

Aki Riisiö

Windows Powershell Monitoring System

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

8.5.2017

 Abstract

Author
Title

Number of Pages
Date

Aki Riisiö
Windows Powershell Monitoring System

45 pages + 8 appendices
8 May 2017

Degree Bachelor of Engineering

Degree Programme Information technology

Specialisation option Data networks

Instructor

Markku Nuutinen, Principal Lecturer

Icinga is a free, open source monitoring system used worldwide. Companies such as Audi,

Debian and McGill are relying on the extremely efficient services Icinga provides.

To smaller companies e.g Canter Oy, monitoring services and servers are crucial for sup-

plying customers with efficient support. Monitoring improves customer service by minimiz-

ing the reaction time if an issue emerges, whether a service has gone down, CPU usage is

too high or backups are missing.

While Icinga is free, it requires actions from corporate internet service providers (ISPs) to

open connections to the customers’ servers. The IP traffic between servers needs to be

enabled and certain ports need to be opened.

Every time a new customer is installed to Icinga, this forces Canter to send a support re-

quest to their ISP to make the desired changes and this leads to extra costs. This is time

consuming and often the needed configurations cannot be done either due to VPN con-

nections or security issues.

The purpose of this thesis was to provide an alternate solution for service and server moni-

toring. A completely new monitoring system for Windows servers was created requiring no

actions from ISPs. No IP traffic nor port modifications are needed. This also fixes the prob-

lem Icinga has had with VPN connections, since this new product sends the data from the

servers directly to a cloud. It does not matter if the server is behind multiple firewalls or

accessible only via VPN, only access to the internet is required.

Keywords Canter, monitoring, Icinga, server

Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Aki Riisiö
Windows Powershell -valvontajärjestelmä

45 sivua + 8 liitettä
8.5.2017

Tutkinto Insinööri (AMK)

Koulutusohjelma Tietotekniikka

Suuntautumisvaihtoehto Tietoverkot

Ohjaaja

Yliopettaja Markku Nuutinen

Insinöörityön tarkoitus oli toteuttaa vaihtoehtoinen ratkaisu palveluiden ja palvelimien

valvonnalle. Koska kohdeyrityksen nykyinen valvontatyökalu, Icinga, riippuu vahvasti

palveluntarjoajien toimenpiteistä, mm. portti- ja yhteysavauksista, aiheutuu tästä

tarpeettomia kustannuksia aina, kun uusi asiakas lisätään valvontajärjestelmään.

Työssä toteutettiin Powershellillä uudentyyppinen valvontatyökalu, jossa data kerättiin

valvottavalta palvelimelta ja lähetettiin Dropboxin kautta Linux-palvelimelle tietokantaan.

Datan esittämistä varten laadittiin yksinkertainen verkkosivusto, jonka avulla tiedot

pystyttiin esittämään joko tauluina tai graafisesti.

Työssä luotu järjestelmä vastasi monin paikoin odotuksia ja toimi virheettömästi koko

testijakson ajan (3 kk). Koska data lähetettiin pilven välityksellä tietokantapalvelimelle, ei

palveluntarjoajaa tarvittu yhteyksien muodostamiseen ja näin valvontajärjestelmä

osoittautui erittäin kustannustehokkaaksi. Tämä tarkoitti myös sitä, että palvelimet, joita ei

tietoturvasyistä tai VPN:n (Virtual Private Network) takia pystytty valvomaan, saatiin

kytkettyä järjestelmään.

Pienellä jatkokehityksellä järjestelmästä saisi entistä tehokkaamman ja eheän. Uusien

asiakkaiden asennuksien automatisointi säästäisi yhä enemmän aikaa, ja järjestelmän

optimointi tietokannan ja verkkosivuston osalta parantaisi huomattavasti käytettävyyttä.

Avainsanat Canter, valvonta, Icinga, palvelin, Powershell

Table of contents

Abbreviations

1 Introduction 1

1.1 Canter Oy 1

1.2 Icinga 2

1.2.1 Icinga Core and Icinga Web 2

1.2.2 Icinga Configuration 3

1.2.3 Pros and Cons 5

2 Environment 6

2.1 Host Server 6

2.1.1 Ubuntu Server 14.01 8

2.2 Client Server 8

3 Powershell 9

3.1 Scripts 11

3.1.1 Properties 11

3.1.2 Disk Space 12

3.1.3 Connections 14

3.1.4 Processes 16

3.1.5 System Time 17

3.1.6 Backups 18

3.1.7 Integrations 20

3.1.8 Jboss 22

3.1.9 Changed Processes 23

4 Configuration of Environments 25

4.1 Client Server 25

4.2 Ubuntu Server 27

4.2.1 Dropbox Client 28

4.2.2 Installing LAMP 29

4.2.3 Database 31

4.2.4 Generating Tables 33

4.2.5 Automating Data Flow 34

5 Website 38

5.1 Data Tables Page 38

5.2 JPGraph 41

6 Discussion and Conclusions 44

6.1 Further Development 45

Sources 47

Appendixes

Appendix 1. Powershell scripts

Appendix 2. Script for creating the database tables

Appendix 3. Script for importing the CSV files

Appendix 4. Source code for the index page

Appendix 5. Source code for data tables page

Appendix 6. Source code for generating the graph

Appendix 7. styles.css file

Abbreviations

PIM Product information management

ERP Enterprise Resource Planning

ISP Internet Service Provider

VPN Virtual Private Network

CSV Comma Separated Value

PHP Personal Home Page or PHP: Hypertext Preprocessor

1

1 Introduction

To properly understand the purpose of the present study and why it was designed in

this specific way, one needs to describe what Canter Oy, Windows Powershell, Nagios

and Icinga are. Since Icinga is designed mostly for monitoring Linux machines, a third-

party agent called NSClient has been created. This is an agent running on a Windows

server which translates the commands from Nagios plugins to work with Windows ma-

chines.

1.1 Canter Oy

Canter Oy is a small software company focused on product information management.

With 13 employees and a last year’s revenue of 1.1 million euros Canter is the leader

in the product information management branch in the domestic market.

The main product of Canter Oy is Adeona PIM. It is software for advanced data man-

agement. Adeona PIM runs on a server as a java process on the JBoss application

server. This service has a local database connection to which the data is integrated, in

most cases, from customers’ ERP. Users can install the Adeona PIM client to their own

computer which can be used to access the service running on the server. From Ade-

ona PIM, the product data information can be distributed to channels specified by the

customer. These channels can be for example web shop for consumers or businesses,

online catalogues for sharing information inside the company or automatic publishing

service.

Like any other service on the market Adeona has its issues. Whether it is a memory

issue with the Java process, limited storage space on the server, connection issues

between the server and a host or an error during data integrations, these will cause

errors in the application. While it is nearly impossible to prevent these errors from hap-

pening, they can at least to some level be predicted. This is where monitoring comes

in. To provide desirable customer service per the SLA levels, employees must have

detailed information from the server constantly. If a process is not starting or data inte-

gration has not been able to finish properly, system managers must have the infor-

mation before the customer contacts the support system or even better, before the cus-

tomer even notices the problem.

2

At the moment, Canter is using Icinga to monitor the servers and services. This is dis-

cussed in the next chapter.

1.2 Icinga

Icinga is a free, open-source monitoring system running on a Linux server. It uses mul-

tiple plugins provided by Nagios to monitor servers installed to a network. Icinga is very

robust, reliable and extremely efficient and is used mainly among ISPs.

1.2.1 Icinga Core and Icinga Web

Icinga has two main components, Icinga Web and Icinga Core [1]. The Core compo-

nent is responsible for managing the scheduled checks using plugins provided by

Nagios. In this introduction check_nrpe (NRPE = Nagios Remote Plugin Executor)

plugin is used since it is communicating directly with the NSClient on a Windows ma-

chine. For example, if an administrator needs to check the disk space of a Windows

server directly from the Linux shell, the first step needed is to connect to the Windows

machine from the Linux server. After the connection has been completed, the admin

can define which plugin is used. Since the disk space needs to be checked, the

CheckDriveSize plugin should be used. Figure 1 shows an example command to check

disk space of a remote Windows machine using the CheckDriveSize command.

 Example command to check disk space of a remote Windows machine. Figure 1.

The command in the Figure 1 is executed from a Linux command line. It has the pa-

rameter H, which is the address of the host. In the configuration files this is set as

$HOSTADDRESS$ and it receives the correct IP address from another configuration

file, localhost.cfg.

Parameter P defines the port where the NRPE-server is running. By default, this is

5666. C is the command which is entered to the NRPE-server. MinWarn and MinCrit

parameters are set to tell when Icinga should set the status of the service to warning or

3

critical. In this case, the limit of warning status is if the amount of free space on drive C:

is below 5 gigabytes.

Icinga Core is responsible for these commands. At the moment these commands are

configured to run every 15 minutes. The results are filtered and stored in the Core’s

built in database called ido2db and are then displayed by the Icinga Web. This inter-

face can be accessed from the local network where Icinga is installed. In this case, it

can be accessed directly using the IP-address of the Linux server. The basic interface

of Icinga Web can be seen in Figure 2.

 The interface of Icinga Web. Critical status is marked as red while OK status is Figure 2.
marked as green.

List of installed hosts and services can be seen in Figure 2. Left pane is used for navi-

gation and controlling the Icinga. User can stop, restart or shutdown the service.

1.2.2 Icinga Configuration

Installing and managing Icinga may be problematic for an inexperienced Linux user.

The installation requires installing multiple components, such as Apache2, MySQL,

IDOUTILS, PHP and many others. In addition, the configuration files for Icinga might be

difficult to understand and when more and more customers are added to the monitoring

service, the size of these configurations is greatly increased.

4

Icinga has two main configuration files: localhost.cfg and commands.cfg. Localhost.cfg

includes all the hosts and their services and commands.cfg is used to define the syntax

and commands for these services. At the moment, there are 14 customers installed to

Icinga and the amount of services is 23. An average of 2 commands is configured to

each service and the number of lines in the localhost and command configuration files

are 1172 and 492.

Figures 3 and 4 below indicate what different parameters and configurations needs to

be set before installing a new customer to Icinga.

 Example of a host configuration in the localhost.cfg file. Figure 3.

 Example of a service configuration in the localhost.cfg file. Figure 4.

Figure 5 shows the basic method how commands are configured in the commands.cfg

file. Distinctive names can be given to commands, even though they are using the

available built-in Nagios plugins.

5

 Example of a command to check if a file is newer than 25 hours in the commands.cfg Figure 5.
file.

In the example above (Figure 5), the path variable is set to indicate the folder on the

Windows machine. $HOSTADDRESS$ parameter lets Icinga know that the value from

the host configuration file should be used. This can be seen in Figure 3. If the

check_command value in Figure 4 would be “check_SQL-Tiivistekeskus” the $HOS-

TADDRESS$ parameter in Figure 5 would use the IP-address given to host “ETOLA-

canter-etra-sql01”.

1.2.3 Pros and Cons

One of Icinga’s benefits is its reliability. Icinga has been in use for almost 3 years and it

has had an error only once. The combination of low memory consumption and the ro-

bustness of the Red Hat Linux server ensures that Icinga performs well, assuming that

all the necessary configurations are properly set.

The reason why a new way to monitor these servers was concidered is not that Icinga

would not perform well or that it is too difficult to configure, but that a way to filter out

the third party needed to be found. As stated previously, Icinga uses NRPE to connect

to Windows machines. The NRPE server on the Windows machine uses a specified

port which Icinga can connect to. This means that if the port is closed by an ISP the

connection cannot be established. Also, the traffic between networks by default is not

allowed which means that every time a new customer or server is installed to Icinga the

ISP needs to be contacted and a request to change the firewall rules to allow the traffic

is needed. In addition, many customers have their own servers which means that they

might have a different ISP. For example, Canter’s ISP is MPY, while Rautakesko’s

servers are maintained by Tieto Oy. This means that even if MPY has enabled the traf-

fic from Canter Oy network, the customer’s ISP needs to be contacted as well to open

the port and allow the connections to the server.

6

These requests take time and are often expensive and even if the connection has been

opened by MPY, it does not mean that Tieto will open the connections on their side.

This can be due to a security protocol or other policy issues.

There have also been issues installing a server to Icinga if the server has been behind

VPN. Since Icinga requires direct Lan2Lan tunnels or routing configurations from the

ISPs, direct connection over VPN cannot be achieved.

In this Powershell monitoring system, the required data could be sent without any prob-

lems even if the server was behind a VPN. While the requests to ISPs were mundane,

they were no longer necessary since the data was sent via cloud service. This also

removed the costs for installing a new customer to the Icinga monitoring system.

During the next chapters the environments on which the Powershell monitoring system

and the example customer’s server are running are introduced. Hardware, required

software and necessary configurations are presented. The basic functionality of the

Powershell and the scripts for data collection on the target server are examined as well

as the process how the data is stored.

The end of the paper describes how the website for this system was built and how it

can display the data stored in the database using free and open-source plugins. The

issues and the development process are discussed in the last chapter.

2 Environment

In this chapter, the hardware of the server which is monitored and the server on which

the system is running are presented. These servers are called the host and the client

server.

2.1 Host Server

For development and testing purposes Canter has installed a server inside their office

network called HADES. The server has i7-4770K CPU @ 3,50 GHz processor and 31,7

Gigabytes RAM. It has no operating system, but it has VMWare ESXi 5.5.0 (VMKernel

Release Build 2068190) running on the hardware.

7

This setup enables a convenient installation and management of multiple virtual ma-

chines. ESXi is configured to use static IP address and therefore all the virtual ma-

chines can be controlled easily using the vSphere Client.

The core of the Powershell monitoring system is installed on Ubuntu Server 14.01. The

Ubuntu Server has php5 libraries, mysql database, Apache2 web server and dropbox

client installed. These are the key components of the monitoring system.

 PHP: database scripts, data to and from database to the website

 Mysql: database for the data from the client server

 Apache2: website to view the fetched data

 dropbox: client to transfer the data via cloud

Figure 6 displays the default interface in the vSphere Client and the complete list of

installed virtual machines.

 View of vSphere Client listing all virtual machines. Figure 6.

8

The virtual machine used in this project can be seen in Figure 6 on top of the list of the

machines.

2.1.1 Ubuntu Server 14.01

The reason Ubuntu Server was chosen was that it was one of the few OS’s where the

installation of the dropbox client was fluent enough. Some of the other operating sys-

tems Canter uses, such as CentOS, were also considered but after spending multiple

hours trying to find the proper configurations for the dropbox client to work with this OS,

the idea was rejected.

Since HADES has more than enough RAM on it and it was concerning that Ubuntu

Server would not be as stable as CentOS or RedHat, it was decided that 1 GB of RAM

was allocated for the server. Installation of the Ubuntu Server was successful and no

issues emerged during the configuration of the server.

There are a few key components in addition to the list introduced in the previous chap-

ter. Cron is required to run certain scripts to handle incoming files and information se-

curity. Installation of the Dropbox client was not as easy as it was thought and it took

multiple days to configure it properly. This issue was related to the latest version of the

Dropbox and version degrade was needed.

2.2 Client Server

Client server is the server that needs to be monitored. The server is the location where

the services which a customer has bought from Canter Oy, are running. This server is

a virtual test server from VMware with operating system Windows Server 2008 R2

Standard 64-bit (6.1, Build 7601) and processor Intel® Xeon ® CPU E5-2699 v3 @

2.30 GHz, ~2.0 GHz and 4096 MB RAM. The server has Adeona JBoss and Adeona

Salestool Test installed, where JBoss is the application service running the Adeona

and Salestool is one of its plugins used to make online electronic catalogues, eCata-

logs.

9

The list of running services can be seen in Figure 7. The Adeoa JBoss, Adeona

Salestool Test and DB2 – AAMS – DB2 are the key services which maintain the Ade-

ona product.

 A list of some services on the server. Note the Adeona JBoss, Salestool Test and Figure 7.
DB2 – AAMS – DB2

The ISP of this server is MPY and Canter Oy has full administrative rights on this serv-

er.

3 Powershell

Powershell has grown in the last few years and is still rapidly becoming more popular.

The development of Powershell has greatly increased during these few years and the

ability to include Linux bash inside it is the reason why it excels the others [2]. In short,

Powershell is a scripting language built on .NET framework. It is object-oriented lan-

guage which utilizes cmdlets to perform various tasks. These cmdlets are small pro-

grams that can be called directly from the command line or from a Powershell script file

[3]. Every Windows operating system nowadays has a pre-installed Powershell.

Figure 8 shows the default layout of a Powershell command line and a basic command

to check which chrome processes are currently running.

10

 The basic view of a Powershell command line and cmdlet Figure 8.

In Figure 8 the command, “Get-Process” is the cmdlet. If the command would have

been run without the “Where-Object” statement, it would have displayed all of the run-

ning processes on the server. After the cmdlet is pipelined to the “Where-Object”, the

desired filter can be set to Powershell to modify the results. In this example, the name

of the process should be like “chrome”.

As stated above, Powershell has become more popular. A good server administrator

should be able to write and read Powershell fluently since it will be the main tool for

Windows in the future. Windows’ servers are becoming more GUI-less and this means

that the role of the Powershell becomes more and more important.

For the sake of the present study it is important to explain the basics of the Powershell

since the scripts used in this project needs to be analyzed. While technically the written

scripts do not differ in any way in the example provided above, there will be more filter-

ing, formatting and more complex commands. In the next chapter the scripts used in

this project are briefly explained.

11

3.1 Scripts

This section describes the created scripts for monitoring purposes, their functionality

and why they were designed the way they are. The scripts can be found in Appendix 1.

The scripts were designed in a way they would benefit both Canter and the customer.

There are several basic monitoring functions, such as the disk size and the amount of

CPU load on the server but also some unique functions specifically designed for the

customer. In example, there have been cases where the customer has reported multi-

ple performance issues with Adeona. Further investigations indicated that this was due

to the fact that there were too many database connections opened to Adeona. Natural-

ly, this increases the load of the database and leads to performance issues even

though the application itself would work fine. It was decided that the connections to a

specific port should also be monitored.

The customer also has several data integrations which can be monitored as well as the

Adeona service which is running on the JBoss application server.

There have been cases where a malicious user has gained access to the server

through a JBoss vulnerability. The attacker was able to set up a few bitcoin miners on

the server. These miners were masked as regular windows processes which would

turn on and off multiple times a day. It was discovered that the detection of the miners

would become easier if the frequent changes in the state of the processes could be

monitored.

3.1.1 Properties

Like any other software, this monitoring system has its own configuration parameters.

There is an option to turn some of the modules on or off, the “$date” variable is used as

a unique parameter to name the outgoing csv-files and the “$csvdir” defines the path

where these files are stored. Notice that the folder is pointing to the Dropbox folder.

Figure 9 shows the basic configurations of the monitoring system. User can choose

which modules can be used when running the scripts.

12

 Configurations in the script Figure 9.

Each of the available modules in Figure 9 will be explained during the next chapters.

3.1.2 Disk Space

Probably the most basic and common script is the disk space check. The basic struc-

ture of all the scripts is pretty much the same. First, the name of the output file is de-

fined. This is done by using the “$date” parameter with customer name, class of the

script, which in this case is the disk space check, “disk” and the folder path. This pro-

cess is done in all the scripts.

Figure 10 shows the complete command for getting the disk space. The most important

parts of this script are explained.

13

 The script used to fetch the disk space data Figure 10.

Note that the WmiObject is initialized and from which the win32_logicaldisk class is

used. It is notable that a new object is created and the items to this object are renamed

and calculated, as line “@{n='Size(GB)';e={[Math]::Round(($_.size /

1GB),2)}}” indicates. In this case the $_.size is a property of win32_logicaldisk class

and its value is formatted to gigabytes and rounded up by two decimals [4]. It is then

renamed as “Size(GB)”.

Figure 11 shows the results for the command to fetch the disk space which can be run

from any Powershell command prompt.

 Results of the disk space check in Powershell window Figure 11.

14

This is how all the scripts work and it can be seen in the results above that the results

are already in a form that they can directly be exported as csv.

3.1.3 Connections

The purpose of this script was to monitor the number of connections established to the

Adeona database. To achieve this the best way is to use the Sys-

tem.Net.NetworkInformation.IPGlobalProperties object from .NET Framework [5].

The properties of the network are stored to an array which is then filtered using the port

Adeona is using, 1098. Every connection to the port 1098 is stored to a new object as

in previous script. This new object gets parameters such as local address and port,

which are in fact the localhost address and the local port 1098, but also the remote

address and port which means that the source of the connection can be seen.

Figure 12 shows the command for getting the number of connection to a certain port.

Notable function is the GetActiveTcpConnections which stores every established con-

nection in to an array.

15

 Getting every connection to the server and looping them through and adding Figure 12.
certain parameters if the family of the connection equals “InterNetwork”

It is important to gather the network information since the data can be utilized to see if

there is any correlation between the network traffic and memory or cpu usage of Ade-

ona.

16

3.1.4 Processes

One of the key factors in monitoring an environment is to analyze and measure the

amount of processes and their performance. This is also a useful way to enhance reli-

ability and security on the server since any suspicious or malicious processes can be

seen if they are running on the server. This script contains two features. One to sum

the memory and CPU consumption of all processes and the other to list each process.

So, the output of this script is two separate csv-files.

Figure 8 shows the basic command to get information of the processes. To achieve

better results, significant amount of formatting is needed. To measure the performance

of all processes, working memory and cpu are used. However, the regular expression

in Figure 8, “Get-Process | select CPU”, only prints the number of seconds the specific

process has used the processor, not the processor usage in percentages. The number

of the regular CPU in the output might be misleading since a high CPU value does not

necessarily mean high CPU usage.

Figure 13 shows how the CPU count is formatted to a more readable format. The total

runtime of the process is related to the CPU load. Getting the results to satisfying for-

mat is easy and requires no special functions.

 Using Powershell’s math function Figure 13.

Figure 14 shows how the “measure-object” is used for example when summing each

result from one column of the table.

17

 Using the Measure-Object cmdlet Figure 14.

Figure 13 only describes the monitoring of a single process but the information of the

total CPU and memory consumption should be available. This can be done by using

the measure-object cmdlet, which calculates specified numeric properties of an object.

This can be seen in Figure 14. The results are stored to a different CSV-file, since the

information is imported to a different table in the database.

3.1.5 System Time

The time the server has been powered on can sometimes be useful information as well

as the previous time of a reboot. Powershell can record these easily by using the Get-

WmiObject cmdlet and its class called Win32_operatingsystem. From this class, only

the last boot time is needed since the uptime of the server can be calculated by sub-

tracting the last boot time from current date. Both the uptime and the last boot time are

recorded to the same CSV-file.

Figure 15 shows the complete script for getting the information. Powershell has direct

function to check how long the machine has been on.

18

 Script to calculate the time system has been on Figure 15.

Knowing how long the server has been on is crucial since servers should be on con-

stantly. Only a few times a year, boot and update is required during a scheduled

maintenance break.

3.1.6 Backups

Like every other server with a database, etraadeona01 has backups. These backups

are essential since they contain all the product data the customer has in their database.

If an issue emerges with the database and for example the whole database is corrupt-

ed it is important that the backups are present on the server so that they can be rolled

back. Therefore, it is necessary that these backups are being monitored.

Figure 16 displays the script to check if the backups exist. In Powershell, the Get-Date

works in a way that if a date in example 5 days ago needs to be set, then -5 days are

added to the cmdlet.

19

 Filtering the script to only handle backups from day before Figure 16.

The database on the server stores backups to a specified folder which in this case is

“C:\TESTDB2BACKUP”. The limit shown in Figure 16 is set as one day before current

date. The script returns a boolean value whether backup is found or not from the previ-

ous day. It also calculates the number of total backups found from this folder. Since this

folder is only for backups, there is no need to do any specific file naming or folder filter-

ing.

20

Figure 17 indicates the output if the script in Figure 16 is run directly from the

Powershell.

 The output of the backups monitoring script Figure 17.

As usual, the information is stored to a CSV-file, which is then stored to a database.

3.1.7 Integrations

As a product information company, Canter deals with remarkable amounts of product

data. One of the challenges is to transfer this data from a customers’ environment to

the Adeona database. Most of the data comes directly from a customers’ ERP to a

specified server. These servers are mostly running on a Windows operating system

and the data is integrated to a MSSQL database.

Another phase is to get the product data to be displayed on a website. This is com-

pletely different integration which depends on who is managing the customer’s web

shop. In this case, the focus is on the ERP-Adeona integration.

There are many variables regarding the data transformation. The product data itself is

usually transferred with xml-files or using REST API queries. The product images are

transferred separately, usually using rsync or ftp-transformation. Whether the product

data is transferred via REST queries or xml-files the integration always logs the pro-

cess to a log file specified by the log4j.xml together with Kettle.

Figure 18 shows the configuration currently in use in log4j software.

21

 Example log4j configuration Figure 18.

The product data of this customer is transferred by copying the ERP database directly

to the Adeona server, then using a Kettle plugin to execute three different phases:

1. erp2xml. Generates an xml file from the products that match the condition

whether a product should be moved or not. Naturally, this saves time by not

moving all of the products

2. xml2aams. Generates the product data hierarchy from the ERP database. This

is so that the products and their data find their position in the product tree.

3. data2aams. Transfers the data using temporary database tables and constructs

the data based on the previous steps. These temporary tables are then

switched to production to update the data to web.

Each of these steps generate their own log file. To be ascertain that the data has suc-

cessfully been transferred, each of these files needs to be analyzed for errors.

22

A complete list of all the error messages which are parsed from the log files can be

seen in Appendix 1. If an error occurs during any of the steps below, Kettle and log4j

will record this incident to the log file. The proper log file is found by filtering the con-

tents of the log folder by selecting only the latest file. This file is then parsed using the

parameters in the array list.

Figure 19 shows how the script searches for the log file and analyzes it from the given

keyword in the $errors array.

 Setting the limit for log files to be searched. Figure 19.

If any of the parameters is found, the boolean value is stored to $error variable. De-

pending on the value of this variable certain actions are made. $customint object is

initialized and members are added to it. The values of these members vary if the bool-

ean value of $error variable is true or false. This same process is repeated to the other

two parts of the integration.

3.1.8 Jboss

One of the key elements of this monitoring system, is to monitor the Adeona service

itself. The service runs on an application server JBoss as a windows service.

Figure 20 shows the Powershell’s own built-in module, Get-Service, for checking ser-

vices and their statuses on a machine.

23

 Example Powershell command of checking services Figure 20.

The name of the service on the server is “Adeona JBoss”. On page 5 in Appendix 1,

only name and status of this service is checked with the Get-Service method.

3.1.9 Changed Processes

The script in Appendix 1 page 6 was designed to detect processes flapping too often.

At the time of writing the study, some of the servers were suffering from a vulnerability

in the JBoss application server. This allowed BitCoin miners to infiltrate the server and

use the server’s CPU almost completely. These Bitcoin miners were easy to detect

since they were over flapping which meant that they were constantly turning off and on.

They were also consuming high amount of CPU and were usually masked as a regular

windows process.

Since most of the processes running on the server were stable, the script could be

made. If there would have been multiple processes running on the server which would

be turning on and off, the data would have been hard to read. But in this case, this

script became a useful tool at detecting ambiguous processes.

24

The main functionality of the script is based on comparing the running processes be-

tween timeframes. If the Powershell monitoring system is set to run in 15 minute inter-

vals, then this timeframe is 15 minutes. Before this script is being run, there is already

a csv-file on the server, called “initial_process_list.csv”. The script then fetches the cur-

rent running processes to a table and compares this table to the existing csv-file. Pow-

ershell’s Compare-Object returns a string if there are differences between these tables

and this value can then be used to indicate if there are new processes which were not

running 15 minutes ago.

The table to which the current running processes were saved is then stored over the

“initial_process_list.csv” file which is again used when the script is being run next time.

Figure 21 shows the functionality of the script comparing overflapping processes.

 Main functionality of the “changed processes” script Figure 21.

25

In Figure 21, the SideIndicator option is used to detect whether the value existed in the

previous list of processes or not. If the SideIndicator equals “=>” it means that the pro-

cess was not found in the list and therefore the value “NEW” is placed in the array.

4 Configuration of Environments

This chapter goes through the configuration process of the client and the host server.

Multiple configurations are needed so that the system works fluently. First, the Pow-

ershell needs to be configured so that the scripts can be run automatically and the host

server needs to be set up so that the data is transferred.

4.1 Client Server

The only installation required on the Windows Server is the Dropbox client. The scripts

run through the Windows Task Scheduler and the results are saved as CSV-files in the

home folder of the Dropbox client.

In the present study, the Dropbox client was downloaded from

https://www.dropbox.com/install and the Dropbox folder was installed to the path

C:\Users\canteradmin\Dropbox. The Dropbox was installed as an administrator which

prevents other users accessing the folder which is synchronized to the cloud.

Running Powershell scripts through the Task Scheduler is easy but there are a few

things which need to be done beforehand. First, Powershell by default works in a way

that it prevents scripts running automatically for security reasons. It is possible to adjust

the settings and allow the scripts to be run locally or even remotely. Since Powershell

runs locally on the client’s server only the first option is needed [6].

By opening Powershell as an administrator and executing the following command: Set-

ExecutionPolicy remotesigned the scripts can be allowed to be run through Task

Scheduler.

Figure 22 shows how the execution policy can be changed from the Powershell.

26

 Checking and setting the execution policy in Powershell Figure 22.

Now a task from the task scheduler can be created. When running Powershell scripts

through the Task scheduler it is not enough to just define the action by pointing to the

path where the script is located as it would be when running regular Windows batch

scripts. First, the path where Powershell is located is needed and then an argument

must be added to point out the Powershell script location.

Figure 23 indicates how the task scheduler is configured using the “Add arguments”

option.

27

 Setting up the location of the Powershell script Figure 23.

Naturally, the script can be scheduled at any time. For the present study, the tasks

were scheduled to run at every 15 minutes. This timeframe is enough to provide real

time information from the server.

No other settings or configurations are needed on the client’s server. Once these instal-

lations are done the blank Ubuntu Server can be set up.

4.2 Ubuntu Server

The following chapters describe how the LAMP and its configurations, scripts for fetch-

ing and storing the collected data are set up. One of the most conciderable challenges

was to find the proper configurations for the packages in order for this system to work

properly.

28

4.2.1 Dropbox Client

The following are the instructions how to set up the Dropbox client on the Ubuntu Serv-

er [7]. This is a “GUI-less” installation since the server does not have graphical user

interface. It should also be mentioned that after all the configurations were done and

the necessary updates were installed the csv-files were unable to sync. Unnecessary

hours were spent to debug this issue and it was found that there was an issue in the

latest Dropbox version. This version needed to be downgraded and therefore these

installation instructions are for the older version:

First, the required dependencies needs to be installed. These are:

 Graphical user interface library, libgtk2.0-0

 Session management library, libsm6

To install these, following commands are run from the command line:

 sudo apt-get install libgtk2.0-0

 sudo apt-get install libsm6

Then the Dropbox client:

 cd ~ && wget -O - "https://dl.dropboxusercontent.com/u/17/dropbox-lnx.x86_64-

2.10.51.tar.gz" | tar xzf –

This installs the Dropbox client and after the installation is finished the created daemon

needs to be connected to the Dropbox account:

 ~/.dropbox-dist/dropboxd

This command prompts the user to input a working link from the Dropbox account to

the command line. After the link has been established, the installation of the Dropbox is

finished and every time when something is moved to the Dropbox folder on the client’s

server the content is transferred to the Ubuntu Server.

29

Dropbox client works in a way that it synchronizes the content between two folders on

two different servers. If it is assumed that the Dropbox folder on the client’s server is

called A, and B is the folder on our Ubuntu Server and if some text files are moved to

A, in a short time they are synced to B. Now if these synced text files are moved away

from B to a different folder, i.e B_test, the files are removed from A as well.

This is a very good functionality since this can increase the confidentiality of the data

by constantly running a command on the Ubuntu server which moves all the files on

the folder to another location on the server. This way, if the Dropbox client is somehow

hacked, the data for the attacker is not constantly available.

Cron can be used to run simple move command. The PHP-script in the screenshot is

explained later. In this thesis, the timeframe to move the files from the Dropbox folder is

15 minutes but it can be configured to run this command every minute if necessary.

Figure 24 shows how the Cron is set up on the Ubuntu Server.

 A command to move the contents of the Dropbox folder to another location Figure 24.

The contents of the Dropbox folder are transferred to /home/psdownloads/ and they are

now ready to be processed.

4.2.2 Installing LAMP

As mentioned earlier, as the files have been transferred between the two, or more,

servers they need to be processed. Since the files are in csv-format it is easy to import

them to a mysql database using PHP-script. The database is needed because the

gathered information needs to be displayed on a website running on Apache2 web-

server.

30

The installation of LAMP is very straightforward and does not need further discussion.

Installation instruction for LAMP can be found at:

https://www.digitalocean.com/community/tutorials/how-to-install-linux-apache-mysql-

php-lamp-stack-on-ubuntu

However, there are several settings which are needed in order to work this system

properly. First of all, it needs to be made sure that the bind address for mysql is set to

localhost only for security reasons. The default path for mysql configuration file is

/etc/mysql/my.cnf

In this file, the following line has to be located ensuring that the value is set to 0.0.0.0

 bind-address = 0.0.0.0

The local_infile variable to this configuration file needs to be defined. Since automated

PHP-scripts are used to load the csv files to the database, it is important that this is

configured. The local_infile variable defines whether the “LOAD_DATA_INFILE” com-

mand can be used in the PHP-scripts or not. To set this variable, the following line

should be added under “Basic settings” to the my.cnf file:

 local-infile=1

There are also a few settings needed for PHP. The main tool for connecting to the

mysql database in php is mysqli. This needs to be enabled and to do this, certain lines

needs to be uncommented from php configuration file which by default is located in

/etc/php5/apache2/php.ini. The following line under “mysqli” needs to be located and

uncommented by removing the semicolon in front of the line.

 ;mysqli.allow_local_infile = On

After these settings have been enabled, the virtual host for Apache can be set. Only a

few configurations are needed to make this system more secure and stable.

Default configurations for virtual hosts can be found from /etc/apache2/sites-available/.

There is a default configuration file “000-default.conf” which can be used. The file is

copied by running a command:

31

 sudo cp /etc/apache2/sites-available/000-default.conf /etc/apache2/sites-

available/powermon.fi.conf

Figure 25 shows what configurations are needed after the copied file is opened.

 Virtualhost configuration. Figure 25.

The website itself will be added later to the directory in this configuration. The next sec-

tion covers the part of designing and creating the database.

4.2.3 Database

In the previous section the installation of the LAMP and the necessary configurations

for the mysql were described. In this section, the architecture of the database is cov-

ered.

32

As stated above, the LAMP installation includes the MySQL database. Even though the

database is relational, for the purpose of the present study relational database would

not be necessary. However, the MySQL database performs very well on a Linux envi-

ronment and has very few issues regarding importing and exporting data to the applica-

tion layer.

The database was designed in a way that every customer would have their own data-

base. And as can be seen from the scripts, the results of each monitored target are

saved to their separate csv files. Each of these csv files is then imported to the cus-

tomer’s database to their own representative tables. For the sake of the present study,

only one database and customer is covered.

Figure 26 shows all the related tables for one customer. Name of the table should al-

ways start with the name of the customer.

 Customer’s database and associated tables Figure 26.

33

Since there might be more than one customer using the system the tables should be

created automatically. This is done by a PHP-script described in the next chapter.

4.2.4 Generating Tables

The script in Appendix 2 is designed to quickly install the customer to the system. The

script is specifically for customer Etra, but it can easily be expanded by replacing the

static customer with a parameter. This way, the script could be directly run from the

command line while giving only the customer name as a parameter.

Figure 27 shows how the MySQL connecter is initialized. This is done by using the

“mysqli” extension available in MySQL [8]. This has a direct support to PHP.

 Initializing the MySQL connector Figure 27.

When the connector has been assigned to a variable, it can be called throughout the

whole script to quickly access the database.

Then each of the table creation scripts are stored as strings to specified variables

which are called when the connection is made to the database. These strings contain

the datatypes for certain fields. For instance, if the amount of memory a process is

consuming is stored to a table it is wise to use DOUBLE(10,2). This makes sure the

decimals are stored.

Figure 28 indicates what kind of datatypes are needed.

34

 SQL script to create the table for storing disk information Figure 28.

The same principle applies to all the other tables. These SQL-scripts are then executed

using the “mysqli” connector in the following way described in Figure 29.

 Executing the SQL script Figure 29.

If the connection is successful, the table is created and can be used to store infor-

mation.

4.2.5 Automating Data Flow

As it was previously stated, the CSV files collected from the customer’s server flow to

the Dropbox folder on Ubuntu server. The files are then moved to a better location from

which they are stored to the specified database. This is done by a PHP-script which is

scheduled to run every 15 minutes. The syntax in CRON can be seen in Figure 24.

First, every file needs to be assigned to a variable for proper handling. Using the glob()

function from PHP library the files can easily be checked as to whether they exist or

not. Definition of the location of the files can be seen in Figure 30.

35

 Storing the files to a variable. Figure 30.

Figure 31 shows how the glob() function is used.

 Checking if the file exists. Figure 31.

The script in Figure 31 tries to find if a file exists in location defined in a variable

$file_disks and if it is found, it will be stored to a variable called “$etra_diskfile”. When

the process has been done to all of the required files, the mysqli-connector needs to be

set up.

Note that a different connector is used. This is because when importing csv-files to a

database table, certain options need to be set before importing. This could have not

been achieved using the regular mysqli connector above. Instead, mysqli_options and

mysqli_real_connect are required [9].

Figure 32 shows the required configurations for the mysqli_options and

mysqli_real_connect.

36

 Setting the options for mysqli connection Figure 32.

The option “MYSQLI_OPT_LOCAL_INFILE, true” is related to the setting Covered in

chapter 4.2.2. Setting the option enables reading local files.

After the required options are set the query can be initialized. The same method is

used as previously: the SQL-query is stored as a string to a variable. Notice the local

infile load.

Figure 33 shows how the “LOCAL INFILE” is used in the SQL script.

 Initialization of the SQL-script Figure 33.

Since the file to be imported is CSV, the script needs to know the delimiters and line

terminations. These are set in the script above as well as the header line.

The script can then be executed using the regular mysqli-connector. If the CSV-file

includes all the required columns the import should be successful.

Figure 34 shows how the SQL query in Figure 33 is executed.

37

 Importing the CSV-file to the database. Figure 34.

Figure 35 displays the results which can be verified directly from the MySQL-database.

At the time the following script as seen in Figure 34 was run, the system had been run-

ning for 5 days.

 The results from the etra_disks table. Figure 35.

It was thought that it would be convenient to archive the stored CSV-files. In the future,

this could be an optional parameter but in this case the archiving logic was included in

the script. Figure 36 shows how the logic works after the data has been imported to the

database.

 Archiving the CSV-files. Figure 36.

38

After the database connection is closed, the folder where the files were originally stored

is scanned using the scandir-function. The results can then be looped through and if a

file is found from the source path it will be moved to another location. The file is then

deleted from the source folder so that it will not intervene with the next files to be im-

ported.

5 Website

The intention was to create a simple website to display the data collected from the

server. While the basic principle was achieved, the amount of work grew too high and

while the website was up and running it did not turn out the way it was intended.

In the following chapters the basic functionality is covered and the layout is presented.

The website can be divided into three parts:

- Home page

- Data table page which shows the data in tables

- Graphic page which displays a chart generated by JPGraph

The source code for the pages can be found in Appendixes 4, 5 and 6. For the sake of

the present study, only the graph and datatables page are covered.

5.1 Data Tables Page

This data tables page has sections where the user can select the appropriate

timeframe in which the data is displayed. The number of sections or tables on this page

equals the number of tables in the database. By default, the timeframe is set as “Now”.

And as can be seen in Figure 37, if there are no data in the given timeframe the page

displays a small alert under the table. If the timeframe is set as “Now”, it will try to find

all data during the last 15 minutes.

39

 Layout and the dropdown menu on the page Figure 37.

The list of time options is created with a PHP-script embedded on the page with a func-

tion called createDropdown. This creates the dropdown menu together with the cre-

ate_form function. If the user selects a value from the generated list, it passed to a var-

iable which is used in a SQL-script to load the data. The script for this process can be

seen in Figure 38.

 Selecting the timeframe to be used in the SQL-script Figure 38.

40

If the user selects a timeframe which has data, the data will be displayed on the page.

If no data is found in the given timeframe a notification is displayed. Figure 39 shows

how the data is displayed.

 Results when selecting data Figure 39.

The table illustrated in Figure 39 is generated inside the web page. The following

method (see Figure 40) is used in each of the monitored service.

41

 Generating the table to display the results. Figure 40.

In some cases, it would be convenient to see a graphical representation of the results.

For instance, comparing the CPU load and memory consumption could be compared

properly if the information was available in line graphs. This is done by using the

JPGraph which is a library for PHP. This is described in the next chapter

5.2 JPGraph

JPGraph is a useful tool for creating simple but efficient charts embedded to a PHP

page. Example plot in JPGraph can be seen in Figure 41.

42

 Example of a JPGraph plot Figure 41.

On the Graphs page (see Appendix 6), the plot has a separate PHP-script which is

called when a user selects suitable time frame. The method is the same when import-

ing data to a table in the datatables page. When the script is called it generates an im-

age which can be embedded to the page. Figure 42 shows how the data for x- and y-

axises are set.

 Initializing the variables for graph generation Figure 42.

43

The process can be seen in Figure 42. When the user has selected the timeframe it is

passed to the variables $sql_sumofprocesses and $sql_hour as $time1. The queries

are then executed and the data is being stored as an associative array to variables

test_data and test_data2. From the variables appropriate columns are selected and

since in this case the total CPU on y-axis and time on x-axis is needed, the corre-

sponding columns are selected. Each result is now stored to an array in their own in-

dexes.

These arrays are then initialized as a session variable which means that they can be

used in the php-script to generate the plot (see Figure 43).

 Declaring session variables and calling the PHP-script. Figure 43.

The ticks for the x-axis are being set using the $sql_hour query and the data itself is

being plotted from the $yaxis variable (see Figure 44).

 Generating the plot. Figure 44.

If the PHP-script is run from command line with the test data visible in appendix 7, fol-

lowing graph is generated (see Figure 45).

44

 Graph generated with the example data. Figure 45.

The complete php-script can be seen in Appendix 7.

6 Discussion and Conclusions

Even though during the development process there were multiple issues found all of

the milestones were achieved. A fully working monitoring system was created. The

maximum time the system was kept on was three months. There were no issues found

during this time. However, it was considered that the risk of running a system update

on the Ubuntu Server might cause an error if the Dropbox client was updated. Also,

there is no further knowledge on how this system would behave if the host server were

updated. This could cause an issue with some execution policy in Powershell or in the

task scheduler.

Also, a more detailed performance analyzation would have been useful. At the time

Powershell is running the scripts, it uses a high amount of CPU. This can be seen in

the data collected and is fabricating the results (see Figure 46).

45

 Peak in CPU usage during running of the scripts. Figure 46.

As it was stated in Chapter 4, too many hours of time were wasted when trying to con-

figure the Dropbox client. Even to this day, it is unclear what was the original reason

that the latest version of the client was not working. It definetly seemed that this was a

global issue.

The first data transfer option was Google Drive, instead of Dropbox client. But during

the development process, it was noticed that Google’s changing API was hampering

the system. This option was then discarded and great amount of time was lost.

6.1 Further Development

Overall, the building of the system was a success. However, the amount of time in total

spent on the study was significantly underestimated. Lack of experience in web devel-

opment was one of the reasons which caused unnecessary work and altogether this

project was too much work for one person.

This is a prototype. By no means is this a complete system. It still requires a lot of of

automation, error handling, update handling and smarter backup and storage system.

Some of the ideas which have come to mind are as follows:

46

 Automating the installation of the scripts with only one script

 Different configuration file for credentials and options for choosing the desired

functionalities

 Automation the installation of a customer on the Ubuntu server

 Automating the backups and deleting the stored CSV-files after defined time on

Ubuntu Server

 Error handling when data connection is not working

 Overall stability testing to monitor the monitoring service

It can be doubted whether the future development is worth of doing since other ser-

vices such as Zappix and the latest versions of Nagios and Icinga are very powerful.

The point was not to achieve anything greater than these three, but to make something

different from a scratch. It safe to say that the goal was reached.

47

Sources

1 Icinga, 1.1.1. What is Icinga? Article read 10.10.2016
https://docs.icinga.com/latest/en/about.html

2 Snover, Jeffery. Q&A-video. Article read 10.10.2016
https://community.spiceworks.com/topic/1538108-Powershell-vs-bash-in-
windows-10-what-s-the-future-of-Powershell

3 Microsoft Developer Network. How Windows Powershell Works. Article read
10.10.2016 https://msdn.microsoft.com/en-us/library/ms714658.aspx

4 Microsoft TechNet. Using Windows Powershell to Work with Numbers. Article
read 12.10.2016.
https://blogs.technet.microsoft.com/heyscriptingguy/2010/08/01/using-windows-
Powershell-to-work-with-numbers/

5 Microsoft Developer Network. IPGlobalProperties. Article read 12.10.2016.
https://msdn.microsoft.com/en-
us/library/system.net.networkinformation.ipglobalproperties(v=vs.110).aspx

6 Microsoft TechNet. Using the Set-ExecutionPolicy Cmdlet. Article read
28.11.2016 https://technet.microsoft.com/en-us/library/ee176961.aspx

7 Ask Ubuntu. How to install Dropbox on Ubuntu 14 Server [GUI-less]? Article
read: 4.5.2016. https://askubuntu.com/questions/477425/how-to-install-dropbox-
on-ubuntu-14-server-gui-less

8 PHP Manual. Connections. Article read 6.8.2016.
http://php.net/manual/en/mysqli.quickstart.connections.php

9 PHP Manual. Mysqli_real_connect. Article read 13.12.2016.
http://php.net/manual/en/mysqli.real-connect.php

Appendix 1

 1 (6)

Powershell scripts

$customer = "etra"
$date = Get-Date -format "d_M_yyyy-HH_mm"
$csvdir = "C:\Users\canteradmin\Dropbox\"

$prop_disks = "ON"
$prop_connections = "ON"
$prop_processes = "ON"
$prop_systemtime = "ON"
$prop_backups = "ON"
$prop_integrations = "ON"
$prop_jboss = "ON"
$prop_changed = "ON"

if ($prop_disks -eq "ON"){
try{
 $opt = "disks"
 $outfile = $csvdir + $customer + '_' + $opt + '_' + $date +
'.csv'
 Get-WmiObject Win32_logicaldisk -Filter "DeviceID='C:'" |
 Select-Object -
Property DeviceID,

@{n='Size(GB)';e={[Math]::Round(($_.size / 1GB),2)}},
 @{n='Free
Space(GB)';e={[Math]::Round(($_.freespace / 1GB),2)}},

@{n='Free(%)';e={[Math]::Round((($_.freespace / 1GB)*100 / ($_.size /
1GB)),2)}} |
 Export-Csv $outfile -
NoTypeInformation
 }
 catch{
 Write-Error "Failed to get disk data from Etra Test
server"
 }
}

if ($prop_connections -eq "ON"){
try {
 $opt = "connections"
 $outfile = $csvdir + $customer + '_' + $opt + '_' + $date +
'.csv'
 $TCPProperties =
[System.Net.NetworkInformation.IPGlobalProperties]::GetIPGlobalPropert
ies()
 $Connections = $TCPProperties.GetActiveTcpConnections()
 $count = 0
 $localcon = 0
 $ArrList = [System.Collections.ArrayList]@()
 foreach($Connection in $Connections | where {$_.LocalEndPoint.Port
-eq 1098}) {
 $count++ | out-null
 if($Connection.LocalEndPoint.AddressFamily -eq "InterNetwork"
) { $IPType = "IPv4" } else { $IPType = "IPv6" }
 $OutputObj = New-Object -TypeName PSobject
 $OutputObj | Add-Member -MemberType NoteProperty
LocalAddress($Connection.LocalEndPoint.Address) | out-null

Appendix 1

 2 (6)

 $OutputObj | Add-Member -MemberType NoteProperty
LocalPort($Connection.LocalEndPoint.Port) | out-null
 $OutputObj | Add-Member -MemberType NoteProperty
ConnectedAddress($Connection.RemoteEndPoint.Address) | out-null
 $OutputObj | Add-Member -MemberType NoteProperty
RemotePort($Connection.RemoteEndPoint.Port) | out-null
 $OutputObj | Add-Member -MemberType NoteProperty
State($Connection.State) | out-null
 $OutputObj | Add-Member -MemberType NoteProperty
IPV4Or6($IPType) | out-null
 $ArrList.Add($OutputObj) | out-null
 if ($Connection.RemoteEndPoint.Address -eq
$Connection.LocalEndPoint.Address){
 $localcon++
 }
 }

 $result = $Arrlist | select LocalAddress, ConnectedAddress |
Export-Csv $outfile -NoTypeInformation

} catch {
 Write-Error "Failed to get active connections. $_"
 }
}

if($prop_processes -eq "ON"){
try{
 $opt = "processes"
 $outfile = $csvdir + $customer + '_' + $opt + '_' + $date +
'.csv'
 $CPUPercent = @{n="CPUPercent";e={$TotalSec = (New-TimeSpan -
Start $_.StartTime).TotalSeconds
 [Math]::Round(($_.CPU * 100 / $TotalSec), 2)}}

 $proc = Get-Process | Select-Object
Name,@{n="Virtualmemory(GB)";e={[Math]::Round(($_.VM / 1GB),
2)}},@{n="Workingmemory(GB)";e= {[Math]::Round(($_.WS / 1GB),
2)}},$CPUPercent, Description | Sort CPUPercent -Descending
 $proc | Export-Csv $outfile -NoTypeInformation
 $opt = "sumofprocesses"
 $outfile = $csvdir + $customer + '_' + $opt + '_' + $date +
'.csv'
 $sumofcpu = $proc | measure-object CPUPercent -Sum
 $sumofmem = $proc | measure-object "Workingmemory(GB)" -Sum
 $customtable = New-Object -TypeName PSobject
 $customtable | Add-Member -MemberType NoteProperty To-
talCPU($sumofcpu.sum) | out-null
 $customtable | Add-Member -MemberType NoteProperty To-
talMemory($sumofmem.sum) | out-null
 $customtable | Export-Csv $outfile -NoTypeInformation
 }
 catch{
 Write-Error "Failed to get processes on Etra Test
server"
 }
}

if($prop_systemtime -eq "ON"){
try{
 $opt = "systemtime"

Appendix 1

 3 (6)

 $outfile = $csvdir + $customer + '_' + $opt + '_' + $date +
'.csv'
 $system = Get-WmiObject Win32_operatingsystem
 $up = (Get-Date) - ($sys-
tem.ConvertToDateTime($system.lastbootuptime))
 $boottime = $system.ConvertToDateTime($system.lastbootuptime)
 $customsystem = New-Object -TypeName PSobject
 $customsystem | Add-Member -MemberType NoteProperty Up-
time("$($up.Days) days, $($up.Hours) hours, $($up.Minutes) minutes")
 $customsystem | Add-Member -MemberType NoteProperty
BootTime($boottime)
 $customsystem | Export-Csv $outfile -NoTypeInformation
 }
 catch{
 Write-Error "Failed to get systemtime on Etra Test
server"
 }
}

if($prop_backups -eq "ON"){
try{

 $opt = "backups"
 $outfile = $csvdir + $customer + '_' + $opt + '_' + $date +
'.csv'
 $limit = (Get-Date).AddDays(-1)
 $results = Get-Childitem -Path C:\TESTDB2BACKUP -Recurse -
Force | where-object {$_.CreationTime -gt $limit }
 if ($results){
 $backup = $True
 }else{
 $backup = $False
 }

 $amount = (Get-Childitem -Path C:\TESTDB2BACKUP -Recurse -
Force | Measure-Object).Count

 $customback = New-Object -TypeName PSobject
 $customback | Add-Member -MemberType NoteProperty back-
up_name($results)
 $customback | Add-Member -MemberType NoteProperty back-
up_found($backup)
 $customback | Add-Member -MemberType NoteProperty to-
tal_number_of_backups($amount)
 $customback | Export-Csv $outfile -NoTypeInformation
 }
 catch{
 Write-Error "Failed to get backups on Etra Test serv-
er"
 }
}

if($prop_integrations -eq "ON"){
try{
 $opt = "integrations"
 $errors = @("Finished with errors", "error", "Error")
 $outfile = $csvdir + $customer + '_' + $opt + '_' + $date +
'.csv'
 $limit = (Get-Date).AddDays(-1)
 $integrations = [System.Collections.ArrayList]@()

Appendix 1

 4 (6)

 $logfile = "C:\integrations\etra_erp2aams\data2aams\logs"
 $check = Get-Childitem -Path $logfile | Where-Object
{$_.Lastwritetime -gt $limit -and $_.extension -eq ".log"}
 if ($check){
 $status = $check | foreach-object {if (select-string -
pattern $errors "$logfile\$_"){
 $error = $True
 }else{
 $error = $False
 }
 $customint = New-Object -TypeName PSobject
 $customint | Add-Member -MemberType NoteProp-
erty log_name($_.name)
 $customint | Add-Member -MemberType NoteProp-
erty type_name("data2aams")
 $customint | Add-Member -MemberType NoteProp-
erty error_found($error)
 $customint | Add-Member -MemberType NoteProp-
erty write_time($_.Lastwritetime)
 $integrations.Add($customint) | out-null
 }
 }else{
 $customint = New-Object -TypeName PSobject
 $customint | Add-Member -MemberType NoteProp-
erty log_name("NOT FOUND")
 $customint | Add-Member -MemberType NoteProp-
erty type_name("data2aams")
 $customint | Add-Member -MemberType NoteProp-
erty error_found("NOT FOUND")
 $customint | Add-Member -MemberType NoteProp-
erty write_time("NOT FOUND")
 $integrations.Add($customint) | out-null
 }

 $logfile = "C:\integrations\etra_erp2aams\erp2xml"
 $check = Get-Childitem -Path $logfile | Where-Object
{$_.Lastwritetime -gt $limit -and $_.extension -eq ".log"}
 if ($check){
 $status = $check | foreach-object {if (select-string -
pattern $errors "$logfile\$_"){
 $error = $True
 }else{
 $error = $False
 }
 $customint = New-Object -TypeName PSobject
 $customint | Add-Member -MemberType NoteProp-
erty log_name($_.name)
 $customint | Add-Member -MemberType NoteProp-
erty type_name("erp2xml")
 $customint | Add-Member -MemberType NoteProp-
erty error_found($error)
 $customint | Add-Member -MemberType NoteProp-
erty write_time($_.Lastwritetime)
 $integrations.Add($customint) | out-null
 }
 }else{
 $customint = New-Object -TypeName PSobject
 $customint | Add-Member -MemberType NoteProp-
erty log_name("NOT FOUND")

Appendix 1

 5 (6)

 $customint | Add-Member -MemberType NoteProp-
erty type_name("erp2xml")
 $customint | Add-Member -MemberType NoteProp-
erty error_found("NOT FOUND")
 $customint | Add-Member -MemberType NoteProp-
erty write_time("NOT FOUND")
 $integrations.Add($customint) | out-null
 }

 $logfile = "C:\integrations\etra_erp2aams\xml2aams\logs"
 $check = Get-Childitem -Path $logfile | Where-Object
{$_.Lastwritetime -gt $limit -and $_.extension -eq ".log"}
 if ($check){
 $status = $check | foreach-object {if (select-string -
pattern $errors "$logfile\$_"){
 $error = $True
 }else{
 $error = $False
 }
 $customint = New-Object -TypeName PSobject
 $customint | Add-Member -MemberType NoteProp-
erty log_name($_.name)
 $customint | Add-Member -MemberType NoteProp-
erty type_name("xml2aams")
 $customint | Add-Member -MemberType NoteProp-
erty error_found($error)
 $customint | Add-Member -MemberType NoteProp-
erty write_time($_.Lastwritetime)
 $integrations.Add($customint) | out-null
 }
 }else{
 $customint = New-Object -TypeName PSobject
 $customint | Add-Member -MemberType NoteProp-
erty log_name("NOT FOUND")
 $customint | Add-Member -MemberType NoteProp-
erty type_name("xml2aams")
 $customint | Add-Member -MemberType NoteProp-
erty error_found("NOT FOUND")
 $customint | Add-Member -MemberType NoteProp-
erty write_time("NOT FOUND")
 $integrations.Add($customint) | out-null
 }
 $integrations | Export-Csv $outfile -
NoTypeInformation
 $integrations | Out-File
C:\PowershellScripts\test.csv

}
catch{
 Write-Error "Failed to get backups on Etra Test server"
 }
}

if ($prop_jboss -eq "ON"){
try{
 $opt = "adeonajboss"
 $outfile = $csvdir + $customer + '_' + $opt + '_' + $date +
'.csv'
 $status = Get-Service "Adeona JBoss" | select name,status
 $status | Export-Csv $outfile -NoTypeInformation

Appendix 1

 6 (6)

 }
catch{
 Write-Error "Failed to get status of Adeona JBoss on Etra Test
server"
 }
}

if($prop_changed -eq "ON"){
try{
 $opt = "changed_processes"
 $outfile = $csvdir + $customer + '_' + $opt + '_' + $date +
'.csv'
 Get-Process | Select-Object Name | Export-Csv
C:\PowerMon\files\process_comparator.csv
 $a = Get-Content C:\PowerMon\files\initial_process_list.csv
 $b = Get-Content C:\PowerMon\files\process_comparator.csv
 $arr = [System.Collections.ArrayList]@()
 $rows = Compare-Object $a $b

 if($rows){
 foreach ($row in $rows){
 if($row.SideIndicator -eq "=>"){
 $state = "NEW"
 }
 if($row.SideIndicator -eq "<="){
 $state = "OLD"
 }

 $changed = New-Object -TypeName PSobject
 $changed | Add-Member -MemberType NoteProperty
Name($row.InputObject)
 $changed | Add-Member -MemberType NoteProperty
State($state)
 $arr.Add($changed) | Out-Null
 }
 $arr | Export-Csv $outfile -NoTypeInformation
 Remove-Item
C:\PowerMon\files\initial_process_list.csv -force
 Rename-Item
C:\PowerMon\files\process_comparator.csv -NewName ini-
tial_process_list.csv
 }
 }
catch{
 Write-Error "Failed to get changed processes data"
 }
}

Appendix 2

 1 (3)

Script for creating the database tables

#!/usr/bin/php

<?php
 $server = "localhost";
 $username = "root";
 $password = "******";
 $db = "etra_power";

 $conn = new mysqli($server, $username, $password, $db);
 if ($conn->connect_error){
 die("Connection failed: " . $conn->connect_error);
 }

 $sql_disks = "CREATE TABLE IF NOT EXISTS etra_disks (
 id BIGINT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 device_id VARCHAR(5),
 size DOUBLE(10,2),
 free_space DOUBLE(10,2),
 free_percent DOUBLE(10,2),
 timestamp DATETIME
)";

 $sql_processes = "CREATE TABLE IF NOT EXISTS etra_processes (
 id BIGINT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR (50),
 virtualmemory DOUBLE(10,2),
 workingmemory DOUBLE(10,2),
 cpupercent DOUBLE(10,2),
 description VARCHAR(50),
 timestamp DATETIME
)";

 $sql_connections = "CREATE TABLE IF NOT EXISTS et-
ra_connections (
 id BIGINT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 localaddress VARCHAR(20),
 connectedaddress VARCHAR(20),
 timestamp DATETIME
)";

 $sql_adeonajboss = "CREATE TABLE IF NOT EXISTS et-
ra_adeonajboss (
 id BIGINT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(40),
 status VARCHAR(10),
 timestamp DATETIME
)";

 $sql_backups = "CREATE TABLE IF NOT EXISTS etra_backups (
 id BIGINT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 backup_name VARCHAR(50),
 backup_found VARCHAR(10),
 backups_amount INT,
 timestamp DATETIME
)";

Appendix 2

 2 (3)

 $sql_integrations = "CREATE TABLE IF NOT EXISTS et-
ra_integrations (
 id BIGINT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 log_name VARCHAR(50),
 type_name VARCHAR(50),
 error_found VARCHAR(50),
 write_time DATETIME,
 timestamp DATETIME
)";

 $sql_sumofprocesses = "CREATE TABLE IF NOT EXISTS et-
ra_sumofprocesses (
 id BIGINT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 total_cpu DOUBLE(6,2),
 total_memory DOUBLE(6,2),
 timestamp DATETIME
)";

 $sql_changedprocesses = "CREATE TABLE IF NOT EXISTS et-
ra_changedprocesses (
 id BIGINT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(50),
 timestamp DATETIME
)";

 $sql_systemtime = "CREATE TABLE IF NOT EXISTS etra_systemtime
(
 id BIGINT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 uptime VARCHAR(50),
 boottime VARCHAR(50),
 timestamp DATETIME
)";

 if ($conn->query($sql_disks) === TRUE){
 echo "Table etra_disks created succesfully\n";
 }else{
 echo "Error creating table etra_disks:\n " . $conn-
>error;
 }

 if ($conn->query($sql_processes) === TRUE){
 echo "Table etra_processes created succesfully\n";
 }else{
 echo "Error creating table etra_processes:\n " .
$conn->error;
 }

 if ($conn->query($sql_connections) === TRUE){
 echo "Table etra_connections created successfully\n";
 }else{
 echo "Error creating table etra_connections:\n " .
$conn->error;
 }

 if ($conn->query($sql_adeonajboss) === TRUE){
 echo "Table etra_adeonajboss created successfully\n";
 }else{
 echo "Error creating table etra_adeonajboss:\n " .
$conn->error;
 }

Appendix 2

 3 (3)

 if ($conn->query($sql_backups) === TRUE){
 echo "Table etra_backups created successfully\n";
 }else{
 echo "Error creating table etra_etra_backups:\n " .
$conn->error;
 }

 if ($conn->query($sql_integrations) === TRUE){
 echo "Table etra_integrations created successfully\n";
 }else{
 echo "Error creating table etra_integrations:\n " .
$conn->error;
 }

 if ($conn->query($sql_sumofprocesses) === TRUE){
 echo "Table etra_sumofprocesses created successful-
ly\n";
 }else{
 echo "Error creating table etra_sumofprocesses:\n " .
$conn->error;
 }

 if ($conn->query($sql_changedprocesses) === TRUE){
 echo "Table etra_changedprocesses created successful-
ly\n";
 }else{
 echo "Error creating table etra_changedprocesses:\n "
. $conn->error;
 }

 if ($conn->query($sql_systemtime) === TRUE){
 echo "Table etra_systemtime created successfully\n";
 }else{
 echo "Error creating table etra_systemtime:\n " .
$conn->error;
 }

 $conn->close();
?>

Appendix 3

 1 (4)

Script for importing the CSV files

#!/usr/bin/php

<?php

 error_reporting(error_reporting() & ~E_NOTICE);

 $file_disks = '/home/psdownloads/etra_disks_*';
 $file_processes = '/home/psdownloads/etra_processes_*';
 $file_connections = '/home/psdownloads/etra_connections_*';
 $file_sumproc = '/home/psdownloads/etra_sumofprocesses_*';
 $file_systime = '/home/psdownloads/etra_systemtime_*';
 $file_backups = '/home/psdownloads/etra_backups_*';
 $file_integrations = '/home/psdownloads/etra_integrations_*';
 $file_jboss = '/home/psdownloads/etra_adeonajboss_*';
 $file_changed = '/home/psdownloads/etra_changed_processes_*';

 foreach (glob($file_disks) as $etra_diskfile){
 echo "File $etra_diskfile found!\n";
 }

 foreach (glob($file_processes) as $etra_procfile){
 echo "File $etra_procfile found!\n";
 }

 foreach (glob($file_connections) as $etra_connfile){
 echo "File $etra_connfile found!\n";
 }

 foreach (glob($file_sumproc) as $etra_sumprocfile){
 echo "File $etra_sumprocfile found!\n";
 }

 foreach (glob($file_systime) as $etra_systimefile){
 echo "File $etra_systimefile found!\n";
 }

 foreach (glob($file_backups) as $etra_backupfile){
 echo "File $etra_backupfile found!\n";
 }

 foreach (glob($file_integrations) as $etra_integrationsfile){
 echo "File $etra_integrationsfile found!\n";
 }

 foreach (glob($file_jboss) as $etra_jbossfile){
 echo "File $etra_jbossfile found!\n";
 }

 foreach (glob($file_changed) as $etra_changedfile){
 echo "File $etra_changedfile found!\n";
 }

Appendix 3

 2 (4)

 $user = 'root';
 $pass = '******';
 $db = 'etra_power';
 $host = 'localhost';

 $mysqli = mysqli_init();

 mysqli_options($mysqli, MYSQLI_OPT_LOCAL_INFILE, true);
 #Initialize the database connection
 mysqli_real_connect($mysqli,$host, $user, $pass,$db)
 or die ('<P>ERROR connecting to $db</P>');

 #Initialize the MYSQL queries
 $query_disks = "LOAD DATA LOCAL INFILE '$etra_diskfile'
 INTO TABLE etra_disks
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '\"'
 LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES
 (device_id,size,free_space,free_percent)
 SET timestamp=NOW()";

 $query_processes = "LOAD DATA LOCAL INFILE '$etra_procfile'
 INTO TABLE etra_processes
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '\"'
 LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES

(name,virtualmemory,workingmemory,cpupercent,description)
 SET timestamp=NOW()";

 $query_connections = "LOAD DATA LOCAL INFILE '$etra_connfile'
 INTO TABLE etra_connections
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '\"'
 LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES
 (localaddress,connectedaddress)
 SET timestamp=NOW()";

 $query_jboss = "LOAD DATA LOCAL INFILE '$etra_jbossfile'
 INTO TABLE etra_adeonajboss
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '\"'
 LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES
 (name,status)
 SET timestamp=NOW()";

 $query_sumofproc = "LOAD DATA LOCAL INFILE
'$etra_sumprocfile'
 INTO TABLE etra_sumofprocesses
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '\"'
 LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES
 (total_cpu,total_memory)
 SET timestamp=NOW()";

 $query_systime = "LOAD DATA LOCAL INFILE '$etra_systimefile'
 INTO TABLE etra_systemtime
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '\"'
 LINES TERMINATED BY '\r\n'

Appendix 3

 3 (4)

 IGNORE 1 LINES
 (uptime,boottime)
 SET timestamp=NOW()";

 $query_backups = "LOAD DATA LOCAL INFILE '$etra_backupfile'
 INTO TABLE etra_backups
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '\"'
 LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES
 (backup_name,backup_found,backups_amount)
 SET timestamp=NOW()";

 $query_integrations = "LOAD DATA LOCAL INFILE
'$etra_integrationsfile'
 INTO TABLE etra_integrations
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '\"'
 LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES
 (log_name,type_name,error_found,write_time)
 SET timestamp=NOW()";

 $query_changed = "LOAD DATA LOCAL INFILE '$etra_changedfile'
 INTO TABLE etra_changedprocesses
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '\"'
 LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES
 (name,state)
 SET timestamp=NOW()";

 #Execute queries
 if ($mysqli->query($query_disks) === TRUE){
 echo "Data imported succesfully\n";
 }else{
 echo "Error importing data: \n" . $mysqli-
>error;
 }

 if ($mysqli->query($query_processes) === TRUE){
 echo "Data imported succesfully\n";
 }else{
 echo "Error importing data: \n" . $mysqli-
>error;
 }

 if ($mysqli->query($query_connections) === TRUE){
 echo "Data imported succesfully\n";
 }else{
 echo "Error importing data: \n" . $mysqli-
>error;
 }

 if ($mysqli->query($query_changed) === TRUE){
 echo "Data imported succesfully\n";
 }else{
 echo "Error importing data: \n" . $mysqli-
>error;
 }

Appendix 3

 4 (4)

 if ($mysqli->query($query_integrations) === TRUE){
 echo "Data imported succesfully\n";
 }else{
 echo "Error importing data: \n" . $mysqli-
>error;
 }

 if ($mysqli->query($query_backups) === TRUE){
 echo "Data imported succesfully\n";
 }else{
 echo "Error importing data: \n" . $mysqli-
>error;
 }

 if ($mysqli->query($query_systime) === TRUE){
 echo "Data imported succesfully\n";
 }else{
 echo "Error importing data: \n" . $mysqli-
>error;
 }

 if ($mysqli->query($query_sumofproc) === TRUE){
 echo "Data imported succesfully\n";
 }else{
 echo "Error importing data: \n" . $mysqli-
>error;
 }

 if ($mysqli->query($query_jboss) === TRUE){
 echo "Data imported succesfully\n";
 }else{
 echo "Error importing data: \n" . $mysqli-
>error;
 }

 $mysqli->close();

 $files = scandir("/home/psdownloads");
 $source = "/home/psdownloads/";
 $destination = "/home/psarchive/";
 foreach ($files as $file) {
 if (in_array($file, array(".",".."))) continue;
 if (copy($source.$file, $destination.$file)) {
 $delete[] = $source.$file;
 }
 }
 foreach ($delete as $file) {
 unlink($file);
 }

?>

Appendix 4

 1 (2)

Source code for the index page

<!DOCTYPE HTML>
<html>

<head>
 <title>PowerMon</title>
 <meta name="description" content="website description" />
 <meta name="keywords" content="website keywords, website keywords"
/>
 <meta http-equiv="content-type" content="text/html; charset=windows-
1252" />
 <link rel="stylesheet" type="text/css" href="style/style.css" ti-
tle="style" />
</head>

<body>
 <div id="main">
 <div id="header">
 <div id="logo">
 <div id="logo_text">
 <!-- class="logo_colour", allows you to change the colour of
the text -->
 </br>
 </br>
 </br>
 </br>
 </br>
 <h2>Cost-efficient monitoring services</h2>
 </div>
 </div>
 <div id="menubar">
 <ul id="menu">

 <li class="selected">Home
 Data tables
 Graphs

 </div>
 </div>
 <div id="site_content">
 <div id="content">

 <h1>Welcome to the Powershell Monitoring System webpage</h1>
 <p>The purpose of this project is to monitor servers (at the
moment Windows Servers) without any cost of third party actions. In
smaller companies monitoring is usually impl emented with a service
provider which results in extra costs. By extra costs I mean support
requests to ISP to i.e open specific ports or connections.</p>

 <p>With this powerful yet simple product ISPs and
these extra costs can be removed from this chain since all the re-
quests are made locally on the server and then sen t via Google
Cloud. MySQL database fetches the data from the cloud and the data is
then viewed in web.</p>

Appendix 4

 2 (2)

 <p>Please not that this is a work in progress and is only a
prototype. Since there is a certain limit of hours I can use.....</p>

 </div>
 </div>
 <div id="content_footer"></div>
 <div id="footer">
 This monitoring system is provided by Aki Riisiö
 </div>
 </div>
</body>
</html>

Appendix 5

 1 (12)

Source code for data tables page

<?php

 error_reporting(E_ALL);
 session_set_cookie_params(60);
 session_start();
 #phpinfo();

?><!DOCTYPE HTML>
<html>

<head>
 <title>PowerMon - Datatables</title>
 <meta name="description" content="website description" />
 <meta name="keywords" content="website keywords, website keywords"
/>
 <meta http-equiv="content-type" content="text/html; charset=windows-
1252" />
 <link rel="stylesheet" type="text/css" href="style/style.css" ti-
tle="style" />
</head>

<body>
 <div id="main">
 <div id="header">
 <div id="logo">
 <div id="logo_text">
 </br>
 </br>
 </br>
 </br>
 </br>
 <h2>Cost-efficient monitoring services</h2>
 </div>
 </div>
 <div id="menubar">
 <ul id="menu">

 Home
 <li class="selected">Data ta-
bles
 Graphs

 </div>
 </div>
 <div id="content_header"></div>
 <div id="site_content_v2">
 <div id="content_v2">

 <?php

 $servername = "localhost";
 $username = "root";
 $password = "******";

Appendix 5

 2 (12)

 $dbname = "etra_power";

 ?>

 <h1>Disk information</h1>
 <?php

 function createDropdown($option){

 $list = array(
 array("1", "Now"),
 array("2", "30 minutes"),
 array("3", "1 hour"),
 array("4", "2 hours"),
 array("5", "4 hours"),
 array("6", "8 hours"),
 array("7", "12 hours"),
 array("8", "1 day"),
 array("9", "2 days"),
 array("10", "4 days"),
 array("11", "1 week"),
 array("12", "2 weeks"),
 array("13", "1 month"),
 ar-
ray("14", "--disabled--")
);

 foreach ($list as &$value){
 echo "<option ";
 if($value[0] == $option){
 echo 'selected="selected"';
 }
 echo " value=";
 echo $value[0];
 echo ">";
 echo $value[1];
 echo "</option>";
 }

 }

 function create_form($timeframe){

 $x1 = $_POST[$timeframe];
 if (!isset($x1)){
 if(isset($_SESSION[$timeframe])){
 $x1 = $_SESSION[$timeframe];

 }
 }
 $_SESSION[$timeframe] = $x1;

 ?>
 <form action="" method="POST">
 <div class="form_settings">
 <p>Select
timeframe
<select id="<?php echo $timeframe; ?>"
name="<?php echo $timeframe; ?>"></p>

Appendix 5

 3 (12)

 <?php createDropdown($x1); ?>
 <p style="padding-right:
15px"> <input class="submit" type="submit"
name="name" value="GO" /></p>

 <?php

 if($x1 == 1){ $time1 = 'NOW() - INTERVAL 15
MINUTE'; };
 if($x1 == 2){ $time1 = 'NOW() - INTERVAL 30
MINUTE'; };
 if($x1 == 3){ $time1 = "NOW() - INTERVAL 1
HOUR"; };
 if($x1 == 4){ $time1 = "NOW() - INTERVAL 2
HOUR"; };
 if($x1 == 5){ $time1 = "NOW() - INTERVAL 4
HOUR"; };
 if($x1 == 6){ $time1 = "NOW() - INTERVAL 8
HOUR"; };
 if($x1 == 7){ $time1 = "NOW() - INTERVAL 12
HOUR"; };
 if($x1 == 8){ $time1 = "NOW() - INTERVAL 1
DAY"; };
 if($x1 == 9){ $time1 = "NOW() - INTERVAL 2
DAY"; };
 if($x1 == 10){ $time1 = "NOW() - INTERVAL 4
DAY"; };
 if($x1 == 11){ $time1 = "NOW() - INTERVAL 7
DAY"; };
 if($x1 == 12){ $time1 = "NOW() - INTERVAL 14
DAY"; };
 if($x1 == 13){ $time1 = 'NOW() - INTERVAL 31
DAY;'; };
 if($x1 == 14){ $time1 = 'DISABLED'; };

 ?>
 </div>
 </form>

 <?php
 return $time1;
 }
 $time1 = create_form('timeframe1');

 // Create connection
 $conn = new mysqli($servername, $username, $password,
$dbname);
 // Check connection
 if ($conn->connect_error){
 die("Connection failed: " . $conn-
>connect_error);
 }

 $sql_disk = "SELECT de-
vice_id,size,free_space,free_percent,timestamp FROM etra_disks WHERE
timestamp >= $time1;";
 $result = $conn->query($sql_disk);

Appendix 5

 4 (12)

 #$sql_connections

 if($time1 == 'DISABLED'){
 echo "Option disabled";
 }else{
 echo "<table style='width:100%; border-spacing:0;'>
 <tr>
 <th>Device ID</th>
 <th>Disk size</th>
 <th>Free space</th>
 <th>Free space (%)</th>
 <th>Timestamp</th>
 </tr>";

 if ($result->num_rows > 0){
 // output data of each row
 while($row = $result->fetch_assoc()){
 echo "<tr>";
 echo "<td>" . $row['device_id'] .
"</td>";
 echo "<td>" . $row['size'] . "</td>";
 echo "<td>" . $row['free_space'] .
"</td>";
 echo "<td>" . $row['free_percent'] .
"</td>";
 echo "<td>" . $row['timestamp'] .
"</td>";
 }
 }else{
 echo "Could not find data in the given
timeframe!";
 }

 echo "</table>";
 }

 $conn->close();
 ?>

 <h1>Systemtime information</h1>

 <?php

 $time2 = create_form('timeframe2');

 // Create connection
 $conn = new mysqli($servername, $username, $password,
$dbname);
 // Check connection
 if ($conn->connect_error){
 die("Connection failed: " . $conn-
>connect_error);
 }

 $sql_systemtime = "SELECT uptime,boottime,timestamp
FROM etra_systemtime WHERE timestamp >= $time2;";
 $result = $conn->query($sql_systemtime);

 #$sql_connections

Appendix 5

 5 (12)

 if($time2 == 'DISABLED'){
 echo "Option disabled";
 }else{

 echo "<table style='width:100%; border-spacing:0;'>
 <tr>
 <th>Uptime</th>
 <th>Last boottime</th>
 <th>Timestamp</th>
 </tr>";

 if ($result->num_rows > 0){
 // output data of each row
 while($row = $result->fetch_assoc()){
 echo "<tr>";
 echo "<td>" . $row['uptime'] .
"</td>";
 echo "<td>" . $row['boottime'] .
"</td>";
 echo
"<td>" . $row['timestamp'] . "</td>";
 }
 }else{
 echo "Could not find data in the given
timeframe!";
 }

 echo "</table>";
 }
 $conn->close();
 ?>

 <h1>Overall process information</h1>

 <?php

 $time3 = create_form('timeframe3');

 $servername = "localhost";
 $username = "root";
 $password = "******";
 $dbname = "etra_power";

 // Create connection
 $conn = new mysqli($servername, $username, $password,
$dbname);
 // Check connection
 if ($conn->connect_error){
 die("Connection failed: " . $conn-
>connect_error);
 }

 $sql_sumofprocesses = "SELECT to-
tal_cpu,total_memory,timestamp FROM etra_sumofprocesses WHERE
timestamp >= $time3;";

Appendix 5

 6 (12)

 $result = $conn->query($sql_sumofprocesses);

 #$sql_connections

 if($time3 == 'DISABLED'){
 echo "Option disabled";
 }else{

 echo "<table style='width:100%; border-spacing:0;'>
 <tr>
 <th>Total CPU-load (%)</th>
 <th>Total memory usage</th>
 <th>Timestamp</th>
 </tr>";

 if ($result->num_rows > 0){
 // output data of each row
 while($row = $result->fetch_assoc()){
 echo "<tr>";
 echo "<td>" . $row['total_cpu'] .
"</td>";
 echo "<td>" . $row['total_memory'] .
"</td>";
 echo
"<td>" . $row['timestamp'] . "</td>";
 }
 }else{
 echo "Could not find data in the given
timeframe!";
 }
 echo "</table>";
 }
 $conn->close();
 ?>

 <h1>Process information</h1>

 <?php

 $time4 = create_form('timeframe4');

 // Create connection
 $conn = new mysqli($servername, $username, $password,
$dbname);
 // Check connection
 if ($conn->connect_error){
 die("Connection failed: " . $conn-
>connect_error);
 }

 $sql_processes = "SELECT
name,virtualmemory,workingmemory,cpupercent,timestamp FROM et-
ra_processes WHERE timestamp >= $time4;";
 $result = $conn->query($sql_processes);

 #$sql_connections

 if($time4 == 'DISABLED'){

Appendix 5

 7 (12)

 echo "Option disabled";
 }else{

 echo "<table style='width:100%; border-spacing:0;'>
 <tr>
 <th>Name</th>
 <th>Virtual memory</th>
 <th>Working memory</th>
 <th>CPU (%)</th>
 <th>Timestamp</th>
 </tr>";

 if ($result->num_rows > 0){
 // output data of each row
 while($row = $result->fetch_assoc()){
 echo "<tr>";
 echo "<td>" . $row['name'] . "</td>";
 echo "<td>" . $row['virtualmemory'] .
"</td>";
 echo "<td>" . $row['workingmemory'] .
"</td>";
 echo "<td>" . $row['cpupercent'] .
"</td>";
 echo
"<td>" . $row['timestamp'] . "</td>";
 echo "<td>" . $row['description'] .
"</td>";
 }
 }else{
 echo "Could not find data in the given
timeframe!";
 }

 echo "</table>";
 }
 $conn->close();
 ?>

 <h1>Changed process information</h1>
 <?php

 $time5 = create_form('timeframe5');

 // Create connection
 $conn = new mysqli($servername, $username, $password,
$dbname);
 // Check connection
 if ($conn->connect_error){
 die("Connection failed: " . $conn-
>connect_error);
 }

 $sql_changedproc = "SELECT name,state,timestamp FROM
etra_changedprocesses WHERE timestamp >= $time5;";
 $result = $conn->query($sql_changedproc);

 #$sql_connections

Appendix 5

 8 (12)

 if($time5 == 'DISABLED'){
 echo "Option disabled";
 }else{

 echo "<table style='width:100%; border-spacing:0;'>
 <tr>
 <th>Name</th>
 <th>Old / New</th>
 <th>Timestamp</th>
 </tr>";

 if ($result->num_rows > 0){
 // output data of each row
 while($row = $result->fetch_assoc()){
 echo "<tr>";
 echo "<td>" . $row['name'] . "</td>";
 echo "<td>" . $row['state'] . "</td>";
 echo "<td>" . $row['timestamp'] .
"</td>";
 }
 }else{
 echo "Could not find data in the given
timeframe!";
 }

 echo "</table>";
 }
 $conn->close();
 ?>

 <h1>Adeona connection information</h1>
 <?php

 $time6 = create_form('timeframe6');

 // Create connection
 $conn = new mysqli($servername, $username, $password,
$dbname);
 // Check connection
 if ($conn->connect_error){
 die("Connection failed: " . $conn-
>connect_error);
 }

 $sql_connections = "SELECT localad-
dress,connectedaddress,timestamp FROM etra_connections WHERE timestamp
>= $time6;";
 $result = $conn->query($sql_connections);

 #$sql_connections

 if($time6 == 'DISABLED'){
 echo "Option disabled";
 }else{

 echo "<table style='width:100%; border-spacing:0;'>
 <tr>
 <th>Local address</th>

Appendix 5

 9 (12)

 <th>Connected address</th>
 <th>Timestamp</th>
 </tr>";

 if ($result->num_rows > 0){
 // output data of each row
 while($row = $result->fetch_assoc()){
 echo "<tr>";
 echo "<td>" . $row['localaddress'] .
"</td>";
 echo "<td>" . $row['connectedaddress']
. "</td>";
 echo
"<td>" . $row['timestamp'] . "</td>";
 }
 }else{
 echo "Could not find data in the given
timeframe!";
 }

 echo "</table>";
 }
 $conn->close();
 ?>

 <h1>Adeona status information</h1>
 <?php

 $time7 = create_form('timeframe7');

 // Create connection
 $conn = new mysqli($servername, $username, $password,
$dbname);
 // Check connection
 if ($conn->connect_error){
 die("Connection failed: " . $conn-
>connect_error);
 }

 $sql_adeona = "SELECT name,status,timestamp FROM et-
ra_adeonajboss WHERE timestamp >= $time7;";
 $result = $conn->query($sql_adeona);

 #$sql_connections
 if($time7 == 'DISABLED'){
 echo "Option disabled";
 }else{

 echo "<table style='width:100%; border-spacing:0;'>
 <tr>
 <th>Name</th>
 <th>Status</th>
 <th>Timestamp</th>
 </tr>";

 if ($result->num_rows > 0){
 // output data of each row

Appendix 5

 10 (12)

 while($row = $result->fetch_assoc()){
 echo "<tr>";
 echo "<td>" . $row['name'] . "</td>";
 echo "<td>" . $row['status'] .
"</td>";
 echo
"<td>" . $row['timestamp'] . "</td>";
 }
 }else{
 echo "Could not find data in the given
timeframe!";
 }

 echo "</table>";
 }
 $conn->close();
 ?>

 <h1>Backups information</h1>
 <?php

 $time8 = create_form('timeframe8');

 // Create connection
 $conn = new mysqli($servername, $username, $password,
$dbname);
 // Check connection
 if ($conn->connect_error){
 die("Connection failed: " . $conn-
>connect_error);
 }

 $sql_backups = "SELECT back-
up_name,backup_found,backups_amount,timestamp FROM etra_backups WHERE
timestamp >= $time8;";
 $result = $conn->query($sql_backups);

 #$sql_connections

 if($time8 == 'DISABLED'){
 echo "Option disabled";
 }else{

 echo "<table style='width:100%; border-spacing:0;'>
 <tr>
 <th>Name</th>
 <th>Found</th>
 <th>Amount of backups</th>
 <th>Timestamp</th>
 </tr>";

 if ($result->num_rows > 0){
 // output data of each row
 while($row = $result->fetch_assoc()){
 echo "<tr>";
 echo "<td>" . $row['backup_name'] .
"</td>";

Appendix 5

 11 (12)

 echo "<td>" . $row['backup_found'] .
"</td>";
 echo "<td>" . $row['backups_amount'] .
"</td>";
 echo
"<td>" . $row['timestamp'] . "</td>";
 }
 }else{
 echo "Could not find data in the given
timeframe!";
 }

 echo "</table>";
 }
 $conn->close();
 ?>

 <h1>Integrations information</h1>
 <?php

 $time9 = create_form('timeframe9');

 // Create connection
 $conn = new mysqli($servername, $username, $password,
$dbname);
 // Check connection
 if ($conn->connect_error){
 die("Connection failed: " . $conn-
>connect_error);
 }

 $sql_integrations = "SELECT
log_name,type_name,error_found,write_time,timestamp FROM et-
ra_integrations WHERE timestamp >= $time9;";
 $result = $conn->query($sql_integrations);

 if($time9 == 'DISABLED'){
 echo "Option disabled";
 }else{

 echo "<table style='width:100%; border-spacing:0;'>
 <tr>
 <th>Log name</th>
 <th>Type</th>
 <th>Errors</th>
 <th>Write time</th>
 <th>Timestamp</th>
 </tr>";

 if ($result->num_rows > 0){
 // output data of each row
 while($row = $result->fetch_assoc()){
 echo "<tr>";
 echo "<td>" . $row['log_name'] .
"</td>";
 echo "<td>" . $row['type_name'] .
"</td>";

Appendix 5

 12 (12)

 echo "<td>" . $row['error_found'] .
"</td>";
 echo "<td>" . $row['write_time'] .
"</td>";
 echo
"<td>" . $row['timestamp'] . "</td>";
 }
 }else{
 echo "Could not find data in the given
timeframe!";
 }

 echo "</table>";
 }
 $conn->close();

 session_write_close();

 ?>

 </div>

 <div id="content_footer"></div>
 <div id="footer">
 This monitoring system is provided by Aki Riisiö</div>
 </div>
</body>
</html>

Appendix 6

 1 (4)

Source code for graphs page

<!DOCTYPE HTML>
<html>

<?php

 $servername = "localhost";
 $username = "root";
 $password = "******";
 $dbname = "etra_power";

 ?>

<head>
 <title>colour_blue - another page</title>
 <meta name="description" content="website description" />
 <meta name="keywords" content="website keywords, website keywords"
/>
 <meta http-equiv="content-type" content="text/html; charset=windows-
1252" />
 <link rel="stylesheet" type="text/css" href="style/style.css" ti-
tle="style" />
</head>

<body>
 <div id="main">
 <div id="header">
 <div id="logo">
 <div id="logo_text">
 <!-- class="logo_colour", allows you to change the colour of
the text -->
 </br>
 </br>
 </br>
 </br>
 </br>
 <h2>Cost-efficient monitoring services</h2>
 </div>
 </div>
 <div id="menubar">
 <ul id="menu">

 Home
 Data tables
 <!--Files-->
 <li class="selected">Graphs
 <!--Contact Me-->

 </div>
 </div>
 <div id="content_header"></div>
 <div id="site_content">
 <div class="sidebar">
 <!-- insert your sidebar items here -->
 <h3>Latest News</h3>

Appendix 6

 2 (4)

 <h4>The project starts...</h4>
 <h5>June 1st, 2015</h5>

 <p>It is time to start the project. Most of the Powershell
scripts have already been made...!</p>

 <h3>Useful Links</h3>

 link 1

 </div>
 <div id="content">
 <!-- insert the page content here -->

 <h1>CPU LOAD GRAPH</h1>
 <?php

 function createDropdown($option){

 $list = array(
 array("1", "1 hour"),
 array("2", "2 hours"),
 array("3", "4 hours"),
 array("4", "8 hours"),
 array("5", "12 hours"),
 array("6", "--disabled--")
);

 foreach ($list as &$value){
 echo "<option ";
 if($value[0] == $option){
 echo 'selected="selected"';
 }
 echo " value=";
 echo $value[0];
 echo ">";
 echo $value[1];
 echo "</option>";
 }

 }

 function create_form($timeframe){

 $x1 = $_POST[$timeframe];
 if (!isset($x1)){
 if(isset($_SESSION[$timeframe])){
 $x1 = $_SESSION[$timeframe];

 }
 }

 $_SESSION[$timeframe] = $x1;

 ?>
 <form action="" method="POST">
 <div class="form_settings">

Appendix 6

 3 (4)

 <p>Select
timeframe
<select id="<?php echo $timeframe; ?>"
name="<?php echo $timeframe; ?>"></p>

 <?php createDropdown($x1); ?>
 <p style="padding-right:
15px"> <input class="submit" type="submit"
name="name" value="GO" /></p>

 <?php

 if($x1 == 1){ $time1 = "NOW() - INTERVAL 1
HOUR"; };
 if($x1 == 2){ $time1 = "NOW() - INTERVAL 2
HOUR"; };
 if($x1 == 3){ $time1 = "NOW() - INTERVAL 4
HOUR"; };
 if($x1 == 4){ $time1 = "NOW() - INTERVAL 8
HOUR"; };
 if($x1 == 5){ $time1 = "NOW() - INTERVAL 12
HOUR"; };
 if($x1 == 6){ $time1 = 'DISABLED'; };

 ?>
 </div>
 </form>

 <?php

 session_start();
 $_SESSION['time'] = $time1;
 return $time1;
 }

 $time1 = create_form('timeframe1');

 $conn = new mysqli($servername, $username, $password,
$dbname);
 // Check connection
 if ($conn->connect_error){
 die("Connection failed: " . $conn->connect_error);
 }

 $sql_sumofprocesses = "SELECT total_cpu FROM et-
ra_sumofprocesses WHERE timestamp >= $time1;";
 $sql_hour = "SELECT DATE_FORMAT(timestamp, '%H:%i:%s') FROM
etra_sumofprocesses WHERE timestamp >= $time1;";
 $result = $conn->query($sql_sumofprocesses);
 $test_data = array();
 if ($result->num_rows > 0){
 // output data of each row
 while($row = $result->fetch_assoc()){
 $test_data[] = $row;
 }
 }else{
 echo "Could not find data in the given
timeframe!";
 }

Appendix 6

 4 (4)

 $result = $conn->query($sql_hour);
 $test_data2 = array();
 if ($result->num_rows > 0){
 // output data of each row
 while($row = $result->fetch_assoc()){
 $test_data2[] = $row;
 }
 }else{
 echo "Could not find data in the given
timeframe!";
 }

 $conn->close();

 $yaxis = array();
 $n = count($test_data);
 for($i = 0; $i < $n; ++$i){
 $yaxis[$i] = $test_data[$i]['total_cpu'];
 }

 $xaxis = array();
 $n = count($test_data2);
 for($i = 0; $i < $n; ++$i){
 $xaxis[$i] =
$test_data2[$i]["DATE_FORMAT(timestamp, '%H:%i:%s')"];
 }

 ?>

 <?php

 //$xaxis = array('9:00','9:15','9:30','9:45');
 //$yaxis = array(30,80,95,55);

 session_start();
 $_SESSION['y'] = $yaxis;
 $_SESSION['x'] = $xaxis;

 echo '';

 ?>

 <h1>Another Page</h1>
 </div>
 </div>
 <div id="content_footer"></div>
 <div id="footer">This monitoring system is provided by Aki
Riisiö</div>
 </div>
</body>
</html>

Appendix 7

 1 (1)

Source code for generating the graph

<?php // content="text/plain; charset=utf-8"

 require_once ('/home/downloads/jpgraph-
3.5.0b1/src/jpgraph.php');
 require_once ('/home/downloads/jpgraph-
3.5.0b1/src/jpgraph_line.php');
 require_once ('/home/downloads/jpgraph-
3.5.0b1/src/jpgraph_date.php');
 require_once ('/home/downloads/jpgraph-
3.5.0b1/src/jpgraph_utils.inc.php');

 session_start();
 $datay = $_SESSION['y'];
 $datax = $_SESSION['x'];

 //We fetched the data stored in the sessions to variables
datay and datax and now we can use them

 // Setup the graph
 $graph = new Graph(800,800);
 $graph->SetScale("textlin");

 $theme_class=new UniversalTheme;

 $graph->SetTheme($theme_class);
 $graph->img->SetAntiAliasing(false);
 $graph->title->Set('Filled Y-grid');
 $graph->SetBox(false);

 $graph->img->SetAntiAliasing();

 $graph->yaxis->HideZeroLabel();
 $graph->yaxis->HideLine(false);
 $graph->yaxis->HideTicks(false,false);

 $graph->xgrid->Show();
 $graph->xgrid->SetLineStyle("solid");
 $graph->xaxis->SetTickLabels($datax);
 //$graph->xaxis-
>SetTickLabels(array('9:15','9:30','9:45','10:00'))
 $graph->xgrid->SetColor('#E3E3E3');
 // Create the first line
//$p1 = new LinePlot(array('90','80','85','55'))
 $p1 = new LinePlot($datay);
 $graph->Add($p1);
 $p1->SetColor("#6495ED");
 $p1->SetLegend('Line 1');

 $graph->legend->SetFrameWeight(1);
 // Output line
 $graph->Stroke();

?>

Appendix 8

 1 (6)

styles.css file

html
{ height: 100%;}

*
{ margin: 0;
 padding: 0;}

body
{ font: normal .80em 'trebuchet ms', arial, sans-serif;
 background: #F0EFE2;
 color: #777;}

p
{ padding: 0 0 20px 0;
 line-height: 1.7em;}

img
{ border: 0;}

h1, h2, h3, h4, h5, h6
{ font: normal 175% 'century gothic', arial, sans-serif;
 color: #43423F;
 margin: 0 0 15px 0;
 padding: 15px 0 5px 0;}

h2
{ font: normal 175% 'century gothic', arial, sans-serif;
 color: #A4AA04;}

h4, h5, h6
{ margin: 0;
 padding: 0 0 5px 0;
 font: normal 120% arial, sans-serif;
 color: #A4AA04;}

h5, h6
{ font: italic 95% arial, sans-serif;
 padding: 0 0 15px 0;
 color: #000;}

h6
{ color: #362C20;}

a, a:hover
{ outline: none;
 text-decoration: underline;
 color: #1293EE;}

a:hover
{ text-decoration: none;}

.left
{ float: left;
 width: auto;

Appendix 8

 2 (6)

 margin-right: 10px;}

.right
{ float: right;
 width: auto;
 margin-left: 10px;}

.center
{ display: block;
 text-align: center;
 margin: 20px auto;}

blockquote
{ margin: 20px 0;
 padding: 10px 20px 0 20px;
 border: 1px solid #E5E5DB;
 background: #FFF;}

ul
{ margin: 2px 0 22px 17px;}

ul li
{ list-style-type: circle;
 margin: 0 0 6px 0;
 padding: 0 0 4px 5px;}

ol
{ margin: 8px 0 22px 20px;}

ol li
{ margin: 0 0 11px 0;}

#main, #logo, #menubar, #site_content, #footer
{ margin-left: auto;
 margin-right: auto;}

#header
{ background: #025587;
 height: 240px;}

#logo
{ width: 825px;
 position: relative;
 height: 168px;
 background: #025587 url(logo.png) no-repeat;}

#logo #logo_text
{ position: absolute;
 top: 20px;
 left: 0;}

#logo h1, #logo h2
{ font: normal 300% 'century gothic', arial, sans-serif;
 border-bottom: 0;
 text-transform: none;
 margin: 0;}

#logo_text h1, #logo_text h1 a, #logo_text h1 a:hover
{ padding: 22px 0 0 0;

Appendix 8

 3 (6)

 color: #FFF;
 letter-spacing: 0.1em;
 text-decoration: none;}

#logo_text h1 a .logo_colour
{ color: #80FFFF;}

#logo_text h2
{ font-size: 100%;
 padding: 4px 0 0 0;
 color: #DDD;}

#menubar
{ width: 1240px;
 height: 72px;
 padding: 0;
 background: #29415D url(menu.png) repeat-x;}

ul#menu, ul#menu li
{ float: left;
 margin: 0;
 padding: 0;}

ul#menu li
{ list-style: none;}

ul#menu li a
{ letter-spacing: 0.1em;
 font: normal 100% 'lucida sans unicode', arial, sans-serif;
 display: block;
 float: left;
 height: 37px;
 padding: 29px 26px 6px 26px;
 text-align: center;
 color: #FFF;
 text-transform: uppercase;
 text-decoration: none;
 background: transparent;}

ul#menu li a:hover, ul#menu li.selected a, ul#menu li.selected a:hover
{ color: #FFF;
 background: #1C2C3E url(menu_select.png) repeat-x;}

#site_content
{ width: 1180px;
 overflow: hidden;
 margin: 0 auto 0 auto;
 padding: 20px 20px 20px 40px;
 background: #FFF url(content.png) repeat-y;}

#site_content_v2
{ width: 1180px;
 overflow: hidden;
 margin: 0 auto 0 auto;
 padding: 20px 20px 20px 40px;
 background: #FFF url(content_2.png) repeat-y;}

.sidebar
{ float: right;

Appendix 8

 4 (6)

 width: 280px;
 padding: 0 15px 20px 15px;}

.sidebar ul
{ width: 178px;
 padding: 4px 0 0 0;
 margin: 4px 0 30px 0;}

.sidebar li
{ list-style: none;
 padding: 0 0 7px 0; }

.sidebar li a, .sidebar li a:hover
{ padding: 0 0 0 40px;
 display: block;
 background: transparent url(link.png) no-repeat left center;}

.sidebar li a.selected
{ color: #444;
 text-decoration: none;}

#content
{ text-align: left;
 width: 800px;
 padding: 0;}

#content_v2
{ text-align: left;
 width: 1180px;
 padding: 0;}

#content ul
{ margin: 2px 0 22px 0px;}

#content ul li
{ list-style-type: none;
 background: url(bullet.png) no-repeat;
 margin: 0 0 6px 0;
 padding: 0 0 4px 25px;
 line-height: 1.5em;}

#footer
{ width: 1240px;
 font: normal 100% 'lucida sans unicode', arial, sans-serif;
 height: 33px;
 padding: 24px 0 5px 0;
 text-align: center;
 background: #29425E url(footer.png) repeat-x;
 color: #FFF;
 text-transform: uppercase;
 letter-spacing: 0.1em;}

#footer a
{ color: #FFF;
 text-decoration: none;}

#footer a:hover
{ color: #FFF;
 text-decoration: underline;}

Appendix 8

 5 (6)

.search
{ color: #5D5D5D;
 border: 1px solid #BBB;
 width: 134px;
 padding: 4px;
 font: 100% arial, sans-serif;}

.form_settings
{ margin: 15px 0 0 0;}

.form_settings p
{ padding: 0 0 4px 0;}

.form_settings span
{ float: left;
 width: 200px;
 text-align: left;}

.form_settings input, .form_settings textarea
{ padding: 5px;
 width: 299px;
 font: 100% arial;
 border: 1px solid #E5E5DB;
 background: #FFF;
 color: #47433F;}

.form_settings .submit
{ font: 100% arial;
 border: 1px solid;
 width: 99px;
 margin: 0 0 0 10px;
 height: 33px;
 padding: 2px 0 3px 0;
 cursor: pointer;
 background: #263C56;
 color: #FFF;}

.form_settings textarea, .form_settings select
{ font: 100% arial;
 width: 299px;}

.form_settings select
{ width: 310px;
 height: 33px;
 clear: left;
}

.form_settings .checkbox
{ margin: 4px 0;
 padding: 0;
 width: 14px;
 border: 0;
 background: none;}

.separator
{ width: 100%;
 height: 0;
 border-top: 1px solid #D9D5CF;

Appendix 8

 6 (6)

 border-bottom: 1px solid #FFF;
 margin: 0 0 20px 0;}

table
{ margin: 10px 0 30px 0;}

table tr th, table tr td
{ background: #3B3B3B;
 color: #FFF;
 padding: 7px 4px;
 text-align: left;}

table tr td
{ background: #F0EFE2;
 color: #47433F;
 border-top: 1px solid #FFF;}

