

Ivan Khokhlachev

Web Application for Course Management

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

11 May 2017

 Abstract

Author(s)
Title

Number of Pages
Date

Ivan Khokhlachev
Web Application for Course Management

52 pages + 0 appendices
11 May 2017

Degree Bachelor of Engineering

Degree Program Information Technology

Specialization option Software Engineering

Instructor(s)

Ilpo Kuivanen, Senior Lecturer

The goal of this thesis was to create a web application for course management using the
Yii2 PHP framework, document the main aspects of application and discuss the concepts
and main features of the Yii2 framework. This paper serves as a usage guide and API
reference as well. The course management application handles such entities as users,
courses and tasks. The application is built to support an unlimited number of users, courses
and tasks. The main purpose of the application is usability and extensibility. The code as
well as functionality will be discussed and taken apart in this paper.

Keywords Yii2, PHP, MVC

 Abstract

Tekijä(t)
Otsikko

Sivumäärä
Aika

Ivan Khokhlachev
Web kurssijärjestelmä

52 sivua + 0 liitettä
11.5.2017

Tutkinto Insinööri (AMK)

Koulutusohjelma Tietotekniikka

Suuntautumisvaihtoehto Ohjelmistotekniikka

Ohjaaja(t)

Lehtori Ilpo Kuivanen

Tämän työn tarkoituksena on ollut luoda ja dokumentoida kurssijärjestelmän henkilökohtais-
ten valmentajien käyttöön. Muokkaamalla kyseistä järjestelmä sitä voi käyttää yleisien kurs-
sien ajastamiseen ja hallinnamiseen. Järjestelmä on rakennettu käyttäen PHP:ta ja kehystä
nimeltään Yii2. Järjestelmän avulla pystyy luomaan ja hallinnoimaan käyttäjiä, kursseja ja
tehtäviä. Järjestelmään kuuluu sekä hallintaympäristö että käyttäjäympäristö. Tämä doku-
mentti keskittyy työkaluihin ja konsepteihin, joita on käytetty järjestelmän rakentamiseen.

Keywords Yii2, PHP, MVC

Contents

List of Abbreviations

1 Introduction 5

2 Tools 5

2.1 PHP 5

2.2 WebMVC Structure 6

2.3 Composer 7

2.4 Yii2 7

2.4.1 Community and Documentation 8

2.4.2 Multi-purpose Applications and 3rd Party Software Integration 8

2.4.3 Frontend 9

2.4.4 Logging, Debugging and Error Reporting 9

2.4.5 Security 9

2.4.6 Installation 9

2.5 Bootstrap 10

3 Basic Concepts and Application Structure 10

3.1 Database Interface 11

3.2 Namespaces 12

3.3 Controllers and Actions 12

3.4 Models and Classes 13

3.5 Search Models 14

3.6 Routing 15

3.7 Configuration Files 15

2

3.8 Widgets 17

3.9 Layouts 17

3.10 Forms 17

3.11 Third Party Software 17

3.11.1 Kartik GridView 18

3.11.2 Kartik DetailView 18

3.11.3 CKEditor 18

3.11.4 Yii2 full calendar 18

4 Implementation and Core Components 19

4.1 Users 19

4.2 RBAC 21

4.3 User Configuration 23

4.4 Courses and tasks 23

4.4.1 Course 23

4.4.2 Tasks 25

4.4.3 Task Submit Class 27

4.4.4 Measurements 28

4.4.5 News and Articles 29

4.5 Administration Area (Backend) 30

4.5.1 User Management 30

4.5.2 Course and Task Management 31

4.6 User Area (Frontend) 34

4.6.1 Site Controller 35

4.6.2 News Controller 36

4.6.3 Task Controller 36

4.6.4 User Controller 38

4.6.5 Styling and HTML 38

5 Usage Guide 39

5.1 Login 39

3

5.1 Backend 39

5.1.1 Manage Users 41

5.1.2 Editing Users 42

5.1.3 Course Management 43

5.1.4 Tasks 45

5.1.5 List of Submitted Tasks 46

5.2 Frontend 47

5.2.1 Navigation 47

5.2.2 Front Page 48

5.2.3 Task Submitting 48

5.2.4 User Management 49

6 Discussion and Conclusions 50

7 Sources 51

4

Acronyms

Yii2 PHP framework used to build this project

RBAC Role Based Access control

MVC Model View Controller

PHP Recursive acronym for PHP: Hypertext Preprocessor. Programming lan-

guage used to build this project

OOP Object-oriented Programming

SQL Structured Query Language, language used to generate database queries

MySQL Open source relational database management system

URL Uniform resource locator, can as well be referred to as web address orlink

REST Representational state transfer, way of communicating and transferring data

between systems

GUI Graphical User Interface

5

1 Introduction

The aim of this project was to build a simple course management web app for personal

trainers. Currently the system is capable of handling users, courses and tasks. Most of

the components have many-to-many relationships in one way or another, so it is possible

to add users to different courses with different tasks.

The users have different groups to manage accesses and security. Currently the follow-

ing groups are supported: guest, normal user and administrator.

The web app is easy to install and modify, since it's written using MVC framework with

packet management system, named Composer.

2 Tools

2.1 PHP

Initially, PHP was a simple scripting tool released by Rasmus Lerdorf to create dynamic

websites. In 1993 the first version named PHP/FI or Personal Home Page/Forms Inter-

preter was released and was used to parse simple CGI applications written in C lan-

guage. Parser could call CGI scripts and return pure HTML.

CGI is an acronym for Common Gateway Interface. CGI was and still is used to execute

console-like applications, usually written in C, but other languages such as Perl can be

used as well. Hosting providers are still offering CGI functionality, though it is not used

as often.

In 1995 Lerdorf opensourced the PHP- project so the community could provide bug fixes

and new functionality. However, in 1998 the PHP core was completely rewritten and

PHP/FI became the PHP known today. With the introduction of version 2.0, PHP can be

defined as a programming language. With version 3.0 it finally acquired some OOP func-

6

tionality, and with version 5.3 garbage collector was first introduced. The Garbage Col-

lector (GC) gave huge performance boost for long-running scripts and applications.

Memory is being freed in cycles when more memory is required. Figure 1 shows an

illustration of GC performance. [1]

Figure 1: Illustration of GC performance.

Image source: http://php.net/manual/en/features.gc.performance-considerations.php

Despite some debatable features and scripting heritage, PHP is a strong OOP language

which can be used as it is. However, in order to benefit from all PHP features and to

program applications in fast and comfortable way, usage of frameworks is advised.

2.2 WebMVC Structure

WebMVC is a derivative of the MVC software architectural pattern, the main difference

being that WebMVC has to handle http- requests and uses database as the main data

storage.

MVC is an acronym for Model View Controller. MVC is one of the most popular patterns

in programming because of its flexibility and approach to extensibility in OOP- languages.

7

MVC consists of the following components: [2]

• Model is used to manage all data-related logic, e.g. data can be retrieved or
saved using methods provided by model.

• View is used for rendering data on screen, for example UI, data, etc.

• Controller is used to process business logic between models and views.

2.3 Composer

Composer is a package dependency management software for PHP. Composer uses

the composer.json- file to keep track of all libraries and packages that have to be updated

or installed.

When the composer is installed it can be used through command line. All software in-

stalled through composer can be found in the ”vendor” folder. However it is not consid-

ered good practice to leave the composer.json- file on the production server, it is advised

that composer is not used in production and the project is deployed with a ready-to-use

vendor folder. [3]

2.4 Yii2

Yii2 is a PHP WebMVC framework which is being developed by a big team all around

the world. Yii2 is a simple, extensible, fast framework with comprehensible documenta-

tion. The framework is still being rapidly developed – quick fixes and new features are

added at least once per quarter. [4]

The main reasons for selecting Yii2 as the main framework of the application are reusa-

ble widgets, MVC- structure and Bootstrap- framework that is supported by default and

provides nice and responsive design.

For two years, the author has been working with the Yii2 framework as a full stack de-

veloper, and Yii2 has proven itself as a diverse and adaptable tool. Overall, Yii2's pros

8

could be divided into several groups: community and documentation, multi-purpose ap-

plications, integration with 3rd party software, pre-made graphical interfaces or frontend,

logging and debugging, and security.

2.4.1 Community and Documentation

When picking up a new piece of software or a new tool, documentation is one of the most

important aspects of programming workflow. Yii2 has a comprehensive wiki with guides

and API reference. When wiki is not enough, it's possible to turn to community for help

and ask questions on forums or IRC.

Yii2's community is fast, nice and reliable source of information, since people answering

questions on forums are usually framework developers themselves or developers of third

party components. Personally, with Russian being the native language of the author, it

was a surprise that the Russian section of the forums is on a par with the English-spoken

segment.

2.4.2 Multi-purpose Applications and 3rd Party Software Integration

During the work several different applications were created – from usual websites to

complex systems. In complex applications Yii2's potential can be unleashed to the fullest

– systems can be built upon console applications for Linux and database integration, or

application can be fully integrated into totally different systems using RESTful Web Ser-

vices or interfaces provided by the Yii2 core libraries.

Elastic Search (ES) interface may work as a perfect example of such integration. Elastic

Search is an open source search and analytics engine that interacts mainly through

RESTful Web Services, and needs a Java Server to function properly. While ES can be

used through REST without additional components, Yii2 has full section of core libraries

devoted to communication between application and Elastic Search server. Because of

those libraries, REST is simply not needed anymore, and Elastic Search can be used

through standard Yii2 objects.

9

2.4.3 Frontend

Frontend or GUI is simple with Yii2 – all widgets and default blocks have their own styles

and themes. When those styles are not graphical masterpieces and not as pleasant to

the eyes as handcrafted designs, they are useful when building administration panels or

any project with simple graphical interface.

2.4.4 Logging, Debugging and Error Reporting

Yii2 has its own set of tools for debugging and logging for code, memory and SQL. The

most notable debugging tool is Debugging panel, which is, nowadays, the de facto stand-

ard in most modern PHP frameworks. In the panel a developer can view all requests to

web server and database, versions of used software, history of emails sent through the

application, and other information. Debugger is highly extensible and can be configured

by the developer. When an error has occurred, application shows a comprehensible

stack trace error page and writes all related data into log file.

2.4.5 Security

Security is a major feature in the Yii2 framework. Because of the OOP approach and

various helpers that ensure data consistency, it's nearly impossible to perform most pop-

ular attacks.

2.4.6 Installation

Yii2 is easy to install given that the required environment is configured properly.

Requirements

The following requirements have to be met in order for Yii2 function properly: [5]

• PHP version 5.4

• MySQL 4.1 or later

• At least the following PHP modules:

10

o php_bz2, php_curl, php_mbstring, php_exif, php_fileinfo, php_gd2,
php_gettext, php_intl, php_mysql, php_mysqli, php_pdo_mysql,
php_pdo_sqlite

• Apache or Nginx web server

Normally, the web server does not require any configuration and can be used out of the

box, however it is recommended that the mod_rewrite module is installed.

Mod_rewrite Apache module allows url rewrites through Apache web host configuration

or .htaccess files. With mod_rewrite it is possible to hide script names and omit unnec-

essary chunks of data in url.

2.5 Bootstrap

Bootstrap is a responsive CSS/HTML framework that provides ready-to-use CSS clas-

ses. Main purpose of CSS is to provide tools required to style HTML. Bootstrap takes

CSS functionality to a completely new level, introducing grid patterns for structured lay-

outs and numerous modules like collapsible text blocks or progress bars.

3 Basic Concepts and Application Structure

The application is built using Yii2 advanced template which consists of four main folders

- backend, console, common and frontend. Backend is being used for the administration

area, when frontend is used for the user area. The “common” folder is used for storing

components and configuration files that can be used by other folders or namespaces.

The “console” folder is not required for the current project, since there are no console

scripts. Figure 2 shows the skeleton of the Yii2 advanced template.

11

Figure 2: Skeleton of Yii2 advanced template

Apart from standard templates by Yii2 developers, community has created a variety of

templates for different appliances. During planning of the project, it is preferable that

developer chooses the most suitable template for the project.

3.1 Database Interface

Yii2 provides a standard object-oriented interface for database applications named Ac-

tive Record. Most models used in the application discussed here are using the Ac-

tiveRecord interface or extend models with ActiveRecord interface.

The main benefit of the ActiveRecord interface is the simple and fast usage of database

through object without using actual SQL queries.

Setting the ActiveRecord class is simple – it has to extend yii\db\ActiveRecord class and

have static method tableName() that returns database table name associated with that

class. Other methods for queries are provided by parent class and can be used out of

the box. Figure 3 shows the example of the ActiveRecord method.

12

Figure 3: Example of query using findOne() method provided by ActiveQuery class

The framework offers other database interfaces, and depending on the goal different

interface may be used for different need, e.g. for more seamless integration with 3rd

Party Software. The ActiveRecord is the only interface used in the project, and therefore

only ActiveRecord is discussed in this paper, for more information on ActiveRecord and

other interfaces it is advisable to consult with official Yii2 documentation.

3.2 Namespaces

Namespace is the concept that was first introduced in PHP 5. Namespaces are designed

to solve problems encountered when using reusable code components and modules.

Namespaces are used to specify path for files in same folders as relative, which eases

usage of components and adds ability to give aliases to class names.

In Yii2 namespaces are used in all classes, the application will not run if the namespace

is not specified. If the classes User and Course exist in the same folder and have the

same namespace - object Course can be referred in the User class without path decla-

ration and vice versa.

3.3 Controllers and Actions

From the PHP perspective, controllers are basic classes which extend yii\base\Controller

class. As stated in the MVC pattern controllers are used to control the overall applications

workflow, and exchange information between views and models. In Yii2, controllers are

responsible for request handling as well as for generating responses.

13

When all models are common for both the user and administrator area, different control-

lers with the same name are created for different namespaces. All controllers extend a

single controller from “common”- namespace named MainController. MainController

consists of a single beforeAction()- method to manage user accesses.

There are two types of methods in controllers: action methods and normal PHP functions.

Action methods cannot be static, and are used for routing. All actions must start with

“action”- keyword. An example of a typical controller action can be seen in Figure 4.

Figure 4: Example of an action

When the action is used, it is implied that the function in question has a relation with

some page on the website, for example, it renders the view or redirects to other action.

3.4 Models and Classes

Basically, classes can be divided into two sections: classes that are not using database,

e.g. classes that are used to create forms (extending BaseObject Yii2-class), and classes

that are using database interfaces (extending ActiveQuery- class). Controllers will not be

discussed in this section - while being classes by definition, they do not fall into MVC-

pattern workflow as models.

14

Both BaseObject and ActiveQuery classes provide methods for managing and validating

data. One of the most important methods is the rules() method, which is used to validate

data passed to an object before writing to database. This ”client-side” validation helps to

keep database structure intact, enhances performance and eases the creation of custom

validation rules when needed. Figure 5 show the example of rules() method.

Figure 5: Example of rules() method

The “rules()”- method shown in figure 5 consists of 2D-array. The first cell contains a list

of validated attributes, other cells contain validation information, e.g. data type or specific

rules like length or regular expression. In a current example “string” means that an at-

tribute has to contain a word or characters, “integer” validates only when an integer is

contained within an attribute, “safe” is the keyword which allows any information to be

passed to an attribute, and “max” is the maximum length of a string.

3.5 Search Models

Search models are subclasses of models with the ActiveQuery- interface. Search models

are used to ease the building of more complex queries and retrieval of data from the

database.

15

Only two conditions have to be met when creating a search model – the search model

class has to extend class with the ActiveQuery interface and implement method search(),

which returns the instance of yii\data\DataProviderInterface- class.

DataProviderInterface is an interface that returns an array of data divided by pages (pag-

ination). If needed, the pagination can be disabled, however it is not advised since the

amount of data can vary and potentially lead to a long loading time or even server crash.

3.6 Routing

Most of the routes or url's are built using controller-action pair. Url is composed from the

following components in order: host or hostname, controller, action and attributes.

For example, if the hostname is ”example.com”, the controller and action are named

respectively ”user” and ”view” and attribute passed to ”view” action is an ”id” attribute

with value of 1 – Yii2 will generate the following url: example.com/user/view/1.

The values in Url may be omitted or added using Yii2's URL manager or mod_rewrite

functionality provided by Apache web server. [6]

3.7 Configuration Files

Each of the main folders or namespaces (backend, console, common and frontend) have

their own configuration files. In Yii2, advanced template main configuration files are held

in the “common” folder so that other namespaces can be configured from the same

place. Database, modules, aliases and other Yii2 functionality is being held in common-

namespace. List and description of configuration files can be seen in the Table 1.

Table 1: List of the configuration files

16

Name of file Description of content

bootstrap Used for bootstrapping application compo-

nents when needed. In current implemen-

tation only aliases are being specified dur-

ing bootstrapping.

main Main configuration file, which in theory is

immutable once deployed to production

server. Modules, components and paths

are specified in main configuration file.

main-local Local main- configuration file which is used

only in deployed applications. It is used to

specify local data like mailing and data-

bases.

params Hardcoded parameters like keys can be

specified at any time in params- configura-

tion files. Yii2 provides its own interface to

obtain data listed in params- file. Immuta-

ble in theory once project is deployed to

production server.

params-local Local file for parameters. Used in same

way as main-local configuration file – is en-

viroment dependable.

17

The configuration files in other namespaces are mostly used for url rewriting and speci-

fying namespace specific variables and values.

3.8 Widgets

Widgets are reusable independent blocks of code that are used mainly in views. Every

widget has to extend from yii\base\Widget and override the yii\base\Widget::init() and/or

yii\base\Widget::run() methods.

Widgets can be used when data has to be obtained or viewed during runtime after ren-

dering of a page, without using additional actions or redirects.

3.9 Layouts

Reusable layouts can be created and attached to any controller at any time. Layouts can

be seen as wrappers that consist of more static information like metadata, scripts, navi-

gation bars, wrapper containers and immutable HTML blocks, e.g. footers. Overall layout

files can be seen as an HTML page skeleton, with dynamically inserted views.

3.10 Forms

By definition, forms used in Yii2 are widget instances that render input and use models

to validate data. Additional customization like addons and styles may be applied to

widget instances. All validation and logic is kept within normal classes that extend Yii2

BaseModel class.

3.11 Third Party Software

Several third party libraries and widgets are used in the project. Description of the used

compnents can be seen in the next section.

18

3.11.1 Kartik GridView

Kartik GridView is an extended version of Yii2's GridView widget that adds some func-

tionality and eases overall usage of Yii2's default GridView.

The main purpose of the GridView- widget is to list data provided by search model in the

grid table. It is possible to query and sort data through interfaces provided by GridView

via AJAX.

The main difference between standard implementation and Kartik's version is the usa-

bility and additional features. Kartik's version is more stable and provides much more

options during instantiation.

3.11.2 Kartik DetailView

Same as GridView, Kartik DetailView is an extended version of DetailView widget pro-

vided by the Yii2 core library. DetailView is used to output and manage data of a single

model through the built-in form functionality. In Kartik's implementation DetailView comes

with AJAX support by default which eases form submission and improves overall usabil-

ity.

3.11.3 CKEditor

CKEdtior is a free, open source text editor. Since CKEditor is not part of Yii2's core library

in any way, community wrapper was used. Community wrapper is used to provide CKE-

ditor's functionality through widget.

3.11.4 Yii2 full calendar

The Yii2 full calendar is a Yii2 wrapper of Jquery Fullcalendar, which is a highly custom-

izable and responsive javascript calendar. Widget supports AJAX, timed events and dif-

ferent views.

19

4 Implementation and Core Components

4.1 Users

User information is stored in two tables: user_users and user_user. The first table,

user_users is a parent table of user_user and is needed for storing system and authori-

zation information such as passwords, access groups and access and tokens. Access

groups are discussed later in the RBAC (Role Based Acces Filter) section. Both user

tables are implemented in models Users (database table named: user_users) and User

(database table named: user_user).

The database table user_user contains user information e.g. name, age and other infor-

mation. The user model will be referred to as Account, so that any confusion between

user tables and models could be avoided. Description of the data stored in User_Users

database table can be seen in Table 2, and User_user database table in Table 3.

Table 2: List of data stored in User_users database table

Name Description Type

id Unique id of user int(11)

username Username of user, has to be

an email address

varchar(255)

password Hashed password of a user varchar(255)

signup Date of registration date

last_login Latest login date date

authKey Unique authorisation key for

user

varchar(255)

accessToken Unique access token for

user

varchar(255)

identityClass Identity class of specific

user. Users can have differ-

ent identity classes to pro-

vide different functionality.

IdentityClass is not used in

varchar(255)

20

current implementation,

since all users are instances

of the same class.

enableAutoLogin Value that returns boolean

and logs user automatically

if has value of ”1”

tinyint(4)

identityCookie Unique cookie value of a

user

text

group User group for RBAC Varchar(50)

Both user tables contain the “id”- attribute which is the unique integer for database rec-

ords. In User_Users database table column “username” contains the unique email ad-

dress of a user, column “password” contains hash value of a password, “signup” is the

date of registration, “lastlogin” is the date of the last login into system, “authKey” ,

“authToken” and “identityCookie” are the unique authorization key, authorization token

and identity cookie that are used for security, “identityClass” is the name of the class

which the Users class has to extend, “enableAutoLogin” is the value that allows to keep

user logged in the system, “group” is the name of the RBAC group that user belongs to.

Table 3: List of data stored in User_user database table

Name Description Type

id Unique account id int(11)

user_id Foreign key to user_users-

table, that provides authori-

sation information

int(11)

name Users name varchar(255)

surname Users surname varchar(255)

date_of_birth Users date of birth date

active Boolean, user seen as sus-

pended if value of ”active”

attribute is 0

tinyint(4)

phone Phone number of user varchar(50)

21

sex Sex of a user, male where 0

and female where 1

tinyint(4)

instagram Link to user's isntagram pro-

file

varchar(255)

facebook Link to user's facebook pro-

file

varchar(255)

Apart from “id” column, table User_user consists of following columns: “user_id”, “name”,

“surname”, “date_of_birth”, “active”, “phone”, “sex”, “Instagram” and “facebook”. Column

“user_id” is the value of the unique “id” of table User_users which User_user record is

related to; “name”, “surname” and “date_of_birth” columns contain actual name, sur-

name and date of birth of a user, “active” column tells if user is allowed to use the system

or not, “phone” is the phone number, “sex” is the biological sex of a user, “Instagram”

and “facebook” columns contain links to user’s Instagram and Facebook profiles.

4.2 RBAC

RBAC is an acronym for Role Based Access Filter. As stated in the name – the basic

concept of RBAC is to manage user groups and accesses or permissions for specific

action. In Yii2 there are two ways of configuring RBAC, using two different managers –

PhpManager and DbManager. PhpManager is used to manage accesses and user

groups using php file with hardcoded data, whereas DbManager is using database to

store access information. Only DbManager is discussed here, since it is used in the cur-

rent implementation.

DbManager uses the following tables to store access data: [7]

• itemTable: the table for storing authorization items. Defaults to "auth_item".

• itemChildTable: the table for storing authorization item hierarchy. Defaults to
"auth_item_child".

• assigmentTable: the table for storing authorization item assignments. Defaults to
"auth_assignment".

• ruleTable: the table for storing rules. Defaults to "auth_rule".

22

Most of the data is stored in auth_item and auth_item_child tables. Auth_assigment-

table is not used at all, and auth_rule- table stores single rule for user groups named

”userGroup”. Rule ”userGroup” was generated using Yii2 bult-in console interface tools.

Example of user inheritance according to RBAC can be seen in Figure 6.

Figure 6: Example of RBAC inheritance.

Image source: http://www.yiiframework.com/doc-2.0/guide-security-authorization.html

Currently there are 3 groups in the system: admin, user and guest. ”Admin” group is the

most privileged group, meaning it can perform all actions of the ”user” and ”guest”

groups. RBAC hierarchy is built upon inheritance, e.g. highest group in hierarchy inherits

all permissions of sub- groups and adds them to own unique permission.

23

4.3 User Configuration

All Yii2 templates have the default user model ready for use, however, the default class

does not use the database to store user information – all user-related data is hardcoded

as an array in the model’s variables.

In the current implementation the initial user model was replaced with a custom user

model named Users. The model extends the Yii2 ActiveRecord class for storing infor-

mation in the database and implements Yii2 IdentityInterface. IdentityInterface has to be

implemented by any class that is used for authorization.

4.4 Courses and tasks

Main purpose of this is application is to allow administrator to manage courses: its par-

ticipants, tasks, dates and other related information. Courses and tasks will be discussed

in one section, while course can be used without tasks, tasks cannot function without

being assigned to course.

4.4.1 Course

Course has many-to-many relationship with user table and one-to-many relationship with

tasks table. Once course is created, administrator can add users to course and create

tasks. When course is deleted, users are removed and all tasks assigned to course are

deleted. The course database table can be seen in Table 4. Most of the data listed in

course database table is not obligatory and needed only for descriptive purposes, since

all relationship is contained in map tables. Column “id” is the unique id of a course,

“name” is the title of a course, “description” is the descriptive information about course,

“status” is the status of a course, e.g. is course active or not. Columns “start_date” and

“end_date” are starting and ending dates of a course.

Table 4: Course database table

Name Description Type

id Unique id of course int(11)

24

name Name of course varchar(255)

description Course description text

status If course is enable, status re-

turns 1

tinyint(1)

start_date Starting date of course date

end_date Ending date of course date

To ensure the many-to-many relationship between courses and users, a class called

CourseUserMap was created. The course_id is the foreign key to the course entry

(unique id of a course), and the user_id is the foreign key to the user_users entry (unique

id). This construction makes system capable of handling the many to many relationships,

in other words different users can be assigned to different courses without limitations or

constraints. Table 5 shows data used in the course_user_map database table.

CourseUserMap structure:

Table 5: Course User Map database table

Name Description Type

id Unique id of an entry int(11)

course_id Foreign key to course- table int(11)

user_id Foreign key to user_users-

table

int(11)

Course Class Reference

Course extends Yii2's ActiveRecord- interface. List and explanation of important meth-

ods can be seen below in Table 6. Deletion logic and deletion process of a course is

explained in description of “beforeDelete()” method. Many to many relationship between

Course model and User model is established through “getCourseUser()”, this method

makes User entities related to instated Course object available through variables.

25

Table 6: Course class reference

Name Description Return

beforeDelete() BeforeDelete() is a standart

method provided by Yii2's

ActiveRecord interface. Be-

foreDelete() is called before

deletion of a model. Before

course is deleted all tasks

and entries in CourseUser-

Map related to to-be deleted

course are deleted.

Boolean

getCourseUser() Establishes relation be-

tween Courses and Users

ActiveQuery instance

When course is created, tasks and users may be assighend to it. Tasks are discussed

in the next chapter.

4.4.2 Tasks

The tasks have a many to one relationship with the courses and a one-to-many relation-

ship with the TaskSubmit- class. The tasks are used to create assignments for each user

assigned to the course. The task database table is explained in Table 7. In database

table only important and obligatory data are the name of the task and the parent_id of

the task. Column “parent_id” is the unique id of the course related to the task in question.

Columns “name” and “description” contain information with the name of a task and de-

scription of a task. If task is unpublished, in other words, not visible to client – column

“status” contains 0, column “status” contains 1 if task is published. “Create_date” and

“publish_date” contain date information, “create_date” contains information when task

was saved for the first time, “publish_date” is the date when task becomes visible. Col-

umn “upload” contains public path to file related to task.

Table 7: Course_tasks database table

26

Name Description Type

id Unique id of task int(11)

parent_id Foreign key to course table,

where parent_id in task table

is id in course table

int(11)

name Name of task varchar(255)

description Description of task text

status Boolean, if value is 0 – task

is considered unpublished

tinyint(4)

create_date Creation date of task date

publish_date Publishing date of task date

upload Path to file related to specific

task

text

Task class reference is explained in Table 8. Method “beforeDelete()” is called before

task is delete, method “afterSave()” is called every time when task data is written into

database. Method “upload()” is called every time task form is being validated, it checks

and uploads the file that was put by user.

Table 8: Task class reference

Name Description Return

upload() Upload()- method is called

every time when form re-

lated to task is submitted.

Main purpose of upload()

method is to validate, upload

and save information about

file related to task.

Boolean

beforeDelete() Before task is deleted, all re-

lated TaskSubmit records

are deleted from database.

Boolean

27

afterSave() After Task instance is saved,

system creates TaskSubmit

records for each user as-

signed to course.

Boolean

Overall the Task and the Course classes consist of the same, reusable methods, and

along with user management they form the backbone and the main feature of the system.

4.4.3 Task Submit Class

The purpose of task submit is to provide users with a mechanism to submit assignments

and leave comments. Submit records are created for all users assigned to course once

task is created. Description of task submit database table can be seen in Table 9.

TaskSubmit needs user_id of the unique user and the parent_id (unique id of task) to be

created. When user submits the task, task submit related to submitted task will be

marked as “done” in the database table. Code is the same as in Task Class, the only

exception being that there is no “upload” method. Task Class reference can be seen in

Table 8. Column “id” is the unique id of a task submit record, column “done” is used to

determine if assigned task to specific user is done, task is considered done when value

of the column is 1 and incomplete when value is 0. Column “comment” user’s feedback,

column “done_date” is updated when user completes the task.

Table 9: Task submit database table

28

Name Description Type

id Unique id of task submit rec-

ord

int(11)

user_id Foreign key to user_users

table. Id of a user assigned

to task

int(11)

parent_id Foreign key to course_tasks int(11)

done Boolean. Task is submitted

when value is 1

tinyint(4)

comment Comment that user leaves

during task submission

text

done_date Date of task submission date

4.4.4 Measurements

The course management system made for personal trainers needs a way of tracking the

client's progress. Progress is measured by changes in the client's body, e.g. weight,

muscle growth.

All measurements are not obligatory and are used to describe physical size of the client,

more detailed information about measurements can be viewed in the Table 10. Column

“id” is the unique id of a measurement entry, column “user_id” is the id of the related

user. Columns “weight”, “breast”, “hip”, “legs” and “hand” are used to contain measure-

ment information in centimeters. Column “comments” is used to contain comments about

related data entry. The “time_created” and the “time_updated” columns are used to track

creation and update dates.

Table 10: Measurements database table

Name Description Type

id Unique id of ”measurement”

entry

int(11)

29

user_id Foreign key to user_users

table

int(11)

weight Weight of user decimal(5,2)

breast Breast size of a user, in cm. decimal(5,2)

hip Hip size of a user, in cm. decimal(5,2)

legs Leg size of a user, in cm. decimal(5,2)

hand Hand size of a user, in cm. decimal(5,2)

comments Comments about related

measurement entry

text

time_created Creation date of an entry date

time_updated Update date of an entry date

When Measurement functionality is completed, it is planned that statistics and different

information about courses and people can be gathered and evaluated. For now, meas-

urements are used simply for the tracking of the user’s progress.

4.4.5 News and Articles

Currently, only the news functionality is implemented. All data is stored in a single table

with a text column. News has no relationship to anything. See Table 11. Text of the article

is contained in “description” column, status or whether the article is published or not is

contained in “status” column, “name” column is used for the title of an article, and “cre-

ate_date” and “publish_date” are creation and publish dates of an article.

Table 11: News database table

Name Description Type

id Unique id of an article int(11)

name Title of an article varchar(255)

description Text of an article text

status Status of an article, where 0,

article is unpublished and

where 1 article is published

tinyint(4)

30

create_date Creation date of an article date

publish_date Publish date of an article date

4.5 Administration Area (Backend)

Only users assigned to the user group “admin” are able to the access admin area. In the

admin area administrator is able to manage users, courses and tasks.

4.5.1 User Management

Users can be created, modified and deleted. As stated above, the class Users used for

authorization is referred to as User class and sub model of Users called User will be

referred to as Account. User controller is used to view and modify user related data using

actions like “actionNewUser()” to create new user, “actionListUsers()” to list users in the

system, “actionView(id)” which shows and describes the selected user, “actionDelete()”

to delete user from the system completely, including all course and task progress. For

more detailed information, see Table 12.

Table 12: User controller

Name Description Return

actionNewUser() Action renders view with

AddNewUser form. Once

form is submitted, POST re-

quest is caught and new

user entry is created. Ac-

count entry is created auto-

matically after User entry is

inserted into database

Renders view with form

when model is not submit-

ted.

If form is submitted – new

user is created and admin-

istrator is redirected to the

main page.

actionListUsers() Action lists all users found in

the system using Us-

erSearch() class.

Render page with GridView

widget which lists user in-

formation and links to view

and delete actions.

31

actionView(user id) Action takes user id as an at-

tribute and renders view

where user can be modified.

Catches two different post

requests – one is for form

that changes password, the

other is for other user and

account information.

Renders form inside De-

tailView, where basic user

information can be modi-

fied.

Renders simple password

form.

Renders measurements

records inside GridView

widget, where all measure-

ment records can be exam-

ined or modified.

Renders button to add new

measurment- record.

actionDelete() Deletes user. Before user is

deleted, the system deletes

account information, all task

submits assigned to user

and removes user from all

courses.

Redirects to ListUsers() ac-

tion.

User controller may be considered as the main and the most crucial controller of the

system. Without users, it would be impossible to use and manage data in the system.

4.5.2 Course and Task Management

The courses can be listed, created and modified. Since the courses have a many-to-

many relationship with the users – multiple users can be assigned to courses and vice

versa.

32

The tasks can only be created, deleted and updated through the Course management

view. Course controller is described in Table 13, and Task controller in Table 14. Course

and task controllers have methods and actions similar to other controllers used in this

project and can be viewed more thoroughly in corresponding tables.

Course controller consists of multiple actions to redirect and manage the workflow, as

well as one method “findModel”, which adds a more approachable way to find course

instance by corresponding course id. Following actions are included into course control-

ler functionality: ”actionListCourses”, “actionNewCourse”, “actionView” and “actionDe-

lete”.

To list all courses in the system, action “actionListCourses” is used. Upon calling the

“actionListCourses” system renders the list of all courses found in the system. To create

a new course, action the “actionNewCourse” is used – it renders a form which is used to

define a new course. The “actionView” renders the form, where all course related infor-

mation, as well as tasks and users assigned to the course, can be managed. To delete

a course, administrator must call the “actionDelete” action. When course is deleted, all

users are removed from the to be deleted course, and all tasks and task submits relevant

to the deleted course are removed from the system as well.

Table 13: Course controller

Name Description Return

actionListCourses() Lists all courses using

CourseSearch- class

Render page with GridView

widget which lists course in-

formation and links to view

and delete actions.

actionNewCourse() Catches submitted course

data and validates it. If vali-

dation is passed – creates

new entry in Course table.

Render form, where admin-

istrator can input title, de-

scription, status, start date

and ending date of a

course.

33

When form is submitted re-

directs to actionList-

Courses()

actionView(course id) Action takes course id as an

attribute and renders course

data. When form is submit-

ted actionView catches

POST data and modifies

data in course dable. If users

were assigned to or deleted

from course – CourseUser-

Map table is being updated

Renders a form within De-

tailView to manage course

data.

Renders GridView for

tasks, where tasks can be

viewed and modifyed.

Renders button to create

new task.

actionDelete(course id) Action deletes course from

the system. Before course is

deleted, all subtasks, task

submits and data in

CourseUserMap is deleted.

Redirects user to actionList-

Courses()

findModel(course id) Private method that is used

for fast instantiation of

Course model by given Id

Course class instance

Tasks are managed in similar way to courses, e.g. tasks can be created, viewed and

deleted. The “actionDelete” removes selected task and all relevant task submit data from

the system, the “actionNewTaskFromParent” is used to create a new task from the active

course view (course is considered a parent in this context). To update task through form,

the “actionUpdate” must be called. To view the user progress of a selected task, the

“actionView” is used. Upon calling the “actionView” list of users and relevant task submits

is shown.

34

Table 14: Task controller

Name Description Return

actionDelete(task id) Action takes task id as an at-

tribute. Before task is de-

leted, all subtasks of the task

are deleted.

Redirects to current course

view.

ActionNewTaskFromParent

(course id)

Creates new task using

course id.

Redirects to course view.

actionUpdate(task id) Manages Task form submis-

sion data and uploaded files.

If form is not submitted –

renders form to manage

task data.

If form is submitted, task is

created and administrator is

redirected to course view

page.

actionView(task id) Fetches all TaskSubmit en-

tires through TaskSub-

mitSearch object.

Renders GridView with

TaskSubmits for each user

assigned to course.

Understanding the course class and the course controller is important to understand how

system handles the data. Most of the functionality is defined in the course controller, e.g.

data that defines the workflow of the system and fills system with information. Course

controller makes it possible to define course-user relationship.

4.6 User Area (Frontend)

The user area has its own set of controllers and views like the administration area. Most

of the controllers have same names and methods as the ones used in backend. Control-

lers were moved in own namespaces to ensure that normal users will not gain access to

administration functions.

35

4.6.1 Site Controller

Site controller is the default controller and is used when action is hard to classify or

doesn't require its own controller, e.g. login page, front page or contact form page. See

Table 15. The default action is the ”actionIndex()”, which can be referenced as the ”home

page” of user area. Home page lists the most important information and contains links to

other actions. To log users in and out actions “actionLogin()” and “actionLogout” are

used.

Table 15: Site controller reference

Name Description Return

actionIndex() Front page of the system,

user is redirected to front

page when logged in.

Renders three blocks: latest

task, latest news and calen-

dar with tasks listed by

days.

actionLogin() Check password hash and

logs user into system if

password is right.

Renders form if user is not

logged in.

Redirects to actionIndex if

user is logged in.

actionLogout() Logs user out of the system.

If user is not logged in noth-

ing happens

Logs user out and redirects

to the login page.

If user is not logged into the

system, redirects to the

login page.

Site controller is not only the default controller of the current project, it is the default

controller of Yii2 templates overall. Normally it is not only used to render index, login and

36

logout pages, but other static pages as well. Simple websites may be built using single

site controller.

4.6.2 News Controller

Methods used in News controller are used to view list of the articles or to view specific

article. Following actions are implemented in news controller: “actionListNews” and “ac-

tionView”. First action lists all news articles in a grid, second action is used to view full

article by unique id. Actions used in the News-related logic are described in Table 16.

Table 16: Actions used in News controller

Name Description Return

actionListNews() Lists all news found in the

system.

Renders GridView with all

news found in the system.

actionView(id) Views article by id if found. Renders view with article.

Throws error if no id found.

4.6.3 Task Controller

Tasks visible for user are taken from the latest selected course. Currently, there is no

possibility to change selected course for user in the User Area, the latest course is con-

sidered the selected course by default. Task controller allows user to view and interact

with tasks through actions “actionListAllTasks()”, “actionCompleteTask()” and “action-

SaveTask()”.

The grid of all tasks is rendered upon calling action “actionListAllTasks”. To submit a

task, the “actionCompleteTask” is used. The “actionCompleteTask” renders a submittion

form, which triggers the action “actionSaveTask” when submitted. When the form is sent,

the task submit record is updated and an administrator can confirm user progress

through the administration area. See Table 17 for more detailed information.

37

Table 17: Task controller reference

Name Description Return

actionListAllTasks() Lists all tasks of selected

course.

Renders GridView with all

tasks of selected course.

Single task in list consists of

a name, deadline, task file

and ”Turn in” link (which re-

directs to actionCom-

pleteTask()).

If user has no selected

courses, message ”no

course” is rendered.

actionCompleteTask() Searches for TaskSubmit

record related to selected

task and current user. If

TaskRecords is found – ren-

ders ”turn in” form where

user can submit data

If TaskSubmit is found, ren-

ders form where user can

leave a comment for task.

When ”Submit” button is

pressed, user is redirected

to actionSaveTask() where

TaskSubmit is saved.

actionSaveTask() Saves TaskSubmit model

and updates TaskSubmit da-

tabase records.

TaskSubmit is saved and re-

directs to action-

ListAllTasks() and renders

status message: ”Task

saved” or ”Task not saved”.

Main idea of the task controller in the user area is to provide a user with necessary func-

tions to view and submit tasks of the current active course. Course controller in the user

area is not implemented and a user is not able to switch between active courses and

view tasks related to other courses.

38

4.6.4 User Controller

In Frontend, user controller is used only for account information management. Only one

method is used in User controller: “actionViewUser()”. Method “actionViewUser()” ren-

ders form filled with the user data. For reference see Table 18.

Table 18: User controller reference

Name Description Return

actionViewUser() Finds account of the logged

user. If user identity ID and

viewed user's ID do not

match – action is not al-

lowed. When form is submit-

ted, user account is up-

dated.

Renders account manage-

ment form, where user can

change the name, phone

number and other personal

information.

When form is submitted

user is redirected to Ac-

tionViewUser() again.

While implementing only one function, user controller in the user area is a necessity. A

user must be able to change personnal information at any time without problems.

4.6.5 Styling and HTML

Application follows overall Bootstrap framework guidelines to ensure responsiveness

and good user experience. Backend consists mostly of pre-made styles, when frontend

has got more attention and has more complicated HTML structure.

39

5 Usage Guide

5.1 Login

To log into the system user must input right credentials. If the data is not right or user

does not have access to the area, user will be notified. Example of login screen can be

seen in Figure 7.

Figure 7: Default login form

Login page has common code in frontend and backend, but graphical design may differ.

5.1 Backend

Through the navigation bar the administrator can access specific areas of the system,

like user or course screens. For detailed information of links listed in navigation bar see

Figure 8 and Table 19.

Figure 8: Navigation in backend

40

Table 19: Explanation of navigation bar

Number Description

1 Link to the homepage, there is no information on the homepage currently.

2 Calendar that shows all tasks by date. Currently not in use, since it's not ready

for use.

3 Link to New User form, where user can be created.

4 List of all users in the system.

5 Dropdown with links to ”new course” and ”course list” pages.

6 Dropdown with links to ”new article” and ”news list” pages.

7 Logout link. Current user identity can be seen in brackets.

Navigation bar is divided into logical sections to provide a fast accessibility to different

areas of the administration area. Links to subsections are hidden behind main links and

can be identified by triangular symbols next to the links.

Figure 9: New user form

When creating a new user, it is important to remember that username has to be in form

of an email and be unique. Password has no limitations. If the username is already found

in the system, user will be notified. (See Figure 9)

41

5.1.1 Manage Users

Users are managed through ”List users” view. Example of ”List user” view can be seen

in Figures 10 and 11, for explanation see Table 20. “List users”- view lists all the users

found in the system. Through this list administrator can delete or update users and user

related data.

FigFigure 10: First half of the user list

Figure 11: Second half of the user list

Table 20: Explanation of user list

Number Description

1 Total number of records on page and overall.

2 All data shown in the table except for the username is part of the account

data, which is mutable by client. Username is immutable.

3 Name found in the account database table, can be sorted by alphabet.

42

4 Surname found in the account database table, can be sorted by alphabet.

5 Client's date of birth, can be sorted by date.

6 Link to view action, where account data can be changed. User editing will be

discussed in the next section.

7 Button that is used to delete a user from the system completely.

8 When data is not set in the database, table will read ”not set”. If the data is

not set, system will not crash and will continue to function properly.

The view of the user list allows easier access to the data through sorting and queries. By

queries the most relevant data will be retrieved from the database.

5.1.2 Editing Users

When unique user from the list is chosen, administrator will be redirected to the user

view. Personal data, password and measurement list may be altered through the user

management screen.

Figure 12: User view

User editing is done through forms. It is good to remember that user data and password

are different forms – when pressing ”change password” button, it will not submit the form

43

with user data and vice versa. Visual example is seen in Figure 12, for explanation see

Table 21.

Table 21: Explanation of user view

Number Description

1 User data form

2 Password change form

3 Forms table, works like every list. Opens ”add measurment” form when ”Add

row”- button is pressed

Measurements works in similar way to user screen. List of measurements can be queried

and sorted, and records can be deleted and added. New records are added through

form, where administrator enters information like dates and actual measurement data.

5.1.3 Course Management

On top of the course screen, active dates of course are viewed and they can be

changed by altering “start date” and “end date” attributes in course form. When “partici-

pants” area is clicked list of available users will be shown. Administrator may pick users

one by one or select all users at once. Administrator may change name, description

and status of the course. For reference see Figure 13 and Table 22.

44

Figure 13: Course editing view

Table 22: Explanation of course editing view

Number Description

1 Course name and dates. First date is the starting date of course. Last date

is the ending date of course.

2 Basic form for course data.

3 Users assigned to course. When ”participants” field is clicked, dropdown with

all unassigned users is shown.

4 Task management. Task can be viewed, edited or deleted. When a task is

viewed, system shows user’s progress on current task (done/not done)

Tasks may be queried and sorted by all attributes. Functionality is the same as in meas-

urements, with one additional link which views list of submitted tasks in order to track

user progress.

45

5.1.4 Tasks

Tasks are created through simple form, in which administrator may specify name and

description of the task. Description may contain unlimited amount of text and may be

styled with html tags. Additionally, attachment may be uploaded, currently only pdf and

doc filetypes are supported. In frontend, uploaded files will be available through links.

For additional information see Figure 14.

46

Figure 14: Task creation screen

When new task is created, list of submissions for every user assigned to course will be

created. NB, if user is added to the course after task creation – task submit- record for

new user will not be created.

5.1.5 List of Submitted Tasks

When a task is created, task submit records are created automatically for all users. Ad-

ministrator can track current progress of task completion by clicking ”view task” in the

task list. See Figure 15 for example. In Figure 15, user “admin admin” has completed the

task, when “Ivan Khokhlachev” did not.

Figure 15: List of users and task progress

47

Submission cannot be deleted manually, to delete submissions from the system corre-

sponding task must be deleted. If corresponding task is deleted, all submissions will be

lost.

5.2 Frontend

The user area does not have as many pages as the administration area, since users do

not have to manage anything except for their personal information. The main purpose of

the user area is to allow users to view and complete tasks.

5.2.1 Navigation

Navigation bar in the user area is similar to the one in the administration area. For ex-

planation, see Figure 16 and Table 23.

Figure 16: Navigation bar

Table 23: Explanation of navigation bar in user area

Number Description

1 Link to the first page.

2 List of all news.

3 List of all tasks.

4 Username of a currently logged in user. If

clicked, will redirect to the account man-

agement form.

5 Logout button. When clicked, user will be

logged out of the system and redirected to

the login screen.

48

Navigiation in user area is much lighter than one in administration area, since most of

the information viewed by user is managed through two main screens: front page and

“all tasks- page.

5.2.2 Front Page

When logged into the system, the user will see a page similar to the one in Figure 17.

The most important information will appear on the main screen: latest assignment, list of

latest news and a calendar with tasks.

Figure 17: Front page of the user area

Currently tasks shown in the calendar are the tasks, that belong to current or latest

course. This functionality is implemented because it is not yet possible to change current

active course for user.

5.2.3 Task Submitting

All tasks, completed and new, can be viewed through ”all tasks”- link. On the “all tasks”

page user will be presented with the name of a current course and list of all tasks relevant

to current active course. See figure 18.

49

Figure 18: Task list

To submit a task, user has to navigate to the ”All assignments” page. Tasks can be sorted

by name and date. To complete a task, user has to click on the ”Turn in!”- link.

5.2.4 User Management

By clicking on own name in navigation bar user will be redirected to the form, where

personal data may be changed at any time. See Figure 19 for the example of the user

form.

Figure 19: Data management form

50

All data that is changed through user form is not crucial to the system and may be
changed at any time.

6 Discussion and Conclusions

Currently the backbone of the system is completed, and the system may be used for

simple course and user management. However, a lot of features are still missing from

the current implementation. Those include such features like ability to add and manage

diverse files in a more approachable way, more complicated and versatile course man-

agement, and a more functional calendar. The basis for different modifications and ad-

ditions is present in the system, and the current code may be considered as a template

for a bigger and more extensive application.

The biggest problem in the planning of the system is, without doubt, the naming conven-

tions which are not present in the most part of the code. Problems such as the names of

user tables are confusing and make the system hard to read and understand. In the

future, the naming problem must be the number one priority.

Overall, the system is built with the advantages of the Yii2 framework in mind, which

conditions easy modification and extensibility of the code. The Yii2 framework made

building of the project as fast and easy as it can get, since most of the difficult logic is

already handled by the framework itself.

51

7 Sources

1 Official PHP documentation,

http://www.php.net

2 MVC Framework – Introduction,

https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm

3 Composer official documentation,

https://getcomposer.org/doc/

4 Yii2 official documentation,

http://www.yiiframework.com/doc-2.0/guide-index.html

5 Yii2 official documentation,

http://www.yiiframework.com/doc-2.0/guide-index.html

6 Apache official documentation,

http://httpd.apache.org/docs/current/mod/mod_rewrite.html

http://www.php.net/
https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm
https://getcomposer.org/doc/
http://www.yiiframework.com/doc-2.0/guide-index.html
http://www.yiiframework.com/doc-2.0/guide-index.html

