
Bachelor’s thesis

Information Technology

NINFOS11

2017

	
	
	
	

Olanrewaju Oladunjoye

SOFTWARE DEFINED
NETWORKING
–	The	Emerging	Paradigm	To	Computer	Networking	

	 	

	

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology

2017 | 39

Olanrewaju Oladunjoye

SOFTWARE DEFINED NETWORKING
-	An	Emerging	Paradigm	To	Computer	Networking	

Software	Defined	Networking	(SDN)	is	an	emerging	paradigm	in	networking	technology	that	enables	
innovation	on	how	network	systems	are	managed	and	designed.		SDN	plays	a	huge	role	in	the	effort	to	
make	computer	networks	programmable.		

This	thesis	discusses	the	history	and	efforts	to	programmable	and	active	networks,	the	early	practices	
towards	separating	the	control	plane	and	data	plane.	Highlighting	the	architectural	concepts	in	
networking	that	software	defined	networks	emanated	as	well	as	the	history	and	evolution	of	software	
defined	networking.	The	thesis	further	discusses	how	SDN		simplifies	the	complexity	of	managing	large	
and	distributed	network	system.	It	also	examines	the	technologies	that	support	software	defined	
networking	such	as	Network	Virtualization	and	OpenFlow.		The	thesis	reviews	the	components	of	
software	defined	network	architecture:	the	data	plane	layer,	the	controller	plane	layer,	and	application	
layer.	Furthermore,		it	reports	the	practical	implementation	of	SDN	in	network	functions	virtualization.	
Finally,	it	depicts	the	notion	of	software	defined	networking,	whose	Application	Programming	Interface	
may	be	implemented	by	OpenFlow.	

	

The	practical	aspect	of	this	thesis	shows	a	simple	emulation	of	software-defined	network	architecture	
using	Mininet	network	emulation	tool.	Hopefully,	this	work	aims	to	benefit	those	who	intend	to	learn	
about	the	fundamental	principles	of	Software	Defined	Networking.	

	
KEYWORDS:	

Software	Defined	Networking,	Network	Function	Virtualization,	Controller	Plane,	Data	Plane,	Application	
Plane,	Computer	Networks,mininet	

	

	

	

	

	

	

	

	

	

	

	

	

	

CONTENTS	

LIST OF ABBREVIATIONS (OR) SYMBOLS 5	

1. INTRODUCTION 6	

2. WHAT IS COMPUTER NETWORKING? 7	

2.1	Architectural theme recognition in computer networking where software defined

networking emanated. 7	

3. HISTORY AND EVOLUTION OF SOFTWARE DEFINED NETWORKING 9	

3.1	Central Network Control. 9	
3.2	Network Programmability 10	

3.3 Network Virtualization 11	

4. COMPONENTS OF SDN ARCHITECTURE 17	

4.1	The SDN Data Plane 19	

4.2	The SDN Controller Plane 19	

4.3	The SDN Application Layer. 20	

5. PRACTICAL IMPLEMENTATION OF SOFTWARE DEFINED NETWORKING. 22	

5.1	Network Functions Virtualization 22	

5.2	A simple software defined network architecture. 26	

6. CONCLUSION 36	

REFERENCES 37	

	

	

	

FIGURES	

Figure 1. Multiple instances of Forwarding Plane Elements (FE) and Control Plane
Elements (CE) in FoRCES Network Element (NE). (Doria, et al., 2010). 11	
Figure 2. Open Signalling in the tempest (Van Der Merwe, Rooney, Leslie, & Crosby,
1998). 13	
Figure 3. The switch divider (Bavier, Feamster, Huang, Peterson, & Rexford, 2006). 14	
Figure 4. Shows the internet in a slice architecture running on VINI (Bavier, Feamster,
Huang, Peterson, & Rexford, 2006). 15	
Figure 5. Basic SDN architecture components (Open Networking Foundation, 2012). 18	
Figure 6. NFV Domains encompassed in the network function virtualization
infrastructure (Chiosi, Clarke, Willis , Reid, Feger, & Ruhl , 2012). 23	
Figure 7. Vision for network function virtualization (Nadeau, 2013). 24	
Figure 8. Network Functions that could be virtualized (Nadeau, 2013). 25	
Figure 9. SDN network topology consisting of three hosts with class A IP addressing,
an OpenFlow Switch, and OpenFlow refrence controller. 28	
Figure 10. Starting mininet. 29	
Figure 11. IP address assigned to all hosts, and switch links are up. 30	
Figure 12. H1 cannot reach H2 and vice versa. 31	
Figure 13. Ping failure among all host. 32	
Figure 14. Manual Installation of flows on open switch flow table. 33	
Figure 15. Succesful pings between host H1 and H2, while H3 is unrecheable because
the switch flow table includes entries for only H1 and H2. 34	
Figure 16. Starting OVS reference controller. 35	
Figure 17. All host are now recheable from anywhere on the network. 35	

		

	

LIST	OF	ABBREVIATIONS	(OR)	SYMBOLS	

AS Autonomous System

API	 	 Application	Program	Interface	
BGP	 	 Border	Gateway	Protocol	
CABO	 	 Concurrent	Architecture	are	Better	Than	One	
CPE	 	 Customer	Premise	Equipment	
DCPI	 	 Data-Controller	Plane	Interface	
FIB	 	 Forwarding	Information	Base	
ForCES	 	 Forwarding	and	Control	Element	Separation	
IETF	 	 Internet	Engineering	Task	Force	
LAN	 	 Local	Area	Network	
LIB	 	 Label	Information	Base	
MAN	 	 Metropolitan	Area	Network	
NBI	 	 North	Bound	Interface	
NCP	 	 Network	Control	Point	
NE	 	 Network	Elements	
NFV	 	 Network	Function	Virtualization		
NFVI		 	 Network	Function	Virtualization	Infrastructure	
OSPF	 	 Open	Shortest	Path	First	
PCE	 	 Path	Computation	Engine	
RCP	 	 Routing	Control	Platform	
RIB	 	 Routing	Information	Base	
RIP	 	 Routing	Information	Protocol	
SS7	 	 Signalling	System	7	
VNF	 	 Virtual	Network	Functions	
	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 6

	1.	INTRODUCTION	

Over	the	years	of	Computer	Network	existence	and	growth,	the	drastic	increase	in	
network	complexity	has	brought	about	difficulties	in	computer	network	management.	
It	tends	to	be	difficult	in	configuring	computer	network	systems	by	predefined	policies,	
reconfiguring	networks	to	respond	to	changes,	faults,	and	loads.	As	it	appears	that	
current	network	systems	are	integrated	vertically,	the	control	plane	and	data	plane	are	
all	tied	up	together.	Software	Defined	Networking	is	an	emerging	standard	that	
portrays	changes	in	the	current	state	of	computer	networks,	by	separating	the	
network	of	equipment's	control	logic	from	fundamental	switches	and	routers,	logical	
promotion	of	centralized	network	control,	introducing	computer	network	
programmability	(Kreutz,	Ramos,	Verissimo,	Tothenberg,	Azodolmolky,	&	Uhlig,	2014).
With	Software	Defined	Networking,	comes	the	ease	of	creation	and	introduction	of	
new	abstractions	in	computer	networking,	network	management	simplification	and	
facilitation	of	computer	network	evolution.
	
This	thesis	will	show	the	architectural	theme	recognition	in	computer	networking	
where	Software	Defined	Networking	(SDN)	emanated.	Furthermore,	the	history	on	
how	networks	start	to	become	active	and	programmable	to	show	the	differences	and	
improvement	in	traditional	computer	networking	technologies	compared	to	a	software	
defined	network.		
And	also	showing	the	benefits	of	software	defined	networks	are	implemented	with	the	
aid	of	network	virtualization.	(Rostami,	2014)	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 7

2.	WHAT	IS	COMPUTER	NETWORKING?	

Computer	Networking	is	the	practice	of	linking	one	or	more	computer	systems	
together	in	other	to	share	data.	Computer	systems	comprise	of	computer	hardware	
devices	and	software.Computer	network	is	a	group	of	one	or	more	computer	devices	
linked	to	each	other.	computer	networks	can	be	categorized	into	different	types,	
including:
Local	Area	Networking(LANs):	Computer	systems	linked	together	in	one	geographical	
area.	For	instance,	in	the	same	building	or	room.
Wide	Area	Networks(WANs):	Connecting	computer	systems	which	are	distanced,	far	
apart,	i.e.,	different	geographical	area.
Metropolitan	Area	Networks(MANs):	A	network	implemented	or	designed	for	a	city	or	
town,	for	example,	Spark	net.	
Additionally,	computer	networks	can	also	be	categorized	based	on	the	following	
characteristics:
Topologies:	The	logical	or	physical	arrangement	of	computer	systems.	Types	of	
topologies	include:	bus	topology,	star	topology,	ring	topology,	and	mesh	topology	
Protocol:	A	protocol	is	the	definition	of	the	sets	of	rules	and	signals	that	network	
computers	use	for	communication.	For	example,	Ethernet	is	a	popular	network	for	
LANs.	
Architecture:	It	is	the	classification	of	network	based	on	the	model	of	connection,	that	
is,	either	peer	to	peer	or	client/server	architecture.	
Computers	on	a	network	are	often	referred	to	as	nodes	and	hosts.	Also,	a	computer	
which	provides	resources	in	a	network	environment	is	referred	to	as	servers.	
In	conclusion,	two	or	more	computers	connected	to	each	other	with	the	ability	to	
communicate	is	simply	known	as	a	computer	network.	(Florida	Center	for	Instructional	
Technology,	2013)	
	

2.1 Architectural	theme	recognition	in	computer	networking	where	software	defined	
networking	emanated.	

Software	Defined	Networking(SDN):		A	new	computer	networking	paradigm	where	
network	behavior	is	controlled	by	a	single	high-level	software	program.	A	Software-
Defined	Network	is	a	network	architecture	in	which	the	control-plane	(software	
programs	which	control	the	network	system	behavior)	and	data	plane(devices	that	
forward	network	traffic)	are	separated.		An	emerging	network	paradigm	where	
network	control	is	being	decoupled	from	hardware	such	that	the	behavior	a	logically	
centralized	software	program	controls	the	overall	network	behavior	(Kreutz,	Ramos,	
Verissimo,	Tothenberg,	Azodolmolky,	&	Uhlig,	2014).	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 8

Control	Plane	

In	a	typical	network,	the	control	plane	is	a	software	function	that	checks	and	manages	
the	network	behavior	such	as	network	paths	and	forwarding	behavior.	Also,	It	is	
known	as	a	high-level	software	controller.	

Data	Plane	

Network	functions	responsible	for	making	decisions	on	forwarding	traffic.	The	data	
plane	is	typically	instantiated	as	forwarding	tables	on	routers,	firewalls,	switches,	and	
middleboxes.	

Active	Networks	

In	the	1990s,	Active	Networks	are	a	collection	of	network	architectures	that	shared	the	
same	goals	as	software	defined	networking	and	motivated	by	the	widespread	use	of	
the	internet	(applications)	and	complexity	in	testing	new	ideas	in	real	(Rostami,	2014).	
In	active	networks,	communication	patterns	allow	packets	to	flow	through	the	
network	infrastructure	to	dynamically	modify	the	network	systems	operation.	Active	
networking	is	an	attempt	to	make	networks	programmable.	For	instance,	the	
programmable	switches	in	an	active	network	perform	custom	computation	or	
processing	functions	on	packets	as	it	travels	through	those	switches.	
Network	Virtualization	
Representing	many	distinct	logical	networks	on	a	single	shared	physical	network	
infrastructure.	For	example,	Virtual	Network	as	implemented	in	The	Tempest	-	
practical	framework	for	network	programmability	(Van	Der	Merwe,	Rooney,	Leslie,	&	
Crosby,	1998)	.	
	
In	today’s	technology,	outburst	of	smart	mobile	devices,	Internet	of	things	(IOT),	
everything	as	a	service,	cloud	computing	and	tremendous	user’s	need	for	content,	
mobile	broadband	which	all	results	to	increasing	necessity	for	data	transfer	over	the	
trillions	of	connected	networks	which	are	practically	hard-wired	networks,	brings	
about	difficulties	in	network	scalability	and		complexity	in	network	management	
(Benson,	Akella,	&	Maltz,	2009).	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 9

3.	HISTORY	AND	EVOLUTION	OF	SOFTWARE	DEFINED	
NETWORKING	

The	evolution	of	Software	Defined	Networking	portrays	the	timeline	of	SDN	from	the	
1980s	till	present,	puts	forward	the	principles	behind	SDN,	and	gain	awareness	about	
SDN	ideas.	
However,	SDN	principles	are	not	entirely	new,	this	evolution	recognizes	the	
architectural	themes	as	seen	in	a	packet	switched	network,	initiatives	on	separation	of	
the	data	and	control	plane	signaling,	for	example,	AT&T	introduced	the	Network	
Control	Point	towards	improving	management	and	monitoring	of	its	telephone	
network	(Kreutz,	Ramos,	Verissimo,	Tothenberg,	Azodolmolky,	&	Uhlig,	2014).	
This	thesis	will	take	a	look	at	the	concepts	underlying	the	evolution	of	SDN	-	The	
Central	Control	(logical	centralization	of	network	control),	Programming	Networks	(
the	ability	to	manage	the	computer	network	systems	via	software	controller	
programs),	Network	Virtualization	(possible	forms	of	network	virtualization	that	
emerge	to	this	paradigm	shift	in	networking).	

3.1 Central	Network	Control.	

The	origins	of	central	network	control	date	back	to	the	1980s	in	the	form	of	AT&T's	
Network	control	point.	In	the	early	days,	control	and	data	planes	operated	together	in	
the	same	channel,	a	paradigm	known	as	in-band	signaling	where	data	and	control	
planes	are	sent	over	the	same	channel,	at	certain	frequencies	in	this	channel,	an	
example	is	the	BLUE	BOX	which	uses	the	in-band	signaling	mechanism	to	do	things	like	
resetting	the	phone	trunk	lines,	pulses	on	the	line	could	be	used	to	route	calls	and	set	
up	sockets	for	calls.	The	resulting	network	happens	to	turn	out	to	be	brittle,	insecure,	
etc.	(Wikipedia,	2009).	
The	earliest	initiatives	in	an	attempt	to	decouple	control	and	data	plane	signaling,	
AT&T	introduced	the	Network	Control	Point,	to	improve	the	monitoring	and	
management	of	its	Telephone	Network.	This	attempt	brought	about	a	faster	
innovation	pace	in	the	network	and	offered	means	for	efficiency	improvement	
(Sheinbein	&	Weber,	1982).		
In	exploring	a	solution	to	centralize	the	network	control,	other	concepts	and	initiatives	
are	traced	back	to	the	Routing	Control	Platform	(RCP)	(Feamster,	Balakrishnan,	
Rexford,	Shaikh,	&	Van	der	Merwe,	2004),	which	is	a	solution	for	interdomain	routing	
control	in	IP-networks.	RCP	calculates	Border	Gateway	Protocol	(BGP)	routes,	for	
Autonomous	System	(AS),		at	a	centralized	server	to	give	transit	network	operators	
greater	control	over	BGP	routing	decision	making	(Caesar,	Caldwell,	Feamster,	Rexford,	
Shaikh,	&	Van	der	Merwe,	2005).	The	RCP	effectively	used	BGP	as	a	control	channel	so	
that	the	forwarding	elements	thought	that	they	were	talking	to	another	router	but	the	
network	uses	a	single	point	centralization.	Other	concepts	of	centralized	network	
control	can	be	traced	in	the	traditional	telecommunications	networks,	which	includes	
Signalling	System	7	(SS7)	and	Intelligent	Network.	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 10

Signalling	System	7	(SS7)	

	An	out-of-band	signaling	system	that	isolates	the	communication	channel	for	
management	information	from	the	user	data's	path,	and	a	cleavage	between	user	data	
and	control	into	separate	channel	or	links	(Russell,	1998).	

Intelligent	Network	(IN)	architecture		

On	the	other	hand,	is	a	network	functionality	support	which	enables	call	placements	to	
invoke	a	query	to	the	Detection	Points	that	escape	out	of	normal	call	handling	and	that	
cites	per-service	code	(International	Telecommunication	Union,	1993).	

3.2 Network	Programmability	

Network	Programmability	has	a	long	history	which	provides	a	solution	to	the	need	for	
adaptation	and	flexibility	in	the	network	systems.	This	thesis	will	address	the	
approaches	and	initiatives	towards	programmable	network	efforts,	which	laid	a	
foundation	to	many	of	the	SDN	concepts	that	emerged.	
Active	networks,	which	is	an	early	effort	towards	building	new	network	architectures	
based	on	network	programmability	concepts.	In	such	network	architectures,	switches	
perform	custom	computations	on	packets	as	it	travels	through	the	network,	or	modify	
the	packet	content	if	necessary.	Active	Networks	portrays	two	methods:	
Programmable	Switches	approach	and	capsules	approach.	
The	programmable	switch	approach	does	not	make	any	changes	to	the	existing	packet	
format	but	uses	a	different	mechanism	by	assuming	that	switching	devices	download	
and	execute	active	networking	programs	with	specific	instructions	on	how	packets	are	
processed.	
The	capsule	approach	adds	small	programs	to	the	present	packet	format,	the	packets	
are	encapsulated	in	transmissions	frames,	and	code	embedded	in	the	packets	are	
prepared	and	executed	at	each	active	network	node	along	the	packet's'	path.	
Examples	of	an	active	network	are	routers	on	a	network	performing	tracing	program	
on	a	packet	as	the	packets	travel	through	the	routers.	MiddleBoxes	are	also	examples	
of	active	networks,	boxes	in	the	network	that	delivers	firewalling,	proxying,	application	
services.	These	are	custom	computation	on	traffic	that	is	performed	in	the	network	or	
as	they	travel	through	the	network.		
The	active	network	which	proposes	a	similar	motivation	of	accelerating	innovation	in	
existing	network	systems	so	that	technology	could	be	introduced	more	rapidly	without	
consensus	standardization.	It	is	observed	that	active	nodes	allow	routers	to	download	
new	services	into	the	network	infrastructure	which	motivates	user-driven	innovation.	
Active	Networks	poses	a	legacy	for	SDN	with	the	idea	of	providing	programmable	
functions	in	the	network	to	enable	innovation.	One	of	the	motivations	for	active	
networks	was	the	proliferation	of	different	kind	of	middleboxes	and	a	vision	of	unified	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 11

architecture,	these	kinds	of	architecture	can	also	be	seen	in	various	SDN	projects	
(Tennenhouse,	Smith,	Wetherall,	&	Minden,	1997).	
The	approach	to	Network	programmability	has	not	only	be	limited	to	Active	
Networking,	but	the	Internet	Engineering	Task	Force	(IETF)	also	initiated	Forwarding	
and	Control	Element	Separation	(ForCES)	(Yang,	Dantu,	Anderson,	&	Gopal,	2004),	in	
the	early	2000s	which	proposed	an	approach	to	network	programmability	in	a	
different	manner	from	Active	Networking.	ForCES	define	an	architectural	framework	
and	associated	protocols	to	standardize	information	exchange	and	separates	control	
plane	and	forwarding	plane	in	a	ForCES	Network	Elements.	

	
Figure	1.		Multiple	instances	of	Forwarding	Plane	Elements	(FE)	and	Control	Plane	
Elements	(CE)	in	FoRCES	Network	Element	(NE).	(Doria,	et	al.,	2010).	

The	standard	essentially	defines	protocols	that	will	allow	multiple	control	elements	to	
control	forwarding	elements	which	will	essentially	be	responsible	for	forwarding	
packets,	metering,	shaping,	performing	traffic	classification	and	so	forth.	The	idea	was	
that	the	switches	and	forwarding	element	could	be	controlled	over	a	standard	control	
channel	called	the	ForCES	interface	and	there	might	be	multiple	such	controllers	
controlling	the	forwarding	behavior	of	these	forwarding	elements.	ForCES	faced	
problems	such	as	the	requirement	of	standardization,	adoption	by	vendors	and	
deployment	of	new	hardware	(Doria,	et	al.,	2010),	(Yang,	Dantu,	Anderson,	&	Gopal,	
2004).	
	

3.3	Network	Virtualization

What	is	Network	Virtualization?

Network	Virtualization	is	the	representation	of	one	or	more	logical	network	topologies	
on	the	same	underlying	physical	infrastructure.	There	have	been	different	
instantiations	of	network	virtualization	such	as	virtual	LANs(VLANs).	This	thesis	will	
look	into	various	technologies	and	different	network	testbeds	that	use	and	develop	
network	virtualization	that	has	mostly	led	to	mature	virtual	network	technology	seen	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 12

in	the	form	of	companies	and	commercial	products	today.		One	of	the	benefits	of	
network	virtualization	is	sharing,	one	can	instantiate	multiple	logical	routers	on	top	of	
a	single	physical	node	or	a	single	platform,	and	one	can	instantiate	multiple	virtual	
networks	on	top	of	the	same	physical	network	infrastructure.	This	sharing	requires	the	
ability	to	isolate	resources	in	terms	of	memory,	CPU,	bandwidth,	forwarding	tables	and	
so	forth.	Also,	Network	virtualization	offers	a	prospect	of	customizability	in	addition	to	
sharing,	users	of	a	virtual	network	can	get	a	view	of	their	logical	network	and	logical	
network	topology	that	is	separate	from	other	logical	network	topology	that	may	be	
running	on	the	same	underlying	physical	network	infrastructure.	The	ability	to	see	an	
independent	logical	network	also	allows	capacity	to	run	custom	routing	and	
forwarding	software	on	that	particular	slice	of	the	virtual	network	(Mosharaf	Kabir	
Chowdhury	&	Raouf,	2010).	
This	thesis	will	explore	three	different	examples	of	Virtual	networks;	

The	Tempest	architecture	

	Switchlets,	separation	of	the	control	frameworks	from	the	underlying	switches	itself	
and	the	capability	to	virtualize	the	underlying	switch	hardware	to	provide	the	
appearance	of	multiple	virtual	switches	(Van	Der	Merwe,	Rooney,	Leslie,	&	Crosby,	
1998).	

Virtual	Network	Infrastructure	(VINI)	

A	Virtual	Network	Infrastructure	provides	a	virtual	network	infrastructure	so	that	
experimenters	could	run	experiments	on	their	personal	logical	network	system	shared	
on	the	same	underlying	physical	network	topology	(Bavier,	Feamster,	Huang,	Peterson,	
&	Rexford,	2006).	

Concurrent	Architecture	are	better	than	one	(CABO)	

A	network	architecture	which	use	some	of	the	vision	of	the	emerging	virtual	network	
technologies	to	realize	that	virtual	network	could	allow	service	providers	to	operate	
independently	of	the	providers	that	make	the	underlying	physical	network	
infrastructure	available	(Feamster,	Gao,	&	Rexford,	How	to	lease	the	internet	in	your	
spare	time,	2007).	
	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 13

	

The	Tempest	

Dated	back	in	1998,	An	initiative	that	introduces	network	virtualization	by	proposing	
the	concepts	of	switchlets	in	ATM	networks.Tempest	adds	the	ability	to	control	a	given	
ATM	switch	with	multiple	controllers	by	partitioning	the	resources	of	that	switch	
between	those	controllers,		Switchlet	is	that	partition,	which	is	a	small,	but	a	complete	
switch	to	the	controller	(Van	Der	Merwe,	Rooney,	Leslie,	&	Crosby,	1998).	

	
Figure	2.	Open	Signalling	in	the	tempest	(Van	Der	Merwe,	Rooney,	Leslie,	&	Crosby,	
1998).	

Switchlets	came	out	of	the	Tempest	architecture	where	it	has	a	single	underlying	
switch	with	its	resources	and	an	open	switch	control	interface	that	exposes	those	
resources	to	their	controllers.	Switchlets	allows	multiple	control	architectures	to	
operate	over	a	single	ATM	network.	The	open	control	interface	separated	the	switch	
controller	and	the	fabric	via	an	open	signalling	protocol,	and	the	divider	partitioned	
the	switch	resources	to	allow	each	multiple	controllers	to	have	their	personal	view	of	a	
logical	switch	(Van	Der	Merwe,	Rooney,	Leslie,	&	Crosby,	1998).	
	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 14

	
Figure	3.	The	switch	divider	(Bavier,	Feamster,	Huang,	Peterson,	&	Rexford,	2006).	

The	switch	divider,	partition	port	space,	bandwidth,	and	buffers,	allow	
different	controllers	to	control	each	switchlet.	The	tempest	framework	concluded	that:	
by	allowing	multiple	architectures	to	coexist,	addresses	the	issues	of	migration	and	
upgrading,	that	all	network	operators	are	familiar	with	(Van	Der	Merwe,	Rooney,	
Leslie,	&	Crosby,	1998).	
Virtual	Network	Infrastructure	(VINI):	Virtual	network	infrastructures	can	allow	
network	experimenters	and	researchers	to	bridge	the	gap	between	small-scale	
simulations	or	experiments		and	real	live	deployments	which	were	the	motivation	
behind	VINI.	VINI	runs	real	routing	software	and	exposes	realistic	network	conditions	
to	the	applications	running	on	it.	It	gives	control	to	the	experimenter	over	different	
network	events,	such	as	failures,	and	also	carries	traffic	on	behalf	of	real	users,	it	can	
also	be	shared	among	many	different	experimenters.	However,	VINI	also	uses	the	
separation	of	the	control	and	data	plane	to	achieve	some	of	its	goals	of	network	
virtualization.		

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 15

	
Figure	4.	Shows	the	internet	in	a	slice	architecture	running	on	VINI	(Bavier,	Feamster,	
Huang,	Peterson,	&	Rexford,	2006).	

The	VINI	control	plane	is	software	router	called	XORP,	which	runs	a	variety	of	different	
routing	protocols	with	the	goal	of	allowing	experimenters	to	run	real	routing	protocols	
on	top	of	virtual	network	topologies.	VINI’s	data	plane	provides	the	appearance	of	
these	virtual	network	topologies	to	experimenters,	the	data	plane	is	implemented	
using	a	software	router	called	Click,	and	the	virtual	interfaces	were	implemented	using	
Tunnelling.		
Tunnelling	has	also	been	used	in	many	other	virtual	network	technologies	to	create	the	
appearance	of	virtual	links.	In	VINI,	experimenters	could	also	deploy	filters	in	front	of	
these	tunnels	to	create	the	illusion	or	appearance	of	a	failing	link.	These	filters	
essentially	block	packets	on	individual	tunnels	(Mosharaf	Kabir	Chowdhury	&	Raouf,	
2010)	(Bavier,	Feamster,	Huang,	Peterson,	&	Rexford,	2006).	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 16

Concurrent	Architecture	are	better	than	one	(CABO)	

CABO	proposes	an	exploit	in	network	virtualization	which	allows	a	service	provider	to	
simultaneously	run	multiple	end	to	end	services	over	infrastructure	provider’s	own	
equipment	by	decoupling	infrastructure	provider	(those	parties	that	maintain	data	
centers,	links	routers,	and	other	physical	infrastructure)	from	services	provider	(that	
offers	end	to	end	services	on	top	of	that	infrastructure)	(Feamster,	Gao,	&	Rexford,	
How	to	lease	the	internet	in	your	spare	time,	2007).	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 17

4.	COMPONENTS	OF	SDN	ARCHITECTURE	

Separating	Data	Plane	and	Control	Plane

The	concept	of	separating	the	control	plane	from	the	data	plane	is	not	new	in	
networking,	for	instance,	the	control	plane	or	the	brain	of	a	multi-slot	router	or	switch,	
built	within	the	last	ten	years,		executes	on	a	dedicated	processor	or	often	two	
processors	for	redundancy.	While	the	switching	functions	of	the	data	plane	perform	
independently	on	one	or	more	line	cards,	which	each	of	these	cards	has	its	individual	
dedicated	processor	(Stalling,	2016).	
Separation	of	the	data	or	forwarding	plane	and	control	plane	is	the	fundamental	
characteristic	of	a	software	defined	network.	The	coupling	in	conventional	routers	and	
switches	which	embodies	a	tight	integration	between	the	data	plane	and	control	plane	
portrays	challenges	in	various	management	tasks	such	as	monitoring	or	predicting	
routing	behavior	and	debugging	configuration	problems.		Software	defined	Networking	
addresses	these	challenges	as	efforts	to	separate	the	data	plane,	and	the	control	plane	
emerges	in	this	paradigm.		
The	trend	in	Separating	the	control	plane	and	data	plane	catalyzed	innovations	such	
as;
An	open	interface	between	the	forwarding	or	data	plane	and	the	control	plane.	For	
instance,	ForCES	(Forwarding	and	Control	Element	Separation)	interface,	an	IETF	
standardization	(Doria,	et	al.,	2010).	
Logically	centralized	programmatic	control	of	the	network,	For	example,	Routing	
Control	Platform	(RCP)	architecture	(Feamster,	Balakrishnan,	Rexford,	Shaikh,	&	Van	
der	Merwe,	2004).	
By	definition,	network	management	is	a	network	system-wide	activity,	and	it	shows	
that	segregating	the	control	functionalities	off	of	network	equipment	into	different	
servers	makes	a	lot	of	sense.	The	emergence	of	open	source	routing	software,	which	
reduced	the	barrier	to	designing	prototype	implementations	and	brought	about	
possibilities	for	logically	centralized	routing	controllers	(Stalling,	2016).	
The	separation	of	the	control	plane	from	the	data	plane	offers	network	operators	
advantages	of	centralized	programmatic	control	and	economic	benefits	such	as	the	
ability	to	consolidate	complicated	software	to	manage	and	configure	commodity	
hardware.	
Software	Defined	Networking	aims	towards	the	provision	of	open	interfaces	enabling	
software	development	that	controls	connectivity	provided	by	an	underlying	set	of	
network	infrastructure	or	resources	and	network	traffic	that	flow	through	them,	as	
well	as	possible	modification	and	inspection	of	traffic	performed	in	the	network	
(Chiosi,	Clarke,	Willis	,	Reid,	Feger,	&	Ruhl	,	2012).	
The	architecture	of	the	SDN	is	based	on	Layer2	/	Layer3	(L2/L3)	switches	architecture,	
which	has	the	centralized	controller	system	that	controls	the	forwarding	behavior	for	
sets	of	distributed	switches.	According	to	the	definition	of	SDN,	its	framework	is	
treated	as	abstract	and	controlled	by	a	programmable	part	with	minimal	interaction	
with	the	main	network	components	(Nadeau,	2013).		

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 18

A	network	architecture	where	network	control	(control	plane)	is	logically	centralized	
and	decoupled	from	forwarding	(data	plane),	and	it	is	directly	programmable.	With	
software	defined	networking,	the	applications	can	be	network	aware,	the	SDN	
controller	provides	a	view	of	the	network	state	for	applications	and	also	translates	
application	requirements	to	low-level	rules	(Feamster,	Rexford,	&	Zegura,	The	Road	to	
SDN:	An	intellectual	history	of	programmable	networks,	2014).	

	
Figure	5.	Basic	SDN	architecture	components	(Open	Networking	Foundation,	2012).	

Figure	5	as	similarly	introduced	in	the	ONF	white	paper,	(Open	Networking	
Foundation,	2012),	depicts	the	basic	SDN	architecture	components,	which	comprises	
of	the	infrastructure	layer	or	data	plane,	control	layer	or	controller	plane	and	
application	layer	or	application	plane.	For	the	interaction	of	the	three	layers	of	the	
SDN,	an	open	application	program	interface	(API)	is	present	and	allows	communication	
between	them.	
The	data	plane	comprises	of	network	elements,	exposing	their	capabilities	toward	the	
controller	plane	through	interfaces	southbound	from	the	controller,	SouthBound	
Interface,	also	referred	to	as	the	data-control	plane	interface.	
The	application	plane,	where	the	SDN	applications	exist,	communicates	their	network	
requirement	to	the	control	plane	through	northbound	interfaces	(NBIs)	(Open	
Networking	Foundation,	2014).		
The	SDN	architecture	offers	a	simplified	and	unified	configuration	for	resources	set,	
and	its	success	can	be	significantly	recognized	if	deployed	within	a	preexisting,	large	
and	multilayer	environment.	While	for	the	functionality	of	the	SDN	in	a	smaller	
environment,	proper	subsets	can	be	profiled	from	its	architecture	(Nadeau,	2013).	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 19

4.1 The	SDN	Data	Plane	

The	SDN	data	plane	which	is	also	referred	in	the	ONF	paper	(Open	Networking	
Foundation,	2014)	as	the	infrastructure	layer	comprises	of	sets	of	network	elements	
and	or	entities.	At	this	layer,	network	elements	perform	the	transport	and	processing	
of	data	packets	by	the	decision	made	by	the	SDN	controller	plane;	these	decisions	are	
forwarded	to	the	data	plane	by	the	controller	plane	via	the	Data-controller	plane	
interface	(DCPI).		
The	data-controller	plane	interface	(DCPI)	is	an	application	interface	which	defines	the	
way	the	control	plane	interacts	or	take	exclusive	control	over	a	set	of	resources	
exposed	by	network	elements	in	the	data	or	forwarding	plane	to	make	the	necessary	
adjustment	to	meet	business	or	networking	needs.		For	instance,	information	
exchanged	through	this	interaction	are	such	that	include	controlling	information	
provided	by	the	SDN	controller	plane	to	the	data	plane	(e.g.,	policy	provisioning	or	
network	resources	configuration)	(Open	Networking	Foundation,	2012).	
The	data	plane	resources	are	abstractions	of	the	underlying	physical	network	entities	
or	capabilities,	the	data	plane	of	an	SDN	is	simply	a	system,	a	set	of	nodes	with	
characteristics	such	as	performing	traffic	forwarding	and	may	also	consume,	produce,	
store	or	process	traffic.	Theses	sets	of	nodes	are	network	elements	(NEs)	and	are	
interconnected	by	links.	The	Network	Elements	(NEs)	provide	external	data	plane	ports	
to	client	equipment	and	other	networks.	As	part	of	the	SDN	benefits	are	based	on	
centralized	control,	an	SDN	controller	will	control	more	than	one	NE	(Open	Networking	
Foundation,	2012).	
According	to	(Shin,	Nam,	&	Kim,	2012),	The	data	plane	include	various	abstraction	
models	such	as		

- Packet	forwarding	abstraction	models	(IPv4,	IPv6,	Ethernet,	etc.).	
- Circuit	Switching	abstraction	Models(Optical,	MPLS,	etc.)	
- Wireless	Integration,	characterization	of	wireless	interfaces,	flows,	handover	

support	
- Evolved	packet	core,	LTE	support.	

	

4.2 The	SDN	Controller	Plane	

In	a	traditional	network,	i.e.,	a	nonsoftware	defined	network	in	which	the	data	plane	
and	the	control	plane	are	not	decoupled.	The	controller	plane	is	a	router	component	
that	determines	how	that	particular	individual	box	interacts	with	its	neighbors	with	a	
state	exchange.	The	Network	OS	in	the	router	processes	the	Routing	Information	
Base(RIB)	and	Label	Information	Base	(LIB),	which	is	used	to	populate	the	Forwarding	
Information	Base	(FIB)	and	Label	Forwarding	Information	Base(LFIB).	Router	
proprietors	implement	various	ways	of	partitioning	those	tables	between	multiple	
routing	instances.	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 20

The	function	of	the	control	plane	in	a	conventional	networking	device	include;	
management,	the	system	configuration,	and	exchange	of	routing	table	information	
and	are	infrequently	performed.	The	route	controller	exchanges	the	topology	
information	with	other	routers	and	constructs	a	routing	table	based	on	a	routing	
protocol,	for	example,	Routing	Information	Protocol	(RIP),	Open	Shortest	Path	First	
(OSPF),	or	Border	Gateway	Protocol	(BGP).	It	can	also	create	a	forwarding	table	for	the	
forwarding	plane.	Since	the	control	functions	are	not	performed	on	each	arriving	
packet,	they	do	not	have	a	strict	speed	constraint	and	are	implemented	in	software		
(Chao	&	Liu,	2007).	
On	the	other	hand,	Software	Defined	Networking	(SDN)	is	a	set	of	various	technique	
and	approach	that	allows	users	to	program,	orchestrate	directly,	control	and	manage	
network	resources,	which	facilitates	the	design,	delivery,	and	operation	of	network	
services	in	a	dynamic	and	scalable	way.		
The	SDN	controller	plane	is	a	dedicated	network	entity.	It	comprises	of	controllers	that	
are	logically	centralized,	each	of	which	has	control	over	the	resources	exposed	by	the	
data	plane	The	SDN	controller	plane,	also	referred	to	as	SDN	control	layer,	provides	
means	to	dynamically	control	the	behavior	of	network	resources	(data	plane),	as	
required	by	the	application	plane	or	layer.	The	SDN	applications	define	network	system	
resources	control	and	allocation	by	interacting	with	the	SDN	control	layer	via	
Application-Control	Plane	Interface	(ACPI),	this	interface	is	also	referred	to	as	the	
NorthBound	Interface(NBI).	The	northbound	interface	allows	SDN	applications	to	
program	application-specific	network	behavior	and	access	network	information.	This	
helps	for	applications	to	be	able	to	operate	on	an	abstraction	of	the	network	and	
leverage	network	services	and	potentialities	without	being	tied	to	the	details	of	their	
implementations.	
The	orchestration	functionality	of	the	control	plane	provides	automated	control	and	
management	of	the	network	resources	on	the	data	plane,	requests	coordination	from	
application	layer	for	network	resources	or	data	plane	based	on	policy	provision	by	the	
application	layer	or	multi-layer	management	function.	For	instance,	interacting	with	
the	multi-layer	management	services	to	provide	management	of	SDN	application-
related	operations	such	as	service	creation	and	provisioning,	user	management	(Open	
Networking	Foundation,	2012).	

4.3 The	SDN	Application	Layer.	

The	SDN	applications	are	programs	in	the	application	layer	or	plane,	which	specifies	
business	applications	or	network	services	and	defines	a	service-aware	behavior	of	
network	resources	in	a	programmatic	manner.	These	programs	communicate	their	
network	requirements	and	response	by	interacting	with	the	SDN	controller	plane	via	
the	Northbound	Interface(NBI)	so	that	controller	plane	can	automatically	customize	
the	behavior	of	the	network	resources.	These	programs	at	the	application	plane	(SDN	
applications)	makes	use	of	the	global	abstract	network	view	of	the	network	resources,	
for	their	internal	decision-making	purposes,	provided	by	the	SDN	controller	plane	by	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 21

using	information	and	data	models	exposed	via	the	Northbound	Interface	
(Telecommunication	Standardization	Sector	of	ITU,	2014).	
SDN	applications	vary	according	to	different	kinds	of	services	to	achieve	its	objectives;	
it	may	invoke	other	external	services,	and	orchestrate	any	number	of	SDN	controllers.	
This	application	requires	a	certain	amount	of	knowledge	of	their	environment	and	
roles.	The	ONF	white	paper	(Open	Networking	Foundation,	2012)	states	that:	
An	application	plane	entity	may	act	as	an	information	model	server	by	exposing	an	
information	model	instances	for	use	by	other	applications.	Formally,	the	other	
applications	are	clients	that	communicate	to	the	SDN	application	server	agent.		
An	application	plane	entity	may	also	act	as	an	information	model	client	by	operating	
on	an	information	model	instance	exposed	by	a	server	entity.	This	server	entity	may	be	
either	an	SDN	controller	or	a	secondary	application.		
An	application	plane	entity	may	act	in	both	roles	simultaneously.	For	example,	a	path	
computation	engine	(PCE)	may	rely	on	an	SDN	controller	for	virtual	network	topology	
information	(maintained	in	a	traffic	engineering	database),	while	offering	the	SDN	
controller	a	path	computation	service	(Open	Networking	Foundation,	2012).	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 22

5.	PRACTICAL	IMPLEMENTATION	OF	SOFTWARE	DEFINED	
NETWORKING.	

Since	the	evolution	of	SDN,	a	network	architecture	that	decouples	the	data	plane	from	
the	control	plane,	and	turning	the	control	plane	into	a	software-based	centralized	
controller.	Many	vendors	see	values	in	SDN		network	architecture	as	enabling	network	
programmability.	Network	programmability,	on	the	other	hand,	is	capable	of	
harvesting	information	from	network	devices,	evolving	from	the	technology	push	and	
use	pull	which	encouraged	Active	Networking	as	it	grows	into	network	
programmability,	and	motivated	pushing	out	new	configurations,	policies,	profile	
definitions	in	response	to	dynamic	network	conditions	or	service	provisioning	requests	
(Shin,	Nam,	&	Kim,	2012).	
Over	the	evolving	years,	SDN	has	gained	practical	implementation	in	various	aspects	of	
networking	technologies.	This	thesis	will	look	into	how	SDN	makes	it	easy	to	
implement	and	manage	Network	Function	Virtualization,	Applications	of	Network	
Function	Virtualization,	Network	Function	Virtualization	using	Mininet,	emulator	for	
quick	prototyping	of	Software	Defined	Network.		

5.1 Network	Functions	Virtualization	

Network	virtualization	environment	supports	the	coexistence	of	multiple	virtual	
networks	on	the	same	underlying	physical	substrate,	where	each	of	these	virtual	
networks	is	a	collection	of	virtual	links	and	virtual	nodes.	However,	these	virtual	
networks	can	also	be	regarded	as	a	subset	of	the	underlying	physical	network	
infrastructure	(Stalling,	2016).	
Network	Function	Virtualization	Infrastructure	is	a	collection	of	resources	and	
functions	which	encompass	three	main	domain;	the	compute	domain,	hypervisor	
domain,	Infrastructure	network	domain.	In	totality,	NFVI	consists	of	all	software	and	
hardware	components	which	build	up	an	environment	where	virtual	network	functions	
are	deployed	(Chiosi,	Clarke,	Willis	,	Reid,	Feger,	&	Ruhl	,	2012).	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 23

	
Figure	6.	NFV	Domains	encompassed	in	the	network	function	virtualization	
infrastructure	(Chiosi,	Clarke,	Willis	,	Reid,	Feger,	&	Ruhl	,	2012).	

The	compute	domain	within	the	network	functions	virtualization	infrastructure	(NFVI)	
includes	the	servers	and	storage	hardware	which	enable	provision	for	commercial	off-
the-shelf	(COTS)	high-volume	storage	and	servers.		
The	Hypervisor	domain	within	NFVI	provides	abstraction	layer	of	the	hardware	by	
mediating	the	compute	domain	resources	to	the	virtual	machines	of	the	software	
appliances.
The	Infrastructure	network	domain,	this	domain	within	the	NFVI	comprises	of	all	
generic	and	high	volume	switches	which	are	interconnected	together	by	a	network,	
enabling	configuration	for	infrastructure	network	services	supply.		
NFV	implementation	aims	to	transform	how	network	operators	and	architects	design	
network	systems	by	evolving	virtualization	technologies	to	integrate	various	network	
equipment	types	onto	industry	standard	high	volume	Ethernet	switches,	servers	and	
storage,	located	in	the	end	user	premises,	datacenters,	and	Network	Nodes.		NFV	
involves	software	implementation	of	network	functions,	which	can	run	on	various	
industry	standard	hardware,	and	moved	to	or	instantiated	in	different	network	
locations	as	required,	without	any	need	of	new	equipment	installation	(Chiosi,	Clarke,	
Willis	,	Reid,	Feger,	&	Ruhl	,	2012).	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 24

	
Figure	7.	Vision	for	network	function	virtualization	(Nadeau,	2013).	

Application	Of	Network	Function	Virtualization

A	virtualized	implementation	of	traditional	network	function	can	also	be	regarded	as	a	
Virtual	Network	Function	(VNF).	Various	network	elements	can	be	virtualized	as	shown	
in		Figure	7.	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 25

	
Figure	8.	Network	Functions	that	could	be	virtualized	(Nadeau,	2013).	

Furthermore,	NFV	could	be	applicable	in	a	set	of	service	models	and	high-level	use	
cases	which	are	intended	to	drive	the	development	of	products	and	standards	for	
network-wide	implementation.	As	addressed	by	ISG	NFV,	Applying	NFV	can	be	
categorized	into	architectural	use	cases	and	Service-Oriented	use	cases.		
Architectural	application	of	Network	Function	Virtualization	focuses	on	the	provision	
of	general	purpose	services	and	applications	which	are	based	on	the	Network	Function	
Virtualization	Infrastructure(NFVI)	architecture.		
	
Network	Function	Virtualization	Infrastructure	as	a	Service	(NFVIaaS):	NFVI	is	
provided	as	a	service	in	a	scenario	which	maps	Network	as	a	Service	(NaaS)	and	cloud	
computing	service	model,	Infrastructure	as	a	Service	(IaaS)	as	elements	with	NFVI.	A	
service	provider	deploys	and	implements	an	NFVI	that	may	be	used	to	support	Virtual	
Network	Functions(VNFs)	by	both	NFVIaaS	provider	and	other	network	service	
providers.	The	Infrastructure	is	designed	to	support	the	vendor's		requirements	for	
deploying	VNFs	and	more	capacity	that	can	be	sold	out	to	other	providers	(Nadeau,	
2013).	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 26

5.2 A	simple	software	defined	network	architecture.	

This	thesis	work	will	show	a	practical	implementation	of	necessary	software	defined	
network	architecture	by	setting	up	a	development	environment	on	a	single	machine	
using	various	SDN	tools	along	with	general	networking	utilities	on	a	virtualized	
environment.	
Implementation	will	deploy	SDN	architecture,	showing	how	the	southbound	API	and	
Northbound	API	interact.	The	design	features	SDN/Open	Flow	architecture	where	the	
network	will	be	designed	on	top	of	the	standard	interface,	Open	Flow,	to	ensure	
configuration	and	communication	compatibility	and	interoperability	among	the	data	
and	control	plane	virtual	devices.	In	this	implementation,	the	two	most	important	
elements	are	the	controller	and	forwarding	devices.	Utilizing	a	virtual	network	
simulator,	mininet,	to	create	software	defined	network	architecture	for	three	hosts,	a	
switch,	and	a	controller.	
SDN	architecture	with	Open	Flow	controller	using	mininet.	
Software	defined	Networking,	an	emerging	paradigm	and	evolutionary	approach	to	
network	design	and	functionality	based	on	the	capability	to	programmatically	modify	
the	behavior	of	network	devices	according	to	business	and	or	traffic	needs.	SDN	
architecture	makes	it	easier	to	program	configurable	and	customizable	software	at	the	
controller	layer,	which	is	independent	of	the	underlying	hardware	on	the	forwarding	
plane	to	expand	data	flow	control.	This	approach	to	networking	will	make	networks	
more	cost-effective,	dynamic	and	flexible,	in	the	long	run,	simplifying	operational	
complexity.	
In	recent	networking	trends,	change	in	network	traffic	pattern,	big	data,	information	
technology	consumerization,	the	rise	of	cloud	computing	and	services,	more	
bandwidth	consumption,	all	brings	about	the	need	for	a	flexible	architectural	approach	
to	networks	(A	Software	Defined	Network	Architecture).	The	control	plane	in	SDN	
allows	the	underlying	network	infrastructure	to	be	abstracted	and	enabling	network	
applications	to	view	the	network	as	a	single,	logical	switch	entity.	
The	application-programming	interface	(API)	in	SDN	specifies	how	software	
components	should	interact	with	each	other,	making	it	possible	to	implement	basic	
network	functions	such	as;	routing,	security	path	computation,	and	other	tasks.	The	
southbound	API	allows	the	controller	to	define	the	behavior	of	the	switches	at	the	
bottom	of	the	architecture;	a	good	example	is	the	OpenFlow	API	as	used	in	this	thesis	
implementation.	On	the	other	hand,	Northbound	API	provides	a	network	abstraction	
interface	to	the	applications	and	management	systems	at	the	top	of	the	architecture.	
The	core	of	a	software-defined	network	is	the	controller	software	at	the	control	plane,	
which	facilitates	automated	network	management,	making	application	programs	
integration	and	administration	easier.	The	controller	software	uses	protocols	such	as	
OpenFlow	to	configure	network	devices	and	manages	flow	control	to	enable	intelligent	
networking.	
OpenFlow,	an	approach	as	used	in	this	thesis	implementation,	is	a	protocol	that	is	used	
to	define	the	communication	interface	between	the	control	and	forwarding	layers.	
OpenFlow	allows	for	manipulation	and	provides	direct	access	to	the	forwarding	plane	
of	the	network	devices.	It	identifies	network	traffic	using	the	concept	of	flows.		

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 27

This	approach	helps	to	centralize	control,	increase	network	security	and	reliability,	
reduces	complexity	via	automation.	
With	SDN,	static	networks	could	be	transformed	into	scalable,	flexible,	programmable	
platforms	that	have	the	intelligence	to	allocate	resources	dynamically.	
	
Mininet	is	an	instant	virtual	network	on	a	PC.	Mininet	creates	a	realistic	virtual	
network,	running	real	kernel,	and	switch	and	application	code,	on	a	single	machine.	
Mininet	is	an	excellent	way	to	develop,	share	and	experiment	with	OpenFlow	and	
Software-Defined	Networking	systems	(Mininet	Team).	
OpenFlow	is	the	first	standard	communication	interface	defined	between	the	control	
plane	and	the	data	plane	of	SDN	architecture.	Open	Flow	allows	direct	access	to,	and	
manipulation	of	the	forwarding	plane	of	network	devices	such	as	switches	and	routers,	
both	physical	and	virtual	(hypervisor-based)	(Open	Networking	Foundation)	.	
We	will	demostrate	a	simplified	initial	development	and	deployment	process	with	
mininet	simulation	tool	which	allows	OpenFlow	network	to	be	emulated	on	a	single	
machine.	
To	accomplish	this	demonstration,	we	will	use	a	virtual	environment		for	SDN	
development	built	by	sdnhub.org,	the	virtual	machine	is	a	64-bit	ubuntu	14.04	image	
(3GB)	that	has	a	number	of	SDN	software	and	tools	installed.	I	will	demonstrate	a	
simple	SDN/OpenFlow	network	with	three	hosts,	an	OpenVswitch	and	an	OpenFlow	
reference	controller.	
From	ubuntu	terminal,	Mininet	will	emulate	a	network	topology	consisting	of	three	
hosts,	a	switch,	and	an	open	flow	controller	and	automatically	assign	Class	A	private	IP	
adresses.		

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 28

	
Figure	9.	SDN	network	topology	consisting	of	three	hosts	with	class	A	IP	addressing,	an	
OpenFlow	Switch,	and	OpenFlow	refrence	controller.	

	
	

	
	
	
	
	
	
	
		
	
	
	
	
	
	

Virtual	
Ethern
et	pairs	

Controller				C0	

Port	6633	

				Loopback	
					(127.0.0.1)	

OpenFlow	
Switch	
S1	

	Ovs-ofctl	
(administer	
openflow	
datapaths)		

127.0.0.1:6
634	

h1	
10.0.0.2	

h1-eth0	

h2	
10.0.0.3	

h2-eth0	

h3	
10.0.0.4	

h3-eth0	

s1-eth0	
S1-eth1	

s1-eth2	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 29

To	run	mininet	and	define	network	topology	
Command:	sudo		mn	–topo	single,	3		

	
	
–mac	–switch	ovsk	–controller	remote	
The	above	command	tells	Mininet	to	create	three	virtual	hosts,	and	assign	each	with	a	
separate	ip	address,	create	a	single	open	Flow	software	switch	in	the	kernel	with	three	
ports,	connect	each	virtual	host	to	the	switch	with	a	virtual	Ethernet	cable	and	
configure	the	OpenFlow	switch	to	connect	to	a	remote	controller	

	
Figure	10.	Starting	mininet.	

Mininet	simply	create	a	network	topology,	add	a	controller	C0,	add	switch	S1,	add	
hosts	h1,	h2	and	h3,	adds	links	between	h1	and	s1,	h2	and	s2,	h3	and	s1.	Furthermore	
mininet	configures	the	three	hosts,	starts	the	controller	and	the	switch.		
	

	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 30

	
Figure	11.	IP	address	assigned	to	all	hosts,	and	switch	links	are	up.	

Ping	testing	among	all	host,	to	check	if	virtual	ethernet	pairs	are	recheable.	
Command:	h1	ping	–c3	h2	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 31

	
Figure	12.	H1	cannot	reach	H2	and	vice	versa.	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 32

	
Figure	13.	Ping	failure	among	all	host.	

There	were	no	ping	replies	among	the	hosts,	the	switch	flow	table	is	empty,	flows	can	
either	be	manually	installed	to	forward	necessary	packets	or	get	instructions	from	the	
controller.	However,	the	controller	is	not	yet	connected	to	the	open	Vswitch;	therefore	
the	switch	does	not	know	what	to	do	with	the	incoming	traffic,	and	this	leads	to	ping	
failure.	
Note:	At	this	point	the	switch	flow	table	is	empty.	
To	enable	visibility	and	control	over	the	switch	flow	table,	which	will	be	useful	for	
debugging	flow	counter	and	flow	state,	we	use	the	ovs-ofctl	utility	that	comes	with	the	
open	vswitch.	Most	open	vswitch	start	up	with	a	passive	listening	port.	
Using	ovs-ofctl,	we	will	manually	install	the	necessary	flows	on	the	open	switch	flow	
table	to	forward	packets	coming	from	port	1	to	port	2	and	vice-versa.	Using	the	
following	command:	
Command:	#	ovs-ofctl	add-flow	s1	in_port=1,	actions=output:2	
																					#	ovs-ofctl	add-flow	s1	in_port=2,	actions=output:1	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 33

	
Figure	14.	Manual	Installation	of	flows	on	open	switch	flow	table.	

ovs-ofctl	is	talking	to	a	local	instance	of	open	vswitch	via	unix	domain	socket	which	it	is	
looking	up	by	name	(s1).		
Now	that	we	have	configured	the	necessary	flow	on	port	1	and	port	2	of	the	open	
vswitch,	this	allows	packets	coming	in	from	port	1	to	be	forwarded	out	on	port	2	and	
vice	versa.	Therefore,	host	h1	and	h2	connected	to	port	1	and	port	2	of	the	switch	can	
only	be	reachable,	while	host	h3	cannot	reach	any	other	host	on	the	network.	
	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 34

	
Figure	15.	Succesful	pings	between	host	H1	and	H2,	while	H3	is	unrecheable	because	
the	switch	flow	table	includes	entries	for	only	H1	and	H2.	

We	will	set	up	the	controller	to	get	all	hosts	to	be	reacheable	
We	will	use	Wireshark	to	capture	and	watch	OpenFlow	protocol	messages.	Having	
setup	wireshark	to	listen	to	traffic,	We	will	start	the	open	flow	reference	controller,	
which	starts	a	simple	controller	that	acts	as	a	learning	switch	without	installing	any	
flow-entries.	
Command:	#ovs-controller	ptcp:	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 35

	
Figure	16.	Starting	OVS	reference	controller.	

After	the	controller	is	started,	it	acts	as	a	learning	switch	and	allows	connectivity	
among	all	hosts,	h3	will	now	be	reacheable	from	other	host	on	the	network	and	vice	
versa.Now	Test	for	reachability	among	all	hosts.	

	
Figure	17.	All	host	are	now	recheable	from	anywhere	on	the	network.	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 36

6.	CONCLUSION	

Traditional	Network	systems	became	very	complicated	to	manage	for	network	
operators,	the	network	systems	state	changes	continually,	and	it	remains	difficult	to	
configure	network	devices	across	a	broad	network	system.	Complexity	in	today's	
network	and	lack	of	flexibility	causes	operators	to	master	a	variety	of	network	
protocols.	However,	in	a	traditional	distributed	network,	operators	can	combine	
network	devices	from	different	vendors	into	a	single	large	network	system.	
This	work	shows	that	SDN	does	not	only	addresses	these	problems	but	also	simplifies	
it,	by	separating	the	control	planes	and	the	data	planes	of	the	network	and	centralizing	
the	control	and	management	of	the	overall	network	system	with	a	uniform	API.	The	
SDN	architecture	makes	it	easier	to	have	an	overview	of	the	network	such	that;	
network	operators	and	administrators	can	tailor	their	network	systems	to	meet	their	
requirements	and	needs,	as	the	network	changes	state.	Also,	it	shows	that	the	
centralized	control	systems	can	have	sufficient	control	and	visibility	over	the	data	
plane	resources	to	automate	and	deploy	a	variety	of	network	services	such	as	
middleboxes,	network	traffic	profiling,	load	balancing,	switching,	access	control,	
routing,	etc.	As	a	result,	SDN	has	gained	substantial	interest	and	concern	in	both	
academic	and	commercial	institutions.	
This	work	also	shows	fundamental	aspects	of	SDN	architecture,	such	as	the	OpenFlow	
Protocol	and	OpenFlow	API,	that	emerged	and	widely	adopted.	It	indicates	that	SDN	
vendors	and	programmers	can	design	programs	that	translate	network	requirements	
into	OpenFlow	tables	and	can	maintain	the	flow	tables	as	network	system	changes	
occur.	Moreover,	the	quality	of	the	controller	plane	programs	is	a	critical	factor	in	the	
overall	performance	of	the	network	system.	
The	future	of	Software	Defined	Network	is	feasible	and	applicable	in	a	various	network	
environment,	and	this	paradigm	shift	brings	numerous	benefits	compared	to	
traditional	networking.	This	thesis	has	demonstrated	that	SDN	is	practical,	efficient	and	
implemented	in	various	networking	domain.	It	applies	to	use	the	simplest	SDN	
programming	model,	where	network	topology	can	be	simulated	to	implement	various	
SDN	techniques.	However,	It	encourages	networking	student	to	adopt	programming	
skills	applicable	in	software	defined	networking	domain;	network	programmers	can	
develop	a	wide	variety	of	SDN	applications	with	a	familiar,	general-purpose	
programming	language.	SDN	gives	the	flexibility	of	introducing	new	ideas,	without	
limitations	or	restriction	to	proprietary	network	devices,	through	a	software	program.	
This	practice	makes	it	easier	to	manipulate	and	make	changes,	as	compared	to	using	a	
set	of	commands,	on	proprietary	equipment.	SDN	benefits	to	network	operators	by	
tackling	the	complexity	of	managing	large	networks.	With	the	centralized	approach	to	
network	management	and	configuration,	operators	do	not	have	to	configure	network	
devices	individually	when	making	changes	in	network	behavior,	but	instead	make	
traffic	forwarding	decisions	at	a	logically	centralized	location,	the	controller	layer,	with	
a	global	view	of	the	overall	network	state.	
	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 37

REFERENCES	

Bavier,	A.,	Feamster,	N.,	Huang,	M.,	Peterson,	L.,	&	Rexford,	J.	(2006).	In	VINI	veritas:	
realistic	and	controlled	network	experimentation.	SIGCOMM	'06	Proceedings	of	the	
2006	conference	on	Applications,	technologies,	architectures,	and	protocols	for	
computer	communications	(pp.	3-14).	New	York:	ACM.	
Benson,	T.,	Akella,	A.,	&	Maltz,	D.	(2009).	Unraveling	the	Complexity	of	Network	
Management.	Madison:	Theophilus	Benson.	
Caesar,	M.,	Caldwell,	D.,	Feamster,	N.,	Rexford,	J.,	Shaikh,	A.,	&	Van	der	Merwe,	J.	
(2005).	Design	and	implementation	of	a	routing	control	platform.	NSDI	Networked	
Systems	Design	&	Implementation.	2,	pp.	15-28.	Berkeley,	CA,	USA:	USENIX	Association	
.	
Chao,	H.,	&	Liu,	B.	(2007).	High	Performance	Switches	and	Routers.	Wiley-IEEE	Press.	
Chiosi,	M.,	Clarke,	D.,	Willis	,	P.,	Reid,	A.,	Feger,	J.,	&	Ruhl	,	F.	(2012).	Network	
Functions	Virtualisation:	An	Introduction,	Benefits,	Enablers,	Challenges	&	Call	for	
Action.	SDN	and	OpenFlow	World	Congress.	Darmstadt-Germany:	Industry	
Specification	Group	(ISG).	
Doria,	A.,	Hadi	Salim,	J.,	Haas,	R.,	Khosarvi,	H.,	Wang,	W.,	Dong,	L.,	et	al.	(2010,	03).	
Forwarding	and	Control	Element	Separation	(ForCES)	.	
Feamster,	N.,	Balakrishnan,	H.,	Rexford,	J.,	Shaikh,	A.,	&	Van	der	Merwe,	J.	(2004).	The	
case	for	separating	routing	from	routers.	ACM	SiGCOMM	workshop	on	Future	Direction	
in	Network	Architecture.	(pp.	5-12).	Oregon:	ACM	SiGCOMM.	
Feamster,	N.,	Gao,	L.,	&	Rexford,	J.	(2007).	How	to	lease	the	internet	in	your	spare	
time.	ACM	SIGCOMM	Computer	Communication	Review	,	37	(1),	61-64.	
Feamster,	N.,	Rexford,	J.,	&	Zegura,	E.	(2014).	The	Road	to	SDN:	An	intellectual	history	
of	programmable	networks.	ACM	SIGCOMM	Computer	Communication	Review	,	44	(2),	
87-98.	
Florida	Center	for	Instructional	Technology.	(2013).	What	is	a	Network?	Retrieved	04	
04,	2017,	from	An	Educator's	Guide	to	School	Networks:	https://fcit.usf.edu/network/	
International	Telecommunication	Union.	(1993,	03	01).	Introduction	to	Intelligent	
Network	Capability	Set	1.	HELSINKI.	
Kreutz,	D.,	Ramos,	F.	M.,	Verissimo,	P.,	Tothenberg,	E.	C.,	Azodolmolky,	S.,	&	Uhlig,	S.	
(2014).	Software-Defined	Networking:	A	Comprehensive	Survey.	Lisbon:	IEEE.	
Mininet	Team.	(n.d.).	Mininet.	Retrieved	02	04,	2017,	from	Mininet:	
http://mininet.org/	
Mosharaf	Kabir	Chowdhury,	N.,	&	Raouf,	B.	(2010).	A	survey	of	network	virtualization.	
The	International	Journal	of	Computer	and	Telecommunications	Networking	,	54	(5),	
862-876.	
Nadeau,	T.	D.	(2013).	SDN:	Software	Defined	Networks:	An	Authoritative	Review	of	
Network	Programmability	Technologies.	Sebastopol,	CA:	O'Reilly	Media.	
Open	Networking	Foundation.	(n.d.).	OpenFlow.	Retrieved	04	04,	2017,	from	
Opennetworking.org:	https://www.opennetworking.org/sdn-resources/openflow	
Open	Networking	Foundation.	(2014).	SDN	architecture.	Open	Networking	Foundation.	
Palo	Alto:	ONF.	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Olanrewaju	Oladunjoye	 38

Open	Networking	Foundation.	(2012).	Software-Defined	Networking:	The	New	Norm	
for	Networks.	ONF	White	Paper.	Open	Networking	Foundation.	
Rostami,	A.	(2014).	The	Evolution	Of	Programmable	Networks:	From	Active	Networks	
To	Software	Defined	Network	(SDN).	Ericsson	Research,Stockholm.	Stockholm:	
Ericsson.	
Russell,	T.	(1998).	Signaling	System	7	(Telecommunications).	Texas:	Mcgraw-Hill	.	
Sheinbein,	D.,	&	Weber,	R.	(1982).	Stored	Program	Controlled	Network:	800	service	
using	SPC	network	capability.	The	Bell	System	Technical	Journal	,	61	(7).	
Shin,	M.-K.,	Nam,	K.-H.,	&	Kim,	H.-J.	(2012).	Software-defined	networking	(SDN):	A	
reference	architecture	and	open	APIs.	ICT	Convergence	(ICTC),	2012	International	
Conference.	IEEE.	
Stalling,	W.	(2016).	Foundations	of	Modern	Networking:	SDN,	NFV,	QoE,	IoT,	and	Cloud.	
Crawfordsville:	Pearson	Education,	Inc.	
Telecommunication	Standardization	Sector	of	ITU.	(2014).	Framework	of	software-
defined	networking.	International	Telecommunication	Union.	ITU-T.	
Tennenhouse,	D.,	Smith,	J.,	Wetherall,	D.,	&	Minden,	G.	(1997,	01	01).	A	survey	of	
active	network	research.	IEEE	Communications	Magazine	,	35	(1),	pp.	80-86.	
Van	Der	Merwe,	J.,	Rooney,	S.,	Leslie,	I.,	&	Crosby,	S.	(1998).	The	Tempest-a	practical	
framework	for	network	programmability.	IEEE	Network	,	12	(3),	20-28.	
Wikipedia.	(2009,	12	20).	BlueBox.	Retrieved	04	04,	2017,	from	Wikipedia:	
https://en.wikipedia.org/wiki/Blue_box	
Yang,	L.,	Dantu,	R.,	Anderson,	T.,	&	Gopal,	R.	(2004).	Forwarding	and	Control	Element	
Separation	(ForCES)	Framework.	The	Internet	Society.	Network	Working	Group.	
	
	
	
	
	
	
	
	

