

LIBRARY DEVELOPMENT FOR STORJ CLOUD CLIENTS IN

UNSUPPORTED ENVIRONMENTS

Based on experiences in an Android environment

Bachelor’s thesis

Degree Programme in Business Information Technology

Visamäki – Hämeenlinna – Finland

Spring 2017

Gabriel Comte

ABSTRACT

Degree Programme in Business Information Technology
Visamäki – Hämeenlinna – Finland

Author Gabriel Comte Year 2017

Subject Library development for Storj cloud clients in unsupported environments

Supervisor Lasse Seppänen

ABSTRACT

The thesis illustrates the differences between presently common cloud
architectures which are traditionally of a centralized form and
decentralized cloud architectures. The latter particularly pays attention to
the decentralized cloud provided by Storj Labs. Researching the Storj cloud
further, it explains the advantages that its architecture entails and
presents some of the difficulties coming with it.

The main aim of the thesis is providing information for developers on how
to programmatically access the Storj cloud for building client software,
especially when working in an environment, for which there is no
supporting library provided by Storj Labs or any third party. The thesis
furthermore reveals, that many processes of a Storj cloud client are
radically different from what a traditional cloud client is like, as well as how
they differ from the traditional implementations.

The main topics approached in this thesis are the authentication against
the cloud, the up- and download of data to respectively from the cloud
with all the various steps it includes, encrypting and decrypting this data
and a detailed description of the concept of sharding, which is
fundamental to the concept of Storj Labs’ cloud service. These topics are
approached in a way, which provides compatibility for the resulting
libraries against the libraries provided by Storj Labs, as this is a necessary
measure to provide data portability over different systems.

The provided information is acquired and validated by a reference
implementation that had been developed as a part of this thesis. As this
implementation is an Android app, the libraries and the code that is
provided in the thesis are specifically applicable for Android projects.

Keywords Decentralized clouds, Storj, cryptography, trustless software solutions

Pages 67 pages including appendices 10 pages

TERMINOLOGY

Client Whenever used in this thesis, the term ought to be understood in the IT-
related meaning: “software that accesses a remote service”

Trustless
systems

Systems that work in ways that do not require any trust between the various
actors on the system

 Storj Labs A Company providing decentralized cloud storage, incorporated in 2015 and
based in Atlanta, Georgia

Storj cloud The decentralized cloud, maintained by Storj Labs

Storj network The network the Storj cloud is based on

Farmer Devices that offer storage inside of the Storj network

Renter Devices that consume storage provided by the farmers

Bridge A component of the Storj network, which supports the clients in the client-
side tasks

Shard A fraction of a file, result of sharding a file

Mirroring Duplicating shards from one farmer to multiple farmers in order to establish
redundancy for each shard

Data audit are used to examine, whether farmers do actually do store the shards they
agreed to store (in automated contracts)

Challenges The input used to generate audits. 32 bytes of random data

Exchange
reports

Are reports which the clients send to the Bridge, after each shard upload or
download, providing information about the process to the Bridge.

Symmetric
key

Key which is used for both encrypting and decrypting data. Unlike
asymmetric encryption, where there is one key used to encrypt data and
another one the decrypt the resulting data

Initialization
Vector

A cryptographic primitive, providing a measure to secure encryption
algorithms from attacks. Is random data

Nonce Abbreviation for number used once. Is random data. Used in cryptography
to secure authentications. Must only be used once

Entropy Collected randomness. In this thesis used for random data

Mnemonic Representation of an entropy in multiple human understandable words.
Comes in sizes from 12 to 24 words, depending on the entropy’s size

Concurrency A property of a system or an algorithm allowing multiple actions to be
executed at the same time

CONTENTS

1 INTRODUCTION ... 1

2 INITIAL SITUATION ... 2

2.1 Cloud computing ... 2
2.2 Weaknesses of centralized cloud architectures .. 3

2.2.1 Privacy ... 3

2.2.2 Availability and data loss ... 4

2.2.3 Performance .. 4

2.2.4 Price ... 5

3 STORJ LABS’ VISION OF A DECENTRALIZED CLOUD ... 6

3.1 Preface ... 6
3.2 The company and its mission .. 6
3.3 The data servers in the Storj cloud ... 7
3.4 Often addressed issues ... 7
3.5 A storage provider for developers .. 8
3.6 Development state .. 9
3.7 Known weaknesses of the Storj cloud .. 9
3.8 Storj cloud clients .. 9
3.9 Conclusion ... 10

4 STORJ LABS CLOUD ARCHITECTURE .. 11

4.1 Complex client-sided tasks and the Bridge ... 11
4.2 The centralization problem of the Bridge architecture 12
4.3 The architecture adopted in this thesis .. 12

5 CURRENT STORJ CLOUD CLIENT LIBRARIES ... 14

5.1 Node.js library ... 14
5.2 Libraries for C, Python and Java .. 14
5.3 Third-party Java library ... 14

6 METHODOLOGY ... 16

6.1 Thesis ... 16
6.2 Purpose.. 16
6.3 Knowledge base .. 16
6.4 Development environment ... 17
6.5 Validating the acquired information ... 17

7 CLIENT LIBRARY DEVELOPMENT .. 19

7.1 Forms of Authentication ... 19
7.1.1 Basic auth .. 19

7.1.2 Signature based authentication .. 20

7.1.3 Tokens ... 23

7.1.4 Conclusion ... 24

7.2 Data transfer procedures .. 24
7.2.1 Uncertainties about the upload procedure .. 25

7.2.2 Upload procedure ... 25

7.2.3 Download procedure ... 28

7.2.4 Shard transfers .. 29

7.3 Buckets .. 30
7.3.1 Shared buckets .. 31

7.3.2 Public buckets .. 31

7.4 Sharding ... 32
7.4.1 Advantages of sharding files ... 32

7.4.2 Limits to the advantages ... 33

7.4.3 Order of the shards ... 33

7.4.4 Standardized shard sizes ... 34

7.4.5 Examples from the reference implementation ... 34

7.4.6 Multithreading for shard up- and downloads ... 35

7.5 Data audits .. 35
7.5.1 Data retrievability .. 35

7.5.2 Implementation details ... 36

7.5.3 Merkle Tree implementation in the auditing process... 36

7.5.4 Partial audits .. 37

7.5.5 Number of audits per shard .. 37

7.6 Encryption ... 37
7.6.1 Data portability and key migration ... 37

7.6.2 Storj Labs’ Deterministic Key Derivation ... 39

7.6.3 Implementation details ... 40

7.6.4 The file id problem with uploads... 43

7.7 Procedure order of encryption and sharding ... 44
7.7.1 The encrypting-first sequence ... 44

7.7.2 The sharding-first sequence .. 44

7.7.3 Conclusion ... 45

7.8 Exchange reports ... 45
7.8.1 Variables of the exchange reports .. 46

7.8.2 Result messages and codes ... 47

7.9 Useful libraries and frameworks ... 47
7.9.1 Spongy Castle .. 47

7.9.2 Gson... 48

7.9.3 Volley ... 48

7.9.4 Download manager ... 49

7.9.5 Shared Preferences ... 49

8 CONCLUSION ... 50

9 LIST OF TABLES .. 51

10 LIST OF FIGURES .. 52

11 LIST OF CODE SNIPPETS ... 53

12 REFERENCES ... 54

1

1 INTRODUCTION

In the last few years, cloud computing has turned into a vast and ever-
growing market, which has attracted various enterprises to establish
themselves in this new business field. But while these competing
enterprises’ cloud services might differ on many levels, they also have one
key aspect in common. The fundamental system designs of their clouds are
all similar; they are always based on a centralized IT architecture.

A start-up called Storj Labs has a different vision on how cloud computing
should be designed. Since 2015 they are building up a cloud service with a
radically different system architecture, which could bring benefits over
traditional clouds in many aspects. In a nutshell, Storj Labs is trying to
create a cloud storage service without running any storage server
themselves. Instead, they are creating a network, in which private
individuals may provide their disk space and thus be the cloud1 themselves.

Storj Labs is however operating on a limited scope. It has its focus on
providing a cloud storage service as a resource for cloud developers, not
on building any clients nor any services for end-users.
As this is a very recent project and Storj Labs does not intend to provide
any client software itself, there is a resulting lack of possibilities to access
the Storj cloud for end-users. This creates new opportunities for third party
developers. Nevertheless, these opportunities are to be enjoyed carefully;
as the project is very young, there are only a few people with the relevant
experience and even fewer documentation. These problems are
aggravated by the fact that there are (still) many environments for which
Storj Labs does not provide any library.
This thesis is an attempt to fill this gap by giving further insights on the
details to be considered when connecting client systems to the Storj cloud,
particularly for the cases in which a client library implementation is
necessary. The insights are proven by a reference implementation of a
Storj cloud client Android library and an Android app that integrates this
library.

Within the framework of these investigations, the key objective is
addressing the subsequently mentioned research questions.
What are the main obstacles in developing a Storj cloud client library?
What aspects must be considered to ensure compatibility with the libraries
provided by Storj Labs?
Is the Storj environment already stable enough for developing a
sustainable library?

1 Slogan of Storj Labs

2

2 INITIAL SITUATION

2.1 Cloud computing

Cloud computing has rapidly grown into a vast market over the past years.
Yet, the process of growth is still on-going; according to Gartner, the
movement into the cloud or “Cloud Shift” as they call it, will surpass US$ 1
trillion in global IT spending by the year 2020 (Gartner Inc, 2016). Cloud
computing is penetrating economies on a global scale and the term “cloud”
has resounded throughout the land, as it appears in many different
sectors, way beyond the IT sector alone.

But what is “the cloud” from a technical point of view? The US American
National Institute of Standards and Technology NIST defines clouds among
other characteristics as a model for "on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers,
storage, applications and services)" (P. Mell, 2011).
This thesis focuses particularly on the resource storage, which is why in
this thesis, the term cloud is mainly referring to space provided
somewhere in the internet, which allows clients of a given cloud to upload
and download data from respectively to it. The actors behind these clients
might range from entire cloud solutions up to users who directly access the
cloud storage.

From this perspective, taking Dropbox as an example could help to
illustrate an answer to the question about what cloud storage really is.
Dropbox stores all its customers’ data on servers in the United States of
America (Dropbox, 2017). Their cloud is thus substantially nothing else
than a large cluster of servers. Dropbox’ structure is hence inherently of a
centralized architecture, with its customers’ data gathered on centralized
servers. But this structure is not only used by Dropbox. In fact, quite the
opposite is the case. Dropbox’ cloud model is indeed representative of how
cloud computing is factually done at present (Jaeger et al., 2009, S. Chaper
2: What is the cloud?).
In this thesis, this traditional architecture of current cloud systems is
further on referred to as a centralized cloud architecture. Figure 1
illustrates this kind of architecture.

3

2.2 Weaknesses of centralized cloud architectures

There are various inherent problems stemming from such a centralized
model. This chapter covers the most common ones. There are certainly
various sets of solutions used by various cloud system providers, to curb
the extent of these weaknesses. One could however argue, that these
solutions are just attempted fixes, to reduce the drawbacks created by the
unfavourable underlying system architecture.

2.2.1 Privacy

Customers’ privacies depend on their trust towards the respective cloud
hoster; the hosting company can fully access all of its users’ data which
gives the hoster the power to do whatever it wants to with the data.
Privacy abuse is hard to detect for a user, as the data is fully out of the
users control and often even in another country than the user himself /
herself.

Please Note: Whenever this thesis mentions the term cloud clients, this
involves a broader spectrum of applications than just the Dropbox
equivalent of an online file hosting service, which enables its users to
upload and download data. The spectrum involves all use cases where
cloud storage is needed as a resource. This involves all kinds of
applications such as image hoster, social networks, streaming services,
content management systems, email providers and many more.

Figure 1: a centralized cloud architecture

4

In addition to this, many well-established cloud hosters have their
centralized data centres in the United States of America, which makes
them subject to the PATRIOT act (United States Department of Justice,
2001) as well as the Homeland Security Act (Public Law of USA, 2002) and
other existing and coming laws of the US government. (Jaeger, P., Lin, J.,
Grimes, J., Simmons, S., 2009, S. Chapter 5: What rules govern the cloud?)
Client-side encryption is an established measure to address this issue, but
is in practice often not applied.

Another threat to a user’s privacy are all kinds of hacker attacks. What
makes this problem even worse on centralized cloud systems, is that the
location of centralization – whether digital or physical – is publicly known.
Thus, whenever attackers know on what cloud service somebody’s data is
stored, they also know where to attack.

2.2.2 Availability and data loss

Redundancy is a common measure for increasing both data availability and
data protection against permanent loss. In a centralized cloud
architecture, the level of redundancy to be provided is rather limited, as
redundancy should include geographical distribution, which causes high
costs.
Amazon S3 provides an availability of 99.99% for their standard storage
(Amazon webservices, 2017). This means that the data may still be
inaccessible for 52.56 minutes in total per year. Even though this
availability seems to be impressive at first, it is revealed as actually not that
big, if you consider that only 4 independent servers with only 90% uptime
each would already provide this availability:

 = 1 − 0.1 = 0.9999 = 99.99%

An architecture making it possible to involve significantly more servers
could massively increase the data availability and durability, even without
the particular servers being very reliable themselves.

2.2.3 Performance

The performance of a centralized cloud is usually low by design, since all
traffic is going to and coming from a centralized cluster; the possible traffic
rate is used by many users at the same time and therefore divided
between them.
This problem is further increased by a geographical problem; if a cloud with
global customers is centralized, this inherently means that some of the
clients will be geographically far away from this cloud. These users would
consequently have a slower communication with the cloud, due to the big
distances their data must travel.

5

2.2.4 Price

The clients of a centralized cloud system are privately owned and
automatically added to the system by the users without any further action
from the cloud providers being necessary. All the costs for the clients are
paid by the users. This involves costs for the clients’ hardware (computer,
smartphone, …), price of the internet access, electricity expenses,
Software costs, maintaining, and support.
On the contrary, this very same fact is not true for the system part that
stores the uploaded data respectively the centralized part of the system.
The centralized data centres must be built up and maintained by the cloud
provider, which generates high costs for them.

6

3 STORJ LABS’ VISION OF A DECENTRALIZED CLOUD

3.1 Preface

The approach Storj Labs follows for building their cloud system involves
many interesting questions, discussions, solution approaches and new
concepts and technologies. The Storj project is in many ways related to the
Blockchain sector, as many technologies used by Storj Labs are inspired by
other projects in this environment. Yet many parts of the Storj project are
deliberately left out in this thesis, as they are irrelevant to the core issues
of the thesis’ topic. While a fair amount of information about the Storj
cloud can be found by searching the internet, this thesis is meant to focus
on information that is more difficult to access.
If more information about the Storj cloud itself is desired, a
recommendable source to start with is the white paper as well as the Storj
community chat.
White paper: https://storj.io/storj.pdf
Community chat: https://community.storj.io/

3.2 The company and its mission

Storj Labs Inc. was founded in 2015 and is based in Atlanta, Georgia
(Bloomberg, 2017). Its mission is to tackle the problems of traditional,
centralized cloud systems, by creating a decentralized cloud. Presently, the
Storj network is essentially designed to be a solution for cloud storage.
(Hoyes, 2014)
Figure 2 illustrates the differences between centralized and decentralized
cloud systems and may reveal how the weaknesses of centralized cloud
systems disappear or diminish in decentralized clouds. It also illustrates,
that the possibility for everyone to be part of the cloud, leads to the
situation that some of the machines are both server and client at the same
time. This decentralized architecture is however not exactly matching the
system architecture of the Storj network.

Figure 2: centralized vs decentralized cloud architectures

7

3.3 The data servers in the Storj cloud

Storj Labs’ decentralized cloud allows everyone with the respective intent
to contribute storage to the network. Consequently, every device on this
planet meeting three basic requirements can be used to earn money by
being a data server, respectively being a farmer. Table 1 lists these
requirements.

Table 1: Requirements for devices to be able to rent storage to the Storj network

Requirement Details
Being connected to the
internet

There is no limitation to neither the internet
connections bandwith nor the uptime of a
device, but favourable parameters are
rewarded by the network.

Having free disk space
available

There is no limitation to the amount of disk
space user wants to provide to the network.

Being able to run Storj
Labs’ application Storj
Share

As of March 2017, Storj Share is available on
Windows and on Linux computers (Storj Labs,
2017d).

Since neither the device’s location, nor its ownership are subject to these
requirements, the cloud can consequently be truly decentralized and
distributed. (Rawle, 2016)

With this new possibility, Storj Labs creates a market for cloud storage on
a lower level than it has existed so far; in the Storj network, entering the
cloud storage market is no longer restricted to market participants who
possess the means to maintain a complex data centre, but open to every
individual with any connected, storage capable device. (Wilkinson, S.,
Boshevski, T., Brandoff, J., Prestwich, J., Hall, G., Gerbes, P., Hutchins, P.,
Pollard, C., 2016, p. 2)

3.4 Often addressed issues

Insights on how the Storj cloud technically works and how it addresses
issues coming with a new architecture in cloud computing are beyond the
scope of this thesis. However, there is a minimum of information that
should be covered to convince people about the potential of a
decentralized cloud. People who are new to this topic often take a critical
attitude towards it, which is usually due to two particular issues. Hence the
information about how Storj Labs addresses these two issues seems crucial
for the understanding of the greater picture, which is why they are covered
in this chapter.

“Why would I trust a random person to store my data on his/her
computer? What if he or she spies on it?”

8

The key point to this issue is that the Storj Labs’ cloud system is designed
to be trustless. There is no trust needed between the renter and the farmer
because the system itself provides trust based on various algorithms. The
solution to the question of privacy as asked above, has the two following
measures to it (Wilkinson et al., 2016, pp. 2-3).

Files are usually sharded. This means that none of the farmers receives any
entire file, but instead just a chunk of it. The concept of sharding is further
explained in chapter 7.4 . The more significant measure concerns the
client-sided data encryption. All files that are uploaded to the cloud ought
to be encrypted, before they are uploaded to any farmer. Therefore, they
are unreadable to the farmers that are housing the data.

Both these measures are client-sided tasks and not mandatory for client
implementations. Yet they are strongly recommended by Storj Labs, fully
integrated in their libraries and thoroughly supported by the Storj
network.

For Shawn Wilkinson, the CEO of Storj Labs, the privacy of the Storj cloud
is not only as good as the one provided by traditional clouds, but even
better. Concerning this matter he points out, that Storj Labs as a cloud
storage provider “does not need to know anything about the data stored
on the network in order to be able to operate.” This gives the user
additional privacy, as there is no third party who could access the uploaded
data. (Wilkinson, Storj Master Plan, 2016)

“What happens to my files, if the person who stores my files turns his or
her computer off? I would lose any access to it, wouldn’t I?”

This problem of availability is addressed in the traditional way, by using
redundancy. The decentralized cloud is very suitable for redundancy: its
number of possible nodes to be used for creating redundancy is
theoretically as big as the sum of all farmers. There are various concepts
to be used for creating this redundancy. (Wilkinson et al., 2016, pp. 11-12)
The main idea however stays the same for all of these concepts. It is to
replicate the data of any farmer, as soon as the farmer went offline (by
using the remaining data), and distribute it to a new farmer. This way, the
network is behaving in a self-healing way, and the state of the redundancy
stays the same over time. Theoretically this behaviour even increases the
data availability, since the data is being placed onto farmers with higher
uptime as the replacement is being repeated.

3.5 A storage provider for developers

Storj Labs’ focus is on generating a cloud storage system, which can then
be used by third party developers. Consequently, their focus is not directly
on the end-users, which also means that they are not focused on building
client software for different systems like for example Android devices, but

9

merely about providing interfaces and libraries for third party developers,
who want to use Storj as a cloud storage layer for their application. (Storj
Labs, 2016a)

3.6 Development state

The Storj network is still under development. This concerns, for example,
the payment system, which has not yet been implemented (Wilkinson et
al., 2016, p. 9). Until its introduction traffic and storage remains free for
the end-users.
This state of development involves recurring changes in the functioning of
the network and is as such a considerable challenge for the development
of any client.

3.7 Known weaknesses of the Storj cloud

After comparing the performance of the Storj cloud with the performances
of traditional cloud providers, Holloh (2017) criticises it as being non-
competitive. He bases his statements in two main factors. On one hand he
mentions that the network would still be too small and therefore not at its
full potential yet. On the other hand, he speaks about an issue coming with
Storjs sharding and encryption practice. It prevents the network from
making delta uploads. These are upload processes, in which a client just
transfers the data that actually changed inside of a file, instead of
uploading the whole file. The same principle is equally valid for downloads.
(Holloh, 2017, p. 69)

3.8 Storj cloud clients

As the Storj project is very new and Storj Labs itself does not focus on cloud
clients for end-users, there are right now only three different clients
publicly available. Table 2 gives a concise overview about these clients, and
states the responsible party behind each of them. To attentive readers, it
may furthermore implicitly reveal, that there is still a lot of work to be done
for end-users to have a valuable experience with the Storj cloud.

10

Table 2: Publicly available Storj cloud clients

Node.js client Storj web interface Third party Java client
Storj Labs Storj Labs Stephen Nutbrown
The Node.js client
does not have any
GUI and can
therefore only be
interacted with as a
command-line
interface.

Storj Labs’ web
interface can only be
used to browse and
manage buckets, but
not to actually up- /
download data to /
from the network.

The java client is
currently having errors
due to changes that
were made on the Storj
network, that have not
yet been addressed by
him.

https://docs.storj.io
/docs/getting-
started

https://app.storj.io/

https://github.com/Nut
terzUK/Storj-Java

Looking at the available clients, it becomes clear that there is currently no
possibility for mobile device users to access the Storj network for
transferring data at all. Moreover, there is not only a lack of client
implementations, but there is currently no Storj library available, which
could be used for developing apps for mobile devices.

3.9 Conclusion

The weaknesses of common cloud systems, caused by their system design
of a centralized architecture, are evidently significant. Storj Labs on the
other hand has various measures on how they approach these issues, the
key concept being the decentralized architecture of their cloud, which
itself entails a new set of issues.

The biggest obstacles of developing a Storj cloud client are the lack of
documentation about the Storj cloud, a weak developer support, the state
of the Storj cloud – being a system that’s still under development – and the
fact that there are no similar projects so far that could be used as a
reference implementation.

11

4 STORJ LABS CLOUD ARCHITECTURE

4.1 Complex client-sided tasks and the Bridge

In the Storj network the cloud clients are responsible for many tasks like
encrypting and sharding files, finding farmers and creating contracts with
them, issuing audits and verifying them (to make sure that the farmers are
still online and still have the data the client stored on them), and paying
the farmers. All these requirements for cloud client software result in a
need for complex client libraries and comprehensive clients. In addition to
the complexity, there is another issue coming with these requirements;
some of the given tasks demand high uptime from the clients, which is a
serious drawback for many customers, as the devices they connect to the
cloud might not mean to be continuously turned on and connected.
(Wilkinson et al., 2016, p. 17)
In order to lighten the burden on the clients, Storj Labs has introduced a
supporting component to the network: The so-called Bridge. The Bridge is
designed to be run on a centralized server, to take responsibility over some
of the client-sided tasks, while delivering theoretical full uptime.
(Wilkinson et al., 2016, p. 18)
The software of the Bridge is open source, just like any other software from
Storj Labs (Storj Labs, 2017a), and may therefore be setup on any server of
an individual or an enterprise. There is however also a Bridge hosted by
Storj Labs themselves, which is open for any public use. This Bridge is
accessible over https://api.storj.io and is also the standard setup, as
currently used by the majority of the clients accessing the cloud. Figure 3
illustrates the respective network model as it is used in this thesis.

Figure 3: the network model as used for this thesis

12

The Bridge software is continuously being updated and expanded by Storj
Labs. It is accessible from all HTTP capable devices, as it is a RESTful web
service providing data over HTTP calls. This means that it is accessible from
all common and modern operating systems which quite obviously also
includes Android devices.

The source code of the Bridge service is available on Github:
https://github.com/Storj/bridge

4.2 The centralization problem of the Bridge architecture

While the solution with the centralized Bridge is indeed convenient for
third party developers, it is rather obvious that it also brings back the
problems of centralized clouds inside of Storj Labs´ cloud solution. It is
however not the same degree of delegated trust towards the cloud hoster,
as it is found in the clouds of traditional cloud providers. The Bridge does
for example neither store data (but just metadata about the data) nor ever
receive any unencrypted data (with an exception for public buckets)
(Wilkinson et al., 2016, p. 18).
Furthermore, the Storj whitepaper states that "it is possible to envision
Bridge upgrades that allow for different levels of delegated trust"
(Wilkinson et al., 2016, p. 18).
Another measure for Bridge clients to minimize the level of required trust
to be delegated to any Bridge, is to use multiple Bridge servers and hence
split the workload between them (Wilkinson et al., 2016, p. 18).
Furthermore, in March 2017, Wilkinson announced, that Storj Labs would
aim to strengthen the availability of the network, by giving the opportunity
for clients to store copies of network locations and authorization keys.
With this solution, clients could still access their files for a certain time,
even if the Bridge would completely fail. (Wilkinson, 2017)

4.3 The architecture adopted in this thesis

For this thesis, the most common way of connecting clients to the farmers
is chosen, i.e. using the Bridge provided by Storj Labs. This decision is taken
because it allows giving insights on how to connect to Storj from Android
devices in the most common way, but also because at this early stage of
Storj, this is simply the most stable and most tested way to access the Storj
network. Table 3 shows how the workload is divided between the Android
app and the Bridge in such architecture. (Wilkinson et al., 2016, p. 18).

Please Note: For the simplicity of the model shown in figure 3, all
computers involved are either servers or clients. In the real world, it is
also perfectly possible for devices to be both client and server at the
same time.

13

Table 3: Responsibilities of the clients vs. the Bridge

Responsibility of the client Responsibility of the Bridge
Sharding files Contact negotiation with farmers
Encrypting and decrypting
files

Providing (micro-)payments to farmers

Managing file encryption keys Issuing and verifying data audits
Generating data audits Managing file state by making sure

every shard is always available.

In addition to the mentioned tasks, the Bridge offers a one-level hierarchy
composed of so-called Buckets, as well as a user management backend. A
library might as well provide these functionalities. Both functionalities are
not related with the farmers in any way, but just utilities that the Bridge
provides to the clients.

14

5 CURRENT STORJ CLOUD CLIENT LIBRARIES

There are a few libraries that are already developed or still in progress,
which may be used for creating client software, or serve as a reference
when implementing one’s own library. As to this point there are only very
few, they might not be an option for every system, as this is for example
the case for all modern mobile device operating systems. This chapter
demonstrates these different developments as well as their development
status.

5.1 Node.js library

There is a Node.js library from Storj Labs, which is the first library there
was and is also the one used in Storj Labs’ client command line interface.
This library is the most extensive there is and it is continuously being
updated and expanded. Being a Node.js project, it is based on a JavaScript
runtime environment which is probably also its greatest weakness, as
Node.js does currently not support any operating system used on mobile
devices (Node.js, 2017). A remarkable advantage of this library, is that due
to the broad support of JavaScript inside of all common browsers, it may
be used inside of browsers too. (Storj Labs, 2017e)

The library and a respective installation guide are available on Github:
https://github.com/Storj/storj.js

5.2 Libraries for C, Python and Java

Storj Labs affirms that “Implementations in C, Python, and Java are in
progress” (Wilkinson et al., 2016, p. 19).
At the time of this thesis’ realisation however, only a beta version of the C
library had been released. There was not a lot to be seen from the two
other libraries at the time. Due to this fact, these libraries are not covered
any further in this thesis, even though especially the Java library could have
been very helpful for the development of the reference implementation.
The beta version of the C library is available on Github:
https://github.com/Storj/libstorj

5.3 Third-party Java library

There is a third-party Java library, written by Stephen Nutbrown, which
unfortunately is not up to date. Uploads and downloads do not work
anymore, as Storj Labs switched from using websockets to HTTP after this
library was implemented. Nevertheless, the library is a great reference
implementation, since many ideas and even a lot of code, may be adopted
to an own implementation, as the library comprises an outstanding code
quality.

15

This library was a great help for developing the reference library, even
though there are various differences between the Java Virtual Machine
which the library was programmed for, and the Android Runtime which
the reference library is running on. Nevertheless, a significant amount of
code could be reused in the reference implementation and a substantial
part of it was indeed reused.

The source code of the library is accessible on Github:
https://github.com/NutterzUK/Storj-Java

16

6 METHODOLOGY

6.1 Thesis

The thesis is carried out as part of a bachelor's degree programme in
Business IT, within the framework of the Double Degree Program which is
based on a collaboration between the Häme University of Applied Sciences
(HAMK) and the Bern University of Applied Sciences (BFH).

This thesis follows the guidelines of a practice-based thesis as described by
HAMK. Hence it consists of a practice-based part being the reference
implementation, and a documentation to it, which is provided by this
thesis. (HAMK, 2017, pp. 5-6)

6.2 Purpose

Initially the idea of this thesis was to create an Android app which would
allow to transfer data from and to the Storj cloud for all devices running
on Android. With growing experience about Android and the Storj cloud,
it became obvious, that it was not as easy to develop this app as it
appeared at the beginning. This was mainly due to the reason, that Storj
Labs does not provide any library for any mobile devices operating system
(yet). This need for an Android library, led to the development of the
reference implementation.
In the process of this development, the author experienced how complex
and interesting this distributed system was, but also how difficult it was to
find any documentation, information or help. For this reason, there
seemed to be a more valuable contribution to make than just developing
an app. The purpose of this thesis is therefore to investigate and to collect
information, in order to provide it in a way that it would be easier for future
developers to find documentation, whenever their idea was to integrate
Storj into an environment, which is not supported by Storj Labs.

6.3 Knowledge base

The author disposes of a 10-year-long experience in software
development, which applies particularly for Java development. As Android
was the chosen development environment, the author’s experience was
fundamental to the creation of this thesis, since Android software
development bases on an adapted and limited Java-implementation.
Furthermore, Android development is part of the authors study
programme at HAMK.

The Storj-related knowledge is based on many different sources. An
important part of the sources are all kind of articles and blog entries that
are available on the internet, yet do need quite a bit of investigation to be
discovered. Regarding these sources, the Storj whitepaper must be

17

particularly highlighted. Another important source is the Storj community
chat. This chat is open to anyone who wants to discuss Storj-related topics.
Finally, a considerable amount of insights is based on the analysis of source
code from the Storj repositories on Github. This is possible since Storj Labs
publishes its code as open source.

Many of the technologies used by Storj Labs are inspired by the Bitcoin /
Blockchain / Cryptocurrency sector. Hence investigations in this field
deliver further insights, and especially deeper understanding about the
functionality of some of the technologies.

6.4 Development environment

The choice of Android as a development environment for developing a
Storj library is mainly based on the author’s greater intention to build a
Storj cloud client for Android devices. As a result of this purpose, there was
a premature version of both a library and an Android client existing already
prior to the realization of this thesis. This version had been developed by
the author in collaboration with his fellow student Juho Puoliväli as a
school project during their Business IT studies at HAMK. The project served
as a base for further development. Table 4 shows the characteristics of the
projects version at the start of the thesis’ realization. The existence of this
premature version together with the already acquired Android
development know-how further influenced the choice of Android as a
target environment.

Table 4: characteristics of the library development prior to the thesis

The reference implementation is developed in the Android Studio, using a
Motorola Nexus 6 with Android 7.0 (Nougat) to execute the software on.

6.5 Validating the acquired information

As the investigation field of this thesis is rather complex, and information
is not only difficult to obtain, and furthermore sometimes controversial,
sometimes non-existent and sometimes even wrong, the error rate of the
elaborated information for this thesis is rather high. Thus, it is important

Authentication Only basic authentication implemented
Up- and
downloads

Only partly implemented and due to changes of used
technologies inside of the Storj cloud not working
anymore. Including potential for various
improvements in many different areas

Encryption Not meeting modern security standards and not
compatible with libraries provided by Storj Labs

Buckets Fully implemented, except for the feature public
buckets

General Many aspects of the app in a pre-alpha state

18

to prove the obtained information. For this purpose, it is turned into code
whenever possible. In such way, the functionalities can be tested against
the Storj network, which proves them right or wrong by simply being
functional respectively failing. This is the main purpose of the reference
implementation. Trial and error is a substantial part of this thesis’
investigation process.

As the complexity of the procedures discussed in this thesis is also an issue
for the reader, these procedures are broken down to small steps and
accompanied by sample data. This is especially helpful when it comes to
hashing and encryption procedures, as from a human point of view the
outcome is just structureless random data.
As the reader is given sample input data together with the corresponding
output data, developing an own solution should be significantly eased. For
such case, the reader may verify each single hashing and encryption
function, whether the right algorithm with the correct settings is being
used. As a result of this, the code presented in this thesis is not identical to
the code of the reference implementation but instead edited in a way, that
is helpful and easy to understand for the reader.

All code is represented in Java syntax, in a form that it would be executable
when running in an Android environment.

19

7 CLIENT LIBRARY DEVELOPMENT

7.1 Forms of Authentication

To be able to access Storj Labs’ Bridge, an account is needed. It can be
created on https://app.storj.io but it is also possible, to create new
accounts using the Bridge itself by sending a POST request to
https://api.storj.io/users. In both cases a user would have to confirm the
email address before being able to use the account. (Storj Labs, 2016e)

Once a user account is available, there are two different ways to
authenticate Bridge-users on the Bridge. When accessing the farmers,
there is even a third authentication type used. This chapter gives further
insights about the used techniques. (Storj Labs, 2017b)

7.1.1 Basic auth

Basic authentication is the term for the traditional way of authentication –
using a user account and a password.

The user account is transmitted as plaintext, while the password is not
directly being sent to the Bridge, but instead just a SHA-256 hash of it.
(Storj Labs, 2017b)
These two variables are then assembled together and transformed to a
Base64 string. The resulting string needs to be sent in the HTTP header,
using the tag “Authorization”. It is crucial, that this whole procedure is
realised using text that is based on the UTF-8-character encoding. Figure 4
shows a detailed visualization of this procedure using the example-user
“johndoe@acme.com” with the password “secret”.

20

Code snippet 1 shows the preparation for the basic authentication data in
the form it should be added to the HTTP header and using the Hashing
class from com.google.common.hash .

7.1.2 Signature based authentication

The Bridge supports an authentication, that uses signatures which are
based on public-key cryptography. Instead of sending a password with
every request, the client signs each request and sends the resulting digital
signature together with the request. A fundamental requirement for this
method is that every single signature that is sent is unique. This uniqueness
is achieved by adding a nonce (= number used once) to the data that is
signed. What data the nonce contains is irrelevant; the nonce’s only
requirement is, that it is unique for every request.

Figure 4: basic authentication illustration using an example

// sample data
String uname = "john.doe@acme.com";
String pass = "secret";

// actual procedure
String hash = Hashing.sha256().hashString(pass,
 StandardCharsets.UTF_8).toString();
String concat = base64Encode(uname + ":" + sha256(pass));
String authHeader = "Basic " + concat;
headerParams = new HashMap<String, String>();
headerParams.put("Authorization", authHeader);

Code snippet 1: basic auth for HTTP calls as implemented in the reference implementation

21

Storj’s signature solution is based on ECDSA (Elliptic Curve Digital Signature
Algorithm). As the name suggests, ECDSA is an algorithm, which is based
on elliptic curves. While there are many different defined elliptic curves,
Storj uses the curve called Secp256k1. This specific curve is most known
for being used in Bitcoin. (Antonopoulus, 2014, p. 66)

The basis for this method is a key pair generated by the client. This key pair
contains a private and a public key. The private key is used to generate the
signature and must be kept secret. It must never be transmitted to the
Storj network in any way, as this would put a user’s security at enormous
risk. The public key on the other hand is used for verifying the signature
and must therefore be uploaded to the Bridge. (D. Johnson, A. Menezes,
S. Vanstone, 2016, pp. 3, 24)

From a technical perspective, the public key is a point on the elliptic curve.
Therefore, it must get encoded in order to get into a form that it may be
registered on the Bridge. The encoded public key must then be of the
following form to be accepted by the Bridge: it might be either compressed
(chosen approach of the Storj Node.js library) or uncompressed and must
be transformed to a hexadecimal String.

Table 5 shows examples of the two forms that are accepted by the Bridge.

Table 5: Examples of public keys readable for the Bridge

Compression Key Example Size
compressed 0366da51dd4fcd758eedabb1a79ba9

c885c657ce3fa13c2e06e7a3e20324
8c8735

66 characters
(33 Bytes)

// generating a nonce
String nonce = UUID.randomUUID().toString();

Code snippet 2: automated nonce generation in Java

public static KeyPair generateKeyPair() throws Exception {
 // in Android, this is actually the spongy castle
 // provider, even though it’s called bouncy castle
 Security.insertProviderAt(new BouncyCastleProvider(, 1);

 // Storj signatures use the ellipic curve called secp256k1
 ECGenParameterSpec genSpec;
 genSpec = new ECGenParameterSpec("secp256k1");

 KeyPairGenerator gen;
 // SC stands for SpongyCastle
 gen = KeyPairGenerator.getInstance("ECDSA", "SC");
 gen.initialize(genSpec, new SecureRandom());

 return gen.generateKeyPair();
}

Code snippet 3: key pair generation method from the reference implementation

22

uncompressed 04d237a70804daddcfcaf309925aea
a105d8b7a2121094d8051a8739e670
3282e09c8972d5e19ec18434cb97f0
8d8e0dced7ad9944f1382a76d2c967
d1b1bc4ef2

130 characters
(65 Bytes)

Code snippet 4 shows the conversion of the public key into a hexadecimal
encoding as a string, which may then be sent to the Bridge as a string.

Once the public key is registered on the Bridge, the client may use the
signature based authentication, using the private key to sign its requests.
For this procedure of signing, the algorithm SHA256 with ECDSA must be
used. This means that the data to be signed is first hashed using the
algorithm SHA256 and then the resulting hash is signed using the algorithm
ECDSA.

What data will be signed depends on the request. There are two patterns
that are followed, depending on whether a request submits data, or just
requests data. In either case, a nonce must be part of the data to be signed,
as this makes the signature unique. Table 6 further explains the two
patterns.

public static String convertPubKeyToBridgeFormat(PublicKey pk){
 BCECPublicKey publicKeySC = (BCECPublicKey) pk;
 byte[] pubKeyBinary = publicKeySC.getQ().getEncoded(true);
 return bytesToHex(pubKeyBinary);
}

Code snippet 4: converting the public key to a hexadecimal encoding

23

Table 6: Data to be signed for Requests that transmit data vs Requests that do not

Request NOT transmitting data Request transmitting data
The data to be signed consists of
the HTTP-method of the request,
the path-part of the URL, starting
with a slash but NOT ending with
slash, and the nonce. These three
parts must be separated by
newlines (two in total).

Example
GET
/buckets
__nonce=800a-4eb2-9afc

Additionally, the nonce must be
added to the URL of the request as a
GET-parameter.

The data to be signed consists of the
HTTP-method of the request, the
path-part of the URL, starting with a
slash but NOT ending with slash, as
well as all the data submitted to the
server in JSON format. This does
also contain the nonce.

Example
POST
/buckets
{"name":"test","user":"joh
n.doe@acme.com","status":"
Active","__nonce":"800a-
4eb2-9afc"}

Code snippet 5 shows the function of the reference implementation which
signs this data with the given private key.

The created signature as well as the public key then need to be added to
the header information of the HTTP-request, using the keyword x-
signature for the signature respectively x-pubkey for the public key.

7.1.3 Tokens

A token based authentication is available only for the direct
communication between renter (client) and farmer in which use case it is
furthermore the only authentication method available (Wilkinson et al.,
2016, p. 17). The tokens must be requested by the Bridge. These token
requests trigger the Bridge to create contracts with the farmer, which are
the basis for the interaction between the farmer and the renter. After
successful contracting the Bridge then returns a token for each token
request, which can then be used by the client, to either upload or
download data to respectively from a farmer. Depending on whether a
client wants to upload or download data, it needs to declare a different
operation in the request: “PUSH” for uploading, “PULL” for downloading.

public static String signData(PrivateKey privateKey, String data)
 throws Exception {
 Signature sig = Signature.getInstance("SHA256withECDSA");
 sig.initSign(privateKey);
 sig.update(data.getBytes());
 byte[] signature = sig.sign();

 return bytesToHex(signature);
}

Code snippet 5: signing data with SHA-256 and ECDSA

24

Code snippet 6 shows an example for a token request of the type PUSH, as
it would be sent to the Bridge as a HTTP POST call.

As of February 2017, a Storj Improvement Proposal has been submitted,
which could alter the way renters authenticate themselves against
farmers. The proposal involves the possibility to add public keys to
contracts, which would enable a signature based solution just as the one
for the communication between clients and the Bridge. (Fuller, 2016)

7.1.4 Conclusion

While the only possibility to authenticate a client against its farmers is to
use tokens, its authentication against the Bridge leaves a choice of two
different methods, basic auth and signature based auth.
There are various advantages respectively disadvantages between these
two methods. However, the most significant one might be the following
security issue coming with basic auth: whoever is able to spy on the
credentials a specific client uses for its authentication, is able to steal them
and do whatever transaction he/she wants to do, using the identity of its
victim. Even though the SHA-256 hash protects the user from anybody
figuring out his / her password, an authentication is perfectly possible
without knowing the cleartext password, but only knowing its SHA-256
hash.
The signature based authentication in return is the safer method, since the
only way to steal the credentials of a user would be to steal his / her private
key – which is never transmitted to the network. The disadvantage of the
signature based authentication is that it seems to be more difficult to
implement.

A reasonable usage of the two methods is to use basic auth to enable
signature based auth, which involves uploading a public key to the Bridge.
Once this initial step has taken place, the use of signature based auth is
recommendable. Following this procedure, it is not necessary, to store any
user’s password on any device, but in each case just the created key pair.

7.2 Data transfer procedures

Transferring data from or to the Storj cloud using the Bridge involves a
sequence of different steps on behalf of the different network participants.
These working steps vary for up- respectively downloads. This chapter is
further explaining these required steps. (Wilkinson et al., 2016, p. 19)

// b = sample of a bucket id
String b = "a4b3a6872bfea510bbd995a1";
String url = "https://api.storj.io/buckets/" + b + "/tokens";
Map<String, Object> postBody = new HashMap<String, Object>();
postBody.put("operation", "PUSH");
String postBodyJson = gson.toJson(postBody);

Code snippet 6: An example PUSH-token request

25

7.2.1 Uncertainties about the upload procedure

There is a step based instruction on how the file upload works in the Storj
whitepaper (https://storj.io/storj.pdf). It does however slightly vary from
the instruction given in this thesis. On one hand the description here is a
bit more extensive, on the other hand some steps differ in their order. This
is due to experiences, the author made while developing the reference
implementation for the thesis.
The main inconsistency has emerged, because the issuing of audits by the
Bridge has not entirely been implemented so far. The audits are the base
for the payment system, which is just being developed while this thesis is
written (Wilkinson et al., 2016, p. 8).
It is yet to be found out, by which event the first audit issuance of the
Bridge is triggered and how the Bridge reports the answer to the client.
The latter point is a question about what response the audit verification
result is added to, which depends on the first point: the question about
which client request triggers the audit issuance. In the whitepapers
instruction, it is explained as triggered by the client transferring the audit
information. However, the thesis’ reference implementation sends this
information already before the data has actually been uploaded to the
farmer. The bridge would therefore neither know, when the upload has
finished, nor have any request available to answer to.
When researching this issue further, a Storj-developer told the author, that
the issuing of audits was not activated at the time and that the issuance of
the exchange reports would trigger the audits once they are fully
implemented (littleskunk, 2017). This is the information this step by step
instruction is based on. In this scenario, the audit results would be
communicated in the response to the exchange reports issuing request of
the client.
As a conclusion of this, the author recommends any developer referring to
this instruction to be mindful of this situation and to be attentive to the
further implementation of the Bridge, which will eventually lead to a
clearer notion of this sub process. (Wilkinson et al., 2016, p. 19)

7.2.2 Upload procedure

The following list shows the sequence of steps needed to upload a file to
the Storj network. (Wilkinson et al., 2016, p. 19)
Figure 5 shows a graphical representation of these steps.

1) The client prepares data to be uploaded. This step results in one or

multiple encrypted shards.

2) The client informs the Bridge, that it wants to upload data. For this

purpose, it creates a frame on the Bridge. A frame contains metadata
used for the upload of a file.

26

3) The client adds shards to the frame. More precisely, these are not the
actual shards, but only metadata about them, like for example their file
sizes. They also contain the information needed for issuing audits.

4) Each shard [metadata] that is added to the frame, triggers the Bridge

to generate a contract with an available farmer.

5) As a response to the shard adding request (step 3), the Bridge responds

with contact information about the farmer it generated a contract with.
This contains information such as the farmer’s address (IP or domain),
its port, the farmer’s id (node id) inside the network, or the protocol
version it uses. In addition to this, the Bridge also sends an
authentication token for the client to authenticate against the farmer.

6) The client directly uploads its shards data to the farmer, using the

information and token it received in step 5. This is done over HTTP.

7) The client uploads exchange reports for each shard-upload whether

they were successful or unsuccessful. These reports contain data about
the uploads which are then used by the bridge to maintain its internal,
farmer-related reputation system. For the client itself, this step is also
important because it will probably [see chapter 7.2.1] be implemented
to serve as a trigger for the Bridge to start step 8.

8) The Bridge proves whether the data was transferred correctly by

issuing an audit for the farmer and verifying the response. At the time
this thesis is written, it is not yet clear, how the Bridge will transmit the
result of the audit to the client (as an answer to which request). If the
result were negative however, it seems evident that the shard would
have to be transferred again. After having verified the upload, the
Bridge is ready to start the mirroring process.

9) The client uploads metadata about the files to the bridge, and

associates it to the frame that was used for uploading the shards. This
metadata contains information about the file, namely its filename, file
size and mimetype, as well as organizational information for the bridge
like an id and the id of the bucket and the frame it belongs to.

10) As long as no other setting is implemented, the Bridge will assume to

be responsible for the tasks needed to be completed during the time
the shard is online. Concerning farmer-side communication, this
involves issuing audits, paying farmers, and managing file state.
Concerning the client-side communication, it involves exposing the file
metadata for the client.

Figure 5 shows an illustration of these steps using an example, in which
there is a file uploaded, which is split up into 3 shards in step 1. Therefore,
the data is uploaded to 3 farmers. In the given example one farmer would

27

have an error, which would lead to the Bridge searching for another
farmer. For an increased simplicity of the model, the mirroring process is
not shown. As it is only relevant for the communication between the
Bridge and the Farmer, it is of little interest for a client library developer
anyways.

Figure 5: illustration of the upload process

28

7.2.3 Download procedure

The following list shows the sequence of steps needed to download a file
from the Storj network. (Wilkinson et al., 2016, p. 19)
Figure 6 shows a graphical representation of these steps from the clients
point of view.

1) The client requests a file from the Bridge, using the files id.

2) The Bridge sends the client information about the farmers, where it

can download the shards that make up the file. This contains among
other information the farmers IP-address or its domain name, and a
token which the client uses to authenticate against the farmer in step
3.

3) The client downloads the shards needed from the farmers over HTTP,

using the farmer information and tokens received in step 2.

4) The client uploads exchange reports for each shard-download that was

unsuccessful. These reports contain data about the downloads which
are then used by the bridge to maintain its internal, farmer-related
reputation system.

The author expects a future release of the Bridge to respond to the
exchange report with information about a new farmer for the client to
download the shard from. At the time this thesis is written however, there
is no such response implemented yet.

5) The client converts the encrypted shards into the unencrypted file.

Figure 6 illustrates these steps using the following scenario:
The client wants to download a file, that consists of three shards. One of
the farmers however has an error and does therefore not deliver the shard.
Therefore, the client sends a negative exchange report to the Bridge to
which the Bridge responds by sending the access data to another farmer.
The client then starts a new download of the shard from the new farmer.

29

7.2.4 Shard transfers

The shard upload and download to respectively from a farmer is done over
HTTP. The following cohesive code snippets show the implementation of
the shard upload from the reference implementation.

Code snippet 7 shows the variables needed for the HTTP call. All of these
variables are provided by the Bridge, as a response to the token request.

Figure 6: illustration of the download process

30

Code snippet 9 shows the settings of the connection to be set before
starting the HTTP call. The method is always POST for uploading and GET
for downloading.

Code snippet 8 shows how the data finally is sent to the farmer and
subsequently the connection is closed.

7.3 Buckets

Buckets on Storj are like folders in a file system, with the difference that
they only allow one single level of hierarchy. In other words, it is not
possible to create any bucket inside of another bucket.

“A bucket is just a logical grouping of files that we can assign permissions
and limits to.” (Storj Labs, 2016b)

Buckets can be created, read, updated and deleted (CRUD) over the
Bridge’s RESTful web service on api.storj.io .

// sample data [usually delivered by the Bridge]
String farmerIp = "123.123.123.123";
int farmerPort = 9876;
String token = "1591756dd4a1847997c4cf9a8aba9040f28cd2f3";
String shardHash = "41007cfb958ebe453c4f8e53f85cb9f007051efa";
String nodeId = "6d825b7dc6ce3dc0aa0225cccfd66b49fcf9e032";

String farmerAddress = "http://" + farmerIp + ":" + farmerPort;
String params = "/shards/" + shardHash + "?token=" + token;
String strUrl = farmerAddress + params;
 Code snippet 9: sample variables and the composing the URL to be called

URL url = new URL(strUrl);
HttpURLConnection conn = (HttpURLConnection)url.openConnection();

conn.setRequestMethod("POST"); //"POST" for upl. | "GET" for downl.
conn.setDoOutput(true); // true for POST requests, false for GET
conn.addRequestProperty("x-storj-node-id", nodeId);
conn.setRequestProperty("Content-Type","application/octet-stream");
conn.setConnectTimeout(240000); // optimal parameter unknown

Code snippet 7: configuring the connection

// send request
OutputStream os = conn.getOutputStream();
DataOutputStream wr = new DataOutputStream (os);
File shardFile = new File(shard.getPath());
// send shard data as binary
wr.write(readAllBytes(shard.getPath()));

// close connection
wr.flush();
wr.close();
conn.disconnect();

Code snippet 8: transferring the data and closing the connection

31

7.3.1 Shared buckets

There is a possibility to add public keys to buckets. This is part of a feature
to share buckets. However, this feature is still not implemented as of
February 2017.
The author assumes that the public keys to be stored in these buckets,
would be the public keys of the keypair, a respective “invited” user would
use for the authentication towards the bridge.

7.3.2 Public buckets

In October 2016, Storj Labs introduced the feature public bucket (Storj
Labs, 2016c). This feature is limited to client implementations that use the
deterministic encryption key derivation from Storj Labs´ libraries (as
explained in chapter 7.6), or a similar implementation. The crucial point is
that any client given the bucket key, must be able to encrypt and decrypt
all the data inside of a bucket by either using the bucket key directly, or
deriving keys from the bucket key (recommended).

From a technical point of view, a public bucket is nearly the same as a
normal bucket, with just the difference that it contains two more elements
as metadata: a bucket-related encryption key and a list of codes for the
access level. Being part of the bucket, this information is consequently
transmitted to the Bridge.

The Bridge may provide the uploaded key to any client, which would then
derive all the keys used to encrypt and decrypt the data within the
concerning bucket. As this key is the base for decrypting every file that is
or will be inside this bucket, a bucket cannot be made private again, once
the key has been uploaded [and thus made public]. Instead, a client would
have to download all the files, add them to a new bucket and then delete
the public bucket.
The encryption key is uploaded to the Bridge in a hexadecimal encoded
form.

The codes for determining the access level are uploaded as plaintext
strings. There are two codes: PULL and PUSH. PULL adds the permission for
the public to download data from the bucket, PUSH on the other hand adds
the permission for the public to upload data. It is possible to either give
only the right to download, only the right to upload, or both together.
In either way, the owner of the bucket (= creator of the bucket) keeps the
rights to both upload and download data to respectively from the public
bucket.

With this feature, two new use cases arise, that could be reasonable for a
client software to be implemented. The obvious one is implementing the
possibility to create and manage public buckets. The less obvious one is to

32

create an interface for the user to access public buckets that were created
by other users.

Furthermore, one should consider that the cost for both traffic and storage
space used in public buckets are probably going to be charged to the owner
of the bucket. A clear statement will be possible by the time the payment
system is entirely implemented.

7.4 Sharding

Sharding describes the procedure of splitting a file into multiple fractions.
This step is performed by the client and is optional, yet in many cases
recommended. Figure 7 illustrates the sharding process with a file that is
being encrypted before it is sharded.

7.4.1 Advantages of sharding files

Sharding files brings two main advantage: privacy and performance.

The uploaders privacy is increased, because none of the involved farmers
stores any entire file, but just a part of it. In this sense, even if a malicious
farmer would somehow achieve to decrypt the uploaded data, the farmer
would still only be able to read part of the original file, not knowing where
the other parts of the file are stored.

The performance of the data transfer (uploads as well as downloads) can
be positively influenced by uploading shards simultaneously to different
farmers. In this case, the transfer speed is equal to the transfer speed of
the slowest farmer multiplied by the size of the shards.
Table 7 illustrates a calculation of this principle using a theoretical example
of a file with the size of 32 MB.

Figure 7: file sharding vizualization (Wilkinson et al., 2016, p. 3)

33

Table 7: Comparison of performances between unsharded and sharded upload

7.4.2 Limits to the advantages

Both the addressed advantages are limited in a similar way. An increased
number of shards, also increases the chance of interacting with an
unwanted farmer. Concerning privacy, this means that a higher number of
farmers increases the possibility to be connected to malicious farmers.

For the performance item, this means that a higher number of farmers
increases the possibility to get farmers that are low in performance. Table
8 illustrates this issue using the theoretical example from chapter 7.4.1 .

Table 8: Comparing performances between normally sharded and highly sharded uploads

The key concept of successful sharding is therefore to find a reasonable
balance between the benefits and the risks of the distribution, which can
be controlled by the shard size chosen per file. This certainly depends on
the actual size of the file, but as a guiding value Storj recommends working
with a multiple of Megabytes. (Wilkinson et al., 2016, p. 3).

7.4.3 Order of the shards

When downloading a sharded file, it is important to put the shards
together again in the right order. This is fundamental for reproducing the
correct data. For this purpose, the Bridge offers the possibility to add an
index to each shard’s metadata, when they are uploaded. These indexes
will then be provided by the Bridge, whenever this file’s file download is
requested from the Bridge.

FILE UPLOADED ENTIRELY FILE UPLOAD AS SHARDS
No. file size transfer time No. shard size transfer time
1 32 MB 10 Mbit/s 3.2 s. 1 8 MB 10 Mbit/s 0.8 s.

2 8 MB 25 Mbit/s 0.32 s.
3 8 MB 4 Mbit/s 2 s.
4 8 MB 5 Mbit/s 1.6 s.

Total 3.2 seconds Total 2 seconds

REASONABLE NUMBER OF SHARDS INAPPROPRIATE NUMBER OF SHARDS
No. file size transfer time No. shard

size
transfer time

1 8 MB 10 Mbit/s 0.8 s. 1 0.1 MB 10 Mbit/s 0.01 s.
2 8 MB 25 Mbit/s 0.32 s. 2 0.1 MB 4 Mbit/s 0.025 s.
3 8 MB 4 Mbit/s 2 s. ...
4 8 MB 5 Mbit/s 1.6 s. 183 0.1 MB 0.01 Mbit/s 10 s.
 ...
 319 0.1 MB 25 Mbit/s 0.004 s.
 320 0.1 MB 5 Mbit/s 0.02 s.
Total 2 seconds Total 10 seconds

34

7.4.4 Standardized shard sizes

To preserve privacy, it is recommended to have the same shard size for
every shard of a file, or even for every single shard uploaded to the
network. (Wilkinson et al., 2016, p. 3)

“Standardized sizes dissuade side-channel attempts to determine the
content of a given shard, and can mask the flow of shards through the
network.” (Wilkinson et al., 2016, p. 3)

This can be achieved by adding meaningless data to shards that are too
small in order to “fill it up” to the wanted shard size. Small files could even
be put together into one shard.

7.4.5 Examples from the reference implementation

Code snippet 10 shows the sharding process. In this example, the file
“doler.amet” is sharded into pieces of 8 Megabytes. The while loop reads
one “buffer” at a time. As the buffer has the size of a shard, every iteration
of the loop creates one shard. The method createTempFile() adds a
random number to the filename. Thus one possible shard-filename of the
given code could be: xyz1324539097.shard .

Code snippet 11 shows the reverse function. It takes various shards and
pieces them together into one file.

// sample variables
File targetFolder = new File("/lorem/ipsum/sit/shards");
File inputFile = new File("/lorem/ipsum/sit/doler.amet");
int shardSize = 8 * 1024 * 1024; // 8 MB

FileInputStream inputStream = new FileInputStream(inputFile);
byte[] buffer = new byte[shardSize];
int length;
while ((length = inputStream.read(buffer)) > 0){
 // Create the shard
 File shard = File.createTempFile("xyz",".shard", targetFolder);
 FileOutputStream out = new FileOutputStream(shard);
 out.write(buffer, 0, length);
 out.close();
}

public static void pieceTogetherFile(List<File> shards,
 File destination) throws IOException {
 FileOutputStream os = new FileOutputStream(destination);
 for(File shard : shards) {
 byte[] shardBytes = readAllBytes(shard.getPath());
 os.write(shardBytes);
 }
 os.close();
}

Code snippet 10: the sharding process

Code snippet 11: creating one single file out of multiple shards

35

7.4.6 Multithreading for shard up- and downloads

To avoid blocking an application, while an upload or download is taking
place, events should be executed in another thread, on the side of the
main thread. For the case of up- and downloads to the Storj cloud though,
there are even more benefits coming with multithreading. To get the
maximum out of the bandwidth the Storj network may provide, it is
recommended to upload different shards simultaneously. Using
multithreading makes such a concurrency possible.
Storjs Node.js library allows such behaviour and sets its concurrency in a
public example to 6 files that may be uploaded at once. (Storj Labs, 2016d)

Furthermore, multithreading may be used in relation with the sharding
process. Technically, the uploading process does not have to wait until the
sharding process has completed. Instead it might be reasonable to start
uploading shards already after the creation of the first shard.

7.5 Data audits

7.5.1 Data retrievability

One major challenge of the Storj network is to prove, whether a farmer
does indeed store the data it agreed to store, or whether it is a malicious
farmer which just claims to store the data, while deleting or manipulating
it. Storj’s attempt to solve this issue, is to periodically issue data audits for
the farmers, to which the farmers are only able to give a correct response,
if they can still access the data that was allocated to them.

Storj’s implementation of this audit system uses data hashing as its base.
For the hashing process, it uses so-called challenges, which are essentially
32 byte sized cryptographical salts. A salt is a small amount of random
data, which is added to the data that’s being hashed – usually for securing
the hash. However, in the audit process the challenges are not added for
just securing the hashes, but are an essential and inevitable part of the
procedure. (Wilkinson et al., 2016, pp. 4,5)

For clients, the data audit generation might best be developed as part of
the sharding process, since audits are always tied to shards instead of
whole files.

36

7.5.2 Implementation details

In the audit process, the different challenges are prepended to the shards,
one at a time. This concatenation of a challenge and a shard is then being
hashed. The resulting hash is the audit. (Wilkinson et al., 2016, p. 4)

a = ℎ ℎ(ℎ + ℎ)

Source code from Storj Labs reveals, that the hashing function showed in
the formula is in reality not just a simple hash function, but instead a
combination of four sequential hashing processes using the algorithms
SHA-256 and RIPEMD-160.

Each client is responsible for creating challenges as well as calculating the
corresponding audits and send them to the Bridge. This allows the Bridge
to prove that farmers store the given shard-data, by issuing challenges and
receiving audits as responses, which it can validate against the audits
previously created by the client. An audit can only be identical if both the
challenge and the shard-data are identical to the data that was previously
used by the client to generate the audit itself.
This proof is only secure unless every challenge is only used once.
(Wilkinson et al., 2016, pp. 4,5)

Since there is a lot of hashing involved in this process, code snippet 13
should help developers to validate their code respectively make sure that
they use the correct hashing functions with the right configurations.
Input: "test"
Output: " 5a30325a141cd691fb3815eff5e0d93ebfee6842"

7.5.3 Merkle Tree implementation in the auditing process

While further researching the auditing process, one might stumble on the
implementation of a technique called Merkle Tree as part of the auditing
process. It is a rather fascinating implementation, yet it has little relevance
for the implementation of Storj cloud client libraries.

expect(_getChallengeResponse(result)).to.equal(
 utils.rmd160sha256(utils.rmd160sha256(
 challenge + SHARD.toString('hex')
))
);

Code snippet 12: code from unit test in proof-stream.unit.js from the Storj core repository

String test = "test";
byte[] tb = test.getBytes();
byte[] hashed = rmd160Sha256(Hex.encode(rmd160Sha256(tb)));
String hexHash = bytesToHex(hashed);

Code snippet 13: RIPEMD-160 and SHA-256 hashing function test

37

To reduce the audit data stored on the Bridge itself, the Bridge does in fact
not exactly follow the procedure described in chapter 0 but uses an
implementation of a Merkle Tree instead. Storj Labs’ whitepaper gives
further insights on this implementation. (Wilkinson et al., 2016, pp. 4,5)

For client developers, the Merkle Tree implementation is of little concern,
since for the clients everything remains the same. Its responsibility is just
to provide both challenges and audits to the Bridge, while latter is
responsible for of the rest. (Wilkinson et al., 2016, pp. 4,5)

7.5.4 Partial audits

Storj Labs has introduced the concept of partial audits, to reduce the
substantial overhead caused by the hashing processes. The concept is
based on the idea of auditing only parts of the whole shard at a time.
(Wilkinson et al., 2016, p. 6) As of February 2017 however, this concept is
not yet supported by the Bridge (Storj Labs, 2017a).

7.5.5 Number of audits per shard

Storj Labs has not yet communicated any recommendation about the
amount of challenges respectively audits to be generated and send to the
Bridge. Regarding this question, the only advice that can be found so far is
that it would make sense to use a number which is a power of 2, as such
amounts of audits are needed for building the Merkle Tree. (Wilkinson et
al., 2016, p. 5)

7.6 Encryption

How to encrypt files before uploading them to the Storj cloud is a decision
on which client developers have complete freedom of choice. Therefore,
they also have the responsibility over the security of the files, as the
encryption method is crucial to this aspect. Technically it would even be
possible to use no encryption at all, which however is strongly inadvisable.

The libraries provided by Storj Labs create a separate key for every file that
is uploaded. This is a measure to provide high levels of security, which is
indispensable in a trustless network like the one created by Storj Labs.
Even though it is not crucial to use a separate encryption key for each file
like Storj Labs’ libraries do [but only separate initialization vectors], it is
certainly a considerable practice.

7.6.1 Data portability and key migration

As data is being encrypted locally on clients, data portability is an issue.
How can a user encrypt data in one client, then transfer it over the Storj

38

cloud to another client, and decrypt it there? That is a task the receiving
client cannot solve without having the appropriate encryption key for the
data. To have full data portability between multiple clients, the encryption
keys must therefore be transferred to all involved clients.

A solution for the key migration problem could be an automated key
exchange over the internet. This solution could be developed in many
different forms and implementations. The benefit of such a solution is that
the user does not have to be aware about the existence of that problem,
since the exchange can happen fully automated. Nevertheless, there is also
an enormous drawback to this solution. By exposing the keys to the
internet, this implementation opens a whole field of security issues, with
which this system would have to deal with.

Opposed to that solution, there is the solution to manually copy the
encryption keys. While this solution is safer indeed, it is also very
impractical. Not only would a user eventually have to copy many keys, but
this method also just establishes data portability for files, that were
uploaded before the keys are copied. Every file that is encrypted
afterwards is consequently excluded from this data portability, until the
user copies the file again. (Antonopoulus, 2014, p. 85)

To solve this latter problem, an implementation of a key pool could be
implemented. In such an implementation, a client does not create the
encryption keys directly prior to using them. Instead, it creates a whole
pool of keys at once, which the user then copies. The data portability
would then be present until the keys of the pool are exhausted. The biggest
problem of this method is the uncertainty about the amount of encryption
keys used by a user. As the chosen pool size would probably never match
the requirements of all users, there would always be some users who store
many more keys than they would actually have to, as well as some users
who would have to repeat the copy process, as they would not have
enough keys. (Antonopoulus, 2014, p. 85)

Another solution is to create keys, which are all derived from the same
seed. This method is called Deterministic Key Derivation. It contrasts with
all the other presented methods, in the way the keys are generated. In the
non-deterministic method, keys are derived in the ordinary way, by using
a separate entropy for each key and derive the key from that number. As
all the keys are derived from the same seed using one-way hash functions,
this method brings a great advantage over the other methods. The only
thing that must be copied to create data portability on multiple devices is
the seed. Furthermore, it only has to be copied once, in order to enable
the creation of all the used keys, as well as all the keys that will be used in
the future. (Antonopoulus, 2014, p. 85) (Wilkinson et al., 2016, p. 21)
In consequence of the used one-way hash functions, a hacker getting hold
of any encryption key would neither be able to derive any other encryption
key, nor be able to derive the seed from it. (Antonopoulus, 2014, p. 85)

39

7.6.2 Storj Labs’ Deterministic Key Derivation

Storj Labs integrates an own deterministic key derivation implementation
in its libraries. For client-developers who seek compatibility with these
libraries, implementing the similar derivation process is required. This
chapter gives further insight on the exact procedure to follow, in order
create a client that’s compatible with Storj Labs’ libraries. This means, that
a correct implementation of the presented steps will help to provide a
client, which can download data that was uploaded by using Storj Labs’
tools (at the time this thesis is written this means particularly the Storj CLI)
and vice versa.

As randomly generated seeds are difficult for human beings to process, in
their natural form they are not convenient to be manually copied from
device to device. For this reason, Storj Labs implemented a mnemonic
solution as described in Bitcoin Improvement Proposal 39. With this
implementation, seeds can be transformed into 12 English words (=
mnemonic) and vice versa2. This way, a user only needs to transfer 12
words to copy the complete information needed to generate all keys
necessary for encryption and decryption. It is essential that these words
are handled carefully, as they are the key element to a user’s complete
encryption data. For this step, developers should seek a library that
integrates an implementation of BIP39. (Wilkinson et al., 2016, p. 21)
(Antonopoulus, 2014, p. 86)

A generated seed provides the basis for the generation of bucket keys.
Bucket keys in turn, provide the basis for generating file keys.

2 To be precise, the entropies (which seeds base on) can be transformed to mnemonics and vice versa.

40

Figure 8 illustrates this key generation process. Please note that the purple
arrow represents a two-way function while the orange arrows represent
one-way hash functions. Consequently, with the information of the
entropy (respectively of the mnemonic) the seed can be generated, but
from the seed neither the entropy nor the mnemonic may be derived.
However, with the information of the seed all bucket keys can be
generated. Finally, the bucket keys provide the basis for generating all file
keys for the files inside of the respective bucket. From a file key, it is
however neither possible to derive any other file key nor the bucket key.
The same situation is true for the bucket keys: from a bucket key, it is
neither possible to derive keys of other buckets, nor to derive the seed.

This procedure also explains perfectly why only one key is uploaded to the
Bridge, when a public bucket is created. The uploaded key is the bucket
key of the concerning bucket, which the Bridge then shares with all the
clients accessing the public bucket. Each involved client then derives the
file keys it needs on its own.

7.6.3 Implementation details

This chapter contains a step by step instruction of all the steps needed to
implement a key derivation that is compatible with the one Storj Labs
integrates in its libraries. It contains all steps of the process, from
generating a seed up to an encrypted file. (Storj Labs, 2017c)

First an entropy has to be generated. This step should be implemented by
using a trustworthy cryptography library. For compatibility with Storj Labs’
libraries, the entropy must be 128 bits in size.

Figure 8: Storj Labs' Deterministic Key Derivation implementation

41

Out of the entropy, a 512 bits long seed may be generated. For this
purpose, a library like bitcoinj should be used. Such a library will also
provide the conversion of mnemonics to entropies and vice versa. BIP 39
furthermore presents an optional solution of a password protection for
mnemonics, this feature is however not provided in the implementations
from Storj Labs. It is crucial, that the exact same wordlist used by Storj
Labs, is applied. As Storj Labs uses the implementation from Bitcore, the
wordlist they use can be found on BitPay’s Bitcore Github repository:
https://github.com/bitpay/bitcore-
mnemonic/blob/master/lib/words/english.js

Code snippet 14 shows the implementation of a mnemonic import using
the bitcoinj library. The hexadecimal representation of the resulting seed
would be the following (128 characters / 64 bytes / 512 bits):
438fe281402ecf836cc409901ad8a78d4b34151b4ac8a6fb3df2623225787
ce331fc9dc9a12e4311cd6f96b5482310902fbd3ead2e6c7b9db12d5608d
51b95cf

Creating the bucket key involves appending the bucket id to the seed (both
in binary form), and hashing the data using the algorithm SHA-512. The
first 256 bits (32 bytes) of the result are the bucket key. If the key were to
be uploaded to the Bridge, in order to make a Bucket public, it would have
to be transformed into a hexadecimal representation.

Code snippet 15 shows the code to the described procedure. The resulting
bucket key would have to be put into a hexadecimal representation to
upload it to the Bridge for creating a public bucket. In this hexadecimal
form, it looks as follows (64 characters / 32 bytes / 256 bits):
bcedc9a3e7e913a3243fa36c6819fff2efe0b6c1d23251f31104daf01cd41cc4

// mnemonic used as a sample
String mnemonicSample = "steak carbon essence album famous actual "
 + "machine empower innocent hurt effort lecture";

// transform mnemonic from String to a list
ArrayList<String> mySeedList = new
ArrayList<String>(Arrays.asList(mnemonicSample.split("\\s+")));

// === CREATE SEED === //
// generating the seed, without using a password (= empty string)
byte[] seed = MnemonicCode.toSeed(mySeedList, "");

Code snippet 14: importing a mnemonic with bitcoinj

// using a sample bucket id
String bucketIdSample = "55d5fb0c894440e0440b2932";

byte[] bucketIdBinary = hexToBytes(bucketIdSample);

// === CREATE BUCKET KEY === //
// concatenate the seed and bucketId-bytes.
byte[] bkSource = ArrayUtils.addAll(seed, bucketIdBinary);
byte[] bkUncut = Hashing.sha512().hashBytes(bk_source).asBytes();
byte[] bucketKey = Arrays.copyOfRange(bkUncut, 0, 32);

Code snippet 15: generation of bucket key using bucket id and imported seed from above

42

In the next step, the file id must be appended to the bucket key (both in
binary form). The resulting data must then be hashed using the algorithm
SHA-512. The first 256 bits (32 bytes) of the result are the file key.

The hexadecimal representation file key of this example would be the
following code (64 characters / 32 bytes / 256 bits):
3a6efcbefe44cec06b63d606c1dd459f9a4bccc77c156044d7df8796038fc620

In the last step, a given file is encrypted with an AES-CTR algorithm. For
this purpose, an encryption key and an initialization vector are necessary.
The encryption key is generated by SHA-256 hashing the file key. In
contrary to the hashing procedures from the previous steps, for this step
not the bytes are hashed, but the hexadecimal representation as a String
(based on UTF-8). The initialization vector is the first 16 bytes of a RIPEMD-
160 hash of the file id (in binary form).

The hexadecimal representation of the resulting encryption key would be
the following code (64 characters / 32 bytes / 256 bits):
b903081d9b21d683b7646614fa9766312a09921a9e830c46c55b79ad20ebfcd2,
and the initialization vector (32 characters / 16 bytes / 128 bits):
7d47fad9a1bfd26139d9d99683845d9a

// using a sample file id
String fileIdSample = "7f587306167139efdc40b0dd";

byte[] fileIdBinary = hexToBytes(fileIdSample);

// === CREATE FILE KEY === //
// concatenate the bucket key and fileId-bytes.
byte[] fkSource = ArrayUtils.addAll(seed, fileIdBinary);
byte[] fkUncut = Hashing.sha512().hashBytes(fk_source).asBytes();
byte[] fileKey = Arrays.copyOfRange(fkUncut, 0, 32);

Code snippet 16: generation of file key using sample file id and bucket key from above

// === CREATE ENCRYPTION KEY === //

String fileKeyHex = bytesToHex(fileKey);
byte[] encryptionKey = Hashing.sha256().hashString(fileKeyHex,
 Charset.defaultCharset()).asBytes();

// === CREATE INITIALIZATION VECTOR === //
byte[] fileIdHashed = rmd160(fileIdSample.getBytes());
byte[] initVector = Arrays.copyOfRange(fileIdHashed, 0, 16);

Code snippet 17: generation of the encryption key and the initialization vector

43

Code snippet 18 shows the actual encryption of the file with the generated
encryption key and initialization vector.

7.6.4 The file id problem with uploads

The attentive reader might have noticed, that there is an inconsistency
with the order of the uploading procedure as described above. As
explained earlier in this thesis, a file is first encrypted and sharded, then
uploaded, and then the Bridge generates a file entry for the file, which also
contains the file id. However, as described above, the encryption using
deterministic encryption keys uses the id for the generation of the
encryption key. This implementation does not seem to add up, if the
encryption takes place before the bridge generates the file id.

The solution to this issue, is that the file id is generated in a deterministic
way too. It is done in such way, that the derivation of the id might also be
done by a client library. For this purpose, the bucket id and the filename
are used. First, the bucket id must be prepended to the filename. Then the
resulting concatenation must be hashed with SHA-256 and RIPEMD-160.
The first 24 characters of this result’s hexadecimal representation are the
file id. Code snippet 19 shows, the regarding code of the reference
implementation.

// === ENCRYPT FILE === //
Cipher cipher = Cipher.getInstance("AES/CTR/NoPadding");
SecretKeySpec keySpec = new SecretKeySpec(encryptionKey, "AES");
IvParameterSpec ivParamSpec = new IvParameterSpec(initVector);
cipher.init(Cipher.ENCRYPT_MODE, secretKeySpec, ivParameterSpec);

FileOutputStream fos = new FileOutputStream(outputFile);
CipherOutputStream cos = new CipherOutputStream(fos, cipher);
FileInputStream fis = new FileInputStream(inputFile);

byte[] data = new byte[1024];
int read = fis.read(data);
while (read != -1) {
 cos.write(data, 0, read);
 read = fis.read(data);
}

cos.flush();
cos.close();
fos.close();
fis.close();

Code snippet 18: encrypting the file

String concatenated = bucketId + fileName;
byte[] asBytes = concatenated.getBytes();
byte[] hashed = rmd160Sha256(asBytes);
String hexadecimal = bytesToHex(hashed);
String fileId = hexadecimal.substring(0, 24);

Code snippet 19: deterministic derivation of file ids

44

7.7 Procedure order of encryption and sharding

Whenever the Storj community speaks about preparing a file for upload, it
is usually seen as a sequence of an encrypting process followed by a
sharding process. Nevertheless, it is technically also perfectly possible, to
change the order. This chapter points out the main advantages and
disadvantages of the sharding-first sequence has against the encrypting-
first sequence.

7.7.1 The encrypting-first sequence

Figure 9 illustrates the encrypting-first sequence, which is the commonly
implemented sequence. As this is also true for the libraries which Storj Labs
implements (Wilkinson et al., 2016, p. 3), the compatibility with the Storj
Labs’ libraries is one advantage of this sequence.

7.7.2 The sharding-first sequence

Figure 10 illustrates the alternative sharding-first sequence. It has
particularly performance related advantages over the encrypting-first
sequence:

 The client may start the upload of a shard right after this particular
shard has been encrypted. The upload process does not have to
wait for the whole file to be encrypted.

 The point mentioned above is also true for downloads, although in
the reverse order. This means, that a client can start to decrypt a
shard when it has been downloaded. The decryption process does
not have to wait for every shard to be downloaded.

Figure 9: model of the encrypting-first sequence (Wilkinson et al., 2016, p. 3, adapted)

Figure 10: model of the sharding-first sequence (Wilkinson et al., 2016, p. 3, adapted)

45

 The encryption process allows a solution in multiple threads,
meaning that each shard may be encrypted respectively decrypted
in an own thread.

The main disadvantages of the encrypting-first sequence compared to the
sharding-first sequence are security related. It is considered good practice
to use a different key for each encryption. If you were to use the same key
for multiple encryptions however, it would be vital to use a different
initialization vector (IV) per encryption. A secure implementation of a
sharding-first sequence would therefore require the creation and storage
of a separate initialization vector for each shard. This could generate a
significant amount of data to be stored for the client. On the other hand,
if this measure was not implemented, the data’s security would be
severely weakened.

“ … any reuse of the per-packet value, called the IV, with the same nonce
and key is catastrophic. An IV collision immediately leaks information
about the plaintext in both packets.” (Housley, 2004, p. 3)

The next security issue of the sharding-first sequence, is that it partly
neutralizes the security benefit the shard distribution entails. If shards are
encrypted individually, it is easier for a hacker to decrypt a shard, because
for a decryption of the shard, only the encryption key and shard itself
would be needed. In the encrypting-first sequence on the contrary, the
hacker would need the encryption key plus all the shards to be able to
perform a decryption.

7.7.3 Conclusion

The choice of the chosen sequence appears to be a question of priorities
between security and performance. If compatibility towards Storj Labs’
libraries is an aim, implementing the encrypting-first sequence is
recommendable.

7.8 Exchange reports

Exchange reports are reports which the Bridge uses to feed its reputation
system, which assesses the farmers of the network. They are sent as POST
calls to the Bridge. The endpoint to be called on the Bridge is the URL
http://storj.api.io/reports/exchanges .

Since the exchange reports are still under development, this topic is based
on assumptions on behalf of the author. Since there is neither
documentation, nor any support, the only sources of information the
author got hold of, is the source code of the exchange reports
implementation on the Bridge, which might not yet be in its final version.
Therefore, this chapter needs to be read with caution.

46

Exchange reports are supportive for the Bridge, but do not provide any
direct benefit for clients. For this reason, the Bridge ensures that the
clients send their reports, by making the recipience of the reports the
trigger for starting the mirroring process (and possibly also the trigger for
issuing the first audit for a shard). Therefore, an implementation of the
exchange reports is indeed important for client libraries too.

7.8.1 Variables of the exchange reports

What are the variables an exchange report has to include? Following the
source code from the Storj core (as shown in Code snippet 20, attached to
the appendix), an exchange report contains 8 variables.

Table 9 shows the thesis’ authors interpretation of the values of these
variables when being used in a client implementation.

Table 9: Exchange report variables values for client implementations

reporterId The clients public key, used for the
authentication

farmerId The farmers id (hash)
clientId The clients public key, used for the

authentication
dataHash The shards hash
exchangeStart Unix timestamp of the time before

transferring a shard
exchangeEnd Unix timestamp of the time after transferring

a shard
exchangeResultCode see chapter 0
exchangeResultMessage see chapter 0

reporterId: storj.utils.rmd160('client'),
farmerId: storj.utils.rmd160('farmer'),
clientId: storj.utils.rmd160('client'),
dataHash: storj.utils.rmd160('data'),
exchangeStart: Date.now(),
exchangeEnd: Date.now(),
exchangeResultCode: 1000,
exchangeResultMessage: 'SUCCESS'

Code snippet 20: from report.unit.js, showing the variables of an exchange report

47

7.8.2 Result messages and codes

The only possible result messages of an exchange report that were found
in the Bridge’s source code (reports.js, attached to the appendix), are
presented in Table 10.

Table 10: possible result messages for exchange reports

MIRROR_SUCCESS SHARD_UPLOAD DOWNLOAD_ERROR

The message “MIRROR_SUCCESS” is probably only used for the
communication between farmers and the Bridge, as the clients are
excluded from the mirroring process. The two relevant result messages for
the client are therefore SHARD_UPLOAD and DOWNLOAD_ERROR.

There were only two result codes found in the source code of the Storj core
(exchange-report.js, attached to the appendix), being 1000 for success and
1100 for failure.

7.9 Useful libraries and frameworks

There are various libraries that are supportive for some tasks inside of a
given Storj cloud client library. The libraries as presented here are based
on the experience on Android and might therefore not be available for
other platforms. Nevertheless, it is rather probable that libraries doing a
similar thing would be available for the respective cases. Making use of
such libraries is recommended as it makes developing easier while
providing a high level of quality to the development.

In the Android studio, these libraries are added to the project by creating
a dependency in the build.gradle of the respective project.

7.9.1 Spongy Castle

Spongy Castle is an adaption of Bouncy Castle, which has been created to
run on Android platforms. On other systems, bouncy castle may be
available instead of spongy castle.

Bouncy / spongy castle provides all kinds of algorithms for modern
encryption and hashing methods. It provided all the hashing and
encryption needed in the Storj library developed for this thesis. While the
scope of bouncy / spongy castle is extensive indeed, the documentation is
unfortunately rather limited.

Spongy Castle is developed by the Legion of the Bouncy Castle Inc. and
available for both Java and C# projects. (The Legion of Bouncy Castle, 2013)

48

7.9.2 Gson

Gson is a library which simplifies working with JSON based data sources. It
allows for serializing and deserializing objects from respectively to JSON.
Such a library is strongly recommended to use for Storj libraries, as all
communication with the Bridge bases on JSON. Gson is developed by
Google and is available for Java (including Android). (Google, 2017)

7.9.3 Volley

Volley (or sometimes referred to as Google Volley) is a library that supports
developers in making HTTP calls. It does not only simplify making HTTP
calls, but also provides some features to it, like managing multiple
concurrent network connections or caching. It allows setting up a request
queue, onto which an app may put multiple requests, which are then
processed by volley asynchronously.

For the a Storj library, this library is especially useful for the
communication with the Bridge, as it involves many requests with little
data to be transferred. On the other hand, it is not recommended to be
used for up- / and downloading Shards, as this involves a great extent of
data transfer.

“Volley is not suitable for large download or streaming operations, since
Volley holds all responses in memory during parsing. For large download
operations, consider using an alternative like DownloadManager.”
(Android Developer Pages, 2017)
Volley is developed by Google and was created for the Android
environment. (Segato, 2015)

49

7.9.4 Download manager

On Android systems, the download manager may be used as a service for
transferring shards with as it is designed for efficiently transferring files. In
addition to this, it provides a user interface which Android users are
familiar with. Figure 11 shows the download managers graphical
representation of a Storj-download of the file freeCat.jpg, using the
reference implementation.

7.9.5 Shared Preferences

Shared Preferences is a framework that allows persistent storing of key-
value pairs in Android. Even though “shared” sound like this data would be
accessible from other applications, this sharing feature is configurable and
not the case in the standard setting. However, for improving the security,
an encryption of the sensitive values should be considered. On Android,
the Android Keystore System could be helpful for this purpose.

This framework is useful for the Storj context for storing things like the
authentication keys, the encryption seed and the mnemonic as well as
configuration variables. Yet on a design level, it is questionable whether
this persistence should be provided directly by the library, or rather by the
client software.

Figure 11: Screenshots from download manager showing download of file freeCat.jpg

50

8 CONCLUSION

The thesis answers the research questions quite precisely. The limitations
to the research are because the Storj cloud is still at a rather early stage of
development, which is why not all details on the functioning of the Storj
cloud have been clarified yet.

The main obstacle in developing a Storj cloud client library lies in the
research of information due to lacking support and documentation, and
thus perceiving a general understanding of the functioning of the Storj
cloud. Yet this thesis, might improve this situation to a certain extent. From
a technical point of view, the most challenging domains are the elaborated
hashing and encryption functions used by Storj Labs, as well as safely
supporting multithreading. In consideration of the different procedures to
support, the most sophisticated to be named are the up- and downloading
process, the authentication, the deterministic key derivation and the
sharding process.

In order to ensure compatibility to the libraries generated by Storj Labs,
the most important aspects to consider are using the same procedure for
upload preparations – which is first encrypting and then sharding – as well
as the implementation of Storj’s deterministic key derivation.

Developing a sustainable library is possible with Storj, although a certain
flexibility is required, as many changes for the Storj cloud are still expected
to come. The best way to avoid complications, is to use one of Storj Labs
libraries whenever this is possible.

The knowledge conjunct to the development of such a library might be
fairly valuable. The author acquired knowledge about many fields of
modern IT, such as encryption, hashing, decentralization, Android
development, blockchain technologies, or the HTTP protocol to name a
few.

In the future, Storj Labs will support more systems by providing libraries
for them, which will reduce the need for third parties to develop their own
libraries. Nevertheless, early adopters could get themselves into a good
position inside of the Storj environment, the sooner they enter it.
The Storj cloud itself is just in the transition from experimental system to
a productive system. The ongoing integration of the payment system is a
major step in this endeavour. How the Storj Labs will perform in the market
of cloud storage providers will soon be seen. Companies who follow this
market development could achieve a competitive advantage by switching
from traditional clouds to the Storj cloud, should the Storj cloud prevail.

51

9 LIST OF TABLES

Table 1: Requirements for devices to be able to rent storage to the Storj network 7
Table 2: Publicly available Storj cloud clients.. 10
Table 3: Responsibilities of the clients vs. the Bridge ... 13
Table 4: characteristics of the library development prior to the thesis...................................... 17
Table 5: Examples of public keys readable for the Bridge .. 21
Table 6: Data to be signed for Requests that transmit data vs Requests that do not 23
Table 7: Comparison of performances between unsharded and sharded upload 33
Table 8: Comparing performances between normally sharded and highly sharded uploads 33
Table 9: Exchange report variables values for client implementations 46
Table 10: possible result messages for exchange reports .. 47

52

10 LIST OF FIGURES

Figure 1: a centralized cloud architecture ... 3
Figure 2: centralized vs decentralized cloud architectures ... 6
Figure 3: the network model as used for this thesis ... 11
Figure 4: basic authentication illustration using an example ... 20
Figure 5: illustration of the upload process .. 27
Figure 6: illustration of the download process ... 29
Figure 7: file sharding vizualization (Wilkinson et al., 2016, p. 3) ... 32
Figure 8: Storj Labs' Deterministic Key Derivation implementation ... 40
Figure 9: model of the encrypting-first sequence (Wilkinson et al., 2016, p. 3, adapted) 44
Figure 10: model of the sharding-first sequence (Wilkinson et al., 2016, p. 3, adapted) 44
Figure 11: Screenshots from download manager showing download of file freeCat.jpg 49

53

11 LIST OF CODE SNIPPETS

Code snippet 1: basic auth for HTTP calls as implemented in the reference implementation .. 20
Code snippet 2: automated nonce generation in Java ... 21
Code snippet 3: key pair generation method from the reference implementation 21
Code snippet 4: converting the public key to a hexadecimal encoding 22
Code snippet 5: signing data with SHA-256 and ECDSA .. 23
Code snippet 6: An example PUSH-token request .. 24
Code snippet 7: configuring the connection ... 30
Code snippet 8: transferring the data and closing the connection ... 30
Code snippet 9: sample variables and the composing the URL to be called 30
Code snippet 10: the sharding process ... 34
Code snippet 11: creating one single file out of multiple shards .. 34
Code snippet 12: code from unit test in proof-stream.unit.js from the Storj core repository ... 36
Code snippet 13: RIPEMD-160 and SHA-256 hashing function test ... 36
Code snippet 14: importing a mnemonic with bitcoinj ... 41
Code snippet 15: generation of bucket key using bucket id and imported seed from above 41
Code snippet 16: generation of file key using sample file id and bucket key from above 42
Code snippet 17: generation of the encryption key and the initialization vector 42
Code snippet 18: encrypting the file ... 43
Code snippet 19: deterministic derivation of file ids .. 43
Code snippet 20: from report.unit.js, showing the variables of an exchange report 46

54

12 REFERENCES

Amazon webservices. (2017). Protecting Data in Amazon S3. Retrieved 2 March 2017
from Amazon developer guide:
http://docs.aws.amazon.com/AmazonS3/latest/dev/DataDurability.html

Android Developer Pages. (2017). Transmitting Network Data Using Volley. Retrieved
30 January 2017 from Android developer's guide:
https://developer.android.com/training/volley

Antonopoulus, A. (2014). Mastering Bitcoin. Sebastopol, California, USA: O'Reilly.

AppDynamics Inc. (2016). Node.js Supported Environments. Retrieved 7 February 2017
from AppDynamics documentation:
https://docs.appdynamics.com/display/PRO42/Node.js+Supported+Environme
nts

Bloomberg. (2017). Company Overview of Storj Labs, Inc. Retrieved 22 January 2017
from bloomberg.com:
http://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=
309570101

D. Johnson, A. Menezes, S. Vanstone. (2016). The Elliptic Curve Digital Signature
Algorithm (ECDSA). Waterloo, Ontario, Canada. Retrieved 18 February 2017
from UC Santa Barbara Engineering:
http://cs.ucsb.edu/~koc/ccs130h/notes/ecdsa-cert.pdf

Dropbox. (2017). Where does Dropbox store my data? Retrieved 14 February 2017
from Dropbox Help Center: https://www.dropbox.com/en/help/7

Fuller, B. (2016). Page on Github. Retrieved 18 February 2017 from Github:
https://github.com/braydonf/sips/blob/be135822ff969331737651d3db288560
ef3178f3/sip-downloads.md

Gartner Inc. (2016). Gartner Says by 2020 "Cloud Shift" Will Affect More Than $1
Trillion in IT Spending. Stamford, Connectitut, United States of America.
Retrieved 4 February 2017 from Gartner Newsroom:
http://www.gartner.com/newsroom/id/3384720

Google. (2017). Github repository. Retrieved 9 March 2017 from Github:
https://github.com/google/gson

HAMK. (2017). Thesis guide. Hämeenlinna, Häme Province, Finland: HAMK.

Holloh, N. (2017). Analyse der User Experience moderner Cloudspeicher-Anwendungen
im Hinblick auf deren Eignung für Blockchain-basierte Cloudspeicherdienste.

55

Bachelor's thesis. Frankfurt School of Finance and Management

Housley, R. (2004). Request for Comments: 3686. Reston, Virginia, U.S.A.: Internet
Society. Retrieved 27 February 2017 from RFC Editor: https://www.rfc-
editor.org/rfc/pdfrfc/rfc3686.txt.pdf

Hoyes, S. (2014). Our Vision. Retrieved 28 January 2017 from the Storj blog:
http://blog.storj.io/post/97521475738/our-vision

Jaeger, P., Lin, J., Grimes, J., Simmons, S. (2009). Where is the cloud? Geography,
economics, environment, and jurisdiction in cloud computing. Chicago, Illinois,
USA. Retrieved 14 February 2017 from First Monday journal:
http://pear.accc.uic.edu/ojs/index.php/fm/article/view/2456/2171

littleskunk. (2017). Storj community chat. (s.n., Interviewer) Retrieved 8 February 2017
from the Storj community chat: https://community.storj.io/

Node.js. (2017). Downloads. Retrieved 20 February 2017 from Node.js website:
https://nodejs.org/en/download/

P. Mell, T. G. (2011). The NIST Definition of Cloud. United States of America. Retrieved
4 March 2017 from Winthrop University website:
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf

Public Law of USA. (2002). Homeland Security Act. Retrieved 27 February 2017 from
Department of Homeland Security:
https://www.dhs.gov/xlibrary/assets/hr_5005_enr.pdf

Rawle, C. (2016). Storj: A New Way Of Storing On The Cloud. Retrieved 29 January 2017
from Beehive Startups website: https://beehivestartups.com/storj-a-new-way-
of-storing-on-the-cloud-9cae4a664aea

Segato, G. (2015). An Introduction to Volley. Retrieved 11 February 2017 from
envatotuts+ website https://code.tutsplus.com/tutorials/an-introduction-to-
volley--cms-23800

Storj Labs. (2016a). What is Storj? Part 2 of 3: The Storj Toolset. Retrieved from Storj
blog: http://blog.storj.io/post/147241544533/what-is-storj-part-2-of-3-the-
storj-toolset

Storj Labs. (2016b). Getting Started Guide. Retrieved 21 February 2017 from Storj
documentations: https://docs.storj.io/docs

Storj Labs. (2016c). Release note on Github. Retrieved 20 February 2017 from Github:
https://github.com/Storj/bridge/releases/tag/v1.1.0

56

Storj Labs. (2016d). Source code of the file 6a-upload-file.js. Retrieved 12 February
2017 from Github:
https://github.com/Storj/core/blob/b1301cc94b68420d904b420d3cd2f015c42
55262/example/6a-upload-file.js

Storj Labs. (2016e). Storj Bridge API manual. Retrieved 1 March 2017, from Storj API:
website: https://storj.io/api.html

Storj Labs. (2017a). Repository on Github. Retrieved 22 February 2017 from Github:
https://github.com/Storj/bridge

Storj Labs. (2017b). Page on Github. Retrieved 22 February 2017 from Github:
https://github.com/Storj/bridge/blob/master/doc/auth.md

Storj Labs. (2017c). Page on Github. Retrieved 27 February 2017 from Github:
https://github.com/frdwrd/core/blob/bb8f6c7403129b7dc27165b21a487dd5b
74c2049/doc/file-encryption.md

Storj Labs. (2017d). Github Release page. Retrieved 1 March 2017 from Github:
https://github.com/Storj/storjshare-gui/releases

Storj Labs. (2017e). Repository on Github. Retrieved from 5 March 2017 from Github:
https://github.com/Storj/storj.js

The Legion of Bouncy Castle. (2013). Bouncy Castle website. Retrieved 26 February
2017 from Bouncy Castle website: https://www.bouncycastle.org/

United States Department of Justice. (2001). The USA PATRIOT Act: Preserving Life and
Liberty. Retrieved 19 January 2017 from US Department of Justice:
https://www.justice.gov/archive/ll/highlights.htm

Wilkinson, S. (2016). Storj Master Plan. Retrieved 26 February 2017 from Medium
website: https://medium.com/@storjproject/storj-master-plan-
45bfb63c6b38#.6igjujz7a

Wilkinson, S. (2017). S3 Failure Highlights the Need for Decentralized Services like Storj.
Retrieved 7 March 2017 from Medium website:
https://medium.com/@storjproject/s3-failure-highlights-the-need-for-
decentralized-services-like-storj-ab30a5769cf8

Wilkinson, S., Boshevski, T., Brandoff, J., Prestwich, J., Hall, G., Gerbes, P., Hutchins, P.,
Pollard, C. (2016). Storj - A Peer-to-Peer Cloud Storage Network v2.0. Retrieved
10 January 2017 from https://storj.io/storj.pdf

57

www.netmarketshare.com. (2017). Android Market Share on Mobile/Tablet. Retrieved
from NETMARKETSHARE website:
https://www.netmarketshare.com/report.aspx?qprid=9&qpaf=&qpcustom=An
droid&qpcustomb=1

58

Appendix 1

SCREENSHOTS FROM THE REFERENCE IMPLEMENTATION

Screen 2: mnemonic import Screen 1: login page

Screen 3: correct mnemonic Screen 4: wrong word in mnemonic

59

Appendix 1

SCREENSHOTS FROM THE REFERENCE IMPLEMENTATION

Screen 6: buckets overview with earth
symbol for public buckets

Screen 5: wrong mnemonic consisting of
correct words

Screen 7: available actions for buckets Screen 8: information dialog for normal
(private) buckets

60

Appendix 1
SCREENSHOTS FROM THE REFERENCE IMPLEMENTATION

Screen 10: delete bucket verification Screen 9: information dialog for public
buckets

Screen 11: make bucket public first dialog Screen 12: make bucket public second dialog

61

Appendix 1
SCREENSHOTS FROM THE REFERENCE IMPLEMENTATION

Screen 14: actions new bucket and logout Screen 13: changing permissions for a public
bucket

Screen 15: files overview Screen 16: available actions for files

62

Appendix 1
SCREENSHOTS FROM THE REFERENCE IMPLEMENTATION

Screen 18: actions new bucket and logout Screen 17: file information

Screen 19: download notification Screen 20: completed download in Android
download manager

63

 Appendix 2
THESIS RELEVANT CODE FROM STORJ LABS’ GITHUB REPOSITORY

core/lib/bridge-client/exchange-report.js from https://github.com/Storj/core
accessed on 23. February 2017

'use strict';

var assert = require('assert');

/**
 * Represents a report to a bridge regarding the result of a shard exchange
 * @constructor
 * @param {Object} options
 * @param {String} options.reporterId
 * @param {String} [options.farmerId]
 * @param {String} [options.clientId]
 */
function ExchangeReport(options = {}) {
 /* eslint complexity: [2, 7] */
 if (!(this instanceof ExchangeReport)) {
 return new ExchangeReport(options);
 }

 assert(options.reporterId, 'Invalid reporterId');

 this._r = {
 dataHash: options.dataHash || null,
 reporterId: options.reporterId,
 farmerId: options.farmerId,
 clientId: options.clientId,
 exchangeStart: options.exchangeStart || null,
 exchangeEnd: options.exchangeEnd || null,
 exchangeResultCode: options.exchangeResultCode || null,
 exchangeResultMessage: options.exchangeResultMessage || null
 };
}

ExchangeReport.SUCCESS = 1000;
ExchangeReport.FAILURE = 1100;

/**
 * Starts recording duration of exchange
 * @param {String} dataHash - The shard hash as reference
 */
ExchangeReport.prototype.begin = function(dataHash) {
 assert(dataHash, 'You must supply a dataHash to begin an exchange report');
 this._r.dataHash = dataHash;
 this._r.exchangeStart = Date.now();
};

/**
 * Ends the recording time a set result code and message
 * @param {Number} resultCode - Exchange result code
 * @param {String} resultMessage - Exchange result message
 */
ExchangeReport.prototype.end = function(resultCode, resultMessage) {
 assert(resultCode, 'You must supply a result code');
 assert(resultMessage, 'You must supply a result message');
 this._r.exchangeEnd = Date.now();
 this._r.exchangeResultCode = resultCode;
 this._r.exchangeResultMessage = resultMessage;
};

/**
 * Returns a plain report object
 * @returns {Object}
 */
ExchangeReport.prototype.toObject = function() {
 return JSON.parse(JSON.stringify(this._r));
};

module.exports = ExchangeReport;

64

 Appendix 2
THESIS RELEVANT CODE FROM STORJ LABS’ GITHUB REPOSITORY

bridge/lib/server/routes/reports.js from https://github.com/Storj/bridge, accessed on 23.
February 2017

'use strict';

const Router = require('./index');
const log = require('../../logger');
const middleware = require('storj-service-middleware');
const errors = require('storj-service-error-types');
const inherits = require('util').inherits;
const BucketsRouter = require('./buckets');
const constants = require('../../constants');
const async = require('async');
const storj = require('storj-lib');

/**
 * Handles endpoints for reporting
 * @constructor
 * @extends {Router}
 */
function ReportsRouter(options) {
 if (!(this instanceof ReportsRouter)) {
 return new ReportsRouter(options);
 }

 Router.apply(this, arguments);
}

inherits(ReportsRouter, Router);

/**
 * Creates an exchange report
 * @param {http.IncomingMessage} req
 * @param {http.ServerResponse} res
 * @param {Function} next
 */
ReportsRouter.prototype.createExchangeReport = function(req, res, next) {
 const self = this;
 var exchangeReport = new this.storage.models.ExchangeReport(req.body);
 var projection = {
 hash: true,
 contracts: true
 };

 this.storage.models.Shard.find({
 hash: exchangeReport.dataHash
 }, projection, function(err, shards) {
 if (err) {
 return next(new errors.InternalError(err.message));
 }

 if (!shards || !shards.length) {
 return next(new errors.NotFoundError('Shard not found for report'));
 }

 // TODO: Add signature/identity verification

 // NB: Kick off mirroring if needed
 self._handleExchangeReport(exchangeReport, (err) => {
 /* istanbul ignore next */
 if (err) {
 return log.warn(err.message);
 }

 /* istanbul ignore next */
 log.info('exchange report triggered a mirroring operation');
 });
 log.info('received exchange report');
 exchangeReport.save(function(err) {
 if (err) {
 return next(new errors.BadRequestError(err.message));

65

 }

 log.info('exchange report saved');
 res.status(201).send({});
 });
 });
};

/**
 * @private
 */
ReportsRouter.prototype._handleExchangeReport = function(report, callback) {
 const {dataHash, exchangeResultMessage} = report;

 switch (exchangeResultMessage) {
 case 'MIRROR_SUCCESS':
 case 'SHARD_UPLOADED':
 case 'DOWNLOAD_ERROR':
 this._triggerMirrorEstablish(constants.M_REPLICATE, dataHash, callback);
 break;
 default:
 callback(new Error('Exchange result type will not trigger action'));
 }
};

ReportsRouter._sortByResponseTime = function(a, b) {
 const aTime = a.contact.responseTime || Infinity;
 const bTime = b.contact.responseTime || Infinity;
 return (aTime === bTime) ? 0 : (aTime > bTime) ? 1 : -1;
};

/**
 * Loads some mirrors for the hash and establishes them
 * @private
 */
ReportsRouter.prototype._triggerMirrorEstablish = function(n, hash, done) {
 const self = this;

 function _getMirrors(callback) {
 self.storage.models.Mirror.find({ shardHash: hash })
 .populate('contact')
 .exec(callback);
 }

 function _getMirrorCandidate(mirrors, callback) {
 let established = [], available = [];

 mirrors.forEach((m) => {
 if (!m.contact) {
 log.warn('Mirror %s is missing contact in database', m._id);
 } else if (!m.isEstablished) {
 available.push(m);
 } else {
 established.push(m);
 }
 });

 if (available.length === 0) {
 return callback(new Error('No available mirrors'));
 }

 if (established.length >= n) {
 return callback(new Error('Auto mirroring limit is reached'));
 }

 available.sort(ReportsRouter._sortByResponseTime);

 callback(null, available.shift());
 }

 function _getRetrievalTokenFromFarmer(mirror, callback) {
 self.contracts.load(hash, (err, item) => {
 if (err) {
 return callback(err);
 }

 let farmers = Object.keys(item.contracts);
 let pointer = null;

66

 let test = () => farmers.length === 0 || pointer !== null;
 let contact = storj.Contact(mirror.contact.toObject());

 async.until(test, (done) => {
 self.getContactById(farmers.shift(), (err, result) => {
 if (err) {
 return done();
 }

 let farmer = storj.Contact(result.toObject());

 self.network.getRetrievalPointer(
 farmer,
 item.getContract(farmer),
 (err, result) => {
 pointer = result;
 done();
 }
);
 });
 }, () => {
 if (!pointer) {
 return callback(new Error('Failed to get pointer'));
 }

 callback(null, pointer, mirror, contact, item);
 });
 });
 }

 function _establishMirror(source, mirror, contact, item, callback) {
 self.network.getMirrorNodes(
 [source],
 [contact],
 (err) => {
 if (err) {
 return callback(err);
 }

 mirror.isEstablished = true;
 mirror.save();
 item.addContract(contact, storj.Contract(mirror.contract));
 self.contracts.save(item, callback);
 }
);
 }

 async.waterfall([
 _getMirrors,
 _getMirrorCandidate,
 _getRetrievalTokenFromFarmer,
 _establishMirror
], done);
};

/**
 * @private
 */
ReportsRouter.prototype.getContactById = BucketsRouter.prototype.getContactById;

/**
 * @private
 */
ReportsRouter.prototype._definitions = function() {
 return [
 ['POST', '/reports/exchanges', middleware.rawbody,
 this.createExchangeReport.bind(this)]
];
};

module.exports = ReportsRouter;

67

 Appendix 2
THESIS RELEVANT CODE FROM STORJ LABS’ GITHUB REPOSITORY

bridge/test/server/routes/reports.unit.js from https://github.com/Storj/bridge,
accessed on 23. February 2017

 describe('#_handleExchangeReport', function() {

 let _triggerMirrorEstablish;

 before(() => {
 _triggerMirrorEstablish = sinon.stub(
 reportsRouter,
 '_triggerMirrorEstablish'
).callsArg(2);
 });
 after(() => _triggerMirrorEstablish.restore());

 it('should callback error if not valid report type', function(done) {
 reportsRouter._handleExchangeReport({
 shardHash: 'hash',
 exchangeResultMessage: 'NOT_VALID'
 }, (err) => {
 expect(err.message).to.equal(
 'Exchange result type will not trigger action'
);
 done();
 });
 });

 it('should trigger a mirror on SHARD_UPLOADED', function(done) {
 reportsRouter._handleExchangeReport({
 shardHash: 'hash',
 exchangeResultMessage: 'SHARD_UPLOADED'
 }, done);
 });

 it('should trigger a mirror on MIRROR_SUCCESS', function(done) {
 reportsRouter._handleExchangeReport({
 shardHash: 'hash',
 exchangeResultMessage: 'MIRROR_SUCCESS'
 }, done);
 });

 it('should trigger a mirror on DOWNLOAD_ERROR', function(done) {
 reportsRouter._handleExchangeReport({
 shardHash: 'hash',
 exchangeResultMessage: 'DOWNLOAD_ERROR'
 }, done);
 });

 });

Please Note: As this source file is very big, only the most relevant code snippet of the
whole file is attached here in the appendix.

