective-C or Swift.

Application programming interface (API) is a common layer of accessing software

components. It defines how components should interact with each other and makes devel-

oping applications easier.

Ruby is a dynamic, object-oriented open source programming language, focusing on sim-

plicity and productivity.

Ruby on Rails is an open source framework for developing web applications, written in

Ruby.

HTTP REST (Representational state transfer) API is an API that uses the HTTP meth-

ods GET, PUT, POST and DELETE to fetch and manipulate data.

DOM (Document Object Model) is a representation and a programming interface for

HTML and XML documents, implemented by browsers. The DOM provides a way of ac-

cessing and manipulating documents with programming languages, most commonly Ja-

vaScript. (Mozilla Foundation, 2016.)

CSS (Cascading Style Sheets) is a language that describes how HTML elements should

be displayed.

4

2 Background

React Native is powered by the JavaScript programming language and the React JavaS-

cript library. Before jumping into mobile development with React Native, this chapter gives

general information about the technologies behind React Native.

2.1 JavaScript

JavaScript is the world’s most widespread programming language. It’s used on most mod-

ern websites and supported by all modern web browsers in personal computers as well as

gaming consoles, mobile phones and tablets (Flanagan 2016).

Together with HTML and CSS, JavaScript is one of the three key components of web.

HTML is used to specify the contents of a web page, CSS is used to specify the appear-

ance web pages and JavaScript is used to specify the behaviour of web pages (Flanagan

2016).

JavaScript is an untyped and interpreted high-level programming language, suited for

functional programming and object-oriented programming (Flanagan 2016). It’s easy to

learn and use partially, but much harder to learn even adequately (Simpson 2015).

The future of JavaScript that is already officially part of the standard, called ES2015 (or

ES6) is used throughout this thesis. Web browsers or other devices like mobile phones

are generally not supporting ES2015 yet but React Native ships with ES2015 support

through the use of BabelJS. (Facebook 2016.)

ES2015 is the first significant update to the JavaScript standard since the previous version

ES5 was ratified in 2009. It adds important new features to the language like classes and

inheritance, arrow functions and promises. (BabelJS 2016.)

Pure JavaScript can be used to program web pages and applications, but typically JavaS-

cript frameworks are used to abstract complex logic, achieve cross-browser compatibility

and speed up development. (Graziotin & Abrahamsson 2013, 334.) Most popular front-

end JavaScript frameworks today are AngularJS, EmberJS, ReactJS, and BackboneJS

(AppDynamics 2016).

5

2.2 React

React is a JavaScript library, used for building user interfaces. In the traditional MVC

(model-view-controller) architecture it could be thought of as the V (view layer). React was

built by Facebook to solve one problem: building large applications with data that changes

over time. (Facebook 2016.)

To solve the problem, React was built to be declarative. This means that you define the

user interface (UI) once, and when the applications state changes, React actually reacts

to the change and rebuilds the UI. (Stefanov 2016.)

React is using a component based architecture. This means solving problems by creating

components, and breaking those components into smaller and simpler ones when they

get too complex. A component in React is similar to function in JavaScript: it always gen-

erates output when it's called. Basically it generates the HTML code that will eventually

get displayed in the browser. (Code School 2016.)

To achieve high performance, React keeps track of an in-memory Virtual DOM and uses

Virtual DOM diffing to minimize changes to the actual browsers DOM. This enables

browsers to only update elements that have been changed, instead of updating the whole

DOM. The process is pictured in Figure 1. (Code School 2016.)

Figure 1. Rendering with the Virtual DOM in React

6

3 iOS and Android development with React Native

React Native is an open source JavaScript framework for building mobile applications for

iOS and Android devices. It's based on React, a JavaScript framework for building web-

sites for traditional browsers. (Eiseman 2016.)

React Native provides an easy developer experience compared to traditional mobile de-

velopment. When developing an application, you can instantly see changes without build-

ing the application first. You can also use your favourite tools like any text editor and ter-

minal, and the developer tools in Chrome or Safari. You are not forced to use Xcode for

iOS development or Android Studio for Android development. However, when developing

for iOS, the development machines still needs to be an Apple OS X computer. (Eiseman

2016.)

With React Native it's easy to use the same code for both iOS and Android applications.

For some applications some functionality needs to be platform-specific, but it's possible to

achieve even 87% code reuse on real-world applications like for example the Facebook

Ads Manager. (Eiseman 2016.)

The most notable drawback with React Native is that it's still new technology, meaning it's

still in progress and lacking some documentation, but often the benefits of writing both An-

droid and iOS applications in JavaScript outweighs the drawbacks, so it's a good solution

to look into. (Eiseman 2016.)

This chapter introduces and explains the core features of React Native: rendering, compo-

nents, JSX, state and props.

3.1 Rendering

The Virtual DOM of React is usually thought of as a performance optimization technique,

but it's also much more than that. It's an abstraction layer between the code describing

how the application should look, and the actual rendering of those elements. This is called

the "bridge", providing an interface from React Native to the host platform's native APIs.

React’s rendering to the browser's DOM was explained previously in Figure 1. React Na-

tive’s rendering is pictured here in Figure 2: instead of the browser’s DOM, React Native is

calling iOS's Objective-C APIs or Android's Java APIs to render native elements via the

bridge. (Eiseman 2016.)

7

Figure 2. Rendering to different platforms with the Virtual DOM in React Native

Because React Native is using the native iOS or Android APIs, applications developer

with React Native look and feel exactly like real native iOS or Android applications, only

developed using JavaScript. React Native also runs in a different process than the one

rendering the UI, so applications feel fast and responsive. (Eiseman 2016.)

React Native currently works on iOS and Android, but because of the Virtual DOM and the

abstraction layer it provides, it could run on other platforms too, just by writing another

"bridge" component for the platform. (Eiseman 2016.) In fact, Facebook and Microsoft an-

nounced upcoming support for Windows at the F8 Conference in April 2016. React Native

will get Universal Windows Platform support through a new open-source framework,

which could even mean Xbox One and and HoloLens support. (Microsoft 2016,)

3.2 Components

Like React for the Web, React Native uses a component-based architecture and all code

lives inside the components. (Eiseman 2016.)

Components are reusable function-like objects that are used to describe the native com-

ponents that are displayed. React Native components always have a render method,

some properties and a state. (Holmes & Bray 2015.)

React Native offers both cross-platform and platform-specific components. For example,

the iOS and Android applications can both use a React component named <View>, which

gets rendered as UIView on iOS and as a View on Android. Some components are only

available for a specific platform, for example the <DatePickerIOS> renders the standard

date picking component for iOS, while on Android <DatePickerAndroid> has to be used.

(Eiseman 2016.)

8

React Native has variety of components similar to basic HTML components that are used

when developing with React for the Web or with pure HTML for the web in general. Most

common HTML components, their use cases and React Native counterparts are listed in

Table 1. (Eiseman 2016.)

Purpose HTML component React Native component

Dividing content <div> <View>
Displaying an image <Image>
Paragraph of text , <p> <Text>
Lists, ordered or unor-
dered

, , <ListView>

Control elements <a>, <button> <TouchableHighlight>

Table 1. HTML components and their corresponding React Native components

Components are created simply by creating a class that extends the React.Component

class, and has a render() method that returns JSX. The simplest example provided by

Holmes & Bray (2015) is pictured in Figure 3.

Figure 3. Creating a React Native component

3.3 JSX and styling

React Native views are written using JSX (JavaScript XML), an extension to the ECMAS-

cript standard. JSX combines both logic and mark-up into the same file. (Holmes & Bray.

2015.)

JSX is used to achieve separation of concerns, rather than separation of technologies.

This means that instead of having separate files for mark-up, styles and behaviour of com-

ponents, all that is combined into a single file for each separate component. (Eiseman

2016.)

9

React Native includes a simplified implementation of CSS for styling objects. Styles are

declared right inside the JSX file you’re styling, which enforces you to write modular styles

for your modular components, instead of having a global namespace for styles like in

CSS. (Eiseman 2016.)

Styles can be written in three different ways: inline, as plain JavaScript objects or with

Stylesheet.create. Both Eiseman (2016) and Holmes & Bray (2015) recommend

Stylesheet.create as the best choice, which makes each style declaration immutable

and guarantees styles will be loaded only once during the application’s lifecycle.

3.4 Behaviour of the application: props and state

Using props is a way of customizing and reusing React Native components. Props can be

used by referring to this.props inside the components render function, and then supply-

ing a prop with that name when using the component. (Facebook 2016.)

Props should be considered immutable and should never be modified directly inside the

component, instead they are used by adding an attribute to the component when calling it.

(Holmes & Bray, 2015.)

The following example in Figure 4 is using a props called name to display a greeting for

each different name. Props are used as a part of a simple <Text> component inside the

render –method (line 7) and then just supplied to the Greeting component as parameters

(lines 16 to 18).

10

Figure 4. Example usage of props (Facebook 2016.)

Props is what makes React Native so powerful, allowing users to invent any kind of reusa-

ble UI components they can imagine (Facebook 2016).

While props can be used to display static immutable data, state is a data type in React

Native used for data that is going to change over time. State is generally used by initializ-

ing the state in the components constructor, and then setting the state to anything at any

time, using a function called setState. (Facebook 2016.)

State is a good way to store any user input and can be used to keep track of any asyn-

chronous requests or events (Holmes & Bray 2015).

An example of this is a Blink component in Figure 5, initializing the state in the constructor

(line 7) and toggling it every 1000 milliseconds (lines 10-12). Based on the state of the

component, it’s either shown normally in a <Text> element (line 18), or not shown at all

(line 16). The example is using the ternary operator, so if (in line 16) the

this.state.showText is true, the operation evaluates to this.props.text, but if it’s

false, the operation evaluates to an empty string.

Figure 5. Example usage of state (Facebook 2016.)

11

4 Case study: A React Native application

As a case study for developing with React Native I'm building an application to share em-

ployees between employers. Working title for this project is balanco, derived from bringing

some balance of employees and their workloads between employers.

This topic was chosen I think there might be a market an application like this. I have per-

sonally witnessed small business owners reaching out to other business owners, asking if

they have an electrician or a plumber to loan for a while. One company might have too lit-

tle employees and too much work to do, and another one might have too little work and

extra people, being in the verge of laying off some employees. This situation could be bal-

anced out, if the business owners with extra workers and need for workers could just eas-

ily find each other’s and exchange workers temporarily.

The system consists of a backend application serving a HTTP REST API and a mobile ap-

plication. This thesis focuses mainly on the mobile application development process with

React Native, and the API is just assumed to work flawlessly the way it's described to.

The backend does most of the heavy lifting, so the responsibilities and features of the mo-

bile applications are actually quite small. It basically acts as a client to the API and allows

the mobile application to perform basic CRUD (create, read, update, delete) operations on

the resources. The backend is implemented as a Ruby on Rails application. This technol-

ogy was chosen simply because I have experience with it and I’m currently working as a

Ruby developer, using also Ruby on Rails almost daily.

The mobile application is supposed to have features like user registration and login, view-

ing and searching for available employees or needs, displaying the user’s own employees

and needs, and adding employees or needs. The application is designed to work only

when there’s an internet connection available on the device, no local storage is imple-

mented.

In order to focus on the basic goal of the thesis, some advanced but obvious features like

matching the existing needs of two different users, sending messages between the users

and push notifications were left out of the application.

12

As the development machine I’m using a MacBook Pro with OS X El Capitan (version

10.11.6). Prerequisites for doing React Native development on Mac OS X are the Home-

brew package manager and Apple’s own XCode IDE including command line tools. Actual

development tools used are Atom text editor and iTerm 2 terminal emulator.

13

5 Backend Ruby on Rails server application

On the backend side, a Ruby on Rails application is serving a HTTP REST API to the mo-

bile applications. Most of the business logic and all persisted data will be on the backend.

The backend application is responsible for:

• Managing users and their login credentials
• Sending confirmation e-mails to users registering
• Storing all user-submitted information

o User and company details
o Employees available for sharing
o Needs for employees

5.1 Database design

Based on the general requirements listed above, I designed a relational database model

to be used by the application. Having used a tool called MySQL workbench for designing

databases in the past, I decided to use that. The feature that really sets this tool apart

from others, is the ability to use “Connect to Columns” view when displaying relationships

between models, so it’s apparent which column is the key between two objects. Database

model is pictured in Figure 6 as an EER (Enhanced entity–relationship) diagram.

14

Figure 6. Relational database model of the application

This model has the companies table right in the middle, related to everything else. Com-

pany is the entity that has some free workers, or some jobs to be done what they need

more workers for, or both at the same time. Company also has one or more users and lo-
cations linked to it.

A worker is an actual person normally working for the user, that the user would now like

to rent to another entrepreneur for the right price. The workers table has columns related

to the availability, ability and cost of the worker.

A job is a need that an entrepreneur has for one reason or another. The jobs table has

columns related to the actual job what needs to be done, when, where and for which

price.

A user always belongs to just one company. The user table is used only for logging in to

the system, so it has the e-mail address and a password, but not much else.

A location is the physical address where the available worker or the job to be done is lo-

cated in the world. A company always has at least one location, and the default one is

fetched from the Finnish Patent and Registration Office’s Business Information System

API.

5.2 API specification

The backend application provides HTTP methods GET, POST, PUT and DELETE for

each resource workers, jobs, companies and users. The last one is used only for authenti-

cation so it doesn’t have all the methods, for example it’s impossible to list users as that

would be really insecure.

The GET method is used to request data for a resource. The DELETE method is used for

deleting resources. The POST and PUT methods are used for creating or updating re-

sources, the difference being that PUT is always used to completely replace the resource

and is an idempotent method. (W3C 2014.)

This means that calling a POST method to create an object 10 times, will create 10 of

those objects with different resource identifiers. Calling a PUT method assumes the caller

15

already knows the desired object identifier to be used, and the result of calling it 10 times

will only be one object created, and that same object completely replaced over and over

again 9 times.

The backend API provides these GET, POST, PUT and DELETE methods listed in Table

2 for different resources to be consumed by the frontend client.

Resource Method URL

Companies GET https://<domain>/companies

Companies GET https://<domain>/companies/[id]

Companies POST https://<domain>/companies

Companies PUT https://<domain>/companies/[id]

Companies DELETE https://<domain>/companies/[id]

Jobs GET https://<domain>/jobs

Jobs GET https://<domain>/jobs/[id]

Jobs POST https://<domain>/jobs

Jobs PUT https://<domain>/jobs/[id]

Jobs DELETE https://<domain>/jobs/[id]

Workers GET https://<domain>/workers

Workers GET https://<domain>/workers/[id]

Workers POST https://<domain>/workers

Workers PUT https://<domain>/workers/[id]

Workers DELETE https://<domain>/workers/[id]

Users POST https://<domain>/auth/

Users POST https://<domain>/auth/sign_in/

Table 2. Methods and resources provided by the API

Each method is explained in detail during the following chapters, together with the UI

screen the method is used in.

16

6 iOS application

Because I’m just getting started with React Native and mobile development in general, I

used a process of first planning and drawing out a rough layout sketch of each view, and

then implementing it with React Native components.

In my experience there’s no better medium for the first draft of any design than pen and

paper, so first I draw the layout on paper. Having used a tool called Balsamiq Mockups 3

before, I then transferred this layout into electronic format that can be nicely embedded

into this thesis.

This chapter will cover the design and implementation of the different views of the applica-

tion, but first we’ll quickly go through installing React Native and creating the project.

6.1 Hello world

React Native can be installed on an OS X computer using Homebrew and npm (Node

package manager) with the following commands:

brew install node

brew install watchman

sudo npm install -g react-native-cli

After successfully installing the prerequisites and React Native, I created a new React Na-

tive application by issuing this command in Terminal:

react-native init balanco_mobile

After doing this, a directory named balanco_mobile has been created and a sample React

Native project is already in place and working, only displaying a default greeting inside a

<Text> element.

The most important file at this stage is index.ios.js, pictured in Figure 7. For demonstration

purposes, all styling has been removed from the default example.

17

Figure 7. File index.ios.js from the default React Native application

To get this simple starter application running, I simply ran the following command in Ter-

minal:

react-native run-ios

This starts up a development web server serving the application, and the XCode iOS Sim-

ulator running the application, showed in Figure 8.

18

Figure 8. Sample React Native application running in iOS Simulator

6.2 User registration and login

I wanted to keep the layout of the application simple, and especially because it’s a mobile

application I wanted to avoid users having to type their passwords twice even when regis-

tering an account. That’s why I decided to use the same view and fields for both register-

ing and logging in. The idea is pictured as a layout sketch in Figure 9.

19

Figure 9. Login and registration screen – layout sketch

To achieve its purpose, the login and registration screen is taking use of two API method

listed in table 3.

Resource HTTP

method
Path Input Output

user POST auth/ • email
• password
• password_confirmation

• User object
(JSON)

user POST auth/sign_in/ • email
• password

• User object
(JSON)

Table 3. API methods used by the login and registration screen

This is done by component named Login, implemented in login.js file. It works by binding

the Login and Register buttons to corresponding methods login() and register() by

giving an attribute onPress to the TouchableHighlight component with the methods

20

name as value. These methods then make those API calls with the values user has typed

into the text inputs.

The values of input fields “E-mail address” and “Password” are stored in the state, first

initializing simply by calling this.state in the constructor method. Then these email and

password props are updated in the <TextInput> component by giving an attribute

onChangeText that updates the state using this.setState.

Finished implementation with the two input fields and buttons is presented in Figure 10.

Figure 10. Finished login and registration screen – running in iOS Simulator

21

The login() and register() methods use the built in fetch() method to make a POST

request to the API. After getting a response back, the response inspected and if it con-

tains no errors, user is presented with a notification to check their e-mail for a confirmation

mail (when registering), or sent to the next view (Main) covered in the next chapter.

6.3 Viewing available workers

After successfully logging, the user is brought to the main view, which at this point is a list

of workers available from other employers. I sketched a simple draft of the layout pictured

in Figure 11.

Figure 11. Viewing available workers – layout sketch

This view is built by calling just one API method, shown in Table 4.

22

Resource HTTP
method

Path Input Output

workers GET workers/ - • Array of workers (JSON)

Table 4. API methods used by the main view

This is implemented by triggering the data fetching in a function called componentDid-

Mount, which React Native will call automatically. It will call our method fetchData which

simply calls the API with a GET request and puts the resulting JSON data into the Main

components state. This change in the state makes React Native automatically re-render

the view, allowing user to see the fetched data. The data is displayed by rendering a

ListView component filled with Worker components.

The end result is pictured in Figure 12, a simple view listing all the workers (name, title,

description) with some fake data fetched from the API.

Figure 12. Finished main view – running in iOS Simulator

23

Now I have a working registration & login view, and a main view displaying some infor-

mation from the API. Unfortunately, I have to leave out rest of the features from this thesis

due to limited time I have to finish my degree.

I feel that this is already enough for getting a basic understanding of React Native con-

cepts, and this is a good base to continue development of the application.

24

7 Results and conclusions

My goals were to find out what React Native is and how does it work, and to find out how

to develop a cross-platform application with React Native. In my opinion, I reached my

goals only partly. Due to limited time left to finish my degree, I had to leave out the whole

part of cross-platform development, so I’m going to have to explore the Android part of

React Native later. Also I didn’t yet get to deploy the application on a real iPhone device,

not to even mention publishing it at Apple’s App Store.

I found out React Native is a good choice for creating mobile applications and especially

well-suited for programmes with a background in web development. It basically allows you

to develop iOS and Android applications just like you would develop a web page, but still

being a real native application using the native API’s instead of just rendering a HTML

view. It’s still new technology though, and I think this is visible from the result of this thesis

also. There are not that many books available about React Native, so the sources are a

bit thin.

Based on my experiences while developing the application, React Native is really easy to

get started with. It provides a clean project skeleton to get started with and the overall de-

velopment experience with live code reloading is truly enjoyable. Eiseman (2016) lists a

lot of benefits compared to traditional mobile development. For example, you don’t have to

wait for the application to build, instead you can just reload and see changes instantly.

Also you can use intelligent debugging tools of Chrome or Safari. Even Apple deals with

React Native nicely, permitting JavaScript changes to applications without having to wait

for a review.

In retrospective, it would have been a good idea to learn a little bit of JavaScript and Re-

act first, before jumping straight into React Native development. The biggest problem for

me was not knowing the JavaScript syntax at all, making silly mistakes when creating and

importing classes. But I would like to put some of the blame to React Native itself too, the

biggest being outdated documentation and tutorials. For example, some of the tutorials

are using the older var Classname = React.createClass syntax but the boilerplate

sample application already comes with the newer class Classname extends Compo-

nent syntax, and sometimes it’s hard to mix these two together.

It has been a long-running project, writing this thesis. I’ve had some trouble making up my

mind about the topic and technologies used, but in the end I’m still happy with my choices.

This topic was useful, fun and provided a real learning experience, getting to know a side

25

of programming I previously knew nothing about. I’m quite happy with this learning experi-

ence, and I think this thesis gives a good view on what’s the general idea of React Native

and how to use it.

I’m currently not that happy with the end result though, this application is far from being

released or being useful to anyone. Only listing some data from the API is not that useful,

so there are a lot of features in the to-do list.

Summing everything up, I still think the project was a success, or at least a good start. I

managed to get the most important features technically working. I’m already submitting

data to the API, acting based on the reply to that, and then displaying some data to the

user from the API. I think the majority of mobile applications are just this, just repeated

over and over for more functionality, and polished a lot.

The application’s development will for sure continue. I will be working on adding features

such as listing the needs of other users, adding your own needs and workers, and manag-

ing you company information including physical addresses. There will most probably be

some kind of a map where you can see the needs and workers, and some kind of a cate-

gory system based on the industry of the user’s own company. Also searching for workers

by keywords or any other details is a must have feature. The applications visual design

also needs a ton of work.

26

8 Sources

AppDynamics. 2016. Comparing the 4 Most Popular Client-Side JavaScript Frameworks.

Available at: https://blog.appdynamics.com/apm/comparing-the-4-most-popular-client-

side-javascript-frameworks/ Read: 25.10.2016

BabelJS. 2016. Learn ES2015. Available at: https://babeljs.io/docs/learn-es2015/. Read

5.10.2016.

Code School. 2016. Powering up with React (online course).

Eisenman, B. 2016. Learning React Native. O´Reilly. Sebastopol.

Ethan Holmes & Tom Bray, 2015. Getting Started with React Native. Packt Publishing.

Birmingham.

Facebook. 2016. Props. Available at: https://facebook.github.io/react-na-

tive/docs/props.html. Read 7.10.2016.

Facebook. 2015. React Native: Bringing modern web techniques to mobile. Available at:

https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-

techniques-to-mobile/. Read: 8.12.2016

Facebook. 2016. State. Available at: https://facebook.github.io/react-na-

tive/docs/state.html. Read 7.10.2016.

Facebook. 2016. Tutorial. Available at: https://facebook.github.io/react-native/docs/tuto-

rial.html. Read: 5.10.2016

Facebook. 2016. Why React? Available at: https://facebook.github.io/react/docs/why-re-

act.html. Read: 4.9.2016.

Flanagan, D. 2016. JavaScript: The Definitive Guide: Activate Your Web Pages. O´Reilly.

Sebastopol.

Github. 2016. Front-end JavaScript frameworks. Available at: https://github.com/show-

cases/front-end-javascript-frameworks/. Read: 4.9.2016.

27

Graziotin, D. & Abrahamsson, P. 2013. Product-Focused Software Process Improvement.

14th International Conference, PROFES 2013, Paphos, Cyprus, June 12-14, 2013. Pro-

ceedings. Springer Berlin Heidelberg.

IDC. 2016. Smartphone OS Market Share, 2016 Q2. Available at:

http://www.idc.com/prodserv/smartphone-os-market-share.jsp. Read: 07.10.2016

Microsoft. 2016. React Native on the Universal Windows Platform. Available at:

https://blogs.windows.com/buildingapps/2016/04/13/react-native-on-the-universal-win-

dows-platform/#rF1GOv7MlXdQ4S9l.97 Read: 8.12.2016

Mozilla Foundation, 2016. Introduction to the DOM. Available at https://devel-

oper.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction Read

17.11.2016

Sansonetti, L. 2015. RubyMotion: Cross-Platform Mobile Development the Right Way.

RedDotRuby 2015 / Confreaks. Available at https://www.youtube.com/watch?v=ZV5zCX-

HIqNY. Watched 5.10.2016.

Simpson, K. 2015. You Don’t Know JS: Up & Going. O´Reilly. Sebastopol.

Stefanov, S. 2016. React: Up & Running. O´Reilly. Sebastopol.

World Wide Web Consortium (W3C), 2014. RFC7231 Hypertext Transfer Protocol

(HTTP/1.1): Semantics and Content. Available at: https://tools.ietf.org/html/rfc7231 Read:

10.11.2016

