

Teemu Suvinen

Angular migration

Case: File Manager

Metropolia University of Applied Sciences

Bachelor of Engineering

Media Technology

Thesis

4.5.2017

 Tiivistelmä

Author
Title

Number of Pages
Date

Teemu Suvinen
Angular migration

32 pages + 3 appendices
4 May 2017

Degree Bachelor of engineering

Degree Programme Media technology

Specialisation option Digital media

Instructor
 Ilkka Kylmäniemi, Lecturer

The purpose of this thesis was to compare the differences between AngularJS and Angu-
lar frameworks and to migrate a file managing -tool, developed and used by a Finnish me-
dia company, to utilize the new Angular framework.

Single page applications are more popular than ever as they can provide a native applica-
tion like user experience. AngularJS and Angular are frameworks designed for single page
applications. They provide a robust set of tools to create data-driven, rich applications.

As the web and web development have become more advanced, many of the AngularJS
features are now outdated. Angular is a rewrite of AngularJS, written in TypeScript and
ES6. It takes some of the concepts from its predecessor and improves the stability and
performance of the framework.

The project was to migrate a file manager application from using AngularJS to Angular.
Some of the functionalities stayed somewhat unchanged, but as the application was split
into multiple smaller components a shared service had to be created to handle the com-
munication across the application. New features were added to help with the workflow pro-
cess.

The project was successful and no significant problems were faced. The most challenging
part of the migration was to get into the Angular mindset of building an application with
small components. The results show that for a small-to-medium sized application, an An-
gular migration can be done without significant problems. A large application can be mi-
grated to Angular in stages.

Keywords Angular, AngularJS, TypeScript, ES6, programming, web
application

 Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Teemu Suvinen
Angular-migraatio

32 sivua + 3 liitettä
4.5.2017

Tutkinto Insinööri (AMK)

Koulutusohjelma Mediatekniikka

Suuntautumisvaihtoehto Digitaalinen media

Ohjaaja
 Lehtori Ilkka Kylmäniemi

Insinöörityön tarkoituksena oli tutkia AngularJS- ja Angular-sovelluskehyksien eroja sekä
siirtää suomalaisessa media-alan yrityksessä käytettävän tiedostonhallintatyökalun käyttö-
liittymä uuden Angular-sovelluskehyksen päälle.

Yksisivuiset verkkosovellukset ovat suositumpia kuin koskaan. Tämä johtuu siitä, että ne
voivat tarjota natiivisovellusten kaltaisen käyttökokemuksen. AngularJS ja Angular ovat
sovelluskehyksiä, jotka on suunniteltu juuri yksisivuisten verkkosovellusten toteuttamiseen.
Ne antavat vakaat työkalut datan ohjaamien, rikkaiden sovellusten kehitykseen.

Verkon ja web-ohjelmoinnin kehittymisen myötä AngularJS-sovelluskehyksen ominaisuu-
det ovat nykyään vanhentuneita. Angular on täysin uudelleenkirjoitettu AngularJS:stä. Sen
kirjoittamiseen on käytetty TypeScript- ja ES6-ohjelmointikieliä. Sen kehityksessä on hyö-
dynnetty AngularJS:n konsepteja, ja sovelluskehyksen vakautta ja toimintaa on parannet-
tu.

Insinöörityössä siirrettiin AngularJS-pohjainen tiedostonhallintatyökalu käyttämään uutta
Angular sovelluskehystä. Osa toiminnoista pysyi lähes muuttumattomana, mutta koska
sovellus koostettiin useasta pienestä komponentista, sovelluksen komponenttien kommu-
nikointia varten piti luoda jaettu palvelu. Samalla sovellukseen lisättiin uusia toimintoja hel-
pottamaan työnkulkua.

Projekti onnistui ilman merkittäviä ongelmia. Haastavin osa siirrossa oli oppia Angular-
tyyppinen ajattelutapa, jossa sovellus rakennetaan pienistä komponenteista. Insinöörityön
tulokset osoittavat, että Angular-sovelluskehyksen käyttöönotto tai vaihto voidaan tehdä
pienelle tai keskisuurelle sovellukselle ilman merkittäviä ongelmia. Suuret sovellukset voi-
daan siirtää vaiheittain käyttämään Angular-sovelluskehystä.

Avainsanat Angular, AngularJS, TypeScript, ES6, ohjelmointi, verkkosovel-
lus

Table of contents

List of abbreviations

1 Introduction 1

2 Angular frameworks 2

2.1 AngularJS 2
2.2 Angular 2 11
2.3 AngularJS and Angular in comparison 19

3 The project: Angular migration – Case file manager 20

3.1 Initial state and planning phase 21
3.2 Development process 23
3.3 Finished product overview 27

4 Summary 30

Resources 32

Appendices

Appendix 1. Getting files from the API: AngularJS vs Angular

Appendix 2. Uploading files

Appendix 3. Original file manager landing view

List of abbreviations

AJAX Asynchronous JavaScript and XML. A method used to re-

quest data from a server after the page has loaded.

API Application Programming Interface. A set of clearly defined

methods of communication between software components.

CDN Content Delivery Network. Globally distributed network of

servers.

CSS Cascading Style Sheets. A language used to describe the

presentation of a document

DOM Document Object Model. The logical structure of docu-

ments.

ES6 ECMAScript 6. A trademarked scripting language specifica-

tion standardized by European Computer Manufacturers

Association.

HTML Hypertext Markup Language. A markup language to define

the structure of a web application.

JavaScript A programming language used to add interactions and be-

havior to websites.

JSON JavaScript Object Notation. A lightweight data-interchange

format.

JSONP JSON with Padding. Used to request data from a server

residing in a different domain.

MVC Model-View-Controller. A programming architecture design

model.

NPM Node Package Manager. A tool to handle packages and

dependencies in modern web development environment

SPA Single Page Application. A web application that is presented

to a user through a single HTML page.

UI User Interface. A visual part of a computer application

through which a user interacts with the software.

URL Uniform Resource Locator. A reference to a resource on the

Internet

UX User Experience. Internal experience a user has as they

interact with every aspect of an application.

1

1 Introduction

Single page applications, or SPAs, are applications built for web. They have become

increasingly popular as they can offer a native application like experience and usually

provide more dynamic interactions than conventional websites. Despite being called

single page applications, they can have multiple views and states. Usually, only a part

of the page is updated when a user navigates inside the application.

In this thesis AngularJS, a popular framework to create single page applications, is

introduced and compared to its successor, Angular. The goal is to demonstrate the

main differences in the Angular frameworks. First, some of the basic features and func-

tionalities of the AngularJS framework are presented. Afterwards, similar features are

examined in the new Angular framework and lastly the two frameworks are compared.

The practical portion of the thesis demonstrates how an application can be migrated

from using AngularJS to Angular. The initial state of the application and the plan for the

migration process is explained. Then some of the decisions in the rewrite process will

be presented. Lastly a look over the finished product with some of the improvements is

taken.

AngularJS and Angular frameworks provide a robust set of tools to create dynamic and

data-driven web applications. They extend the native HTML elements with custom at-

tributes, directives, and allow writing expressive, custom elements with complex func-

tionality. Both Angular versions utilize the MVC (Model-View-Controller) programming

architecture design. Angular takes many of the concepts from its predecessor, but im-

proves the performance and stability of the framework. Angular was built for modern

browsers and mobile devices.

2

2 Angular frameworks

2.1 AngularJS

AngularJS is a client-side, structural framework written entirely in JavaScript. It is de-

veloped and managed by Google and later in collaboration with a community of indi-

vidual developers and corporations. AngularJS was initially released on October 21,

2010 as a version “angular-0.9.0 dragon-breath” and is distributed under open source

MIT license. (1; 2).

The main purpose of AngularJS is to give a developer a robust set of tools to build a

variety of dynamic, client centric applications while using HTML as a template language

and further extending the HTML syntax to express web application’s components clear-

ly and concisely. AngularJS takes care of advanced features that developers have be-

come accustomed to in modern web applications, such as separation of application

logic, data models and views, AJAX services, dependency injection, testing and more.

As AngularJS is written in JavaScript, it runs in the web browser and can therefore be

used with any server technology. (1; 3).

In order to execute any AngularJS functions, a source file of the AngularJS framework

must be linked in the HTML template. The source file can be downloaded from the offi-

cial AngularJS website or with a package manager like Bower or NPM (Node Package

Manager) and then hosted on the same server as the application, or it can be loaded

remotely from a content delivery network (CDN). (4). The latter method can reduce

bandwidth costs and improve page load times. However, including any file necessary

for the functionality of an application, via CDN is more prone to errors. A content deliv-

ery network can be unavailable in certain countries of the World or the server could go

down possibly leaving an application unusable for that time. Therefore, any essential

file for an application should be hosted on the same server. (3; 5)

When the framework file is linked to a template, the application must be initialized,

“bootstrapped”, with the “ng-app” directive. This defines the root element of the Angu-

larJS application and initializes the application automatically when a web document is

loaded. Any scripts written in AngularJS can be executed inside of this element only.

The application can also be bootstrapped manually in a JavaScript file if more control

3

of the initialization process is desired, for example if the application requires script

loaders or needs to perform operations before AngularJS compiles a page. (6; 7). Fig-

ure 1 shows the two possible ways to initialize an AngularJS application.

Figure 1. AngularJS application can be bootstrapped automatically, using ng-app directive, or
manually with JavaScript. Note that all controllers and modules must be defined be-
fore bootstrapping the application manually.

The application should only be bootstrapped once and only one method of initialization

can be used as multiple initializations or root elements may lead to runtime errors in the

application. If there is no ng-app directive found in the DOM, and the application is not

manually bootstrapped, AngularJS will not run.

Both initialization methods require a definition of an application – a module. A module

is a single core unit, a “container”, that encapsulates all of the application code. An

application can contain several modules, each one containing code that pertains to

specific functionality. A module is declared with the “angular.module()” method. The

4

method needs two parameters: a name of the module and a “requires” array of names

of external modules that the declared module can use. If no external modules are

needed, the requirement array can be left empty. The name of a module is then passed

to the bootstrapping process to tell AngularJS which module to initialize when an appli-

cation is loaded in the browser. (3; 7).

AngularJS utilizes the MVC (Model-View-Controller) software design pattern. MVC is

an architecture principle where the data model, user interface, and the application logic

are isolated from each other. It allows writing more maintainable and reusable code by

organizing it into smaller components. (8).

Model is where the application’s data is stored. It is the lowest level of the MVC-

pattern. The model doesn’t need to know how to interact with the views or controllers. It

only contains and handles the data and methods to manipulate the view. If a model

changes, it will notify its observers that a change has occurred.

View is the whole or part of an interface that is presented to the users. The view usual-

ly consists of the HTML markup, templates and CSS attached to the DOM elements. It

does not need to know how to manipulate data objects, only how to display them. The

view should be aware of the models via controllers in order to observe data changes,

but do not directly communicate with the models.

Controllers are the functions that handle and validate the user input like clicks or typ-

ing in the view and perform interactions on the data model objects when necessary.

Controllers act as an interface between the models and views and process the data

before it is rendered to the view. Controllers perform asynchronous API calls to the

server, handle the received responses and update the data models or views according-

ly.

The MVC model is visualized in figure 2.

5

Figure 2. Visualization of the traditional MVC model (10.). Controllers handle the state of the
models and views and update them if necessary.

AngularJS handles the MVC model via two-way data binding. It is an automatic and

more efficient way (compared to the traditional “manual” way) to update the view

whenever the data model changes, as well as updating the model if the view changes.

(3; 8; 9).

Two-way data binding eliminates the need for a developer to manually write synchroni-

zation code to keep track of data model and user interface thus keeping the codebase

smaller, cleaner and easier to maintain. Two-way bound values are mostly used in form

input fields where the data model has to change constantly based on the user input.

Two-way bound variable values can be pre-defined based on the data provided by the

data model or they can be defined later based on the user input. A pre-defined value

will change as soon as the user interacts with it. Pre-defining a two-way data bound

variable value is done in the scope of a controller. (3; 9). Figure 3 shows how two-way

data binding is marked in the HTML template with AngularJS directive “ng-model”.

6

Figure 3. Two-way binding of a variable is defined in the HTML markup with “ng-model” di-
rective. In this case the value for the variable “firstname” is pre-defined as “John” in
the controller named exampleController

Ng-model is a built-in directive in AngularJS. Directives are extended HTML attributes,

element names, comments or CSS-classes that offer additional functionality to the web

application. Directives tell AngularJS’s HTML compiler to attach a specified behavior to

that DOM element or to transform the DOM element and/or its child elements.

In addition to the built-in directives a developer can define and use their own custom-

built directives. All built-in directives in AngularJS have “ng” prefix to help the developer

distinguish the built-in directives from the HTML native attributes or the developer’s

own custom directives. A developer should never prefix their custom directives with

“ng” in order to avoid namespace collision.

Custom directives are defined with “angular.directive()” method, shown in Figure 4. The

method takes two arguments: a name of the directive, as a string, that will be used to

refer to inside of the views, and a factory function that returns an object defining the

behavior of a directive. It is expected to return an object providing options that tell the

AngularJS’s compiler service how the directive should behave when it is invoked in the

DOM. The link function of a directive has control over live data-bound DOM. This

means that the directive link function gets executed after the template has been cloned

and, thus, it can be used to listen for DOM events or update the DOM. Use of directives

is recommended if manipulation of a DOM element is desired. (3; 6; 12;)

7

Figure 4. Custom directives are defined with the directive() method. Link functions can manipu-
late the DOM, or add other functionality to the element.

It is possible to tell AngularJS in which format a directive can be declared in the DOM.

This is done with a restrict argument, as shown in Figure 4. There are four possible

ways to declare directives: as an element (restrict E), as an attribute (restrict A), as a

comment (restrict M) and as a class (restrict C). It is recommended to use the element

or attribute declaration methods as they will work with most browsers. (12).

Controllers in AngularJS handle the “business logic” of an application. They are defined

by a JavaScript constructor function and are then used to augment the scope of the

view in an application. When a new controller is created on a page, AngularJS passes

it a new scope where initial state and custom behavior to the scope object can be set

up. In addition to declaring initial values of data bound variables used in the views, con-

trollers are used to handle the logic of a single view in a single container. All of the

scope properties are available to the template at the point in the DOM where the con-

troller is registered. (3; 6; 13).

Controller functions can be executed based on the user actions in the view. A typical

practice is to execute scope functions when a user clicks a button or when a data mod-

el changes. Figure 5 shows an example of how a controller scope function is defined

and executed when a user clicks a button in the view. (3).

8

Figure 5. Scope functions can be executed when a user clicks a button in the view. $scope is
passed to the controller via dependency injection – a method of providing dependen-
cies to components as requested. A click is registered with a built in ng-click directive.

A new controller is defined with the “angular.controller()” method. It takes two argu-

ments: a name of the controller, and a constructor function. The constructor function is

then injected with the necessary dependencies for that function. (13).

A major distinction between AngularJS and other JavaScript frameworks is that the

controller is not the appropriate place to do any direct DOM manipulation or formatting,

data manipulation or fetching, or manage the life-cycle of other components. It is best

practice to do these kind of actions via directives or services.

For memory and performance purposes, controllers are instantiated only when they are

needed and discarded when they are not. It means that every time a route is switched

or a view is reloaded, the current controller is cleaned, or reset by AngularJS. (3; 6;

13).

Services provide a method of keeping data around for the lifetime of an application,

and communicate across multiple controllers in a persistent manner. Services are sin-

gleton objects instantiated only once and created only when necessary. AngularJS

provides multiple built in services. One of the most common used service is the $http

service that makes requests to the server via the browser’s XMLHttpRequest object or

via JSONP, and lets an application handle the response.

The $http service is based on the deferred/promise API. It takes a single argument, a

configuration object, that is used to generate an HTTP request and returns a promise.

A promise is a method of resolving or rejecting a value in an asynchronous manner.

9

The promise returned by the $http service contains two helper methods – success and

error, that can be used to handle the logic of what happens when a request to a server

is complete. (3; 14; 15). A basic usage of $http service is shown in Figure 6. Note that

the $http service is only used in the controller in order to keep the example short.

Figure 6. Basic usage of the $http service. Data is fetched from a server and stored in a scope
variable people. This data is then used to iterate over data objects in the template us-
ing AngularJS ng-repeat directive. Data values are bound to the template using curly
brace notation.

In addition to using built-in services, a developer can create custom services by regis-

tering the service’s name and service factory function with an AngularJS module API. It

is considered as the best practice to use services when an application uses same func-

tions in multiple controllers. Using services minimizes writing repetitive code and keeps

the codebase cleaner by centralizing most needed functions in one place. (3; 6; 15).

Single page applications have become increasingly popular as they are able to provide

the feel of a phone or tablet application. The most notable difference between a regular

website and a single page application is the reduced amount of page refreshes. A sin-

gle page application utilizes AJAX requests to communicate with a server without doing

10

a full page refresh, and only a part of the view is updated with fresh data. Single page

applications can have multiple views on one page. (16). AngularJS provides a router to

transition between these views. The views are split into templates and displayed de-

pending on the requested route. (17.)

As of version 1.2.2, AngularJS router has been separated from the core of Angular into

its own module. To make an AngularJS application to work as a single page applica-

tion, a router module must be included to the base template and injected as a depend-

ency to the application’s main module. After the router module is injected to the main

module, routes are defined within the application configuration block using the route

provider.

Each route has its own template (view), controller, and a url that can be used to imple-

ment deep-linking services and directives, and bookmarking a page or view. The views

are rendered inside a main view specified with a ng-view directive from the router mod-

ule. This tells AngularJS compiler where a template should be placed in the DOM when

a route is requested. Figure 7 shows a basic routing example.

	

Figure 7. After the router module, ngRoute, has been injected to the main module, routes are
defined using $routeProvider in the configuration block of the application.

11

The route provider uses “when” method to inspect the url in the browser and provides

“components” to the view accordingly. The default AngularJS router is somewhat lim-

ited in functionality and, hence, many developers choose third-party router modules,

like Angular UI router, which offers multiple views on a same page and nested views.

(3; 17; 18).

As with any single page application, search engine optimization can be a difficult task.

Search engines use automated robots, called “crawlers” or “spiders”, to decipher and

index web pages. As single page application views are rendered in the browser using

JavaScript, and AngularJS adds a hash to the url before the last fragment (name of the

view), and nothing after the hash gets sent to the server, search engine crawlers have

a hard time indexing the page. One option is to pre-render every view of the application

and store them as static HTML files saved on the server. This allows the crawlers to

index pages easily. (19; 20).

While AngularJS offers great tools for building and prototyping data-driven, dynamic

and interactive web applications quickly and expressively, it has some notable draw-

backs. Learning AngularJS basics are quite easy, but when the application grows and

more advanced techniques are needed, the learning curve becomes very steep making

it hard to learn. AngularJS scopes are a great way to handle user interaction, but they

are hard to debug when errors occur as the error messages are not as expressive as in

other JavaScript frameworks. A major con in AngularJS is the lack of complete, up to

par, documentation, and the difficulty of search engine optimization. (20; 21; 22).

2.2 Angular 2

The web and web development have evolved a lot since the first release of AngularJS

in 2010 and, thus, a lot of the concepts within AngularJS have become outdated. Up-

dating and modernizing the existing AngularJS framework would have been impossible

without breaking much of the original implementation. In 2014 the Angular team an-

nounced that they are going to build a complete rewrite over the popular AngularJS

framework. In September, 2016, the final stable release version of Angular 2 was pub-

lished. (23; 24).

12

Angular 2 – or just Angular, is a complete rewrite of the older AngularJS framework. It

was built as an open source project from the beginning. Angular was designed for the

modern web browsers as well as mobile platforms. It introduces a new syntax for writ-

ing code, and modular approach to building applications with components. Angular is

written in TypeScript, a superset of JavaScript ES6 (ECMAScript 6) that compiles to

plain JavaScript that runs in any browser, host or operating system. TypeScript enables

optional static typing and class-based object-oriented programming. Angular is still,

much like AngularJS, used to create single page applications. (23; 24; 25;)

Because Angular applications are written in TypeScript and ES6, there are more pre-

requisites for the development environment. TypeScript and ES6 files need to be com-

piled to plain JavaScript before they can run in the browser. NodeJS and NPM are es-

sential to Angular development. Using NodeJS task runners, TypeScript and ES6 syn-

tax is transpiled into plain JavaScript. NodeJS task runners can also, among other

tasks, transpile SCSS, a CSS pre-processing language, into CSS. NodeJS compiler

watches the files and recompiles an application when changes to the files are saved in

the editor. (23; 26; 27).

Like AngularJS applications, Angular applications must have at least one root module

that is bootstrapped, initialized, to launch the application. An Angular module class de-

scribes how the different parts of the application fit together. An Angular module is a

class with an @NgModule decorator. Decorators are functions that modify JavaScript

classes and add metadata to those classes. Metadata tells Angular how the classes

should work. (23; 28). Figure 8 shows the initialization of an Angular application.

13

Figure 8. Bootstrapping an Angular application is done inside the @NgModule decorator func-
tion that takes a single metadata object whose properties describe the module.

Modules needed to write Angular code are imported from Angular library. The ‘from

“@angular/ ...”’ portion tells the TypeScript compiler where to find the dependencies

that are imported. The bootstrap method needs to know which component is set up as

the root element of the application. (23; 28).

In Angular, applications are built using components. Components are much like native

HTML elements. They are a combination of an HTML template and a component class

that controls a view – a portion of the screen. Components are the main way to build

and specify elements and logic on the Angular application. An Angular application is a

“tree structure” of components.

A class is declared as a component using @Component decorator and metadata pro-

vided to it. Component metadata determines how the component should be processed,

instantiated and used at runtime. A component decorator needs at least two argu-

ments: a selector, that is used in the DOM to render the component, and a template as

a path to a template file or inline HTML directly inside the component decorator

metadata. A component class must be then exported and imported, and injected, to the

declarations array of a module. (29; 30; 31). A declaration of a new component is

demonstrated in Figure 9.

14

Figure 9. A new component class is declared using a @Component decorator. The component
is then exported, imported to the main module file, and injected to module declara-
tions as a dependency.

Angular components replace the controllers and template directives from AngularJS.

Component’s application logic and initial data values are defined inside a class con-

structor function. Two-way data binding was removed from Angular, but it is available

via external FormsModule, and can be used similarly to AngularJS. (31). Figure 10

demonstrates the definition of initial values inside a constructor function.

15

Figure 10. Initializing component values is done in the constructor function. Two-way data bind-
ing requires importing an external module, and is used using “banana-in-a-box” nota-
tion. Multi-line template can be written using back ticks inside of the component deco-
rator.

TypeScript enables pre-defining the types of the variable values. In Figure 10, values

need to be of type “string” in order to compile the file successfully. If the values are of

any other type (e.g. Boolean or numbers) the TypeScript compiler will not process the

file and throws an error. Types help to find potential errors before an application is run

in the browser, reducing the risk of runtime errors. (23; 25; 27).

When a component is instantiated, Angular creates an encapsulated instance data

object (much like isolated scopes in AngularJS), and this data is only available for the

component. Components can receive data from, or output data to their parent compo-

nents. Angular also enables creating custom events that allow the component to com-

municate with other components in the view. Custom events can be used to notify par-

ent components when a data model of a child component changes or a child compo-

nent completes a certain action that the parent needs to know about. Custom events

are emitted out of the component with the Angular @Output decorator and a built-in

EventEmitter class. (23; 30). Figure 11 shows a basic example of emitting data from a

child component to a parent.

16

Figure 11. Custom events or a data change in a child component can be emitted to parent com-
ponents using an Event Emitter and an @Output decorator.

Services in Angular are similar to AngularJS. Services are used to eliminate repetitive

code and provide methods and data to different parts of the application. In Angular,

services are used to create asynchronous data flow to a component. Single page ap-

plications utilize AJAX requests to fetch data from, or post data to a server. To help

developers manage the requests needed to handle data, Angular comes with its own

HTTP library which can be used to call out to external APIs. The Http module is sepa-

rated from the core of Angular. In order to make Http requests to a server using Angu-

lar, the Http module must be imported to a service using it. After importing, the import-

ed module must be injected as a dependency to the component (or service) constructor

function. (23; 32).

17

In Angular, the preferred method of dealing with asynchronous data requests is using

Observables. Using observables to structure the data is called Reactive Programming.

Observables are objects or functions that represent a push based collection. This

means that every time a change in the data is detected, an observable object notifies

about this change to its consumers. Observables open up a continuous channel of

communication in which multiple values of data can be emitted over time. Figure 12

shows how an API request can be performed and how the data fetched from a server is

handled using Observables.

Figure 12. In order to use the Angular Http module, it must be imported to a component or ser-
vice using it. Here, the getPeople method is set up as an observable and the stream
of data is mapped to json format. Subscribing to a data stream allows asynchronous
data to flow into the people array.

Http.get method returns an Observable of HTTP Responses. These responses can

then be used to determine how the application should handle the completed request.

After a successful request, the received data can be displayed in the view using data

binding methods provided by Angular. Data binding methods are similar to the Angu-

larJS framework. (23; 32; 33).

As single page applications usually consist of multiple views, routing is needed to navi-

gate between them. Managing state transitions is one of the hardest parts of building

18

web applications where the state is reflected in the browser’s URL. The Angular router

resolves this problem with its own Component Router module. It is separated from the

core but can be imported to the application from an external module. The Angular rout-

er can interpret a browser url as an instruction to navigate to a client-generated view.

The router logs the application view states to the browser’s history journal using the

history.pushState method which enables the native back and forwards buttons to work

with the application.

When using the Angular Component router, a base URL must be set to tell the router

how to compose navigation URLs. In Angular, routes are configured by mapping paths

to the component that will handle them. There are three main components that are

used to configure routing in Angular: Routes, that describe the routes an application

supports, RouterOutlet which defines where each route’s content is rendered, and

RouterLink, a directive used to link to routes. Figure 13 shows a basic routing setup

using Angular Component router.

Figure 13. Application routes are set up using Angular RouterModule.

The routes need at least a path and a component as arguments. Routing is then initial-

ized in the imports array of the main module by using RouterModule.forRoot method

and passing the route objects to it. If no route matches the url in the browser, the router

can redirect to a pre-defined component using double asterisk symbols. (23; 34; 35)

19

Because single page applications use the browser to render content and views using

JavaScript, search engine optimization is traditionally difficult. The Angular team has

come up with a tool to render Angular applications on the server.

Angular Universal is a library, or a server side plugin, that can be used to to render an

Angular application on the server. It generates static HTML files at build time that can

be deployed to a web host. It also enables to run Angular application code on the serv-

er with each request to generate a server side view on the fly. The static HTML pages

are displayed to a user while Angular loads and after loading, the dynamic version of

the application is switched to the client view. The pre-rendered pages are what search

engine crawlers see and, thus, the application can be indexed without problems. (36).

Angular is a fantastic framework for building modular, highly scalable, high perfor-

mance applications for web and native platforms. It adds many improvements to the

innovations introduced in AngularJS and takes the concepts even further. While Angu-

lar is still relatively new framework, major drawbacks or cons to it have not been docu-

mented yet. (23).

2.3 AngularJS and Angular in comparison

When comparing Angular to AngularJS, the most noticeable difference for a developer

is the new syntax and the development process. Switching from AngularJS to develop-

ing with Angular requires a completely new mindset. When learning AngularJS, a de-

veloper needs to learn only the framework and its features, assuming they have a basic

knowledge of HTML, CSS and JavaScript. Although the learning curve for learning An-

gularJS is quite steep, starting the application build process needs very little prepara-

tion and no pre-processing scripts or other perquisites to get started is needed other

than including the framework source file to the application. (37; 38).

With Angular, a developer needs to learn not only the framework, but also ES6 syntax

and TypeScript features, not forgetting the reactive extensions and observables used

with API calls for example. As Angular is written in ES6 and TypeScript, pre-processing

is needed to generate JavaScript files that run in the browsers. If a developer has no

earlier experience with NodeJS, NPM, Webpack, Yarn, or other JavaScript package

managers, bundlers and task runners, learning those is also required in order to build

20

applications with Angular. This may add a large learning curve to the framework. How-

ever, many developers say learning Angular is still easier than learning AngularJS. The

community support is still quite poor in Angular as it is such a new framework. Angu-

larJS has a much larger community and many of the solutions to common problems

can be found easily by searching Stack Overflow or other development related web-

sites. (37; 39).

AngularJS applications were built around templates and controllers attached to them.

The controllers had a $scope where all the functions and variables needed in a specific

part of the application were placed to access them in the view. In Angular, the control-

lers and $scope are gone and replaced with components. This allows writing much

cleaner and reusable code that is also easier to maintain and scale when needed.

Speed and performance are improved in Angular. The component router delivers au-

tomatic code-splitting that loads only the code required to render the view. Many of the

modules have been removed from the Angular core package, and can be imported to

the application when and if needed. The digest cycle from AngularJS is replaced with a

“Change detection” system which yields up to five times better performance compared

to AngularJS. Mobile performance is also greatly improved as Angular was designed

for the mobile devices from the ground up.

Search engine optimization is easier with Angular. Angular Universal plugin enables

Angular applications to be pre-rendered or rendered in real time on the server. It helps

search engine crawlers to index a page without having to execute JavaScript functions.

(23; 36; 38; 39).

3 The project: Angular migration – Case file manager

Valve is a Finnish creative agency, based in Helsinki, that combines creative market-

ing, technology, and communications. They employ close to 140 software develop-

ment, branding, and communications professionals including a 40-person unit special-

izing in video production and motion graphics. Valve has worked with hundreds of do-

mestic and multinational brands since 2000. Their work has gained international recog-

nition including honors from The Webby Awards and Cannes Lions.

21

Wake is a content management system developed by Valve. It is a centralized content

editing platform which enables publishing rich and dynamic content to multiple media

platforms including websites, mobile devices, public screens, and television. Wake

Core uses PHP programming language, Slim Framework, Twig template system, Redis

cache and MongoDB database. The front-end of Wake is built with HTML, CSS and

AngularJS.

The idea for the migration project came from the product development team as the file

manager of Wake has for long been planned to get a “facelift” and new functionalities.

The admin side of Wake will get migrated from using AngularJS to Angular, and as the

file manager tool is separated from the core application, it was a perfect place to start

the process. Despite being a separated application, the file manager used to load a

new instance of the Wake platform every time the file manager was opened in order to

get the required data for example the current context and user information of the appli-

cation. The product development team wanted to completely separate the file manager

from the admin application and provide the data using alternative methods. While the

main focus in the project was the migration process, an update to the user interface

and experience was planned to be done alongside.

3.1 Initial state and planning phase

The file manager was built with HTML, CSS, and AngularJS. It is a separated applica-

tion that communicates with the Wake admin via custom APIs. It opens in a new

browser window when opened from the admin view. The file manager had some basic

CRUD functionalities but many of the actions needed to perform tasks were difficult to

use and required a lot of clicks and knowledge of the application. For example, renam-

ing a file or moving it to another folder was done by selecting the item, clicking an edit

link and from the edit view, a cog icon had to be clicked to display an edit modal. The

file could only be moved to another folder by editing its path in the editor.

 The codebase of the file manager was relatively cluttered and difficult to maintain as

all of the functions were placed inside one AngularJS controller and a service contain-

ing the API request functions. The UI consisted of a single template and an upload

modal.

22

The project started with a planning phase. First, the desired improvements to the inter-

face were discussed with a UX designer and some of the product development team

members. In addition, customer feedback was used to map out some of the main prob-

lems with the file manager. It came out clear that many of the main actions needed to

organize files and edit file metadata had to be made easier for the users. A perfect

scenario would be to have the application work as close to a native file browser, on the

computer, as possible. The UX designer then created a simplified layout guide with

some of the components and user interaction maps.

After the UI and UX improvements were mapped out, the codebase was then inspected

for the main functions needed for the application. It turned out that some of the external

libraries, written in AngularJS, and used to handle some of the functions didn’t have an

Angular version so finding alternative methods to include those or creating them one-

self was required.

The migration process was then planned. There were two options to approach the mi-

gration: using Angular Upgrade module to allow writing Angular code alongside with

AngularJS code, or a complete rewrite of the application. While it is possible to use the

Angular Upgrade module to bootstrap and manage an application that supports both

Angular and AngularJS code, a complete rewrite of the file manager was selected as

the migration method. It seemed to be a better option because the code was desired to

be split into multiple components and no AngularJS code was needed in the applica-

tion.

To enable easier maintenance and implementation of new functionality, the application

was planned to be composed of multiple smaller components instead of one single

component. How the various components would communicate with each other, and

how the data would be handled across the application was initially planned to be done

by using multiple Angular services, but some of the functionality had to be planned and

researched alongside the development process as the Angular framework was com-

pletely new to me at the time.

After the codebase inspection and examining the UI layout provided by the UX design-

er, a project plan and a ballpark time estimate was created. Initially the migration and

UX process seemed to be a relatively straightforward task. However, I needed to learn

23

the Angular framework while developing the application and, thus, the time estimate to

execute the project was set higher than in “normal” projects.

3.2 Development process

Wake platform is developed by deploying the code files to a server where it is then pro-

cessed and transpiled with NPM task runners and bundlers. Because the new file

manager was to be developed with Angular, a new task runner and bundler script had

to be written. Webpack was chosen for this process as it offers a great module bundler

and loaders that transform TypeScript and ES6 code into JavaScript.

Three different Webpack script files were created. One of them has all the module

loaders needed for the script transpiling and HTML and SCSS processing. Debugging

errors in the development process is easier if source maps of the transpiled JavaScript

files are present in the error messages, and the code can be inspected in the browser

when no minification on the script files is done. A development version of Webpack

script was written to include all source maps of the TypeScript and SCSS files. For the

production version, the files were minified and source maps were removed to improve

the speed of the application.

Before creating any of the functions for the application, the UI of the file manager was

split into small Angular components and the HTML template was built using those

components and mockup data. For a modern look, the new UI utilizes material design

pattern. Angular has a material design library with a selection of components like but-

tons and dropdown elements, but many of the features were at the time still in beta

and, thus, many components had to be custom made.

Every Wake application has a unique context id that is used in the database queries. In

order to get the context id of the current application to the file manager an existing Post

Message service was modified and written in Angular. The service creates a hand-

shake with the admin application to fetch data from it. A handshake method utilizes

web socket protocol and allows multiple browser windows or tabs to communicate with

each other. When the handshake is successful, user data and the admin application

context id is placed to an application configuration object in file manager. This data is

24

used to allow permissions and to create correct API requests to fetch data from the

server.

To create multiple API requests using Angular Http methods, a service was created.

The service allows these methods to be called anywhere in the application and handles

all the CRUD operations needed in the file manager. The file manager used the Angu-

larJS $resource factory to define a resource object containing all API request methods.

Angular doesn’t have the $resource factory so the methods needed to be created sep-

arately. Wake has multiple API endpoints that can be used to perform various requests.

Figure 14 shows the method to fetch the file data.

Figure 14. The getFiles method is used to fetch file data. Several parameters are passed to the
API call, of which the most important are the context id and the name of the folder
where the files are located.

All methods in File Service are written similarly to the getFiles method in Figure 14,

have a type of an Observable, which allows subscribing to the response in the compo-

nents using the data and performing tasks based on the type of the response. Re-

sponses are mapped to JSON format for an easy data manipulation and looping over it

in the templates. Comparing the Angular way of fetching file data to the AngularJS,

Angular service is much cleaner and easier to understand than the AngularJS resource

factory (see appendix 1).

25

Looping through the arrays of fetched data in Angular is much more similar to Angu-

larJS. Angular has a built-in structural directive, ngFor, to loop a part of the template

and bind data to it. In AngularJS version of the file manager, looping folder and file ob-

jects to the template was done by creating a single element and adding conditionals to

it to detect the type of the object. More control over the different types of items was

desired so folders and files were turned into separate components and data was

passed to them with the component input method. Figure 15 shows the new way of

separation of files and folders compared to the old version.

Figure 15. Folder and file elements were separated from each other to gain more control over
them. Data is passed to each item using the component input method, [proper-
ty]=”value”.

While the new method grows the template in size, it allows a greater distinction be-

tween different item types. This is useful when different kinds of items have different

actions and structure.

To upload files to the server, the file manager used the AngularJS version of FlowJS

library, which allows uploading multiple files simultaneously and larger files in smaller

chunks to introduce fault-tolerance. If the upload of a chunk fails, the upload process is

retired until the procedure completes. It allows to automatically resume uploading after

a network connection is lost either locally on to the server. FlowJS doesn’t come with a

version that supports Angular, and therefore the Vanilla JavaScript version had to be

implemented. Angular supports writing application code in JavaScript and importing the

FlowJS was easy by adding it to the imports array of the main application module.

26

In the older file manager uploading files required to click an upload button that opened

a modal where another button had to be clicked in order to select files from a computer.

After selecting files, another button was clicked to start the upload. This process was

simplified by using FlowJS’s assignBrowse method assigned to a single button that,

when clicked, opens the computer’s native file browser and when files are selected, the

upload starts automatically. Files are uploaded to the currently selected folder in the

view and a small popup is shown to indicate the upload progress.

Because the older file manager was built using a single AngularJS controller to handle

the state of the application, detecting data changes and executing functions were easy

by inspecting the scope values. Re-writing the scope functions in the AngularJS con-

trollers was a straightforward task. Just by removing the $scope keyword before func-

tion declarations was in most cases all that was needed. But as the new file manager

consists of multiple components separated from each other handling data across the

application needed some research and planning. The data and custom events would

have to be sent to other components in the application. The solution was to build a ser-

vice with observable methods where data could be passed from the component and

the service would emit the data to the other components.

The data receiving components need to subscribe to the observable stream in order to

have access to the data objects. Figure 16 shows the data emitting and subscription

methods used to emit a file editing mode status.

27

Figure 16. A shared service was created to share data with multiple components. In this code
example, two components subscribe to editModeTrigger event emitter that is used to
show a file edit sidebar in the application. NgOnDestroy life-cycle hook is used to un-
subscribe from the data stream to avoid memory leakage.

Because multiple data streams could cause some memory leakage, the components

need to unsubscribe from the observation when the component life-cycle ends. Angular

has a built-in life-cycle hook, OnDestroy, that can be used to detect the end of a com-

ponent life-cycle.

Using a shared service turned out to be an efficient and easy way to trigger events and

broadcasting data in the application, while simultaneously allowing flexibility to the

component placement in the templates.

The project was finished successfully, new features were added, and the migration

process wasn’t as difficult as at first thought. The biggest challenge in the migration

was to get into the different mindset needed to build Angular applications. While some

of the concepts familiar from AngularJS are still present in Angular, the different syntax

and component based architecture required some time to get used to. The application

improved in speed and performance, partly due to the optimization and improvements

in the Angular framework.

3.3 Finished product overview

28

In addition to the migration process, new features were added to improve the user ex-

perience and usability of the file manager. The most noticeable difference is the new

visual layout. Material design gives the elements a modern look and all buttons and

other clickable elements give a visual feedback on interaction. Figure 17 shows the

landing view of the new file manager. The original version of the file manager landing

view can be seen in appendix 3.

Figure 17. File manager landing view.

Compared to the older version, the upload process is much simpler and faster in the

new file manager (see appendix 2). Files can be uploaded by clicking a button in the

top right corner, or as a new feature, by dragging and dropping files to the view. Up-

loading starts as soon as the files are selected or dropped.

Moving files to another folder was a difficult and time consuming task, if multiple files

should be moved. In the old version, moving a folder or multiple files at once was not

possible, and to move a single file would have to be done by editing its path under the

settings (appendix 5). A new feature was built to simplify the process and mimic the

computer’s native file browser behavior. A user can now drag a selection over files and

move them to a folder by dragging the selected files and dropping them over a folder,

or by opening a context menu by right-clicking on top of a file and selecting a target

29

folder from the tree-view, shown in appendix 6. Figure 18 shows the selection of files

by dragging over them.

Figure 18. Files and folders can now be selected by drawing a selection area with a mouse and
then moved by dragging and dropping the selected items on top of a target folder. Se-
lected items are highlighted with a background and text color change.

Navigating to a folder happens by double-clicking a folder item. Folders can now be

renamed like files, and is done by right-clicking on top of a folder item, or clicking its

settings icon and selecting “Rename” option from the context menu that opens where

the mouse event happened (Figure 19). Some validation is done when renaming items,

but more thorough validation will be done later.

Figure 19. A context menu with some of the main functionalities can be opened by right-clicking
on top of an item.

30

Many of the functionalities in the file manager were simplified and optimized for an eas-

ier and more user-friendly experience. All the functions in the components were built

with error handling in mind, and the user is notified if any errors occur during the opera-

tion. The application will be available for all Wake users after complete testing and

possible bug fixes.

4 Summary

AngularJS framework introduced a robust set of tools to build a variety of dynamic,

client centric applications while using HTML as a template language and further ex-

tending the HTML syntax to express web application’s components clearly and con-

cisely. It utilizes the MVC programming architecture design. Two-way data binding

eliminates the need for a developer to manually write synchronization code to keep

track of data model and user interface thus keeping the codebase smaller, cleaner and

easier to maintain.

As the web and web development has advanced tremendously since the release of

AngularJS, many of the concepts within AngularJS have become outdated. Updating

and modernizing the existing AngularJS framework would have been impossible with-

out breaking much of the original implementation. New version of AngularJS was writ-

ten and is called Angular.

In Angular, controllers and scopes are gone and applications are built with compo-

nents. They are a combination of an HTML template and a component class that con-

trols a portion of the view. Components are the main way to build and specify elements

and logic on the Angular application.

If an application is desired to be migrated from using AngularJS to Angular, there are

two options at the moment. The migration can be done using the Angular Upgrade

module that allows running both AngularJS and Angular code simultaneously and the

application can be migrated small piece at a time. If more complete migration is want-

ed, and more modifications are done, the application should be re-written from the

start.

31

The re-write, or migration process is not extremely difficult after learning the basic fea-

tures of Angular and getting into the mindset of creating an application with compo-

nents instead of templates and controllers. Hands-on experience shows that Angular

can be learned faster than AngularJS. Many of the functions to perform tasks in the

project application were simpler to create in Angular. The speed and performance im-

provement from Angular was noticeable, especially with slower internet connections.

32

Resources

1 Google. What is AngularJS? Web document.
<https://docs.angularjs.org/guide/introduction>. Read 10.3.2017.

2 Releases. 2010. GitHub. Web document.
<https://github.com/angular/angular.js/releases?after=v0.9.7>. Updated 6.3.2017.
Read 10.3.2017.

3 Lerner, Ari. 2013. NG-Book: The Complete Book on AngularJS. Fullstack.io.

4 The Seed for AngularJS apps. GitHub. Web document.
<https://github.com/angular/angular-seed>. Read 11.3.2017.

5 What is a CDN. Imperva Incapsula. Web document.
<https://www.incapsula.com/cdn-guide/what-is-cdn-how-it-works.html>. Read
15.3.2017.

6 Google. Conceptual Overview. Web document.
<https://docs.angularjs.org/guide/concepts>. Read 16.3.2017.

7 Google. Bootstrap. Web document. <https://docs.angularjs.org/guide/bootstrap>.
Read 16.3.2017.

8 Milner, Matt. 2015. AngularJS: MVC Implementation. Pluralsight. Web document.
<https://www.pluralsight.com/blog/software-development/tutorial-angularjs-mvc-
implementation>. Read 17.3.2017.

9 Google. MVC Architecture. Web document.
<https://developer.chrome.com/apps/app_frameworks>. Read 15.3.2017.

10 SAP. Model-View-Controller. 2015. Web document.
<https://help.sap.com/erp_hcm_ias2_2015_01/helpdata/en/91/f233476f4d1014b6
dd926db0e91070/content.htm>. Read 14.3.2017.

11 WebSystique. AngularJS Custom directives link-function guide. 20.12.2015. Web
document. <http://websystique.com/angularjs/angularjs-custom-directives-link-
function-guide/>. Updated 21.12.2015. Read 15.3.2017.

12 Google. Creating cutom directives. Web document.
<https://docs.angularjs.org/guide/directive>. Read 18.3.2017.

13 Google. Understanding controllers. Web document.
<https://docs.angularjs.org/guide/controller>. Read 18.3.2017.

14 Google. $http. Web document. <https://docs.angularjs.org/api/ng/service/$http>.
Read 20.3.2017.

15 W3Schools. AngularJS Services. Web document.
<https://www.w3schools.com/angular/angular_services.asp>. Read 19.3.2017.

33

16 Code School. Single-page Applications. Web document.
<https://www.codeschool.com/beginners-guide-to-web-development/single-page-
applications>. Read 22.3.2017.

17 Google. Component Router. Web document.
<https://docs.angularjs.org/guide/component-router>. Read 24.3.2017.

18 McKeachie, Graig. 2014. UI-Router: Why many developers don’t use AngularJS’s
built-in router. Web document. <http://www.funnyant.com/angularjs-ui-router/>.
Read 25.3.2017.

19 Baxter, Richard. The Basics of JavaScript framework SEO in AngularJS. Built-
visible. Web document. <https://builtvisible.com/javascript-framework-seo/>.
Read 25.3.2017.

20 Hooper, Todd. 2014. AngularJS SEO. Prerender.io. Web document.
<https://builtvisible.com/javascript-framework-seo/>. Read 25.3.2017.

21 Rajput, Mehul. 2016. The pros and cons of choosing AngularJS. Web document.
<https://jaxenter.com/the-pros-and-cons-of-choosing-angularjs-124850.html>.
Read 26.3.2017.

22 Chemel, Renee. 2015. Pros and cons of AngularJS. Web document.
<http://blog.backand.com/pros-and-cons-of-angularjs/>. Read 28.3.2017.

23 Lerner, Coury, Murray, Taborda. 2016. NG-Book 2: The Complete Book on Angu-
lar. Fullstack.io.

24 Google. Features & benefits. Angular. Web document.
<https://angular.io/features.html>. Read 28.3.2017.

25 Microsoft. TypeScript. Github. Web document.
<https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md>. Read
24.3.2017.

26 TypeScript. Web document. <http://www.typescriptlang.org/>. Read 25.3.2017.

27 Savkin, Victor. 2016. Angular: Why TypeScript. Web document.
<https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8>. Read
27.3.2017.

28 Google. NGModules. Angular. Web document.
<https://angular.io/docs/ts/latest/guide/ngmodule.html>. Read 25.3.2017.

29 Google. Quickstart. Angular. Web document.
<https://angular.io/docs/ts/latest/quickstart.html>. Read 24.3.2017.

30 Google. Architecture overview. Angular. Web document.
<https://angular.io/docs/ts/latest/guide/architecture.html>. Read 24.3.2017.

31 Precht, Pascal. 2016. Two-way data binding in Angular. Web document.
<https://blog.thoughtram.io/angular/2016/10/13/two-way-data-binding-in-angular-
2.html>. Read 26.3.2017.

34

32 Google. Services. Angular. Web document.
<https://angular.io/docs/ts/latest/tutorial/toh-pt4.html>. Read 26.3.2017.

33 Reactive Extensions. Observable Object. Web document.
<https://github.com/Reactive-
Extensions/RxJS/blob/master/doc/api/core/observable.md>. Read 28.3.2017.

34 Savkin, Victor. 2016. Angular Router. Web document.
<https://vsavkin.com/angular-2-router-d9e30599f9ea>. Read 26.3.2017.

35 Basic Routing in Angular 2. Ng-book blog. Web document. <http://blog.ng-
book.com/basic-routing-in-angular-2/>. Read 28.3.2017.

36 Google. Overview. Angular Universal. Web document.
<https://universal.angular.io/overview/>. Read 29.3.2017.

37 Muller, Elco. 2015. Angular 2 vs Angular1: Key differences. Web document.
<https://dzone.com/articles/typed-front-end-with-angular-2>. Read 30.3.2017.

38 Devblast. 2016. The differences between Angular 1.x and Angular 2. Web docu-
ment. <https://devblast.com/b/differences-angular-1-x-angular-2>. Read
29.3.2017.

39 Bandi, Jonas. 2016. Angular 2 vs Angular 1: A teacher’s perspective. Medium.
Web document. <https://medium.jonasbandi.net/angular-2-vs-angularjs-a-
teachers-perspective-d7e10ba29ede>. Read 30.3.2017.

Appendix 1

 1 (1)

Getting files from the API: AngularJS vs Angular

AngularJS

Angular

Appendix 3

 1 (1)

Uploading files

Old file manager

Adding files required clicking the blue button at top right, then a button “Choose files”,

and lastly, after selecting files, clicking an upload button.

Appendix 3

 1 (1)

The new file manager

In the new file manager, uploading files is easier. Files can be dragged and dropped to

the view, or by clicking a button at top right and choosing files with the native file

browser. Upload process starts immediately after files have been dropped or chosen.

A popup is shown while files are being uploaded.

Appendix 3

 1 (1)

Original file manager landing view

