
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antti-Pekka Palomäki 
 

Web Browser Based Online Chess, Human versus Human 

Games with Multiple End Point Devices 

Helsinki Metropolia University of Applied Sciences 

Master’s Degree 

Information Technology 

Master’s Thesis 

17 April 2017 

 



 Abstract 

 

 

Author 
Title 
 
 
Number of Pages 
Date 

Antti -Pekka Palomäki 

Web Browser Based Online Chess, Human versus Human 

Games with Multiple End Point Devices 

60 pages + 13 appendices  
17 April 2017 

Degree Master of Engineering 

Degree Programme Information Technology 

Instructor 
 

Harri Airaksinen, Principle Lecturer 
 

 
The purpose of this study was to examine how it is possible to create multiuser web browser 
based real-time online games. In these games it is critical that all players can see the 
ongoing game situation at all times. In turn based games it is essential that actions take 
place in the correct order and in time critical games it is important that the latency of the 
actions is minimal in order to have a fluent game experience. 
 
Traditional HTML documents downloaded from an HTTP server do not directly provide 
communication methods with other server’s clients even though all the files would be loaded 
from a single source. Communicating with an HTTP server using traditional HTTP methods 
do not produce information about the invoked actions for all participants. 
 
This study evaluates a few possible techniques to use in order to setup an online gaming 
environment. A lightweight proof of concept was made using the most promising techniques. 
Based on the received results AntsaChess system was built providing a real-time multiuser 
online platform for chess games. 
 
The paper describes what already available components and techniques were used, what 
components were created and how the communication took place between all components. 
A way of modelling a chess game is depicted from the object-oriented programming 
perspective. 
 
AntsaChess can be used by browsers supporting WebSocket and HTML 5 protocols. Based 
on manual and programmatic testing it can be said that the implemented concept seems 
good enough to be used on other web browser based games also. The actual robustness of 
the system will be found out only after the system receives tens or hundreds concurrent real 
users. 
 
 
 
 

Keywords Real-time online game, chess, WebSocket, Java, AngularJS 



1 

  

Tekijä 
Työn nimi 
 
 
Sivumäärä 
Päivämäärä 

Antti -Pekka Palomäki 

Web Browser Based Online Chess, Human Versus Human 

Games with Multiple End Point Devices 

60 sivua + 13 liitettä  
17. huhtikuuta 2017 

Tutkinto Master of Engineering 

Koulutusohjelma Information Technology 

Työn ohjaaja 
 

Harri Airaksinen, Yliopettaja 
 

 
Työn tarkoituksena oli tutkia kuinka voidaan tehdä reaaliaikaisia verkkoselainpohjaisia 
usean samanaikaisen käyttäjän pelejä. Näissä peleissä on kriittistä, että kaikki osapuolet 
näkevät aina vallitsevan pelitilanteen. Vuoropohjaisissa peleissä on tärkeää, että toimintoja 
voi suorittaa vain omalla vuorolla ja aikakriittisissä peleissä oleellista on toimintojen lyhyet 
vasteajat, jotta peli olisi jouhevaa. 
 
Perinteiset HTTP -palvelimelta ladatut HTML -dokumentit eivät suoraan anna mahdollisuutta 
kommunikoida toisten käyttäjien kanssa, vaikka kaikki ladatut tiedostot olisivatkin peräisin 
samasta yksittäisestä lähteestä. Perinteinen HTTP -metodien kautta kommunikointi HTTP –
palvelimen kanssa ei suoraan tarjoa tarvittavaa tiedonvälitystä kaikkien osapuolten kanssa. 
 
Työssä on arvioitu muutamien mahdollisten tekniikoiden käyttämistä selainpohjaisten pelien 
toteuttamisvaihtoehdoiksi. Potentiaalisimmasta konseptista on tehty kevyt soveltuvuustesti, 
jonka pohjalta on toteutettu verkkoselaimille tarkoitettu shakkijärjestelmä. Järjestelmä 
mahdollistaa useiden samanaikaisten pelien pelaamisen ja katsomisen. 
 
Työssä on kuvattu mitä ja miten eri tekniikoita järjestelmässä on käytetty, minkälaisia 
komponentteja se sisältää sekä miten komponenttien välinen interaktio on toteutettu. Lisäksi 
on kuvattu eräs malli hahmottaa shakkipeli olio -ohjelmoinnin kautta. 
 
Lopputuloksena syntyi AntsaChess sivusto. Sen kautta ihmiset voivat pelata reaaliaikasta 
shakkia toisiaan vastaan verkkoselaimella, joka tukee WebSocket ja HTML 5 protokollia. 
Manuaalisen ja ohjelmallisen testaamisen perusteella voidaan sanoa, että konsepti 
vaikuttaa toimivan riittävällä tasolla ja sitä voitaisiin käyttää muissakin vastaavissa peleissä. 
Järjestelmän todellinen toimivuus selviää kuitenkin vasta siinä vaiheessa kun järjestelmää 
käyttää kymmenet tai sadat yhtäaikaiset käyttäjät verkkoselaimella. 
 
 
 

Avainsanat Reaaliaikainen online peli, shakki, WebSocket, Java, 
AngularJS 

  



2 

  

Contents 

Abstract 

Table of Contents 

1 Introduction 4 

2 Research Question and Defining Requirements for System 6 

3 Evaluating Suitable Technologies and Components 9 

3.1 Possible Solutions to Implementation Technologies 10 

3.2 Creating Proof of Concept with WebSockets 11 

3.2.1 POC Architecture 12 

3.2.2 Sending First Move 15 

3.2.3 Conclusions on POC 18 

4 Creating Client User Interface 19 

4.1 Initial Thoughts and Remarks 19 

4.2 Selecting Client Technologies 20 

4.3 UI Areas and Functionalities 20 

4.4 Login Functionality Turned into Practise 24 

4.5 From Lobby Area to Table Area – Starting game 28 

4.6 Under the Hood – Moving Piece 31 

4.7 Security – Client Cannot Be Trusted 32 

5 Communication between Domain Components 34 

5.1 Web server as Intermediary Component 34 

5.2 AntsaChessServer as Backend Component 37 

6 AntsaChess Game with Object Oriented Style 40 

6.1 Converting Physical Chess to Digital One 40 

6.2 Processing Games 41 

6.3 Table and Game Concept 43 

7 Testing and Analysing AntsaChess 47 

7.1 Testing Chess Moves 47 

7.2 Message Delivery Times between Domain Systems 49 

7.3 Performance Testing 50 

8 Summary 59 



3 

  

References 61 

Appendices  

Appendix 1.   Websocket.js 

Appendix 2.   First version of Lobby UI 

Appendix 3.   Start game with white pieces command peek 

Appendix 4.   Piece image URLs 

Appendix 5.   Chessboard.js JavaScript peek 

Appendix 6.   Example of Move -command sent from backend  

Appendix 7.   ChessRequest.java 

Appendix 8.   ChessMessage.java 

Appendix 9.   ChessMessageHeader.java 

Appendix 10. ChessMessageToken.java 

Appendix 11. Tomcat.java 

Appendix 12. ChessServer.java code peek 

Appendix 13. WebClientMessageHandler.java code peek 

 

 

  



4 

  

1 Introduction 

 

One of the author’s current dreams is to build his own web based system capable of 

providing different kinds of single and multiplayer online games. The games would be 

interesting and enjoyable enough to get the people playing frequently. Gradually this 

system would be used by enough people so that it would cover at least the maintenance 

costs for example by showing customized advertisement to the people. 

 

Chess happens to be one of the author’s favourite games, therefore, it was chosen to be 

the first game to get the dream started with. What also affects is that the author has some 

earlier experience of developing a plain chess in a smaller scope. Chess is a two player 

board game where the goal is to checkmate opponent. Checkmate is a situation in the 

board where opponent’s king has no free squares to move and opponent’s piece is 

threatening this king.  

 

The modern chessboard consists of 64 squares (8x8) in two dissenting colours. In many 

cases the colours are white and black but they can vary. In the beginning of the game 

both players have 16 pieces in total. There are 6 different types of piece and they all 

move differently. In the beginning each player has one king, one queen, two rooks, two 

bishops, two knights and eight pawns.  

 

Players start to move their pieces from opposite sides but during gameplay the situation 

changes a lot. The moves go in pairs, white (i.e. lighter colour) starts, following black’s 

(i.e. darker colour) move. The game is finished immediately when a player is either 

checkmated, a draw has occurred or player voluntarily resigns. In timed games a player 

wins if an opponent time has run out regardless of the material situation. Usually the 

gameplay goes so that players try to eliminate each other’s pieces and maybe promote 

a pawn to a queen at the other end of the starting point and make a checkmate. However, 

a game can end without eliminating any piece on the board. Timed games can enable a 

player victory without moving any piece. 

 

Since the present study is the author’s own project there are no business side 

specifications. It gives the freedom and responsibility to design and implement the 

system quite freely. However, that does not mean that plans could be changed 

significantly whenever problems occur. The long term objective guiding the designing of 



5 

  

the whole system is that a similar kind of concept could be used also in other web 

browser based games as well. 

 
First, the paper discusses the evaluation of the possible technologies for system 

architechture and moves on to testing a promising concept. Second, the client user 

interface is introduced, followed by the description of the domain components. Third, the 

object oriented AntsaChess game is illustrated. Then, testing and analyzing the system 

is reported. In the end, a summary is provided.   



6 

  

2 Research Question and Defining Requirements for System 

 

The purpose of this study is to find an answer to a question how it is possible to create 

web browser based multiuser online games. Chess is used as a case study. 

Requirements for the system are divided into two categories.  The first category 

requirements are related to finding out appropriate technical requirements and the 

second are user experience related requirements.  It must be noticed that if a feature 

works in a local environment that does not necessarily mean that it will work in a 

production environment since the system load can be significantly greater. The latter 

category is harder to measure since there are as many thoughts and ideas as there 

would be end users. 

 

The user experience walks hand in hand with technical aspect. The initial thought about 

the user interface is that there must be minimal latency between sending the move to 

backend and updating the user interface.  

 

End user multi-device paradigm 

 

Before stating any requirements it is good to have an understanding of what is possible 

and what is not. Supporting all potential combinations of end user devices and operating 

systems is not reasonable. Building native software for laptops, desktops, mobile 

phones, PDAs and tablets would take an excessive amount of time and superior 

expertise resulting in maintenance problems while adding new features and fixing up 

bugs. Besides it cannot be guaranteed that even exactly similar devices behave similarly 

since there might be other running processes that take the processor’s precedence and 

network latency varies between clients and server. 

 

Setting the system requirements 

 

The requirements must be set so that most users get a fluent gaming experience. It 

involves supported devices and servers being able to meet the requirements. An 

example of too detailed a technical requirement is that a user interface needs to be 

updated within 500 ms after the server has sent an update command. This kind of 

requirement cannot be guaranteed to be met at all times.  

 



7 

  

The first and most critical requirement is to find platform components that the system can 

be built on. Too detailed requirements towards technologies should be avoided because 

technologies only enable game play and can be replaced with better ones. 

 

The second critical requirement is to find the techniques that can be used to ensure 

dynamic gameplay. After finding solutions to the first and second requirements comes 

the requirements towards the game itself. Those can be divided to must have and nice 

to have features. The must have features are being able to simultaneously play chess 

games against other humans with different kinds of devices. Minimum is one 

simultaneous game for each user utilizing the system. The system must also indicate 

when the game has ended and enable rematches against the same opponent. Another 

must have requirement is to be able to watch ongoing games played by others and 

communicate textually at the same time.  

 

Table 1 summarizes the requirements for the system that should result in a good user 

experience.  

  



8 

  

Table 1. The initial guideline for the system. 

Requirement Priority Results to If requirement 

not met 

Finding platform 

components. 

Critical Enables to start 

building the system. 

System 

components cannot 

communicate. 

No further steps can 

be taken. 

Finding / developing 

architecture for dynamic 

system. 

Critical Enables to start 

developing the 

system. 

Without proper 

architecture the 

system will not be 

usable. 

Being able to play 

human vs. human 

games with different end 

devices. 

Critical Functional chess 

games. 

Study has not 

provided a platform. 

Watching ongoing 

games and 

communicating textually. 

High Enables building a 

community. 

Difficult to form a 

community. 

Creating a nickname. Medium People are able to 

know their 

opponent. Helps 

building a 

community. 

Enables reusing 

same nickname 

(without a 

password). 

Measuring user 

experience. 

Medium Getting 

improvement ideas 

and feelings. 

Rough errors can 

be left undetected. 

User statistics Low Information about 

played games. 

Users can’t view 

ranking nor history 

of own games.  

Localisation Low Getting the service 

with a custom 

language.  

English is the main 

language. 

Table 1. Requirements, priorities and results. 

 

Requirements set in Table 1 is the initial guideline for the system. The consequences for 

requirements that are not met are also shown in Table 1.  



9 

  

3 Evaluating Suitable Technologies and Components 

 

Some technical ideas about the system at large must exist before starting. Standards 

and utility frameworks help software developers to choose suitable technologies. This 

chapter describes initial ideas towards technologies. 

 

Because network connection is anyhow required to play and many end device has a web 

browser natively it is natural to start exploring options from HTML / XHTML over HTTP. 

A possible solution is depicted in Figure 1. 

 

 

Figure 1. A typical HTTP session (Mozilla Developer Network, A Typical HTTP session: 

2017). 

 

Usually browser issues an HTTP GET request to receive data from server and sends 

user data to the server with POST request. In both cases browser makes the initiative 

and server responses accordingly. HTTP 1.1 is stateless by nature (Network Working 

Group: RFC 2616 HTTP 1.1) which nowadays is often used as a transfer protocol. 

Stateless means that a web server does not keep track which client sends the message 

although there are means to track the clients if needed. 

 

This being the nature of HTTP the problem is that how several users get a chess game 

played when the browsers do not know about each other. A crucial part of the game is 

that people in a current chess game see the same representation of the board all the 

time. 



10 

  

 

3.1 Possible Solutions to Implementation Technologies 

 

Three different possible solutions as to the implementation technologies are evaluated 

in this chapter: peer-to-peer communication, HTTP-polling and WebSockets. They are 

introduced below. 

 

Peer -to -peer communication 

 

It could be possible that browsers directly communicate with each other using for 

example WebRTC data channel (Mozilla Developer network: WebRTC data channels). 

This technology is still experimental and is suspicious security wise. In addition, this 

technology would not allow other users to watch the games. Collecting reliable statistics 

would be difficult in a situation where communication happens straight between end 

devices browsers. That is why this option is ruled out. 

 

HTTP -polling 

 

Polling in this scenario means that while player A is in turn, the player B periodically 

sends a request to web server and asks if there is any new data available for the current 

game session. If player A has made a move then as an answer player B would get a 

response for instance “update E2 -E4 and make your own move” with the next polling 

request. 

 

A polling kind of system could be done with JavaScript and the system would work also 

in cases where either of the players closes the browser because that can be detected. 

The weaknesses of this kind of architecture are the playability of the game and the 

overhead of unnecessary HTTP traffic to a web server. Polling time would be very difficult 

to optimize for every game. Polling could create unnecessary load to the web server or 

the players might not get an immediate update even though the data would be already 

available. 

 

Considering a game where player A is in turn and thinks for five minutes for the next 

move. If the polling time is set to one second then player B and possible spectators send 

300 request each ending up in 600 unnecessary requests to web server. Alternatively, if 



11 

  

the polling time was 30 seconds then only 10 redundant request would be sent by each 

user around the table. HTTP polling can be ruled out because of the nature of chess.  

 

 

WebSockets 

 

 “The WebSocket Protocol enables two-way communication between a client running 

untrusted code in a controlled environment to a remote host that has opted-in to 

communications from that code.”  (Internet Engineering Task Force: The WebSocket 

protocol). In other words, the client and a server can interact with each other by sending 

and receiving data at the same time. 

 

Java Specification Request 356 (JSR 356) is provided to support WebSocket protocol 

for Java Developers (Johan Vos: Java API for WebSocket). Idea is to upgrade an HTTP 

connection to a full duplex WebSocket. After successful upgrade the communication is 

bi-directional by nature meaning that also web server can push messages directly to 

connected browsers.  

 

3.2 Creating Proof of Concept with WebSockets 

 

This chapter delves into initial thoughts about the system architecture by creating a proof 

of concept. In general, a proof of concept means to test an idea under the surface not 

going too deep into details (Proof of Concept (POC): 2017). The idea of this proof of 

concept is to test the initial system architecture. Considering a game session where 

player A and player B have started a chess game and a few spectators have joined to 

watch the game. Player A with light colour pieces tries to move from square E2 to square 

E4. Before updating the chessboards the suggested move must be validated. 

Commands that come from the user interface cannot be automatically taken as valid 

move since the UI can be tampered with different tools. If the move is valid according to 

chess rules all participants including the original sender must be notified to update the 

UI. If the suggested move is invalid then only the original sender needs to receive 

information about what to do next.  

 

  



12 

  

3.2.1 POC Architecture 

 

The idea of the POC is to test a very light system to see if a browser can send a chess 

move to another browser via web server and chess server. Some configuration and 

coding is required in order to enable the communication between browsers.  

 

Figure 2 shows system components in the proof of concept. 

 

 

Figure 2. Architecture used in POC. 

 

All components in Figure 2 reside in a single laptop computer so there is no actual 

network between components. 

 

Coming from Java programming language background the first thing needed is to find 

an available web server which supports JSR 356. Reviewing Apache Tomcat 

specifications it was found that from version 8 WebSockets are supported (The Apache 

Software Foundation: Apache Tomcat 8).  Also Jetty, which is a web server and 

javax.servlet container, supports WebSockets from version 9 (Eclipse: Jetty). Having a 

little earlier experience of Tomcat it is chosen to be the web server. Tomcat’s function in 

this POC is to handle incoming and outgoing web traffic from the browsers and 



13 

  

communicate with very lightweight Java ChessServer using socket technology. A socket 

is an endpoint for communication. 

 

Java provides options to use a blocking and non -blocking server. A blocking server, 

which in practice means Java -ServerSocket, seems like the appropriate choice. The 

web server and ChessServer communicate via TCP/IP and exchange information with 

direct Java classes. During Tomcat’s startup a connection to a port that ChessServer 

listens to is made. The POC environment information is shown in Table 2. 

 

Table 2. POC environment. 

Test 

Equipment 

Intel® Core™ i5-3230M CPU @ 2.60GHz, 6GB RAM,  Windows 8.1 

(64 bit) 

Web server Tomcat 8.0 

Tester page  http://localhost:8080/AntsaChessWeb/faces/pages/poc/poc.xhtml 

Partly generated with JSF 2.2 (MyFaces) 

ChessServer AntsaChessServer 0.0.1 pass-through phase 

Development 

platform (IDE) 

Eclipse Luna 

 

The minimal tester page represents the client UI from which is possible to simulate a 

situation where user sends a chess move to the Tomcat web server. Figure 3 shows the 

tester page layout and network traffic involved viewed from Firefox browser UI developer 

tools perspective. 

 

 

http://localhost:8080/AntsaChessWeb/faces/pages/poc/poc.xhtml


14 

  

 

Figure 3. View from Firefox browser. 

 

After examining the request and response headers it can be noticed that there is an extra 

GET initiated by JavaScript from tester page. Header section from developer tools in 

Figure 4 verifies that the connection is indeed upgraded to a full duplex WebSocket.  

 

 

Figure 4. Browser request and web server response headers. 

 

Tester page’s HTML structure and JavaScript can be viewed in Figure 5. 

 



15 

  

 

 

Figure 5. Contents of poc.xhtml.  

 

The <h:body> tag comes from JSF -namespace   

<html xmlns:h=”http://java.sun.com/jsf/html”. JSF means JavaServer Faces which is 

utility technology for generating server side web pages. Browser tries to make a 

WebSocket connection to hardcoded IP -address which points to localhost. Browsers 

that do not have JavaScript enabled are not supported. This is a definition of policy for 

the whole AntsaChess concept made during POC.  

 

On Tomcat side /AntsaChessWeb -context root has been configured to detect 

WebSocket connections for URL pattern /chess/. Web server’s Java -class has been 

annotated with @javax.websocket.server.ServerEndpoint(value = "/chess/") similarly to 

Oracle’s WebSocket programming snippets (Johan Vos: Annotation-Driven Approach). 

 

3.2.2 Sending First Move 

 

Moving a piece from E7 to E5 could be represented in AntsaChess as “4143” as shown 

in Figure 6. 

 

http://java.sun.com/jsf/html


16 

  

 

Figure 6. Two browser side by side where leftmost browser is about to send a move. 

 

In the POC phase it is enough to use loggers at the servers’ side to verify that the 

message is really going all the way through to ChessServer. The browser sends a text 

“4143” to web server by pressing the “Send Move to Server” -button. After receiving the 

“4143” text the web server creates a new Java object called Move which internally 

contains two Square objects for storing from and to positions. The square object contains 

row and column information where the information is put. The web server sends the 

constructed Move object to ChessServer using a TCP/IP connection created in web 

server startup. 

 

At this point ChessServer only returns the same Move object back to web server which 

creates a textual representation from the Move object and sends it to both browsers. The 

tester page’s JavaScript function “onMessage” is called. Outcome is shown in Figure 7 

after both browsers have received the message. 

 

 

Figure 7.  Web server response has been received. 

 

The null word comes from the Move object’s textual representation which could also 

contain information about a piece in a square. 

 

Figure 8 shows that the rightmost Firefox instance is also able to send move. 

 



17 

  

 

Figure 8. Rightmost browser has sent a message. 

 

A final test for the concept is made by using 5 different clients at the same time. The 

devices and outcome is presented in Table 3.  

 

Table 3. Browser test results. 

On device Browser Result 

localhost Firefox 36.0.4 Could receive and send 

messages. 

localhost Chrome 41.0.2272.118 Could receive and send 

messages. 

localhost Internet Explorer 

11.0.9600.17690 

Could receive and send 

messages. 

iPhone 5 - Mobile Safari (inbuilt) Could receive and send 

messages. 

Samsung Galaxy Mini 

(2011) - mobile 

Inbuilt - custom Fail. Test page opened 

but WebSocket 

connection was not 

established. 

 

 

The concept is not working with year 2011 Samsung Galaxy Mini which is a minor 

drawback. The web server never got WebSocket contact from Galaxy Mini. However, 

several mobile browsers support WebSockets and this gives a reason to continue with 

the concept (caniuse: 2015) 

  



18 

  

3.2.3 Conclusions on POC 

 

The messages were able to traverse from frontend to backend and back. First a browser 

sent a textual representation of a move to a Tomcat web server which converted the 

message into Java classes. The message was sent to ChessServer and the same 

information was sent back to web server. Both browsers received a textual 

representation of the move and updated the user interface.  

 

All browsers will not work with the WebSocket concept.  JSF did not give any added 

value for generating the UI layout. Plain HTML and vanilla JavaScript seems to be 

enough. Visually UI updates happened in a blink of an eye like there would not be any 

delay. 

The Tomcat web server functioned fine as an intermediary component between end 

users and AntsaChessServer. TCP/IP with Java sockets used by 

java.io.ObjectOutputStream and java.io.ObjectInputStream worked fine thus there was 

no need for higher level protocols in between web server and ChessServer. POC solved 

the first two critical requirements by finding platform components and architecture to use 

later on.  

  



19 

  

4 Creating Client User Interface 

 

Client is anything that can communicate with the underlying backend system. In 

AntsaChess the client UI is built for web browsers but it would be possible to replace 

them. Creating a custom native client could be an alternative for browsers. For example, 

a client made with Java could bypass the web server part and communicate directly with 

ChessServer using sockets if they would be supported.  

 

The last unsolved critical requirement for the system in Table 1 is “Being able to play 

human vs. human games with multiple devices”. That is a massive requirement which 

can be split into subcategories within UI, web server and ChessServer. This chapter 

sheds light on the UI and it’s communication with the web server. The backend 

ChessServer can be thought of as a black box from UI perspective. 

 

4.1 Initial Thoughts and Remarks  

 

Mobile first is a good way to start planning when multiple browser needs to be supported. 

Basically it means that it is good to start thinking about the content for the smallest 

supported display. However, that does not mean that UI testing should be done with a 

real mobile phone all the time since it’s quite slow. 

 

Google Chrome provides emulators for devices that can be effectively used even though 

the result might look a little different in a real device. It should be decided first if the layout 

is allowed to look distinct in different devices. If the same layout must be used with all 

the devices then scaling needs to be done. Eventually the most important thing is that UI 

is functional.  

 

The challenge to start a chess game can be overcome by creating a screen where all 

online users are seen and where game preparing actions can happen. Derived from the 

mobile first approach the game part should be another screen to get sufficient space for 

the chessboard. With big displays there is enough space to place everything neatly but 

with mobile phones the display size is very limited and in order for the UI to be practical 

it should be possible for the chess pieces to be moved by a mouse or a finger. 

Chessboard consist of 8 x 8 squares and the whole board should be seen at one glance. 

For example the Apple iPhone 5 screen dimensions are 123.8 mm x 58.6 mm (Apple 



20 

  

iPhone5: 2017). Showing the whole board in a square shape and moving pieces is quite 

an equation. Luckily many mobiles have zoom capabilities.  

 

4.2 Selecting Client Technologies  

 

Within WebSockets it is possible to send binary and textual data. There is no mandatory 

reason to choose over another but for browser debugging purposes textual datat in 

JSON format is chosen. JSON is text in JavaScript Object Notation format (W3Schools, 

JSON - Introduction).  Many browsers support natively JSON to form objects and 

converting them back to strings of text. Moreover it is possible to form hierarchical and 

readable data. Messages to web server is sent with partly hardcoded JSON with dynamic 

population of objects. Web server in turn converts JSON -text into org.json.JSONObject 

objects. 

 

A noticeable problem raised quite early at development phase from the UI side. 

WebSocket connection variable is created in global namespace but transferring control 

to another HTML page causes a page load which results to lost connection. In order to 

use a single WebSocket connection and maintain prevalent states all the actions should 

occur from a single page. 

 

Nonetheless, for the sake of clarity and maintainability it is better to divide the application 

into logical HTML sections. AngularJS 1 helps developers to create single page 

applications (SPA) but still being able to divide application into logical html parts.  

AngularJS 1 is dependent on jQuery and works with several browsers. Furthermore, 

Angular team run their test suite against Safari, Safari (IOS), Firefox, Chrome and IE 

ensuring the main browsers to work (AngularJS: FAQ). JQuery itself is a JavaScript 

library for manipulating HTML documents (jQuery: What is jQuery?). The technologies 

mentioned here got a green light to continue.  

 

4.3 UI Areas and Functionalities 

 

Some of the functionalities can be directly derived from the requirement specifications. 

For instance watching the game turns into a Watch table function and creating a 

nickname turns into Login function. The UI has been divided into three logical areas 

called USER, LOBBY and TABLE. Each area is handled accordingly by its own 



21 

  

AngularJS controller. The files named userController.js, lobbyController.js and 

tableController.js take care of the states of the sections regarding visibility, actions and 

bi -directional network traffic in Angular scope. Controller files are able to handle 

messages from web server even though the area they control might be hidden in UI. 

Later on this section it is shown how the areas look like. 

 

Altogether there are 12 different possible functionalities available to invoke from UI. Web 

server always sets the area into responses where the message is intended but it is good 

to underline that not all messages UI receives are responses. Some of the messages 

are caused by other users and some by the system. Table 4 shows the functionalities in 

the USER area. 

 

Table 4. Functionalities that can be invoked from the USER area. 

 

Functionality  Area Parameters 

needed 

Web server 

primary 

response(s) 

Result in UI  

Login USER Nickname Info about created 

tables and who is 

online. 

Info about who 

logged in. 

Newly logged in 

user gets a 

private key, sees 

tables and who 

are online. Others 

add new 

nickname. 

Logout USER - Info about who 

logged out. 

Who logged out 

reloads the page 

causing 

disconnection 

from server.  

Others remove 

the nickname. 

 
Pressing a “logout” -button in the USER area, closing a browser or navigating to another 

page invokes the Logout functionality.  



22 

  

Table 5 shows the functionalities in the LOBBY area. 

 

Table 5.  Functionalities that can be invoked from the LOBBY area. 

 

Functionality  Area Parameters 

needed 

Web server primary  

response(s) 

Result in UI  

Create new 

table 

LOBBY Private token, 

nickname,  

selected game 

time item from 

the list 

Command to create 

new table with given 

parameters. 

Everybody 

adds created 

table to list. 

Different 

controls are 

seen amongst 

users. 

Remove table LOBBY Private token 

 

Command to remove 

table by id.  

Everybody 

removes table 

from list. 

Join table LOBBY Private token, 

table id 

Start game and 

update table status. 

Table creator 

and joiner 

opens table 

with 

chessboard. 

Others update 

status of the 

joined table. 

Watch table LOBBY Private token, 

table id 

Parameters to create 

chessboard from 

current situation. 

Selected table 

is opened. 

 

Functionalities in the LOBBY area provide means for handling the tables. The LOBBY 

area also shows the currently logged in players.  

  



23 

  

Table 6 shows the functionalities in the TABLE area. 

 

Table 6. Functionalities that can be invoked from the TABLE area. 

Functionality  Area Parameters 

needed 

Web server primary  

response(s) 

Result in UI  

Move piece TABLE Private token, 

from square, to 

square 

Command to move 

accordingly. 

Everybody 

around the 

table updates 

board. Turn 

changes. 

New game TABLE Private token, 

tableId 

Command 

suggesting a new 

game.  

Possible new 

game. 

Resign TABLE Private token, 

tableId 

Resigned nickname Game ends. 

Users around 

table sees 

who won. 

Offer draw TABLE Private token, 

tableId 

Info about draw if 

both players invoke 

functionality. 

Game ends. 

Everybody 

around table 

sees info 

about draw by 

agreement. 

Send 

message 

TABLE Private token, 

tableId, text 

message 

Info about chat 

message 

Everybody 

around table 

adds new to 

chat part. 

Return to 

lobby 

TABLE Private token Command to remove 

table if player 

returned. 

Returner sees 

lobby. Others 

around table 

sees update in 

chat if 

returned user 

was player. 

 

With TABLE area functionalities it is possible to manage the game and table. 



24 

  

4.4 Login Functionality Turned into Practise 

 

There must be an agreement regarding message exchange between the UI and the web 

server. This agreement makes them understand each other during message exchange. 

All UI files are loaded when browser makes HTTP -GET to web server’s URL  

/AntsaChessWeb/antsaChess.html. At the same time WebSocket connection is 

negotiated.  

 

Figure 9 visualizes the USER area which either shows login or logout possibilities. 

 

 

 

Figure 9. The USER area. 

 

The upper part in Figure 9 is a view for a client which has not logged in yet. The lower 

part is seen after successful login. 

 

 

 

 

 

 

http://localhost:8080/AntsaChessWeb/antsaChess.html


25 

  

 

Figure 10 shows all the files loaded and needed to construct the UI when user enters 

AntsaChess for the first time. 

 

 

Figure 10. UI is created from shown files. 

 

The UI consist of JavaScript, HTML and CSS files. Bootstrap files are used for making 

the site responsive in cooperation with jQuery files. In addition, jQuery is used for 

dynamic manipulation of HTML Document Object Model. Specific AngularJS 1.5.9 

version is used for helping to handle the single page application actions and UI rendering. 

File app.js is used for defining the whole antsaChessApp AngularJS module. 

  



26 

  

After pressing Login -button (see Figure 11) the control flows to websocket.js which 

handles all traffic in WebSocket and runs outside of AngularJS scope. Appendix 1 shows 

the whole JavaScript that a browser uses with WebSocket.  

 

 

Figure 11. A login functionality’s request and response in JSON format. 

  

When looking at Figure 11 it can be detected that behind the scenes browser sends first 

a 77 bytes frame which contains data   

{message: {command: "login", token: "undefined", params: {0: {p0: "Antsa"}}}}  

in a JSON -format. The web server interprets from the command part that a user wants 

to login and reads the nickname from params part. Private token is not known at this 

point and “undefined” is sent because of common data handling. The response frame in 

Figure 11 is 420 bytes and tells that the message is intended for the USER area, the 



27 

  

login was ok with nick “Antsa” and the private token for session is 1d93a6ed-5e1d-4b28-

b326-14dc4d23d97e. 

 

The USER area is handled by userController.js which populates chessFactory.js and 

emits the information forward. The chessFactory.js holds the private token for the whole 

session. The token is universally unique identifier representing 128 -bit value. In Java 

Platform, Standard Edition 8 the development kit provides this identifier in form of 

java.util.UUID class (Oracle: Class UUID). The web server generates an UUID per 

WebSocket session and passes it to ChessServer and UI.  

 

Figure 11 also shows the users array which tells all online nicknames and the tables 

array contains information about the existing tables. Lastly the usr field tells the user’s 

own accepted nickname which is limited to 9 characters.  

 

Figure 12 shows an example of how a browser renders LOBBY area after populating 

pertinent JavaScript files from web server’s response. 

 

 

 

Figure 12. Populated LOBBY area after login. 

 

An early version of the LOBBY can be seen in Appendix 2. 

 



28 

  

4.5 From Lobby Area to Table Area – Starting game 

 

The user can create his/her own table or join in an existing one. The system gives white 

pieces for the user who created the table and for joiner is given black pieces. The 

following kind of JSON is sent to web server when Join table functionality is invoked. 

{message: {command: "join_table", token: "8cfa4c8a-1d2d-4d42-a706-43072ff223ce", 

params: {0: {p0: "4bce2941-e24b-4ffb-86e9-df990d0056c5"}}}} 

Parameter p0 is the table id and token is the joiner’s private key.  

 

It might be possible that several players would try to join the table at exactly the same 

time causing a race condition. ChessServer synchronizes the joining by ending up in a 

situation where only the first one is attached to table and the rest are ignored. 

With little UI manipulation it is possible to send the “join_table” command even when the 

“Join-button” is not visible. 

 

After a successful join the web server sends information for both players about the 

created table regarding both players’ nickname, game time and table id. The board 

position is also sent covering every square with piece information and available moves. 

The starting command is different amongst players. Appendix 3 shows the JSON which 

contains the information needed to start the game with white pieces (all available moves 

are not included). The chessboard is dynamically populated from initial parameters 

received from the web server. The chessboard is boosted with CSS and built with HTML 

<table> element along with <thead> <tr> and <td> elements. Event handling is done in 

chessboard.js where for example the clicks are verified against available moves received 

from the web server. Appendix 5 shows details of JavaScript used for handling 

chessboard events. Figure 13 shows the view from the white pieces’ perspective after 

getting the command START_GAME_AS_WHITE. A few chat messages has been also 

exchanged.  

 



29 

  

 

Figure 13. Start view from white pieces player perspective. 

 

 



30 

  

The HTML structure is the same for both players but on black pieces side the board and 

pieces have been rotated 180 degrees using CSS.   

 

Figure 14 reveals two hidden bishops. Each row’s last column contains these images. 

 

 

Figure 14.  Layout from black pieces perspective with 2 hidden bishops revealed. 

 

Figure 14 reveals two out of eight hidden bishops in the HTML structure. Adding a hidden 

image to every <tr> keeps the rows at equal height when there is no piece on the row. 



31 

  

All piece images are retrieved directly from Wikipedia and they are free to use according 

to Wikipedia (Wikipedia: Image use policy). The images are scaled with Bootstrap -library 

to fit in <td>. All used piece images URLs can be found in Appendix 4. 

4.6 Under the Hood – Moving Piece 

 

In all its simplicity a move is done by sending info to backend of from which square a 

piece moves to which square. Backend validates the move and sends the move to 

players and spectators where the UI is responsible for visualizing the action. The raw 

HTML of a <td> -square can be seen looking at Figure 15. 

 

 

Figure 15. Raw HTML behind a knight image. 

 

Examining more closely the HTML part in Figure 15 it can be detected that <td> contains 

several data-attributes. Attribute data-grid tells position in the board, attribute data-piece-

moves tells available squares from this square, attribute data-piece-color is “w” for white, 

“b” for black and attribute data-ng-mousedown is AngularJS directive for mouse down 

event. 

 

Behind the data-ng-mousedown function is the UI’s custom tableController.js which 

handles the action when a mouse button is pressed. The “ng-mousedown” differs from 

“ng-click” so that “ng-mousedown” action is fired immediately before the mouse button 

has been released. TableController holds an instance of JavaScript closure that encloses 

the handling of chessboard related functions.  



32 

  

The UI verifies from the first click to <td> containing a knight, that the click is made in the 

player’s own turn and that the game time has not run out. After these conditions are met 

UI visualizes a square selection which can be seen in Figure 16. 

 

 

Figure 16. Knight piece is selected. 

 

The selection is changed if another <td> containing the player’s own piece is clicked. An 

error message is shown if the knight tries to move into a <td> other than which contains 

data-grid “50” or “52”. Otherwise the move is considered valid from the UI perspective. 

Instead of immediately updating the UI the move is sent to backend for validation. The 

message sent by the UI consists of the following text 

{message: {command: "move", token: "8bec746b-0a43-4a51-887f-c48d4385fb52", 

params: {0: {p0: "71"}, 1: {p1: "50"}}}} 

where the token is the private key, p0 is from square and p1 is to square.  

 

If the backend validation returns that the move is valid then the players and spectators 

receive a move command containing the actual move to be made. The UI moves the 

image from the source square to destination square by manipulating HTML DOM. 

Appendix 6 shows the move command from backend. All pieces of the player in turn 

need to be updated upon move command since the last move made has changed the 

state of the board and pieces. 

 

4.7 Security – Client Cannot Be Trusted 

 

HTML DOM is modifiable on the fly ending up into a situation where the sent parameters 

can be tampered. Security vulnerability is exposed if functionalities were implemented 

using public information. For example if the implementation needed messages such as 

{message: {command: "remove_table", tableCreator: "Antsa"}} 

or  

{message:{command:"remove_table",tableId:"77f70955-821a-440f-aa33-

eb5af98ef653"}} 



33 

  

then others could make nuisance by removing tables that they did not create or send 

chat messages on behalf of others. These kinds of forgeries can be avoided using the 

private key as a determining element: 

{message:{command:"remove_table",token:"1d93a6ed-5e1d-4b28-b326-

14dc4d23d97e "}}. The back end system must anyway know the states of the users and 

tables and act accordingly. 

 

However, it is noticeable that if in AntsaChess someone gets access to another user’s 

private key for example using social engineering via chat then it is possible to represent 

another user. The aforementioned situation could be avoided if the current 

implementation checked that the incoming token belongs to the sender. Or even better 

yet, by not exposing the private token even to the user itself but keeping it only in between 

web server and ChessServer.  

  



34 

  

5 Communication between Domain Components 

 

In this chapter it is examined how the messages move between web server and 

ChessServer and back. At first the message traversal is looked on from web server 

perspective and after that is explored how ChessServer handles the messages.  

 

5.1 Web server as Intermediary Component 

 

The role of the Tomcat web server is crucial. In this chapter the role as intermediary 

component is examined more closely. All communication between each party in 

AntsaChess goes through the web server and moreover it provides all the ingredients 

for web browsers to build the UI in the form of files. 

 

A problem that this component solves can be related into a real world example where 

people from different countries talking different languages do not understand each other. 

Acting as an interpreter web server talks to browsers through the WebSocket and the 

files it has provided. With ChessServer the communication is done with Java objects.   

 

Before diving into details of how this sophisticated interpreter has been technically 

implemented it is good to look at shared classes used in communication. AntsaChess 

code parts are divided in three projects which are AntsaChessInterface, 

AntsaChessServer and AntsaChessWeb. Additionally there is Servers2 project for 

Tomcat settings.  

 

The AntsaChessInterface project contains all Java classes used in communication 

between ChessServer and the web server. Figure 17 shows the classes and how they 

are named. 



35 

  

 

Figure 17. Classes used in communication between the servers. 

 

Every message sent between servers is wrapped into ChessRequest which code can be 

viewed in Appendix 7. ChessRequest always contains a ChessMessage (Appendix 8). 

ChessMessage, on the other hand, always contains a ChessMessageHeader 

information (Appendix 9) and parameters related to the message. Mostly ChessMessage 

also contains the identifier token which is called ChessMessageToken (Appendix 10).  

Figure 18 shows the relations between core communication classes. 

 

 

Figure 18. Class diagram of core classes used between servers. 



36 

  

 

The ChessMessage class contains a generic field “params” which content varies 

depending on the current flow.  

 

Creating a ChessRequest from web server’s perspective 

 

The web server creates a ChessRequest based on the JSON received from the UI. The 

whole web server domain is created using four custom classes which are shown in 

Figure 19. 

 

Figure 19. Web server domain classes. 

 

The focal point is AntsaChessEndpoint which has the responsibility of converting all 

communication messages in a form which every endpoint can understand. The web 

server creates an instance of AntsaChessEndpoint for each connected browser and 

shares a single communication media to ChessServer between all clients.  

 

In Figure 19 it can be observed that AntsaChessEndpoint is connected with 

AntsaChessMessageDecoder. AntsaChessEndpoint uses this decoder to convert JSON 

from client into ChessMessage class if possible. It does this just before the 



37 

  

@onMessage-method is called. The @onMessage in turn locks the shared 

java.io.ObjectOutputStream by synchronizing. Locking the ObjectOutputStream means 

that other users need to wait until the message is sent. This means potential bottleneck 

if the number of users is high enough. Annotated methods (@) are automatically invoked 

by the web server. 

 

Receiving messages from ChessServer is done in a private static 

AntsaChessServerListener class which runs in a separate thread started from static 

initializer. This listener class observes the java.io.ObjectInputStream which is used to 

receive messages from ChessServer. The sole purpose of this class is to get rid of the 

message as fast as possible and continue listening new messages. Before doing so the 

class checks what kind of an object is received and for whom it is targeted and sends 

the message to its target(s). The message can be meant for a single client, for a group 

of clients or for all clients. The message must be encoded from Java object to JSON 

before sending it to a client. AntsaChessMessageEncoder is attached in this encoding 

operation. 

 

5.2 AntsaChessServer as Backend Component 

 

ChessServer domain is divided in two logical sections. The first section - ChessServer 

handles the internal logic of users, tables and games. The second section is 

WebClientMessageHandler which processes incoming and outgoing messages. Figure 

19 shows the relations between the core logic components. 

 

The startup of ChessServer is explored first and how messages sent from the web server 

are handled on ChessServer side. Figure 20 shows a sequence diagram of the startup 

process and message handling. 

 



38 

  

 
Figure 20. Sequence diagram from startup to message handling. 
 
The ServerRunner class contains the main method from which the singleton 

ChessServer class is initialized. All classes in the AntsaChessServer domain can refer 

to ChessServer calling ChessServer.INSTANCE that returns IAntsaChessServer 

interface for using ChessServer’s services. During the startup process ChessServer is 

put to run in its own thread which listens to a connection from AntsaChessEndpoint. 

ChessServer thread is alive the whole system uptime.  

 

After the connection between the web server and ChessServer has been made 

ChessServer creates an instance of Tomcat class which is put to run in a separate 

thread. During the creation time of Tomcat class the ObjectOutputStream and 

ObjectInputStream handles are given for the Tomcat class to handle the messaging with 

AntsaChessEndpoint. 

 

The communication happens using pure Java objects as it was shown in section 5.1. 

From ChessServer’s perspective the incoming messages are received in the Tomcat 

class from ObjectInputStream and outgoing messages are sent to ObjectOutputStream. 

Only one message is received from ObjectInputStream at a time since the web server 

synchronizes the messages to ChessServer. In a theoretical scenario ChessServer 



39 

  

might need to access an external database to write player data or statistics while 

processing messages. Anyhow, handling each message takes an unknown amount of 

time during which another message from the web server can already arrive. For these 

kind of situations Tomcat assigns a fixed thread pool of the size of ten threads using a 

java.util.concurrent.ExecutorService for handling incoming messages. 

 

The ExecutorService’s execute method handles threads so that it might use the current 

thread, create a new thread or use a thread from the pool when executing a message 

task (Oracle: ExecutorService).  When Tomcat class receives a message it always 

creates a new WebClientMessageHandler instance which implements the 

java.lang.Runnable interface. The new instance of WebClientMessageHandler takes 

care of the message and is executed by ExecutorService. After creating the handler 

class Tomcat returns to listen to new messages. See Appendix 11 for the code used in 

the Tomcat class. 

  

WebClientMessageHandler is a class dedicated to using ChessServer’s methods and 

sending response back to the web server. The core classes and their relations are 

introduced in Figure 18. 

 

WebMessageClientHandler receives a java.io.ObjectOutputStream handle as a 

parameter to communicate back to the web server in a synchronized manner. In most 

cases the WebMessageClientHandler immediately sends a response back to the web 

server. But for instance when chess game has ended and one player clicks the rematch 

button ChessServer only registers the first message but does not send anything back. 

When the other player also clicks rematch button then the players and spectators receive 

a message to start a new game. The main responsibility of the 

WebMessageClientHandler is to interpret the parameters from ChessRequest<T> and 

use ChessServer’s provided methods with the extracted parameters. Appendix 12 shows 

how some of the methods are implemented in ChessServer. Appendix 13 shows how 

the WebClientMessageHandler utilizes ChessServer’s services. 

. 

  



40 

  

6 AntsaChess Game with Object Oriented Style 

 

In this chapter it is shown how the digital AntsaChess game is developed from the parts 

that are used in live chess games.  

6.1 Converting Physical Chess to Digital One 

 

It is easier to start thinking about chess in objects after looking at how real physical world 

games are conducted. A chess game is played with special chess pieces on a 

chessboard. The board is usually located on a table and around the table there are two 

players. Furthermore, there might be occasional spectators watching the game. Certain 

rules define the game and there might be an optional chess clock. Often several games 

are played during one session and pieces are changed between players after a game 

has ended. In the description above the underlined words are potential core objects to 

be used in any chess application with any object oriented programming language. In the 

case of AntsaChess Java is used which is an object oriented programming language by 

nature (James Gosling, Henry McGilton: 1996).  

 

After thinking more thoroughly about the objects it can be quickly discovered that the 

sole core objects are not enough. A real chessboard consists of squares that might have 

different type and coloured chess piece. The players move the pieces in turns according 

to the rules. The dilemma is how the various chess rules can be applied and verifying 

that actions happen in the correct order. To overcome this dilemma a first option could 

be using a RuleBase object which validates every input received, calculates every 

allowed move and gives responses accordingly. This kind of an approach might end up 

in Swiss army knife anti-pattern situation where one class has too many responsibilities.  

 

A second option could be to split the rules totally between objects. The problem with this 

approach could be that the rule logic is too decentralized and information needed in one 

object instance is not easily available. An example of a situation like this could be the 

king’s castling move. It can be done only in the player’s own turn if the rook involved has 

not moved, the king itself has not moved, the king is not in check, no piece is blocking 

the move, an opponent piece is not able to move in castling squares and an opponent 

pawn is not reserving the squares involved diagonally. Outside of the moving rule logic 

a player can choose to resign on his/her own will and players can mutually agree to draw 

the game. For the reasons mentioned above AntsaChess uses a combination of the first 



41 

  

and second option where there is a master controller for the rules but not containing all 

the calculations. 

 

6.2 Processing Games 

 

Figure 21 is a snapshot from the Eclipse workspace of AntsaChess project’s classes that 

are used for creating the games, maintaining their states and controlling the rules. 

 

 

Figure 21. Java classes from AntsaChessServer -project. 

 

Several consecutive games can be played against the same opponent and spectators 

are able to watch the games. It can be noticed that there is no Spectator nor Chat object. 

The reason for this is that spectators are also ChessPlayers and chat messages are not 

stored in the game thus they are conveyed outside the game concept. The main output 



42 

  

object that game returns is MoveResult which contains information about the chess 

pieces on board, where they can move and what the user can do and show next. 

ChessServer implements IAntsaChessInterface which defines how ChessServer can be 

used inside AntsaChess domain. Detailed information is shown in Figure 22. 

 

 

Figure 22. ChessServer and its interface. 

 

ChessServer handles all simultaneous games and directs actions to the correct tables 

based on tableId. IAntsaChessServer interface shows all operations that can be invoked 

from outside of ChessServer class. The operations could also take 



43 

  

ChessRequest<ChessMessage> as the sole input parameter since this object contains 

all the information needed to handle the message (ChessRequest details are described 

in section 5.1). In some cases the method invoker WebClientMessageHandler, has 

already checked the information from ChessRequest and extracted it earlier.  

 

The removeTable method takes playerId as a parameter and not tableId. This is because 

only the creator of the table can remove it. The downside of this decision is that only one 

table per player can be created at a time. 

6.3 Table and Game Concept 

Figure 23 shows AntsaChess class diagram of the table and game concept. 

 

 

Figure 23. Class diagram used for playing games.  



44 

  

 

ChessServer as the master controller holds references to all game related objects.  

The table class provides access to tamper the state of the game and the players in a 

game. The table contains GameSession which has handle to the actual game. The game 

knows the players which are playing, has a reference to ChessBoardWrapper and Turn 

objects. ChessBoardWrapper is the main rule base class but logic is divided also to other 

classes.  

 

The turn class is responsible for maintaining information about which player is expected 

to make the next move and how much time the player has left. ChessBoardWrapper asks 

from the Turn object if the player who sent the move is actually in turn. If the player is 

not in turn ChessBoardWrapper sends back a MoveResult object which contains a Java 

enum titled GameActionResult.MOVE_NOT_ALLOWED. GameActionResult options are 

described later on this chapter. 

 

Turn class is also responsible for handling timing controls of the players. Both of the 

players have the same selected time amount left in the beginning and after the first move 

time reducing starts. Turn executes java.util.concurrent.ScheduledExecutorService for 

every 500 ms which reduces 500 ms from the time the player in turn has left. The reason 

for timing starts only after the first move is that the UI takes a little time to load and the 

players can change words in the chat before starting. 500 ms was chosen because 1000 

ms did not seem accurate enough. 

 

The turn class does not end the game immediately when time left has gone to zero. This 

is because players can make a move faster than 500 milliseconds but the time penalty 

is always 500 ms. Also, the client UI updates take milliseconds and network latency 

varies between clients. When player’s time left has gone more than 1500 milliseconds 

below zero the ScheduledExecutorService is shut down and the Turn class uses 

ChessServer to send timeout. ChessServer then uses the Tomcat class to push the 

message to players and spectators. The Game class shuts down the 

ScheduledExecutorService if the game ends before time runs out. It is necessary to 

check timings on the server side clock. If time left would be reduced only after the move 

comes in then there could be a situation that a player knows that he/she loses the game 

and might not make a move at all. This would mean that the game never ends on the 

server side and the opponent would end up waiting for the timeout based on the last 

move that never comes. One possibility still is that the move might come to ChessServer 



45 

  

immediately after time out has already been sent. Before making a move, promotion or 

castling the ChessBoardWrapper verifies from the Turn class that the player has not 

timed out. 

 

The abstract Piece class knows the piece type and on what square in the chessboard it 

is. Implementing Piece classes e.g. King has their own moving rules which the pieces 

calculate by themselves getting the ChessBoard(Wrapper) as a calculation parameter. 

Pieces fill the availableSquare list based on their own rules. However, the Piece 

instances do not care about the ongoing situation on the board they always calculate the 

available squares based on their own moving rules.  

 

It is the ChessBoardWrapper object’s responsibility to remove the illegal squares from 

the pieces’ availableSquare list based on the ongoing situation on the chessboard. An 

example of a situation when ChessBoardWrapper removes a square from a piece’s 

available squares list is when the available Square would expose the player’s own king 

to an opponent piece attack. Another example when an already calculated available 

Square is removed is when the player’s own King is in a check situation and the piece 

cannot eat the threating piece or the calculated Square is not blocking the threat. 

 

ChessBoardWrapper internally stores the chessboard in a two dimensional Square 

object array. Table 7 shows the naming scheme used. 

 

Table 7. Chessboard as two dimensional array. 

8 00 01 02 03 04 05 06 07 

7 10 11 12 13 14 15 16 17 

6 20 21 22 23 24 25 26 27 

5 30 31 32 33 34 35 36 37 

4 40 41 42 43 44 45 46 47 

3 50 51 52 53 54 55 56 57 

2 60 61 62 63 64 65 66 67 

1 70 71 72 73 74 75 76 77 

 A B C D E F G H 

 

In a real chessboard squares are usually named with letters A -H and numbers from one 

to eight is used. In AntsaChess square H5 is called “37”.  



46 

  

When a rematch is started a new Game object is created and set to GameSession 

replacing the old game. MoveResult is a class from the AntsaChessInterface project and 

it provides information for the UI about what to show and do in different situations. 

MoveResult contains GameActionResult which is a Java enum containing titles such as 

MOVE_NOT_ALLOWED, MOVE_DONE, CASTLING, PASSANT_DONE, TIMEOUT, 

WAITING_PROMOTION_SELECTION and CHECKMATE. GameActionResult is a title 

for MoveResult. Based on the title the utilisers know which fields they need to read from 

MoveResult. GameActionResult is also used internally in promotion situations.  

 

The AvailableMove class contains a knowledge about the piece position in String format 

as in “34” and a list about the squares – in String format, where the piece can move. 

Each game has a single Turn object that measures time for both of the players. If the 

server side game time runs out the Turn object sends a push message using 

ChessServer’s IAntsaChessServer interface which ChessServer implements. 

 

  



47 

  

7 Testing and Analysing AntsaChess 

 

The AntsaChess system consist of the UI, the web server and ChessServer. This chapter 

focuses on testing some of the parts that might cause problems when the user amount 

increases. In addition, some ideas is given about how a similar kind of game system 

could be tested for ensuring the correct results. 

 

7.1 Testing Chess Moves 

 

Verifying that the pieces are able to make only correct moves is a complex task. The 

number of move combinations is enormous because every made move changes the 

state of the chessboard which possibly has effect on other pieces. Also, the opponent’s 

potential moves affect what the player in turn can do. Manual testing through UI is the 

most realistic but very time consuming way to verify that a player can make only the 

moves allowed by the rules. 

 

In the basic flow it is required to start ChessServer and the web server, open two browser 

windows or tabs, log in, create a table and join a game. After these initiative tasks the 

wanted board position needs to be played in order to see what are the valid moves for a 

piece in test. If some move accidentally goes wrong then a new game needs to be started 

and played to the same position again. One way to fasten the process on the server side 

is to setup a precondition where opening a starting page would automatically create a 

table for the first browser and to join from another browser. Still moving the pieces to 

erroneous positions is required. 

 

Another way to test is without the UI at all. This can be done by creating only the pieces 

needed in the current test scenario and put them in correct positions on the board. Figure 

24 shows a test code where it was programmatically tested that a player with white 

pieces could make a castling to the left side starting from the beginning of the game. 



48 

  

  

Figure 24. Asserts can be used for testing moves and validating outputs. 

 

In Figure 24 an instance of ChessBoardWrapper object is created on the main method. 

Internally this class setups the chessboard to the starting position using a two 

dimensional Square [8][8] object. There was no Table nor ChessServer objects related 

to the test since the intention was to test that a certain move sequence is allowed and 

castling occured. Moving started from the line 23 with E2 to E4 square (64 - 44) followed 

by E7 to E5 (14 - 34) ending up in the white king’s castling. If the ChessboardWrapper 

returned anything else than GameActionResut.MOVE_DONE on any of the moves 

before the castling move then the test case would fail. 

 

Java asserts can be used to create a test set which at best verifies the wanted results 

throughout the lifecycle of a system. Java virtual machine needs a special -ea parameter 

for enabling asserts. Using the assert style for testing is convenient when one needs to 

verify that the program flow goes as expected (Oracle: Programming With Assertions). 

If all the moves go through before the castling move then putting a debugger breakpoint 

for example at line 43 in Figure 24 and then going step by step through the code saves 

time when finding out why the king is not able to make the castling. This kind of a testing 

mechanism and can be used with some of the trickier cases during development. 



49 

  

  

7.2 Message Delivery Times between Domain Systems 

 

The purpose of this test was to find out how much time it takes for sending ChessRequest 

with different payloads from the web server to ChessServer. In a multithread environment 

which the AntsaChess concept is many threads might want to use the shared TCP/IP 

connection at the same time. Without synchronizing these writes on both ends the result 

would end up in a failure. The penalty of synchronizing is that only one thread can write 

at time and other threads need to wait for the previous one to complete.  

 

The message delivery must be fast in order for the game and other actions to be fluent. 

Some magnitude of the connection locking times could be obtained by creating a manual 

test with a few browser tabs using the development computer as the test device and 

Eclipse as a platform. The test computer had Windows 10 and hardware which consisted 

of Intel Core i5 3230M @ 2.6 GHz and 6 GB DDR3 memory @ 1600MHz with 4 cores 

available to Java virtual machine. Table 8 shows the lock duration time when the web 

server sent a java object to ChessServer. 

 

Table 8. Locking times for TCP/IP connection. 

 

Message Locktime (ms) 

LOGIN 16 

LOGIN 3 

LOGIN 1 

LOGIN 3 

CREATE_TABLE 1 

REMOVE_TABLE 1 

CREATE_TABLE 2 

JOIN_TABLE 2 

MOVE 2 

MOVE 2 

PROMOTE 2 

CHAT_MESSAGE 4 

CHAT_MESSAGE 2 



50 

  

By looking at Table 8 it can be detected that sending an object to ChessServer for the 

first time takes 4 -16 times more than average. After restarting the servers and testing 

the locking times for a second time the results were similar. Most likely sending the first 

object through the pipe took more time because of the internal initialization of 

java.io.ObjectOutputStream.  Tests were done comparing system timestamps just before 

an object was serialized and after the deserialization was completed and the object was 

ready to use. 

 

The conclusion from the test was that the message payloads are not too big since the 

maximum locking time was 16 ms. At this point when there was not so many concurrent 

users no further actions were needed to improve delivery times. With better hardware 

the locking times could be a little lower.  It is also good to notice that there was no other 

threads waiting during the test since the test was done using one UI at a time. In addition, 

the servers resided on a single computer thus there was real network between the web 

server and ChessServer. 

 

7.3 Performance Testing 

 

At this point the system internal robustness was unknown. There was no testing group 

to help verifying that how many concurrent games can be played. For finding out 

reasonable system limits a test code was generated. The following tests were run in a 

sequence so that only the code relevant to current test is shown and the tests 

demonstrated are continuation to the previous one. 

 

IAntsaChessServer and its implementing class ChessServer were modified so that it was 

possible to reference the players and the tables outside ChessServer. Otherwise 

references to tables and players would have been needed to store also in test code. 

Tests were run using Oracle JRE 1.8.0_121. 

 

Logging players in  

 

In Figure 25 there is code for testing can ChessServer handle 30 000 logins created from 

the main thread.  



51 

  

 

 

 

Figure 25. Code and the output of the test. 

 

ChessServer expected that a key “p0” has a nickname as a value. In Figure 25 the 

number of the loop iteration was used as the value for a single login. The result was that 

all 30 000 players were able to login approximately in half a minute. This number of 

successful logged in players was more than enough. Players were internally put to a 

java.util.ConcurrentHashMap which is thread safe meaning that using several concurrent 

threads to do the same work would be fine.  

 

Available number of concurrent tables 

 

The purpose of this test was to find out whether all the 30 000 logged in players can also 

create a table with one minute game time. The test was carried out with the additional 

piece of code shown in Figure 26. 



52 

  

 

Figure 26. Code and output for creating tables. 

 

The result was that all the 30 000 players could create their own table in approximately 

half of a minute. 

 

Joining a game 

 

With 30 000 players the maximum of concurrent games is 15 000 because a game needs 

two players. The purpose of this test was to verify whether 15 000 players can join into 

existing tables - one for each. Figure 27 show the additional test code and its output is. 

 



53 

  

 

 

Figure 27. Code and output for creating tables and joining them. 

 

The result of this test shows that all 15 000 players were able to join the table since no 

exception was thrown. All actions took time about 40 seconds. 

 

Playing the game 

 

The purpose of this test was to find out how much ChessServer needs time for validating 

a move and changing turn under a heavy load. A similar concept to the one AntsaChess 

uses in reality was used. ChessServer’s move method was called by 

WebClientMessageHandler and the method’s return value was serialized to a new test 

class. In this test 3000 players were logged in and 1500 tables were created. In the 

beginning of the games all 1500 players with white pieces tried to move a white piece 

pawn from E2 to E4  followed by a black piece move pawn from E7 to E5.  



54 

  

A new test class AntsaChessEndpointMock was created in ChessServer domain. This 

class represented the real AntsaChessEndpoint class in web server domain that handles 

messages between browsers and ChessServer. The connection between ChessServer 

and the mock class was created in static block as shown in Figure 28. 

 

 

 

Figure 28. Code used in AntsaChessEndpointMock. 



55 

  

 

Real AntsaChessEndpoint uses a similar concept as the mock class. The part where the 

message is examined more closely in the real AntsaChessEndpoint and sent to browsers 

is omitted. 

 

Figure 29 shows the code part how the connection between mock class and 

ChessServer was created. 

 

 

Figure 29. Code for creating the connection between ChessServer and mock. 

 

After running the code from Figure 29 all 3000 logins and 1500 tables was created using 

the same code from previous examples. Figure 30 shows the additional code used in 

this test where all tables are iterated and the two moves in each are sent to ChessServer 

using the WebClientMessageHandler class. 



56 

  

 

Figure 30. Additional code used in the test. 

 

The code in Figure 30 puts the running thread to sleep for 20 ms after the first move is 

executed. If the sleep time was lower than 20 ms then in some of the tables the second 

move got a response stating that MOVE_NOT_ALLOWED. This was because 

ChessServer had not enough time for validating the previous move in the table and the 

turn had not changed yet. The lower the sleep time was the more often this response 

was received. 

 

AntsaChessEndpointMock class counted all received messages tagged with the MOVE 

header. 

 



57 

  

 

The beginning and the end of the output from this test can be seen in Figure 31. 

 

 

 

 

Figure 31. Output from the beginning and from the end of test. 

 

Looking at the output lines in Figure 31 it was detected that all logins took less than a 

second likewise creating the tables and joining them. The Mock class received move 

messages in a different order as they were originally sent from the Tester class. 

ExecutorService’s implementing class has its internal rules for handling tasks. A thread 

pool with 10 threads was chosen because in real application Tomcat class has the same 

number. 

 

The Tester class finished sending 3000 moves in a little over 30 seconds but the elapsed 

time was rounded to 30 seconds. Most of the time went in waiting between moves where 

the thread was sleeping. One message still arrived in AntsaChessEndpointMock when 

the Tester class in main thread had already finished. 



58 

  

The games were still ongoing even though all wanted moves were sent meaning that 

1500 tables still ran a counter which reduced the game time for the players in turn. After 

the game time ended in the tables ChessServer sent a timeout message for each table. 

The Mock class started to add the counter based on messages’ TIMEOUT header.  

 

The total number of logged messages was 4500 which contained 3000 MOVE messages 

and 1500 timeout messages. This test was successful. However, it cannot be guaranteed 

that 20 ms would always be enough for validating a move and changing the turn. 

Diminishing little the main thread sleep time between moves caused problems where for 

example the Turn class did not shut down the chess clock timer. Nevertheless, selecting 

a chess piece and sending the next move from a real browser takes a lot more time than 

20 ms. As a conclusion of this test it can be said that validating a move and changing 

the turn takes about 20 ms. 

 

  



59 

  

8 Summary 

 

It was found out that WebSockets between the web server and clients’ browsers enable 

dynamic and fast online games. Messaging between the frontend and the backend 

seemed to be very fast using the architecture created in the proof of concept phase. 

However, it must be understood that messaging differs from HTTP GET/POST methods 

where requests and responses can be thought of as pair. In AntsaChess sending a 

message from the UI does not necessarily need to create any response since the 

messages are independent from each other. 

 

There is no backup if the receiver fails to notice or react on a sent message. An example 

of this kind of a situation could be that a player with white pieces makes a first move 

immediately after his/her UI is loaded. The system sends the move over to the opponent 

but the UI might not yet be fully loaded meaning that the player with black pieces never 

sees the first move. 

 

The chess clock on the UI side worked fine during the chess development time. However, 

when the game was played against a real opponent it was soon noticed that the UI chess 

clock time ran out much faster than the server side chess clock. The reason for this was 

that with a real opponent some of the moves were made much faster than one move per 

second. The UI removes always at least a second from the player’s or the opponent’s 

chess clock. If moves are made every half a second then in a one minute game the UI 

chess clock would run out after half minute. However, this did not affect the gameplay 

and merely caused some confusion.   

 

There is no perfect solution for the online computer timing dilemma where both players 

would get the exactly equal amount of thinking time. Network latency is different between 

players and the server. Furthermore, network latency can vary even between every move 

so manipulating the chess clock based on ping times would not make the timing perfect. 

In addition, the end devices and server(s) load varies in time meaning that processing 

the messages do not always take the same amount of time. Usability vise microseconds 

nor milliseconds difference has no effect. However, a better approach in AntsaChess 

would have been to synchronize the UI chess clock with the server side chess clock on 

every move. The move command JSON already contains information about how much 

the players have time left and it would have been less confusing to add or remove a 



60 

  

second to the chess clock every now and then instead of wondering why does the game 

not end when the chess clock goes to zero in the UI. 

 

One of the biggest misconceptions in the development was related to WebSockets. Until 

the very end of the implementation part, the impression was that there was only a single 

instance of WebSocket endpoint in the web server that handles all client connections. 

Actually the Tomcat web server creates an endpoint instance for every client. If this had 

been known after the POC phase the architecture could have been different so that the 

web server could have created direct TCP/IP connection per client instance to 

AntsaChessServer. There would not have been need for private token identifier at all 

since it would have been known that a connection pipe belongs to a certain player. With 

the current architecture many concurrent users will most likely form some sort of a bottle 

neck at some point since the single connection pipe is synchronized. 

 

However the truth is not that unambiguous. Considering a theoretical scenario where the 

chess world championship final match is played on robust AntsaChess and 9998 people 

were following the match concurrently online. With the current architecture the web 

server is responsible for delivering the moves for the 10 000 people around the table and 

ChessServer needs to send the moves only once to the web server. With an architecture 

where 10 000 TCP/IP pipes would be created directly from the web server to 

AntsaChessServer it is necessary to first transfer the same information in all TCP/IP 

pipes and web server would still need to deliver the data to all client WebSockets. 

Designing the architecture for any software would be easier if it was beforehand known 

how the application will be used and what the average and peak time user numbers are. 

 

Looking at the initial requirements set for the system it be can said that five out of eight 

requirements were applied. All requirements with critical and high status were 

implemented. Measuring user experience was not done using a questionnaire as it was 

originally considered. Instead feedback and ideas were received during the study and 

real live games from the instructor of the thesis. Localisation and gathering user statistics 

were left for future development. 

  



61 

  

References 

 

Mozilla Developer network, A Typical HTTP session,  

https://developer.mozilla.org/en-US/docs/Web/HTTP/Session (Accessed Apr 17 2017) 

 

Network Working Group, June 1999, RFC 2616 HTTP 1.1 

https://tools.ietf.org/html/rfc2616  (Accessed Apr 17 2017) 

 

Mozilla Developer network, WebRTC data channels,  

https://developer.mozilla.org/en-US/docs/Games/Techniques/WebRTC_data_channels  

(Accessed Apr 17 2017) 

 

Internet Engineering Task Force, Dec 2011, The WebSocket Protocol  

https://tools.ietf.org/html/rfc6455 (Accessed Apr 17 2017) 

 

Apple iPhone 5, Jan 2017, Technical Specifications 

https://support.apple.com/kb/SP655?viewlocale=en_US&locale=fi_FI (Accessed Apr 17 

2017) 

 

W3Schools, JSON - Introduction 

http://www.w3schools.com/js/js_json_intro.asp (Accessed Apr 17 2017) 

 

AngularJS, FAQ 

https://docs.angularjs.org/misc/faq (Accessed Apr 17 2017) 

 

jQuery, What is jQuery? 

https://jquery.com/ (Accessed Apr 17 2017) 

 

Oracle, Class UUID 

https://docs.oracle.com/javase/8/docs/api/java/util/UUID.html  (Accessed Apr 17 2017) 

 

Wikipedia, Image use policy, User-created images 

https://en.wikipedia.org/wiki/Wikipedia:Image_use_policy  (Accessed Apr 17 2017) 

 

 

 

https://developer.mozilla.org/en-US/docs/Web/HTTP/Session
https://tools.ietf.org/html/rfc2616
https://developer.mozilla.org/en-US/docs/Games/Techniques/WebRTC_data_channels
https://tools.ietf.org/html/rfc6455
https://support.apple.com/kb/SP655?viewlocale=en_US&locale=fi_FI
http://www.w3schools.com/js/js_json_intro.asp
https://docs.angularjs.org/misc/faq
https://jquery.com/
https://docs.oracle.com/javase/8/docs/api/java/util/UUID.html
https://en.wikipedia.org/wiki/Wikipedia:Image_use_policy


62 

  

Johan Vos, Oracle, Apr 2013, JSR 356, Java API for WebSocket 

http://www.oracle.com/technetwork/articles/java/jsr356-1937161.html  (Accessed Apr 17 

2017) 

 

Johan Vos: Oracle, Apr 2013, JSR 356, Annotation-Driven Approach 

http://www.oracle.com/technetwork/articles/java/jsr356-1937161.html  (Accessed Apr 17 

2017) 

 

Techopedia, Proof of Concept (POC) 

https://www.techopedia.com/definition/4066/proof-of-concept-poc 

(Accessed Apr 17 2017) 

 

The Apache Software Foundation, May 2015, Apache Tomcat 8, 

http://tomcat.apache.org/tomcat-8.0-doc/web-socket-howto.html, (Accessed Apr 17 

2017) 

 

Eclipse, Jetty 

http://www.eclipse.org/jetty/  (Accessed Apr 17 2017) 

 

caniuse, May 2015, Web Sockets, 

http://caniuse.com/#feat=websockets (Accessed Apr 17 2017) 

 

HTML5 final recommendation, 28 Oct 2014, 

https://www.w3.org/TR/html5/ (Accessed Apr 17 2017) 

 

Oracle, ExecutorService execute method 

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html#execute-

java.lang.Runnable-  (Accessed Apr 17 2017) 

 
James Gosling, Henry McGilton 1996,The Java™ Language Environment  
A White Paper (1.2.1) 
www.hs-
augsburg.de/informatik/projekte/mebib/emiel/entw_inf/lernprogramme/java/Tools/Java/
Doc/Papers/langenviron.pdf  (Accessed Apr 17 2017) 
 
 
Oracle, Programming With Assertions 
http://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html   
Accessed Apr 17 2017)  

http://www.oracle.com/technetwork/articles/java/jsr356-1937161.html
http://www.oracle.com/technetwork/articles/java/jsr356-1937161.html
https://www.techopedia.com/definition/4066/proof-of-concept-poc
http://tomcat.apache.org/tomcat-8.0-doc/web-socket-howto.html
http://www.eclipse.org/jetty/
http://caniuse.com/#feat=websockets
https://www.w3.org/TR/html5/
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html#execute-java.lang.Runnable-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html#execute-java.lang.Runnable-
http://www.hs-augsburg.de/informatik/projekte/mebib/emiel/entw_inf/lernprogramme/java/Tools/Java/Doc/Papers/langenviron.pdf
http://www.hs-augsburg.de/informatik/projekte/mebib/emiel/entw_inf/lernprogramme/java/Tools/Java/Doc/Papers/langenviron.pdf
http://www.hs-augsburg.de/informatik/projekte/mebib/emiel/entw_inf/lernprogramme/java/Tools/Java/Doc/Papers/langenviron.pdf
http://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html


Appendix 1 

  1 (1) 

 

  

Websocket.js 

 

 

 



Appendix 2 

  1 (1) 

 

 

  

First version of Lobby UI 

 



Appendix 3 

  1 (1) 

 

 

  

Start game with white pieces command peek 
 

message { } 
area "TABLE" 
command "START_GAME_AS_WHITE" 
gameInfo { } 

blackPlayerName "Joiner" 
blackLeft 300 
tableId "4bce2941-e24b-4ffb-86e9-df990d0056c5" 
boardPosition { } 

positions { } 
0 { } 

pieceType "fake" 

imageUrl 
"https://upload.wikimedia.org/wikipedia/commons/b/b1/Che
ss_blt45.svg" 

1 { } 
pieceType "rook" 

imageUrl 
"https://upload.wikimedia.org/wikipedia/commons/f/ff/Chess
_rdt45.svg" 

coordinates "00" 
colorAbr "b" 
availableMo
ves 

" " 

2 { } 
3 { } 
 lines  omitted 
59 { } 
pieceType "pawn" 

imageUrl 
"https://upload.wikimedia.org/wikipedia/commons/4/45/Che
ss_plt45.svg" 

coordinates "64" 
colorAbr "w" 
availableMove
s 

"54,44," 

60 { } 
69 { } 
pieceType "bishop" 
imageUrl "https://upload.wikimedia...ns/b/b1/Chess_blt45.svg" 
coordinates "75" 
colorAbr "w" 
availableMove
s 

" " 

70 { } 
71 { } 
whiteLeft 300 
whitePlayerNa
me 

"Antsa" 



Appendix 4 

  1(1) 

 

 

  

Piece image URLs 

 

Pawn light 

https://upload.wikimedia.org/wikipedia/commons/4/45/Chess_plt45.svg 

Pawn dark 

https://upload.wikimedia.org/wikipedia/commons/c/c7/Chess_pdt45.svg  

Queen light 

https://upload.wikimedia.org/wikipedia/commons/1/15/Chess_qlt45.svg  

Queen dark 

https://upload.wikimedia.org/wikipedia/commons/4/47/Chess_qdt45.svg  

King light 

https://upload.wikimedia.org/wikipedia/commons/4/42/Chess_klt45.svg  

King dark 

https://upload.wikimedia.org/wikipedia/commons/f/f0/Chess_kdt45.svg  

Bishop light 

https://upload.wikimedia.org/wikipedia/commons/b/b1/Chess_blt45.svg  

Bishop dark 

https://upload.wikimedia.org/wikipedia/commons/9/98/Chess_bdt45.svg  

Knight light 

https://upload.wikimedia.org/wikipedia/commons/7/70/Chess_nlt45.svg  

Knight dark  

https://upload.wikimedia.org/wikipedia/commons/e/ef/Chess_ndt45.svg 

Rook light 

https://upload.wikimedia.org/wikipedia/commons/7/72/Chess_rlt45.svg  

Rook dark 

https://upload.wikimedia.org/wikipedia/commons/f/ff/Chess_rdt45.svg

https://upload.wikimedia.org/wikipedia/commons/4/45/Chess_plt45.svg
https://upload.wikimedia.org/wikipedia/commons/c/c7/Chess_pdt45.svg
https://upload.wikimedia.org/wikipedia/commons/1/15/Chess_qlt45.svg
https://upload.wikimedia.org/wikipedia/commons/4/47/Chess_qdt45.svg
https://upload.wikimedia.org/wikipedia/commons/4/42/Chess_klt45.svg
https://upload.wikimedia.org/wikipedia/commons/f/f0/Chess_kdt45.svg
https://upload.wikimedia.org/wikipedia/commons/b/b1/Chess_blt45.svg
https://upload.wikimedia.org/wikipedia/commons/9/98/Chess_bdt45.svg
https://upload.wikimedia.org/wikipedia/commons/7/70/Chess_nlt45.svg
https://upload.wikimedia.org/wikipedia/commons/e/ef/Chess_ndt45.svg
https://upload.wikimedia.org/wikipedia/commons/7/72/Chess_rlt45.svg
https://upload.wikimedia.org/wikipedia/commons/f/ff/Chess_rdt45.svg


Appendix 5 

  1(4) 

 

 

  

 
Chessboard.js JavaScript peek 

 

 

 

 



Appendix 5 

  2(4) 

 

 

  

 

 

 



Appendix 5 

  3(4) 

 

 

  

 

 



Appendix 5 

  4(4) 

 

 

  



Appendix 6 

  1(1) 

 

 

  

Example of Move -command sent from backend 
 
 

JSON 
{message: {area: "TABLE", command: "MOVE", moveFrom: "71", 
more...}} 

message {area: "TABLE", command: "MOVE", moveFrom: "71", more...} 
area "TABLE" 
command "MOVE" 
moveFrom "71" 
moveTo "50" 
timeLeftWhite "300" 
timeLeftBlack "300" 
colorInTurn "b" 

availableMoves 
{0: {piecePosition: "01", availableMoves: {0: "20", 1: "22"}}, 1: 
{piecePosition: "06", availableMoves: {0: "25", 1: "27"}}, 2: 
{piecePosition: "10", availableMoves: {0: "20", 1: "30"}}, more...} 

0 {piecePosition: "01", availableMoves: {0: "20", 1: "22"}} 
1 {piecePosition: "06", availableMoves: {0: "25", 1: "27"}} 
2 {piecePosition: "10", availableMoves: {0: "20", 1: "30"}} 
3 {piecePosition: "11", availableMoves: {0: "21", 1: "31"}} 
4 {piecePosition: "12", availableMoves: {0: "22", 1: "32"}} 
5 {piecePosition: "13", availableMoves: {0: "23", 1: "33"}} 
6 {piecePosition: "14", availableMoves: {0: "24", 1: "34"}} 
7 {piecePosition: "15", availableMoves: {0: "25", 1: "35"}} 
8 {piecePosition: "16", availableMoves: {0: "26", 1: "36"}} 
9 {piecePosition: "17", availableMoves: {0: "27", 1: "37"}} 

 



Appendix 7 

  1(1) 

 

 

  

ChessRequest.java 

 

  
 



Appendix 8 

  1(1) 

 

 

  

ChessMessage.java 

 

 



Appendix 9 

  1(1) 

 

 

  

ChessMessageHeader.java 

 

 



Appendix 10 

  1(1) 

 

 

  

ChessMessageToken.java 
 

 

 



Appendix 11 

  1(1) 

 

 

  

 

Tomcat.java 

 

 



Appendix 12 

  1(5) 

 

 

  

ChessServer.java code peek 

 

 



Appendix 12 

  2(5) 

 

 

  

 

 



Appendix 12 

  3(5) 

 

 

  



Appendix 12 

  4(5) 

 

 

  

 

  



Appendix 12 

  5(5) 

 

 

  

 



Appendix 13 

  1(3) 

 

 

  

WebClientMessageHandler.java code peek 

 

 



Appendix 13 

  2(3) 

 

 

  

 

 



Appendix 13 

  3(3) 

 

 

  

 


