

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

08/05/2017

Shijie Zhao

Data Visualization for Mobile Game Design and
Feature Selection

 Abstract

Author(s)
Title

Number of Pages
Date

Shijie Zhao
Data Visualization for Mobile Game Design and Feature Selec-
tion

50 pages + 5 appendices
8 May 2017

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s)

Sakari Lukkarinen, Senior Lecturer, Metropolia UAS
Joel Julkunen, CFO, GameRefinery Oy

The project explored new ways of visualization of mobile game analysis data. The aim was
to find better approaches of visualizing analysis results to help the clients in mobile game
design and feature selection decision making. This study was carried out for GameRefinery
Oy.

The project included researching data visualization, comparing different visualization tools,
implementing game analysis visualizations and conducting a usability test of the visualiza-
tions. Technologies used in the project include Python, Pandas and D3.js.

As a result, two visualizations of mobile game genre trends and features that were very
different from other visualizations within the company SaaS (software as a service) and the
mobile game industry were developed and were proven to be easy to use and helpful.

The data visualizations provided a clear and easy way to acquire related data and helped
making fact-based decisions in game design process for the clients in the mobile game in-
dustry, where time is of the essence.

Keywords Data Visualization, JavaScript, D3.js, Python, Pandas, JSON,
Mobile Game Design, Feature Set

i

Contents

1 Introduction 1

2 Background 2

2.1 Data Visualization History 2

2.2 Varieties of Data Visualization 4

2.2.1 Information Visualization 4

2.2.2 Scientific Visualization 5

2.2.3 Mathematical Visualization 6

2.2.4 Domain Specific Visualization 8

2.3 Modes of Data Visualization 9

2.4 2-D Graphics 10

2.5 Data Formatting Libraries 12

2.6 Data Visualization Libraries 12

2.6.1 D3.js 13

2.6.2 D3 Layouts 16

2.7 Analysis in the Mobile Game Industry 18

3 Materials and Methods 20

3.1 Top 50 Game Genres Design - Cluster and Bundle Layout 20

3.1.1 Cluster Layout 21

3.1.2 Bundle Layout 22

3.2 Feature Breakdown Design – Treemap 24

3.2.1 Treemap Layout 26

3.3 Reading Database 28

3.3.1 Database - Game Analysis 28

3.3.2 Reading Data with Python Pandas Library 29

3.4 Data Formatting 29

3.4.1 Top 50 Game Genres - Cluster Layout and Bundle Layout 29

3.4.2 Treemap Layout 32

3.5 Plotting 32

3.5.1 Top 50 Game Genres 33

3.5.2 Feature Breakdown 39

3.6 Usability Test 43

4 Results 44

ii

4.1 Development Process 44

4.2 Visualization Library Comparison Result 44

4.3 Discarded Visualizations 45

4.4 Usability Test Result 47

5 Discussions and Conclusions 49

6 References 51

Appendices

Appendix 1: Cluster and Bundle Layout Data formatting with Python Pandas

Appendix 2: Treemap Layout Data Formatting with Python Pandas

Appendix 3: Top 50 Game Genres Visualization

Appendix 4: Feature Breakdown Visualization

Appendix 5: Usability Test Form

iii

Abbreviations and Terms

Bokeh A Python interactive data visualization library

CAD Computer-aided design

Chart.js A JavaScript light-weight data visualization library

CSS Cascading Style Sheets

CSV Comma-separated values

DataFrame A 2-dimentional labeled data structure from Pandas library

DOM Document Object Model

D3.js Data-Driven Documents, a JavaScript data visualization

library

GIF Graphics Interchange Format

GPS Game Power Score

HTML Hypertext Markup Language

I/O Input/output

JavaScript A high-level, dynamic, untyped, and interpreted run-time language

JPEG Joint Photographic Experts Group

JSON JavaScript Object Notation

MATLAB A multi-paradigm numerical computing environment

Matplotlib A plotting library for Python and NumPy library

NumPy A Python scientific computing library

Pandas A Python library of high performance data structures and analysis tools

PDF Portable Document Format

iv

Plotly A scientific graphing library

PNG Portable Network Graphics

Python A high-level general-purpose programming language

SaaS Software as a service

SUS System Usability Scale

SVG Scalable Vector Graphics

TeX A typesetting system

TSV Tab-separated values

UA User Acquisition

XML Extensible Markup Language

1

1 Introduction

This project explored new ways of visualization of game analysis data. The goal of the

project was to find better approaches of visualizing analysis results to help the clients in

decision making regarding mobile game design and feature selection.

The mobile game industry is growing rapidly on a daily basis, and the global games

market will reach $108.9 billion in 2017 with mobile taking 42% [1]. Markets in China, US

and Japan are quite different from each other and the competition is fierce with very rapid

changes of game and genre trends.

The case company in this study is GameRefinery Oy, a mobile game analytics company

that provides market specific insight into feature and implementation aspects of mobile

game design, and helps the clients increase their games’ profitability potential by imple-

menting fact-based game design. The company is developing a SaaS (software as a

service) platform, and is considering different ways of presenting the analysis data to the

clients. The most valuable aspect of the company is the analysis data, and it is very

important to use data visualization to present the data to the clients in a way that is easy

and clear to perceive.

The objective of the project is to develop new ways of visualizing game analysis data

that helps the clients find out current genre trend and most important game features

quickly and conveniently, and make fact-based design decisions with their findings from

the visualizations. The project managed to deliver a solution meeting the requirements

and is proven to be effective.

The thesis starts by studying data visualization, comparing different data visualization

tools and selecting one tool suitable for the project. Then exploring different visualization

approaches for presenting mobile game analysis data that can be perceived fast and

effortlessly. Matters such as the functionalities of the visualization tools, the environment

of the visualizations and the usability of visualizations need to be taken into considera-

tion.

2

2 Background

2.1 Data Visualization History

Quantitative information and its graphical representation has its origin deeply inside the

history of thematic cartography, statistical graphics and data visualization, three fields

that are associated with each other [2].

The earliest use of graphical representation appeared in geometric diagrams and in

maps for helping navigating and exploring. Visualization saw its beginning of develop-

ment by 16th century when techniques and instruments for precise observation and

measurement of physical quantities were well-developed. In the 17th century, the emer-

gences of analytic geometry, theories of errors of measurement, the birth of probability

theory, demographic statistics and “political arithmetics”, marked the starting point of

practice and great development in theory. During the 18th and 19th centuries, social,

moral, medical and economic statistics - numbers related to people - were collected in a

large scale and periodic manner. Moreover, the value of these data for planning and

governmental response, or even as a subject by itself to be studied, started to be real-

ized. [2]. Figure 1 is a historical astronomical chart created by Chinese cartographer

Huang Shang in 1247 [3].

3

As can be seen in figure 1, it is a planisphere along with text explanations below it. With

the help of a adujstable disk to cover some parts of the chart on top, it displays visible

stars for any time and date, assisting in recognizing stars and constellations [4].

Statistical thinking started with the rise in visual representation: mathematical proofs and

functions were illustrated using diagrams; nomograms were invented to help calcula-

tions; for easier communication and visually accessible representation of properties of

empirical numbers - their trends, tendencies and distributions, several graphic forms

were developed. Besides, the close relation of numbers of the state (the origin of the

Figure 1.Tianwen Tu (Astronomical chart)

4

word “statistics”) and its geography aided it to be visually represented on maps, which is

called “thematic cartography” nowadays. [2]

It has been always hard to generate maps, diagrams and graphs, and even harder to

publish them. Originally they were hand drawn, later engraved on copper plate and man-

ually colored, after that came lithography and photo-etching. Till most recently, computer

programs have been used to generate graphs, even though the process is still con-

strained by the available technology. [2]

The rapid development of statistical computation and graphic display in recent years

have provided tools for data visualization that was impossible half a century ago. The

advancement in human-computer interaction has also contributed to brand new pattern

for interactive graphical information exploration. Besides most of the progress in statisti-

cal data visual representation, information visualization itself has also evolved, especially

for large networks, hierarchies, data base representation and so forth. [2]

2.2 Varieties of Data Visualization

As data visualization is constantly developing, and is being used in a wider range of

fields, some branches of data visualization are becoming increasingly important and are

worth researching by themselves. In this chapter, information visualization, scientific vis-

ualization, mathematical visualization and domain specific visualization are presented.

2.2.1 Information Visualization

Information visualization applies to the visualization of large-scale collections of non-nu-

merical, non-coordinate, more abstract data, and it relies heavily on processing of ab-

stract data into a more concrete form that can be perceived by an observer more effec-

tively. Some examples are file systems and codes in software, library and bibliographic

database and relation networks on the internet. [2] Figure 2 is a visualization of GDP

data of cities from Zhejiang, Guangxi and Jiangsu provinces of China.

5

As can be seen in figure 2, this visualization makes the information easier to perceive by

presenting numbers in the form of squares. The area size reflects the relative size of

number, making it easy to compare between cities and provinces.

2.2.2 Scientific Visualization

Scientific visualization is a kind of visualization that focuses on multidimensional phe-

nomena (architectural, meteorological, medical, biologic, etc.) primarily [2]. In other

words, it is the visualization of data from scientific experiments and simulations. The data

are measured or acquired via lengthy, expensive simulations. The most important as-

pects of scientific visualization are realistic renderings of volumes, surfaces and illumi-

nation sources. The content presented will be drawn with both visual design and infor-

mation graphics prospects, and benefit from both [2]. Interactive visualization can be

implemented to make the visualization more productive. When visualizing scientific data,

the data often has missing values, various methods of handling the missing values such

as interpolation can be applied. Figure 3 shows a 3D visualization of height data matrix

of Maunga Whau of Auckland, New Zealand.

Figure 2. GDP of cities in three provinces in China, data gathered from Lv (2015) [30]

6

As shown in figure 3, the color of the surface changes gradually from green to blue as

the height of the mountain increases. This figure also demonstrates that scientific visu-

alizations benefit from visual design and information graphics, by using unrealistic color

mapping to provide better perception of height while also remaining informative by cor-

relating the height of points with color.

2.2.3 Mathematical Visualization

Mathematical visualization is visualization of mathematic problems. It is the visualization

of data generated from mathematical equations using computer programs. The compu-

tation and the visualization both are very hard or nearly impossible to be achieved man-

ually, and only became possible several decades ago, with the progress in computational

and visualization capabilities. [5] A good example for mathematical visualization is the

Mandelbrot set.

 Mandelbrot set is a set of complex c-values for which the orbit of 0 does not escape

under iteration of 𝑥2 + 𝑐. Equivalently, the Mandelbrot set is the set of c-values for

which the filled Julia set of 𝑥2 + 𝑐 is a connected set. [6]

Figure 3. 3D Perspective view of Maunga Whau Volcano of Auckland, data gathered from R datasets
Package

7

A complex number belongs to the Mandelbrot set if, when starting with 𝑧0 = 0 and ap-

plying the iteration of complex quadratic polynomial 𝑧𝑛+1 = 𝑧𝑛
2 + 𝑐 repeatedly, the abso-

lute value of 𝑧𝑛 remains bounded however large 𝑛 gets. Listing 1 shows the mathemati-

cal definition of Mandelbrot set.

𝑧𝑛+1 = 𝑧𝑛
2 + 𝑐

𝑐 ∈ 𝑀 ⟺ 𝑙𝑖𝑚 𝑠𝑢𝑝
𝑛→∞

|𝑧𝑛+1| ≤ 2

Listing 1 Mandelbrot definition

As shown in listing 1, elements inside Mandelbrot set changes when 𝑛 changes. As the

complex numbers get more accurate and the iteration continues, the visual representa-

tion of the Mandelbrot set gradually demonstrates certain beautiful patterns that are very

similar to patterns found in the nature. Figure 4 is the Mandelbrot set and an area called

seahorse valley in 50 iterations.

Figure 4 Mandelbrot set with zoom in view around seahorse valley

8

As shown in figure 4, each color in the graph represents the Mandelbrot set of one iter-

ation. The biggest circle shape is the set of numbers after the first iteration. The inner

most shape with deep blue color, which looks like a heart, is the collection of complex

numbers that, after 50 iterations, are still within the boundary of the Mandelbrot set. The

beauty of the Mandelbrot set is that whether the points that are in the Mandelbrot set and

are close to the boundary in this iteration will remain in the set after next iteration seems

arbitrary yet obeying certain rules. As the iteration increases, the visualization of Man-

delbrot set becomes increasingly sophisticated, but if zoomed in, the patterns by the

boundaries are composed of many simple patterns found in previous iterations. There

are smaller bulbs attached to the biggest bulb, and smaller parts attached to the main

body or the cardioid of the Mandelbrot set that look like the main body itself. This indi-

cates that the behavior of the Mandelbrot set is very similar to things in nature, for ex-

ample the relation between a tree trunk, branches and leaves.

The zoomed-in region in figure 4 is the area near the coordinate(−0.75,0.1𝑖). The area

is called seahorse valley because the shapes appearing in this region resemble the tail

of a sea horse, and already it can be seen that the smaller sea horse tails look like the

bigger ones. With enough processing power, the plot can be zoomed in infinitely. No

matter how closely zoomed in, the boundary of the Mandelbrot set will always appear

crinkly as if it was not zoomed in at all [7]. This demonstrates the complexity of the Man-

delbrot set.

What the Mandelbrot set means is still an open question in mathematics, but after Benoit

Mandelbrot first visualized the set of numbers in 1980, engineers and scientists have

been inspired by it, designing antennas used in mobile phones today capable of receiving

signals in different frequencies and rendering landscapes in movies and so on. [8]

2.2.4 Domain Specific Visualization

Different kinds of visualizations are used in different domains or fields. Business intelli-

gence or customer survey results need to be presented in such a way that they help

making business decisions. Geographic visualization uses data that is geographic by

nature, and presents it in visual form to help the viewer better understand the data and

support the analysis of geospatial data. Educational visualization is the visualization of

9

some phenomena that is hard to understand by other methods. It aids the topic to be

taught easier. [5]

There is also medical visualization, which has been widely used nowadays to help un-

derstand medical conditions and make treatment decisions. It is the art of transforming

medical imaging data sets to 3D images with the help of computers. Figure 5 is an ex-

ample of medical visualization of RNA and DNA.

Figure 5 demonstrates one application of medical visualization, i.e. helping understand

the structures of RNA and DNA. Though it is a relatively new frontier, medical visualiza-

tion is developing rapidly thanks to the increase in computing power. Almost all cancer

and surgery treatments rely on medical visualization in the developed world. [9]

2.3 Modes of Data Visualization

Interactive visualization is a mode of visualization used by a single viewer to explore and

discover hidden meanings in data. When viewing such visualization, the viewer is

granted full control of the data, and can change which data is being presented or how

the data is presented. The quality of visualization will not be as polished as other modes

Figure 5 RNA and DNA visualization [26]

10

because the visualization is generated in real-time. Google Public Data Explorer is a

good example. [5]

Presentation visualization is the visualization used to deliver information to a wider group

of audiences. This kind of visualization is often used in a video or presentation. The main

difference between presentation visualization and interactive visualization is that,

presentation visualization does not let the viewer to interact with the data, but just receive

and observe the data being presented in the form that helps the viewer perceive. This

kind of visualization is highly polished. [5]

Interactive storytelling is the mode of visualization that presents data through interactive

web pages. The viewer cannot change the dataset but can alter the visualization to a

certain degree, for example, change how the data is presented and change the data

presented in the visualization. [5] Table 1 shows a comparison of the different modes of

visualization.

Table 1 Comparison of different modes of visualization [5]

Visualization
Mode

User Interac-
tion

Graphics Ren-
dering

Target Medium

Interactive Vis-
ualization

controls over
everything, in-
cluding dataset

Real-time ren-
dering

Individual or col-
laborators

Software or in-
ternet

Interactive Sto-
rytelling

filter or inspect
details of preset

datasets

Real-time ren-
dering

Mass audience Internet or kiosk

Presentation
Visualization

User only ob-
serves

Precomputed
rendering

Mass audience
Slide shows,

video

As seen in table 1, different visualization modes are used in different scenarios and serve

different purposes. This table can be used during design phase to help select visualiza-

tion modes.

2.4 2-D Graphics

After selecting the mode for data visualization, the next step is understanding 2-D com-

puter graphics that will be used for creating visualization. 2-D graphics are generations

11

of digital images with computer. The following part will introduce raster graphics and

vector graphics.

Vector Graphics are the graphics used for describing two-dimensional graphics with vec-

tors. The points on a graph that the vector goes through are definite and possess attrib-

utes such as thickness, curve and shape. Graphics that require to be scaled will tend to

use vector graphics. For example, architectural drawings, CAD programs, clip arts and

fonts. Vector graphics have small file sizes, making them to load quickly and thus widely

used in graphics on websites. Formats for storing vector graphics include PDF and SVG

(Scalable Vector Graphics). [5]

Raster Graphics are graphics to display graphics on digital display such as computer

screen and mobile screen. Raster graphics image has a matrix data structure, each cell

of the matrix is the color data containing three values for color image, or one value for

grayscale/binary image. On the screen, the pixels are assigned color to be displayed.

The screen is scanned through and colored pixel by pixel, row by row. [10] The refresh

rate denotes how many times the screen is being scanned every second. Most of the

computer images are stored as raster graphic formats. Some of the formats include GIF,

JPEG and PNG.

When a graph is generated through vector graphics, in order to be displayed on raster

display, it needs to go through the process of rasterization. Figure 6 is a comparison of

vector graphics and raster graphics.

Figure 6 Comparison of Vector graphics and raster graphics [27]

12

As shown in figure 6, the vector graphics triangle is taken in and mapped on the pixel

display system. Different algorithms are used to determine the illumination and the color

of pixels. In figure 6, it is determined by whether the center of pixel is included in the

inner side of the shape. After the process, the raster graphics display will only show a

matrix of pixels with some being illuminated in light blue while the others remain white.

After the process of rasterization, the lines of raster graphics will look like stairs on the

edge, instead of straight lines or curves in vector graphics. This is called aliasing.

2.5 Data Formatting Libraries

Python is a high level general purpose programming language. It is used in many fields

including software engineering, web backend servers and statistical programming. It is

cross-platform and easy to learn, and it is also open source [11]. In this project Python

was used, along with several Python libraries, for extracting the data from CSV and for-

matting the data to the proper shape accepted by D3.js and exporting the data in JSON

(JavaScript Object Notation) format.

Pandas is a Python package that provides several data structures that are fast, express-

ible and flexible in addition to Python default data structures, to allow Python work with

“relational” or “labeled” data easily and intuitively. It allows Python to perform practical

data analysis. Its goal is to become the most powerful and flexible open source data

analysis and manipulation tool in any language. [12] The most important use of Pandas

library is the DataFrame data type, which provides an easy and fast way of tabular data

I/O with many convenient functionalities for data manipulation.

2.6 Data Visualization Libraries

Matplotlib is a Python plotting library for the numerical library NumPy. It allows the user

to write object-oriented codes for visualization, while also supporting MATLAB style pro-

cedural programming. It works with other libraries including NumPy for better perfor-

mance. It provides high quality visualization meeting publication standard, accepts TeX

document expressions and includes them in the output, can be implemented within ap-

plications and is easy to code and understand. [13] Besides, Matplotlib provides a wide

range of control to the user so it is possible to optimize the visualization until it meets the

demand. It has been the most popular Python visualization library and thus other libraries

13

use it as default visualization library. The disadvantage is that it requires to be run in a

Python environment, cannot provide web based interactivity and is not capable of making

the planned visualization.

Bokeh is a Python visualization library that lets the user write the code in Python, and

generates JavaScript output so that the plot result can be embedded into a website, while

also provides interactivity [14]. The library is well documented and the functions are easy

to use. At the cost of a bit less control than Matplotlib, it enables Python programmers to

make web based interactive visualization. However, it still lacks the functionalities

needed for making the planned visualization.

Chart.js is a JavaScript visualization library with minimalistic design philosophy and is

very easy to use, thanks to good documentation. With a certain range of control over the

visualization, it provides a quick approach to web based interactive visualization. How-

ever, it is a rather light-weight visualization library that can only make 8 types of charts

such as line chart and bar chart. Chart.js still does not meet the functionality requirement

for the project.

D3.js is a JavaScript library for creating and manipulating DOM documents with data. By

working together with HTML and CSS, it gives a wide range of control over the visuali-

zation from the position of an individual data node to the font of text on visualization. It is

a standardized library while is still open-source. [15] Being a JavaScript library, it pro-

vides a wide range of interactivity to the visualization. But it is very different from other

visualization libraries in terms of generating of the visualization, and the documentation

of D3.js is the worst compared to the other visualization libraries mentioned above, which

makes it hard to learn and implement. However, it is the only visualization library that

has the functionalities needed for the project and thus D3.js was chosen to be the data

visualization library of this project. Version 3 D3 is used instead of the newer version 4,

since there are more tutorials, books and examples available in version 3.

2.6.1 D3.js

D3 offers extensive control and is capable of making informative and elegant visualiza-

tions just as Matplotlib does, which is also a weakness. It requires the programmer to

manually set up every element of the visualization from the ground up. For making “tra-

ditional” visualizations such as pie charts and line charts that other libraries can achieve

14

with a few lines of code, D3 requires several dozen lines of code. For example, making

a simple scatterplot, the difference is drastic. Listing 2 and 3 are the code snippets for

generating scatterplot in D3 and Matplotlib respectively.

 //width and height

 var w = 500;

 var h = 300;

 var padding = 30;

 //scale set up:

 var xScale = d3.scale.linear()

 .domain([0, d3.max(dataset, function(d) {

 return d[0];

 })])

 .range([padding, w - padding * 2]);

 var yScale = d3.scale.linear()

 .domain([0, d3.max(dataset, function(d) {

 return d[1];

 })])

 .range([h - padding, padding]);

 var rScale = d3.scale.linear()

 .domain([0, d3.max(dataset, function(d) {

 return d[1];

 })])

 .range([2, 5]);

 //define xAxis and yAxis

 var xAxis = d3.svg.axis()

 .scale(xScale)

 .orient('bottom')

 .ticks(5);

 var yAxis = d3.svg.axis()

 .scale(yScale)

 .orient('left')

 .ticks(5);

 //create SVG element

 var svg = d3.select('#scatterplot')

 .append('svg')

 .attr('width', w)

 .attr('height', h);

 //create circles

 svg.selectAll('circle')

 .data(dataset)

 .enter()

15

 .append('circle')

 .attr('cx', function(d) {

 return xScale(d[0]);

 })

 .attr('cy', function(d) {

 return yScale(d[1]);

 })

 .attr("r", function(d) {

 return rScale(10);

 });

 //create x and y axis

 svg.append('g')

 .attr('class', 'axis')

 .attr('transform', 'translate(0, ' + (h - padding) + ')')

 .call(xAxis);

 svg.append('g')

 .attr('class', 'axis')

 .attr('transform', 'translate(' + padding + ', 0)')

 .call(yAxis);

Listing 2. D3 scatterplot code

plot(time, temp, 'o')

Ylim([0, 75])

Listing 3. Matplotlib scatterplot code

Figure 7 presents the results of scatterplot of D3 and Matplotlib, with D3 visualization on

the left and Matplotlib visualization on the right.

As figure 7 shows, the plot results are almost the same, while the code snippets from

listing 2 and listing 3 pose a huge difference in the amounts of work. What the D3 code

does is that it first sets up the canvas size, then based on the input domain and output

range set up by the programmer, performs scaling on x values and y values on the points.

Next, it defines the x axis and y axis. Afterwards, the plotting finally begins by selecting

Figure 7 Comparison of D3 scatterplot (left), and Matplotlib scatterplot (right)

16

the SVG canvas, appending the circle elements to the data node on the canvas with

coordinate data returned by scaling function. Finally, it adds the axis elements to the plot.

The plot is generated based on the data being bound to the elements, if the data is

changed, the plot will be changed automatically, which is why D3 stands for data-driven

documents. The D3 code example in listing 2 also demonstrates the wide range of con-

trols given to the programmer to make the perfect plot in his or her mind. And since the

plot is generated with JavaScript, it provides all kinds of web based interactivity, and can

be regenerated on the fly within a web browser, while not being constrained by the envi-

ronment like Matplotlib does.

Since D3.js version 1.0 was released in 2011, it gradually and steadily gained popularity

among data visualization community. It is one of the most popular visualization libraries

that there are already some libraries built on top of D3, as a “wrapper” to its functionali-

ties, to provide easy and fast visualization solutions. However, the most important func-

tionalities of D3 to the project are layouts.

2.6.2 D3 Layouts

A layout is a function or strategy for mapping data nodes on the canvas. It takes in data

and calculates the positions for each element in the data and outputs new data that in-

cludes this information for plotting. [16] Figure 8 depicts the comparison of the plot gen-

eration process between D3 and other visualization tools.

17

As figure 8 demonstrates, layouts are similar to plot functions from Matplotlib, Bokeh and

Chart.js in terms of their roles in the process of visualization. The difference is that in-

stead of drawing the visualization, D3 applies algorithms on imported data to generate

information such as coordinate and hierarchy depth of the node for drawing. The other

process such as binding data to SVG elements and actual drawing process still needs

to be implemented afterwards. It is a rather low-level concept that other visualization

tools do not have. It could be hard to comprehend at the beginning, but once the pro-

grammer are familiar with it, it is very convenient for making specific visualizations that

the programmer has in mind. So for developing common and widely used visualization,

Chart.js, Matplotlib and Bokeh are better options, while for making more sophisticated,

more informative visualization or visualization with specific demand, D3 is the better op-

tion.

D3 provides 12 layouts including pack layout, partition layout, treemap layout, tree layout

and cluster layout that are used to visualize hierarchical data and relations [17]. Hierar-

chical data are, for example family tree that contains parent-child relationships, with the

Figure 8. Comparison of plot generation process between D3 and other visualization
tools (Matplotlib, Bokeh and Chart.js), data gathered from Zhihua Lv [17]

18

youngest generation, presumably grandchildren at the lowest level, and the oldest gen-

eration, i.e. grandparents at the top; or academic publications with every publication be-

ing leaf nodes (nodes without children) at the lowest level, the writer at the level above

the publication level, and the institute at the top. In this project, treemap layout and clus-

ter layout are used, along with the bundle layout that is used to assist the cluster layout.

2.7 Analysis in the Mobile Game Industry

Mobile gaming has been growing rapidly in recent years, with thousands of new games

being released on a daily basis. Many investments are being poured into the industry,

and huge amounts of revenue are generated from the market. The global games market

will reach $108.9 billion in 2017, with 42% coming from the mobile games market. [1]

Figure 9 shows three major areas affecting the performance of a mobile game.

As figure 9 demonstrates, Marketing & UA, implementation and feature set make up the

most important factors of revenue potential of a game. The market trend is changing

rapidly, and the industry is trying to understand the trend. There are many studies re-

garding mobile game monetization being conducted, but most of resources are being

directed toward marketing, user acquisition, analytics, creativity IP/brand and overall

concept of games. The mobile game industry lacks a fact-based decision-making and

feature-selection system for game design. A study of over 7000 mobile game analyses

in the past 3 years at GameRefinery found that the game design feature sets contribute

40-60% of the sustainable revenue of games.

This kind of feature level analysis requires huge amounts of resources and work. While

AAA studios have the resource to conduct game breakdown analysis similar to what

GameRefinery does at a very high expense, medium to small size studios have difficulty

Figure 9 Three major factors affecting a mobile game’s performance

19

trying to keep up with the market trend. Many studios and developers make mobile game

design decisions based on their personal preference and experience. What GameRefin-

ery is trying to achieve is to create a platform for mobile game developers to better un-

derstand the market by looking at both high level generic trend of the market and detailed

feature-level insights, and make fact-based feature-level game design decisions based

on the analysis findings.

GameRefinery is a mobile game analytics company that conducts analysis to thousands

of games. For each game, the company collects over 200 features to map the game

‘DNA’. After that the ‘DNA’ goes through the process of data crunching with machine

learning algorithms and statistical methods. Then the findings are delivered to the clients

in a well-formatted and easily-perceived way to help them improve and maintain game

competence throughout the lifespan of their games and increase the monetization po-

tential of the games.

As the company was developing its SaaS platform, better visualizations of the analysis

data were considered. The data visualizations in the platform were traditional, unattrac-

tive and sometimes confusing. As the data and findings are very important to the com-

pany and its clients, it would be regretful if they were not well visualized, well communi-

cated to and perceived by clients. Therefore, this project strives to explore new ways of

visualizing game analysis data using new technologies with the goal of helping the client

in mobile game design and feature selection.

20

3 Materials and Methods

This chapter starts by explaining reasons for selecting the visualizations and their design,

then introduces cluster, bundle and treemap layouts used in the visualizations, followed

by the process of data visualization, beginning from reading in database, data formatting

and the most important aspects of generating these visualizations. Finally, the last part

of the chapter describes the usability test.

3.1 Top 50 Game Genres Design - Cluster and Bundle Layout

As the company was developing the online platform for the clients and analysts, it missed

visualization for presenting game genre trends. The company had genre data of all the

games in the database, but lacked a good way of presenting them to the clients. When

considering different visualizations for game genres, a visualization example on D3 offi-

cial site stood out. It was a visualization of the Guardian news article titled “Violence and

guns in best-selling video games” with a cluster layout and bundle layout visualization.

The right part of the visualization was best-selling computer games, the upper left part

was the content labels, and lower left part was the weapons in the games. The visuali-

zation linked the games with their content labels and weapons. Next to each name of

game, name of weapon or content label there is a square with height correlated to the

game sale, count of games that had that weapon or belong to that label, providing a

straightforward representation of related data.

Unfortunately, the original article was removed, but the visualization greatly inspired the

visualization of genre trends in this project. In GameRefinery analysis, a game was cat-

egorized into two genres, primary genre and secondary genre. The primary genre de-

scribed the action layer, or combat layer of the game, while the secondary genre de-

scribed the preparation layer, such as when the players were preparing for battle or de-

veloping their bases. For example, Clash of Clans would be categorized into the primary

genre of strategy, and secondary genre of base development (hostile). So the original

idea of the game genre trend visualization was, on the right part of the visualization was

the top 50 games, with a square next to the name, representing the Game Power Score

(GPS). GPS is a number ranging from 1 through 100, that benchmarks the game’s rev-

enue potential. The width of square would represent the GPS. On the left part were the

primary genre and secondary genres, and each genre was linked to all the games that

21

belonged to it. A square would be added next to a genre, and its width would reflect the

count of games in that specific genre. Cluster layout and bundle layout were used in this

visualization.

3.1.1 Cluster Layout

The cluster layout produces dendrograms: node-link diagrams that place leaf nodes of

the tree at the same depth. For example, a cluster layout can be used to organize soft-

ware classes in a package hierarchy. [18] Figure 10 is a demonstration of selected cities

and provinces in China, with tree layout on the left, and cluster layout on the right.

As seen from the plot in figure 10, China on the left, is the highest level, and 4 provinces

lie on the second level, cities that belong to a specific province are on the third level, and

the fourth level shows 4 districts from the city of Guilin. The cluster layout arranges all

the leaf nodes on the same lowest level, no matter how many levels are there between

the leaf node and top node. That is, as seen from the plot on the right of figure 10, the

lowest level includes cities from 4 different provinces and districts from the city of Guilin.

All the leaf nodes will be on the same level, despite the fact that between different

branches, there are different levels. The tree layout, which is very similar to the cluster

layout, keeps each level on its own level graphically, as demonstrated by the plot on the

left of figure 10. The cluster layout and tree layout are both great for representing hierar-

chical data.

Figure 10 Comparison of tree layout(left) and cluster layout(right) visualization of selected cities in China,
data gathered from [28]

22

Since cluster layout is used to represent hierarchical data, the form of data should be

also hierarchical. One possible form of data is demonstrated by listing 4, a city hierarchy

JSON data.

{

 "name":"United States",

 "children":[

 {

 "name":"California",

 "children":[

 {

 "name":"Los Angeles"

 },

 {

 "name":"San Francisco"

 }

]

 },

 {

 "name":"New York",

 "children":[

 {

 "name":"New York"

 },

 {

 "name":"Buffalo"

 },

 {

 "name":"Rochester"

 }

]

 }

]

}

Listing 4 Cluster layout city data

Listing 4 demonstrates one possible JSON format data accepted by D3 cluster layout.

The name of the object is “United States”, and its children property is a list of 2 state

items, i.e. New York State and California. Within the “children” list of each state object,

there are several selected cities. This object contains the hierarchical information. For

this project, the data used in creating the cluster layout of top 50 game genre visualiza-

tion was formatted similar to listing 4.

3.1.2 Bundle Layout

23

Bundle layout is a layout for generating links between different nodes. A path is gener-

ated through the input node upwards to the parent hierarchy, to the least common an-

cestor, then to the output node. This layout can be used as a function, together with other

hierarchical layouts to generate bundled splines between nodes, as demonstrated in

Figure 11. [19]

As seen in figure 11, bundle layout is used together with cluster layout to generate the

visualization. The cluster layout decides the coordinates of nodes, and bundle layout

generates the lines between the nodes. The bundle layout has one functionality: calcu-

late the path from one node to another. Figure 12 is a representation of the relation links

with straight and curved lines.

As can be seen in figure 12, straight lines and curved links cannot represent adjacency

between lines well, and thus cause visual clutter. While straight lines make the graph

Figure 11. Visualization of software dependencies [19]

Figure 12. Adjacency representation with Straight lines and curved links [20]

24

messy, curved lines make it hard to tell where each line is leading to. The D3 bundle

layout used Danny Holten’s hierarchical edge bundling algorithm to tackle the problem

by bundling the lines together [20]. It looks for the input nodes, then for bundling, it

searches upwards to the parent nodes, until common ancestors between different lines

are found. If some lines have common ancestors, their lines will be “bundled” closer

together. This algorithm avoids problems presented by straight lines and curved links

while also providing a very good hierarchical relation information. [20] Listing 5 shows a

possible form of flight data for generating D3 links.

[

 {

 "source":"Los Angeles",

 "target":"San Francisco "

 },

 {

 "source":"New York",

 "target":"San Francisco"

 },

 {

 "source":"Buffalo",

 "target":"Los Angeles"

 },

 {

 "source":"Rochester",

 "target":"San Francisco"

 },

 {

 "source":"Los Angeles",

 "target":"New York"

 }

]

Listing 5. Airline flights between selected cities

Since the data used by bundle layout is for generating links or lines between nodes, each

element in the data object will naturally describe the link relations between nodes. As

listing 5 demonstrates, each element in the list is an object containing source and target

properties, source being the start of the flight, target being the terminal. This data is

artificially generated only for demonstration. The relations data used in the visualization

is formatted similar to listing 5.

3.2 Feature Breakdown Design – Treemap

25

The mobile game analysis consisted of hundreds of features that were grouped into fea-

ture categories. Each individual feature and feature category had its own quantified con-

tribution to the game’s revenue potential. To help clients find out which features are the

most important to be implemented in their game and prioritize their task, it was very

important to let them acquire such information with convenience. Within GameRefinery

SaaS platform there was one radial treemap feature breakdown visualization as shown

in Figure 13.

As seen in figure 13, the visualization above is a radial treemap. Each element in the

inner circle represents feature categories, and the elements in the outer circle represent

individual features of that category. When hovered on the partition, the graph displays a

tooltip showing the feature. The visualization was considered confusing, and was

planned to be removed. However, treemap was actually good for presenting quantitative

hierarchical data, and it was considered that a normal square treemap implementation

would be more suitable for the feature breakdown visualization. The original plan was to

make a treemap that groups features by their categories, and differentiate feature cate-

gories with different colors. The size of the square and the darkness of the color reflects

Figure 13. GameRefinery feature breakdown

26

their importance. If the feature is more important, the size of the square would be bigger

and the color would be darker.

3.2.1 Treemap Layout

Treemap is a visualization of hierarchical structures in a limited space, it makes 100%

use of space [21]. It represents attributes of leaf nodes effectively with size and color

difference. With treemap, users can easily compare nodes and sub-trees of the tree from

different scopes, and spot patterns and exceptions within the hierarchical structure. [22]

Treemap was designed by Ben Shneiderman during the 1990s, and his original design

was nesting rectangles. Then for better comprehension, borders were added to the de-

sign to show the nesting and hierarchy. The size of each square represented the quan-

titative attributes, such as the size of a file in a hard drive. The hue of its color can rep-

resent categorical or hierarchical attribute, files of same format can have the same hue.

The lightness difference can also represent the information regarding the file size, for

example the bigger the file, the darker the color. [22] Figure 14 shows a treemap imple-

mentation to support large data sets of one million items.

27

Treemap visualization can be implemented in different ways. The normal treemap, as

shown in figure 14, represents the overall structure and presents a good overview of the

system, but if the data has many hierarchical levels, some low-level information might be

missing. One way to solve the problem is to have a zoomable treemap. A zoomable

treemap is implemented in environments such as web browser in such a way that, on

the first view, it only presents the highest level and second level hierarchy node. By

clicking any square, the selected node expands to cover the whole canvas and shows

all the children nodes within the selected node. This way of implementation provides a

high level structural overview while also maintaining all the low-level details within the

information structure. This implementation is suitable for hierarchical data of multiple lev-

els. Listing 6 shows GDP data for generating treemap visualization in D3.

{

 "name":"United States",

 "children":[

 {

 "name":"New York",

 "children":[

 {

 "name":"New York",

Figure 14. One Million Items Treemap [29]

28

 "GDP":1234

 },

 {

 "name":"Buffalo",

 "GDP":5678

 },

 {

 "name":"Rochester",

 "GDP":9012

 }

]

 }

]

}

Listing 6. GDP data from selected US cities

Listing 6 showed one possible form of data accepted by the D3 treemap layout. All the

data in listing 6 is randomly generated only for demonstration. For the object “United

States”, it contains name property, and a “Children” property, i.e. a list of state objects.

The state object in listing 6 is New York State, containing name and children property.

The children property contains a list of city objects, with name and GDP property. In

treemap, the value property (being GDP in listing 6) associated with the lowest level data

is most important, because all the attributes associated with higher level objects used for

generating the treemap plotting data are calculated based on their lowest level children’s

values and hierarchy information. The data generated for the feature breakdown treemap

visualization was similar to the data format shown in listing 6.

3.3 Reading Database

3.3.1 Database - Game Analysis

The database is the mobile game analysis database of GameRefinery. The database

consists of several hundred pieces of analysis, with each piece of game analysis tracking

over 200 features. The database used in this project was a CSV database. One feature

example:

• How many soft currencies are there: The options for the feature are objective and

quantitative. The analysts can acquire such information by playing the game and

counting the numbers by themselves or searching for information on the internet.

Analysts analyze the games on the company SaaS internal tool. With several teams of

analysts working on different markets, we manage to keep the data up-to-date and reveal

29

the trend and pattern in the fast-changing mobile game market. These data were used

for the data visualization.

3.3.2 Reading Data with Python Pandas Library

The database is formatted as a CSV file, with the first column being the features list, and

the second column being the options of the list. The first row is the list of game names.

Each column is a record of a game, with each cell in the column representing a feature

with a specific option, initialized to be 0, and the selected options marked as 1. Listing 7

shows data input from csv.

df = pandas.DataFrame.from_csv('dataSet.csv', 0)

Listing 7. Read in dataset as pandas DataFrame

Listing 7 demonstrates the code for reading in the CSV data and assigning it to a Pandas

DataFrame variable named df. After the operation above, the dataset was imported into

the Python environment and is ready for formatting with Pandas.

3.4 Data Formatting

Now that the dataset is imported to the python environment, the next step is to format

the data to the correct shape accepted by the D3 data visualization library. This chapter

documents the process of formatting and outputting data for cluster, bundle and treemap

layout visualizations.

Since the database is not measured or generated by machine but gathered by analysts,

they are well formatted with no empty cells or missing data. Thus, the work only requires

formatting the data to the proper shape accepted by D3. Data formats accepted by D3.js

include: JS objects, text files, JSON BLOB, HTML document fragments, XML document

fragments, CSV files, and TSV (tab-separated values) files [23]. Within this project, Py-

thon Pandas and JSON library are used for data selection and output in JSON format.

3.4.1 Top 50 Game Genres - Cluster Layout and Bundle Layout

30

For this visualization, the data needed from the CSV were the primary genre types, sec-

ondary genre types and game names. First, extract the rows related to primary and sec-

ondary genres of the games, are shown in Listing 8.

primary = df.loc['Primary Game Type ', :]

secondary = df.loc['Secondary Game Type ', :]

Listing 8. Extracting primary and secondary genre

Listing 8 demonstrates the extraction of game genre related feature rows. The .loc()

method is used by dataframe for label-location based indexer for selection by label.

The code selects all the rows with indexer being ‘Primary Game Type’ and ‘Secondary

Game Type. Figure 15 shows an overview of the primary subset.

As seen in figure 15, cells in the choice column contain all primary game types(primary

genre types). Cells in the first row represent a particular game, and each game’s column

contains the information of primary game type. If a game belongs to a particular game

type, the corresponding cell in that column will be marked 1.0. For example, Kingdoms

at War is a strategy game and thus the cell representing strategy game type is marked

with 1.0. Since generating links data between nodes takes less effort than generating

nodes data and the links data can be used later for generating hierarchical data,

links data from the DataFrame were generated first. It began by creating a

relations list, then looping through each cell in every game column, if the value in the

Figure 15. Overview of primary subset

31

cell was 1.0, the column name of the cell, which was also the game name, would be

returned as the source. The indexer of row that the cell was in, would be returned as the

target. The source and target would together make up a Python dictionary, which would

be appended into the relations list.

Secondly, creating nodes object starting by extracting the first 50 games from df Data-

Frame. A nodesDict was created to contain all the nodes, giving it an empty name

value, and an empty children list. The nodes would be games, primary and secondary

genres. A for loop then looped through the column names of df DataFrame, which were

also game names. For each loop, a dictionary as an element of the children list of

nodesDict was created, with name attribute being the game name, category attribute

to be “game”, and GPS attribute being a randomly generated GPS value, since the da-

tabase did not contain the GPS data.

The next step was then initializing a new Python dictionary called categoryDict. This

dictionary would be used later for recording games count of every genre. Then looping

through the primary and secondary DataFrame genres, and appending them to the

nodesDict with name being the genre name, category being either “primary” or “sec-

ondary” depending on which DataFrame they were from, and initializing categryDict,

with key being genre name, and value being 0.

So far the nodesDict contained all the games with their names, GPSs and

categories, also genres with their names and categorys, but missing the genre

game count. Thus, the next step was looping through relations, and using the

target attribute of each element of relations list as a key, and incrementing the

value of the key inside categoryDict. After that the categoryDict would contain the

genre name and genre game count. Next, another loop would go through the catego-

ryDict and nodesDict, and append the value of keys inside categoryDict to

gamesCount attribute of genre elements inside children attribute of nodesDict. Fi-

nally the python objects would be exported and stored as two JSON file: nodes.json

and reltions.json with json.dump() function. The complete code can be found in

appendix 1.

32

3.4.2 Treemap Layout

The dataset used for treemap was almost the same, except that the dataset contained

the feature category as an index of the dataset, and feature names were in the second

column, with third column being feature choices, fourth column being the choice or option

of the game from analysis, and the last column being the weight of the feature choice.

The weights of all the features presented in the game made up the game GPS. The

selected analysis for implementing visualization was an analysis of Candy Crush Saga.

The process of generating the treemap visualization JSON data began with creating an

index list, containing all the indexes (which were also the feature categories) that were

extracted from the CSV. If the index label did not exist in the index list, the index label

would be added to the list. After that, a new Python dictionary called data was created,

with its name being Candy Crush Saga, and a children attribute initialized to be an

empty list. Then all the elements inside index list were appended to the children

attribute of the data dictionary, along with an empty children list. So far, the game

data dictionary contained a name, a children list containing all the feature genre ele-

ments. For each feature genre element, there was the name and an empty children

list.

The next step was adding features and options that were of a specific feature category

into those empty children lists. It was a loop going through the game analysis looking

for value 1, if the value was one, it would check the game category, and find the category

within the game data dictionary, and append the feature, the choice and the value to

the children list. Finally, JSON library was used to convert the python object to a JSON

object and output that JSON object to a file called treemapNodes.json. The complete

code can be found in Appendix 2.

The data formatting and outputting of the treemap layout was relatively easy in compar-

ison to that of the cluster and bundle layout, but the idea was the same, i.e. making the

data into the correct shape accepted by the D3 layouts.

3.5 Plotting

33

After formatting the data, the next step was writing the code for plotting with D3. Since

D3 is a JavaScript library, the plotting started by setting up a webpage with basic ele-

ments and a div element, also including the D3 library source to the page. Next a new

script section tag was created and the visualization code would be written inside the

tag.

3.5.1 Top 50 Game Genres

The function d3.json() is for reading external data into the webpage. For top 50 game

genres, two nested d3.json() functions were used to read in both nodes.json and re-

lations.json, as demonstrated by Listing 9.

d3.json('nodes.json', function(games) {

 d3.json('relations.json', function(relations) {})

})

Listing 9. Reading in external nodes.json and relations.json as games and relations object

As seen in listing 9, nodes data were first imported with relations data right after it. Then

for sorting the nodes, the game nodes were sorted based on their GPS and game nodes

with higher GPS came first. For primary and secondary game genres, they were sorted

based on the games count. Next, the width and height of the SVG element were set,

along with the radius of the radial cluster layout. Then for better graphics, two gradients

for links from games to primary and secondary genres were set up, which later turned

out to be confusing, and will be explained in the result chapter. But for the gradient, it

was planned that the color of games is blue, primary genres are green and secondary

genres are red. The two gradient coloring rules for the links were set to variables pri-

maryGradient and secondaryGradient. The next step was setting cluster layout

and generating nodes correlated to the layout. Listing 10 shows the setup of the cluster

layout and nodes generation.

var cluster = d3.layout.cluster()

 .size([360, r])

 .separation(function(a, b) {

 return (a.category == b.category ? 1 : 2) / a.depth;

 });

var nodes = cluster.nodes(games);

var bundle = d3.layout.bundle();

var nodeWidth = (r * 2 * Math.PI / nodes.length) - 6;

var oLinks = map(nodes, relations);

34

var links = bundle(oLinks);

function map(nodes, relations) {

 var hash = [];

 var resultLinks = [];

 for (var i = 0; i < nodes.length; i++) {

 hash[nodes[i].name] = nodes[i];

 }

 for (var i = 0; i < relations.length; i++) {

 resultLinks.push({

 source: hash[relations[i].source],

 target: hash[relations[i].target],

 });

 }

 return resultLinks;

}

var line = d3.svg.line.radial()

 .interpolate('bundle')

 .tension(0.85)

 .radius(function(d) {

 return d.y;

 })

 .angle(function(d) {

 return d.x / 180 * Math.PI;

 });

Listing 10 Cluster and bundle layout initialization, nodes and links generation

Listing 10 demonstrated the cluster and bundle layout initialization and nodes, links

generation. The size() method set up the layout to be radial, with a range of 360 de-

grees, and radius being variable r predefined. The separation() method separated

adjacent nodes of the same category by 1, and nodes of different category by 2. This

way it grouped the game nodes, primary nodes and secondary nodes together while

separating the nodes of different categories. The nodes variable would be the funda-

ment of drawing nodes onto the SVG. Figure 16 shows the nodes object after D3 cluster

function.

35

Figure 16 shows the nodes object and its contents. For each element of the nodes

object, it contained the name, the category and GPS generated inside the

nodes.json, and other values including the parent, x and y values generated with

the cluster() function. The parent was the parent of the node, x and y were the

coordinates where it should be drawn on the SVG. In the case of radial cluster layout, x

would be the degree, y would be the radius.

After nodes was generated, the map() function was created for mapping the links be-

tween nodes, with the data from relations and nodes object. By looping through

relations, it converted elements in relations from strings to objects that D3 recog-

nizes. Figure 17 shows what the links object looked like after D3 bundle function.

Figure 16. Nodes object

36

As seen in figure 17, each element within the array was one link, and each link was an

array of three elements. The three elements together described the source, the target,

and their common ancestor of the link. The common ancestor in this case was the high-

est-level object with no name. After the function, the next step was defining the line

function for drawing the links. The tension() method set up how tightly lines of same

ancestor should be bundled together, the radius() set the line function to be drawn

within the radius, and the angle() was the angle of the source and target of line, con-

verted from degree to radian.

After the set up described above, the drawing functions and objects needed were ready,

and it was time to plot the visualization. The following will explain the rectangle genera-

tion for nodes, which was a very important part of the visualization. Listing 11 shows the

code for generating node rectangles.

var gBundle = svg.append('g')

 .attr('transform', 'translate(' + (width / 2) + ', ' +

(height / 2) + ')');

var node = gBundle.selectAll('.node')

 .data(nodes.filter(function(d) {

 return !d.children;

 }))

 .enter()

 .append('g')

 .attr('class', 'node')

 .attr('transform', function(d) {

Figure 17 Links object

37

 return 'rotate(' + (d.x - 90) + ')trans-late(' + d.y + ')'

+ 'rotate(' + (90 - d.x) + ')';

 });

node.append('rect')

 .attr('class', 'rectangles')

 .attr('width', nodeWidth)

 .attr('height', function(d) {

 if (d.GPS) {

 return d.GPS / 5;

 } else if (d.gamesCount) {

 return d.gamesCount * 2;

 } else {

 return 0;

 }

 })

 .style('fill', function(d) {

 if (d.GPS) {

 return 'hsla(240, 100%, ' + (144 - d.GPS) + '%, 0.9)';

 } else if (d.category == 'primary') {

 return 'hsla(120, 100%, ' + (54 - d.gamesCount * 2) +

'%, 0.9)';

 } else {

 return 'hsla(0, 100%, ' + (54 - d.gamesCount * 2) + '%,

0.9)';

 }

 })

 .attr('transform', function(d) {

 return 'rotate(' + (d.x + 180) + ')trans-late(-' + node -

Width / 2 + ', 2)';

 });

Listing 11 Node rectangle generation

As seen from listing 11, the process started by creating a node variable, and from the

SVG gBundle element, selecting all node classes, binding data being elements inside

the nodes variable excluding node elements with not children, and assign them the class

of node. Since the radial cluster layout started from positive x axis, the whole layout was

transformed to rotate 90 degrees anti-clockwise, translated the nodes to be of the dis-

tance of radius from the center, then rotate them back to pointing outward perpendicular

to the surface of the circle.

The following step was appending a rectangle for each node, and setting its heights to

be correlated to their values. For games, their height would be their GPS value divided

by 5, for game genre nodes, their height would be gamesCount value times 2. For the

filling of rectangles, hsla() color was used. Every node of the same category would

have the same hue and saturation, but the lightness was generated based on its value.

38

For game nodes, the higher the GPS, the lower the lightness, which is the same case

with game genres, the higher the gamesCount, the lower the lightness. The

d.gamesCount * 2 made the lightness vary wider so it was clearer to tell the color

difference.

After the above configuration, the most important part of the cluster visualization was

done. The nodes of different categories were nicely bundled and their values were visu-

ally represented by the height of the rectangle, also graphically by the brightness of the

color. Figure 18 is the final version of top 50 games genre visualization.

As shown in figure 18, the final visualization result of game genre trend presents a clear

view of genre trend among popular games. The games and genres are sorted so it is

Figure 18 Top 50 games genre visualization

39

clear to see which game or genre is more popular. When hovering on top of a genre

node, the links will be highlighted and a box with the count of games of that genre will

appear. After completing all the steps mentioned above, what remained to be done were

drawing the links, adding the name text next to the nodes, adding tooltip function showing

more information when hovering the mouse above it. Also, making the links related to

the node stand out by increasing the stroke width, adding few explanatory tips on the

graph, and setting CSS for the classes needed to be implemented. The complete code

can be found in Appendix 3.

3.5.2 Feature Breakdown

The starting setup for the treemap layout was the same as cluster layout starting setup.

After setting the SVG width and height, two layers layer1 and layer2 were appended

to the SVG element for drawing the feature squares and feature genre text. Using two

layers prevents the feature genre text from being shadowed by the game feature

squares.

After reading in the treemapNodes.json and converting it to nodes objects with

treemap.nodes() function, the following part of treemap visualization was setting an

object tracking the domains of a feature genre based on the range of the feature weights,

and making a scaling function for the lightness. Listing 12 demonstrates the creation of

the domain object and scaling function.

var valueDict = {};

var categoryList = [];

for (i = 0; i < nodes.length; i++) {

 if (nodes[i].depth == 2) {

 if (nodes[i].parent.name in valueDict) {

 valueDict[nodes[i].parent.name].push(nodes[i].value);

 } else {

 valueDict[nodes[i].parent.name] = [nodes[i].value];

 categoryList.push(nodes[i].parent.name);

 }

 }

}

var domainDict = {};

for (i in categoryList) {

 domainDict[categoryList[i]] = [val -

ueDict[categoryList[i]][0], valueDict[categoryList[i]][0]];

40

 for (j = 1; j < valueDict[categoryList[i]].length; j++) {

 if (valueDict[categoryList[i]][j] < domain -

Dict[categoryList[i]][0]) {

 domainDict[categoryList[i]][0] = val -

ueDict[categoryList[i]][j];

 } else if (valueDict[categoryList[i]][j] > domain -

Dict[categoryList[i]][1]) {

 domainDict[categoryList[i]][1] = val -

ueDict[categoryList[i]][j];

 }

 }

}

function scaleLightness(domainElement, value) {

 if (domainElement[0] == domainElement[1]) {

 return 45;

 } else {

 return 100 - ((value - domainElement[0]) / (domainEle -

ment[1] - domainElement[0]) / 2 + 0.20) * 100;

 }

}

Listing 12. creating domain object and scaling function definition

As seen in listing 12, the data generation process started by creating a valueDict ob-

ject and categoryList array. ValueDict contained an array of dictionary elements,

and each dictionary was a key-value pair. In the case of the project, each dictionary had

a key of feature category name, and the value of that dictionary was an array of all the

feature values of that specific feature category. The data of the project was constructed

in such way that all the feature genres belong to the first level, and all the features belong

to the second level. The code looped through all the nodes that belong to the second

level, and checked if the node’s parent attribute (which was the feature category name)

was a key to a dictionary element in valueDict. If so, the node’s value was appended

into that dictionary in the valueDict. If not, first a new dictionary with the key of the

name of the parent would be initialized, and the node’s value was appended to the dic-

tionary, then the dictionary was appended to the valueDict. Finally, the cate-

goryList was initialized and the node’s parent name was appended into it.

The next step was creating the domainDict object. Within the domainDict, the code

made an array of dictionaries with their keys to be the feature category name from the

categoryList. Then it looped through all the elements inside valueDict to find the

minimum and maximum values of a category, and assign them to the corresponding

category elements of domainDict. So the result of domainDict would be an object

containing an array. Each element in the array had a key of feature category name, and

41

the value of the element would be 2 integers. The first is the minimum value, and the

second is the maximum value of features in that specific feature category.

Finally the function scaleLightness() was defined, which took in a domainEle-

ment, array denoting the range of a category from the domainDict, and a value of a

specific feature of that category. If in a feature category, there was only one feature,

where scaling did not make much sense, it returned 45. If there was a domain, it first

normalized the value into a new value within the range of 0 to 1. Since the weights of

features varied in a wide range, they were shrunk down the range by the factor of 2, and

adding 0.2 to make it closer to the center of 0.5, then multiplied by 100 and let 100

subtracted that value. Thus, after the scaling function the result was a number in range

from 0 to 100, with higher weight returning a smaller lightness value, which resulted in

darker brightness value. Nine colors were picked to represent 9 different feature catego-

ries. Listing 13 demonstrates initializing color and node binding.

var colors = ['hsla(0, 100%, ', 'hsla(210, 100%, ', 'hsla(120,

100%, ', 'hsla(337, 100%, ', 'hsla(300, 100%, ', 'hsla(180,

100%, ', 'hsla(24, 100%, ', 'hsla(80, 100%, ', 'hsla(60, 100%,

'];

var rectColors = {};

for (i in categoryList) {

 rectColors[categoryList[i]] = colors[i];

}

var node = layer1.selectAll('g')

 .data(nodes.filter(function(d) {

 return d.parent && d.value != 0;

 }))

 .enter()

 .append('g');

var genreNode = layer2.selectAll('g')

 .data(nodes.filter(function(d) {

 return d.parent && d.children;

 }))

 .enter()

 .append('g');

var rect = node.append('rect')

 .attr('class', 'rect')

 .attr('x', function(d) {

 return d.x;

 })

 .attr('y', function(d) {

 return d.y;

 })

42

 .attr('width', function(d) {

 return d.dx;

 })

 .attr('height', function(d) {

 return d.dy;

 })

 .style('fill', function(d) {

 if (!d.children) {

 var colStr = rectColors[d.parent.name] + scaleLight -

ness(domainDict[d.parent.name], d.value) + '%, 1)';

 return colStr;

 } else {

 return 'white';

 }

 });

Listing 13 Color initialization and node data binding of two layers

As seen from listing 13, the colors array was first created, then the color array was

combined with category data to create rectColors object to associate the categories

with colors. Then node was bound with feature data in layer1 and nodeGenre was

bound with feature category data. For the filling of each feature rectangles, a hsla()

string from rectColors was constructed. The string is composed of fixed hue, satura-

tion, a lightness generated through scaleLightness() function, and alpha being 1.

The string was returned as the fill argument. This made it possible to generate colors

with different lightness based on the individual weight of features. Figure 19 is the result

of treemap feature breakdown visualization.

Figure 19 Feature breakdown visualization

43

Figure 19 is the final treemap visualization of the feature breakdown. After the previous

steps mentioned above, the following steps were needed to make the visualization in

figure 19: drawing the genre text on the layer2, adding mouse hover interactivities with

a tooltip showing the feature name and the feature choice, and setting CSS for different

classes. The complete code can be found in Appendix 4.

3.6 Usability Test

A usability test was conducted to evaluate the performance of visualizations. The usabil-

ity test was made up of two parts. First, the participants could familiarize themselves with

the visualizations by completing small tasks, then the participants would fill in a SUS

(System Usability Scale) form, and answer some open questions. The SUS is generally

used for evaluation of a system, after the participants have tested the system. It is a fast

and easy method for effective evaluation of usability of a system with small sample sizes.

[24] The participants were five analysts from GameRefiney, who were familiar with the

system where the visualizations were intended to be integrated to. There were conver-

sations with them before starting the test, to make the participants relaxed and be open-

minded about their opinions regarding the usability of the visualizations, while also col-

lecting some descriptive data. However, the conversations did not involve discussion

regarding the visualization. When the participants were testing the visualizations, they

were also encouraged to think out loud. The usability test processes were audio rec-

orded. Two participants were not able to attend the test and they completed the testing

on their own. The usability test form can be found in Appendix 5.

44

4 Results

4.1 Development Process

The project started in September 2016, and it was a part-time project for GameRefinery.

It started by learning data visualization and Python Bokeh data visualization library. In

November, after some prototypes were done and experience with Bokeh was gained, it

was realized that Bokeh did not provide enough functionalities that were required by the

project. After that different visualization libraries were being considered and compared,

and D3js was chosen to be the visualization tool for the project. D3 learning started from

mid-November. Until mid-January 2017, many technical difficulties were encountered

due to lack of explanation and weak documentation of D3 library. The project paused for

two months, but nonetheless the prototype of top 50 grossing games genre visualization

was completed. In mid-March the project resumed and the feature breakdown visualiza-

tion was being worked on, also the top 50 grossing game genres were being finalized.

The usability test was conducted by the end of April. The project was planned to start in

September 2016 and to finish by February 2017. In comparison with the timeline of the

project, excluding the break, it took one more month than planned. The project was com-

pleted by 4th of May.

4.2 Visualization Library Comparison Result

When comparing and choosing visualization libraries, they were evaluated from 5 as-

pects. Web based meant whether the library could be used on a web browser; interac-

tivity checked if the library provides interactivity to the data visualization; documentation

was about the usefulness and clarity of its documentation; user control measured the

control a programmer had over the generation of visualization, and how many ‘fine-tun-

ings’ and minor adjustments the programmer could do; ease-to-use assessed the acces-

sibility of a library, i.e. whether the library could be learned and implemented quickly and

easily; and finally functionality measured how powerful the library was, in terms of visu-

alization possibilities of the library.

For Web based and interactivity, the choices were either yes or no, for the other aspects

they were evaluated on a scale of 1 to 5, with 1 being the weakest and 5 being the

strongest. Matplotlib must run on Python environment, instead of a web server. Bokeh

and Chart.js both were very easy to use and had very good documentation, with relatively

45

good user control. However, Chart.js could only make 8 different kinds of charts, and

though Bokeh was more powerful, it still missed the functionality needed for the project.

Thus, D3.js was the only option left to be used for the project. Table 2 presents the

comparison result.

Table 2 Comparison of selected visualization libraries

 Matplotlib Bokeh Chart.js D3.js

Web based ✕ ✓ ✓ ✓

Interactivity ✕ ✓ ✓ ✓

Documentation 5 5 5 2

User control 5 3 3 5

ease-to-use 3 4 4 1

Functionality 4 3 1 5

4.3 Discarded Visualizations

Several visualization prototypes and visualization libraries were cancelled due to differ-

ent reasons. In fact, without enough research, this project started with Bokeh as the

visualization library. A very original idea was to visualize the history category trend of top

100 grossing games on the App Store. It was planned to make a streamgraph visualiza-

tion of top 100 game genres, but Bokeh did not have a function for making a

streamgraph. The plotting function for streamgraph was manually written, and the plot

result is shown in Figure 20.

Figure 20 Bokeh streamgraph prototype

46

As seen in figure 20, the problem with the streamgraph visualization was that when hov-

ering the mouse on top of one point on a specific stripe (which represents the trend of

one game genre at a specific time point), it could not display the exact number of games

of that genre on the tooltip but only the genre name. There was no solution to this prob-

lem as it was answered by one of the developer of Bokeh on a forum that the function

used for generating the stripe, path function did not support the display of value yet.

D3.js did not have a function or layout for streamgraph either, but the functionalities

needed is achievable because it provided more controls to the programmer. And at that

point, it was realized that the streamgraph visualization of top 100 game genre trends

would have a fixed overall “width” with changes only in the partition size of genres and

the result would not be as good as expected. This led to a switch from Bokeh to D3.js

along with abandoning streamgraph visualization.

After switching to D3, several versions of visualizations were discarded or improved too.

Figure 21 shows one version of the top 50 game genres visualization that was replaced

by the final version.

47

As seen in figure 21, this version, in comparison with the final version, lacked tips on the

top left and right. Another difference is that, the links were of the color steelblue by

default instead of the gradient color mapping. And when hovering the mouse on top of

nodes, the links connected to the nodes would be highlighted in red and thickened in-

stead of only thickened in the final version. The decision to change the color was made

based on the opinion that the links would present their connection better, which later in

usability test, revealed to be otherwise.

4.4 Usability Test Result

The participants of the usability test were analysts from GameRefinery, with 4 of them

males and 1 female, and their ages ranging from 23 to 30. Most of the participants had

Figure 21. A discarded version of top grossing 50 game genres that provided better clarity

48

a technical background except for one who had economics background. Prior to their

current jobs as analysts now, two participants had game development experience for

less than half a year. The “normalized” SUS score ranged from 60 to 92.5, yielding an

average SUS score of 81. A SUS score of 80.3 is among the top 10% of scores, based

on the results of over 5000 users and 500 different evaluations [25].

The overall results of open questions are affirmative. The feedback for “What were your

feelings when you were looking at these visualizations?” were positive, multiple partici-

pants stated “good”, “like it”, “wow”.

For the question “What was beneficial about the visualizations in comparison to your

previous experience of collecting feature and genre related data?” participants ex-

pressed that the visualizations were simple and easy to understand. For the top 50 game

genre cluster visualization, the opinion was that it presented a huge amount of data that

used to be only perceived from tables, in a very small space. It also helped participants

quickly see what genres were trending. Opinion on the feature breakdown treemap was

that the color differentiating categories, size and lightness diffracting individual effect of

a feature on a game, helped participants observe the importance of a feature category

and individual feature fast and easily.

Feedback on question “What was confusing/misleading about these visualizations?” also

revealed problems. The feedback on the feature breakdown treemap visualization were

that there were too many squares. Some features were too small, and it was hard to

hover on top of the small squares to see the pop-up detail, and hard to see the details

overall. Feedback on the top 50 game genres cluster visualization were that there were

too many links colored similarly, causing it hard to tell which line was leading where.

Also, the game names were displayed radially, leading participants to turn their heads to

read the game name.

When asked “What suggestions do you have regarding potential improvements to this

project?”, participants gave several constructive feedbacks. Two participants suggested

displaying more information without hovering or displaying the feature name on the

squares treemap feature breakdown. Displaying feature names in the squares was ac-

tually one prototype of the visualization but that resulted in the visualization becoming

too messy and confusing with too many texts. Another participant suggested displaying

49

the feature name elsewhere outside the visualization, which was considered more rea-

sonable. For top 50 game genres cluster, most opinions were to change the color of links

to colder colors.

5 Discussions and Conclusions

The goal of the project was to explore new ways of presenting mobile game analysis

data and provide better ways of presenting them to the clients for better game design

decision making. The SUS score and user feedback clearly showed that the top 50

game genres visualization helped users pinpoint trending genres among most successful

games, and the feature breakdown visualization aided in identifying important individual

feature to a game more efficiently and easily, in comparison to how such information was

acquired before.

The change of the links color in the top 50 game genres visualization from the discarded

steelblue mentioned in the Results chapter to the gradient caused participants to feel

confused, proved that better graphics does not necessarily provide a better visualization

result and help audiences better perceive the data. Now that the project is done, it seems

clear that the treemap is probably too colorful and distracting. What potentially could be

done for future improvement is a treemap layout that bundles features of the same cat-

egory together and separates the bundles with some space, so that all the features can

have the same color hue to avoid the visualization from being too colorful and distracting.

This project let the author realize his weakness in time management and project design

and preparation. If the visualization library comparison had been done properly at the

beginning of the project, it would have been done one month earlier. However, this pro-

ject also allowed the author to learn data visualization systematically and develop new

visualization skills.

After research, two ways of visualizing mobile game analysis data, with D3 cluster, bun-

dle and treemap layout were developed, and were proven to be useful. These visualiza-

tions can help the clients of GameRefinery make fast and data-driven game design de-

cisions regarding game genre concepts and pinpoint the most important features to focus

on when developing or updating a game in the fast-changing mobile game market, where

50

time is of the essence. If similar projects will be carried out in the future, in-depth research

on related technologies needs to be conducted during the preparation phase.

Technologies used within the project includes D3.js, Bokeh, and Python. Due to the con-

cept difference D3 presents in comparison to other visualization libraries, it is recom-

mended to use other libraries such as Bokeh, Plotly, Google charts and Chart.js for fast

and “traditional” interactive visualizations such as bar chart, line chart and scatterplots.

D3.js is recommended for building highly customizable and relatively new visualizations,

such as cluster visualization, treemap visualization and Sankey diagram.

51

6 References

[1] E. McDonald, “The Global Games Market Will Reach $108.9 Billion in 2017 With
Mobile Taking 42%,” 20 APR 2017. [Online]. Available:
https://newzoo.com/insights/articles/the-global-games-market-will-reach-108-9-
billion-in-2017-with-mobile-taking-42/.

[2] M. Friendly, “Milestones in the history of thematic cartography, statistical
graphics, and data visualization,” 24 August 2009. [Online]. Available:
http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf. [Accessed 8
May 2017].

[3] “An Overview of Suzhou Astronomical Map Stone Carvings,” [Online]. Available:
http://web2.nmns.edu.tw/Web-Title/china/A-1-7_display.htm. [Accessed 8 May
2017].

[4] J.-M. Bonnet-Bidaud, F. Praderie and S. Whitfield, “The Dunhuang chinese sky:
a comprehensive study of the oldest known star atlas,” 2009.

[5] University of Illinois at Urbana-Champaign, “Data Visualization Online Course,”
[Online]. Available: https://www.coursera.org/learn/datavisualization. [Accessed
8 May 2017].

[6] “The Mandelbrot Set Explorer,” Boston University, [Online]. Available:
http://math.bu.edu/DYSYS/explorer/def.html. [Accessed 8 May 2017].

[7] R. L. Devaney, “Unveiling the Mandelbrot Set,” Plus Magazine, 1 September
2006. [Online]. Available: https://plus.maths.org/content/unveiling-mandelbrot-
set. [Accessed 8 May 2017].

[8] B. J. Michael Schwarz, Director, Hunting the Hidden Dimension. [Film]. United
States: PBS, 2011.

[9] B. P. A. K. S. T. A. Y. Charl P. Botha, “From individual to population: Challenges
in Medical Visualization,” 2012.

[10] A. M. Noll, “Scanned-display computer grapihcs,” Communications of the ACM,
vol. 14, no. 3, p. 143, 1971.

[11] Python Software Foundation, “Python,” Python Software Foundation, [Online].
Available: https://www.python.org/about/. [Accessed 8 May 2017].

[12] “pandas: powerful Python data analysis toolkit,” 5 May 2017. [Online]. Available:
http://pandas.pydata.org/pandas-docs/stable/. [Accessed 8 May 2017].

[13] D. D. E. F. M. D. a. t. M. d. t. John Hunter, “Matplotlib Introduction,” The
Matplotlib development team, 2 May 2017. [Online]. Available:
http://matplotlib.org/2.0.1/users/intro.html. [Accessed 8 May 2017].

52

[14] “Welcome to Bokeh,” Continuum Analytics, 2015. [Online]. Available:
http://bokeh.pydata.org/en/latest/. [Accessed 8 May 2017].

[15] M. Bostock, “Data-Driven Documents,” 2015. [Online]. Available: https://d3js.org.
[Accessed 8 May 2017].

[16] M. Bostock, “D3-3.x-api-reference Layouts,” 24 June 2016. [Online]. Available:
https://github.com/d3/d3-3.x-api-reference/blob/master/Layouts.md. [Accessed 8
May 2017].

[17] Z. Lv, “D3.js beginner - 9 layouts,” Our D3.JS, 13 July 2014. [Online]. Available:
http://www.ourd3js.com/wordpress/163/. [Accessed 8 May 2017].

[18] M. Bostock, “d3-3.x-api-reference Cluster Layout,” 19 September 2016. [Online].
Available: https://github.com/d3/d3-3.x-api-reference/blob/master/Cluster-
Layout.md. [Accessed 8 May 2017].

[19] M. Bostock, “d3-3.x-api-reference Bundle Layout,” 8 December 2016. [Online].
Available: https://github.com/d3/d3-3.x-api-reference/blob/master/Bundle-
Layout.md. [Accessed 8 May 2017].

[20] D. Holten, “Hierarchical Edge Bundles: Visualization of Adjacency Relations in
Hierarchical Data,” IEEE Transactions on Visualization and Computer Graphics,
vol. 12, no. 5, p. 741, 2016.

[21] B. S. B. Johnson, “Tree-maps: a space-filling approach to the visualization of
hierarchical information structures,” in Visualization, 1991. Visualization '91,
Proceedings., IEEE Conference on, San Diego, CA, USA, 1991.

[22] C. P. Ben Shneiderman, “Treemaps for space-constrained visualization of
hierarchies,” University of Maryland, 26 December 1998. [Online]. Available:
http://www.cs.umd.edu/hcil/treemap-history/. [Accessed 8 May 2017].

[23] “Data Structures D3.js Accepts,” DashingD3js.com, [Online]. Available:
https://www.dashingd3js.com/data-structures-d3js-accepts. [Accessed 8 May
2017].

[24] J. Brooke, “SUS - A quick and dirty usability scale,” [Online]. Available:
http://www.usabilitynet.org/trump/documents/Suschapt.doc. [Accessed 8 May
2017].

[25] J. Sauro, “Measuring Usability with the System Usability Scale (SUS),”
MeasuringU, 2 February 2011. [Online]. Available: https://measuringu.com/sus/.
[Accessed 8 May 2017].

[26] Y. Z. Dong Xu, “MVP: Macromolecular Visualization and Processing,” University
of Michigan, [Online]. Available: http://zhanglab.ccmb.med.umich.edu/MVP/.
[Accessed 8 May 2017].

53

[27] M. Kraus, “PIxels covered by a triangle,” 1 June 2011. [Online]. Available:
https://en.wikibooks.org/wiki/Cg_Programming/Rasterization#/media/File:Pixels_
covered_by_a_triangle.png. [Accessed 8 May 2017].

[28] Z. Lv, “Cluster Layout,” DecemberCafe, [Online]. Available:
http://d3.decembercafe.org/pages/layout/cluster.html. [Accessed 8 May 2017].

[29] C. P. J.-D. Fekete, “Interactive information visualization of a million items,” in
IEEE Symposium on Information Visualization, 2002. INFOVIS 2002, Boston,
MA, USA, 2002.

[30] Z. Lv, “D3.js Advanced — 4.0 treemap,” 4 April 2015. [Online]. Available:
http://www.ourd3js.com/wordpress/1024/. [Accessed 8 May 2017].

Appendix 1

1 (2)

Appendix 1: Cluster and Bundle Layout Data formatting with Python

Pandas

import pandas

import json

import numpy.random as rnd

df = pandas.DataFrame.from_csv('dataSet.csv', 0)

primary = df.loc['Primary Game Type ', :]

secondary = df.loc['Secondary Game Type ', :]

#define nodesDict, for all the nodes included in the plot

nodesDict = {'name':'', 'children':[]}

#dict for calculating games count, only for assisting calcula-

tion, is not exported for use in data visualization

categoryDict = {}

#adding game names

for i in df.columns.values[1:]:

 nodesDict['children'].append({'name': i, 'catego-

ry':'game', 'GPS': rnd.randint(60, 100)})

#adding secondary type first and primary type at the end so

that the primary type end up at the very top

(r, c) = secondary.shape

for i in range(r):

 if secondary.iloc[i, 0][0] == ' ':

 if(secondary.iloc[i, 0] == ' Casino'):

 nodesDict['children'].append({'name': second-

ary.iloc[i, 0], 'category': 'secondary'})

 categoryDict[secondary.iloc[i, 0]] = 0

 else:

 nodesDict['children'].append({'name': second-

ary.iloc[i, 0][1:], 'category': 'secondary'})

 categoryDict[secondary.iloc[i, 0][1:]] = 0

 else:

 nodesDict['children'].append({'name': second-

ary.iloc[i, 0], 'category': 'secondary'})

 categoryDict[secondary.iloc[i, 0]] = 0

#primary game type values:

(r, c) = primary.shape

for i in range(r):

 if primary.iloc[i, 0][0] == ' ':

 nodesDict['children'].append({'name': primary.iloc[i,

0][1:], 'category': 'primary'}) #add category name to

nodesDict

 categoryDict[primary.iloc[i, 0][1:]] = 0 #initialize

categoryDict

 else:

Appendix 1

2 (2)

 nodesDict['children'].append({'name': primary.iloc[i,

0], 'category': 'primary'})

 categoryDict[primary.iloc[i, 0]] = 0

#file output

with open('relations.json', 'w') as outfile:

 json.dump(relations, outfile)

#counting how many games fall into each category

for i in range(len(relations)):

 categoryDict[relations[i]['target']] += 1

#adding the calculated sum to the JSON nodesDict

for i in categoryDict:

 for j in nodesDict['children']:

 if j['name'] == i:

 j['gamesCount'] = categoryDict[i]

#file output

with open('nodes.json', 'w') as outfile:

 json.dump(nodesDict, outfile)

Appendix 2

1 (1)

Appendix 2: Treemap Layout Data Formatting with Python Pandas

import pandas

import json

#read in dataset

df = pandas.DataFrame.from_csv('Features.csv', header = 0)

index = []

for i in df.index:

 if i not in index:

 index.append(i)

#formatting data

data = {'name': 'Candy Crush Saga', 'children':[]}

for i in index:

 data['children'].append({'name': i, 'children':[]})

rows, cols = df.shape

index = df.index

for i in range(rows):

 if df.iloc[i, 2] == 1:

 for j in data['children']:

 if j['name'] == index[i]:

 j['children'].append({'name': df.iloc[i,

0],'choice': df.iloc[i, 1], 'value': df.iloc[i, 3]})

#file output

with open('treemapNodes.json', 'w') as outfile:

 json.dump(data, outfile)

Appendix 3

1 (8)

Appendix 3: Top 50 Game Genres Visualization

<!DOCTYPE html>

<html>

<head>

 <style type="text/css">

 .link {

 fill: none;

 stroke-opacity: 0.5;

 stroke-width: 1px;

 }

 .linkHover {

 fill: none;

 stroke-opacity: 1;

 stroke-width: 2px;

 }

 text {

 font-family: sans-serif;

 font-size: 13px;

 }

 .tooltip {

 font-family: sans-serif;

 font-size: 14px;

 max-width: 300px;

 padding: 10px 20px;

 display: block;

 height: auto;

 position: absolute;

 text-align: center;

 border-style: solid;

 border-width: 1px;

 background-color: white;

 border-radius: 5px;

 }

 </style>

 <title></title>

</head>

<body>

 <div id='bundleLayout'></div>

 <script src="https://d3js.org/d3.v3.js"></script>

 <script type="text/javascript">

 d3.json('nodes.json', function(games) {

 d3.json('relations.json', function(relations) {

 games.children.sort(function(a, b) {

Appendix 3

2 (8)

 if (a.category == b.category && a.category ==

'game') {

 return b.GPS - a.GPS;

 } else if (a.category == b.category && a.category ==

'primary') {

 return a.gamesCount - b.gamesCount;

 } else if (a.category == b.category && a.category ==

'secondary') {

 return a.gamesCount - b.gamesCount;

 }

 });

 var width = 800;

 var height = 800;

 var r = width / 2 - 200;

 //color gradient

 var blueColor = d3.hsl(240, 1, 0.44); //, 0.8

 var redColor = d3.hsl(0, 1, 0.54); //, 0.8

 var greenColor = d3.hsl(120, 1, 0.39); //, 0.8

 var svg = d3.select('#bundleLayout')

 .append('svg')

 .attr('width', width)

 .attr('height', height);

 //gradiant color map for lines

 var defs = svg.append('defs');

 var primaryGradient = defs.append('linearGradient')

 .attr('id', 'primaryLinearGradient')

 .attr('x1', '100%')

 .attr('y1', '40%')

 .attr('x2', '0%')

 .attr('y2', '60%');

 var stop1 = primaryGradient.append('stop')

 .attr('offset', '0%')

 .style('stop-color', blueColor.toString());

 var stop2 = primaryGradient.append('stop')

 .attr('offset', '100%')

 .style('stop-color', greenColor.toString());

 var secondaryGradient = defs.append('linearGradient')

 .attr('id', 'secondaryLinearGradient')

 .attr('x1', '100%')

 .attr('y1', '100%')

 .attr('x2', '20%')

 .attr('y2', '0%');

 var stop1 = secondaryGradient.append('stop')

 .attr('offset', '0%')

Appendix 3

3 (8)

 .style('stop-color', blueColor.toString());

 var stop2 = secondaryGradient.append('stop')

 .attr('offset', '100%')

 .style('stop-color', redColor.toString());

 //data conversion/layout setup

 //because of the size setup, it will be a radial clus-

ter layout, and the x of node will be the degree from positive

x axis, y will be the radius.

 var cluster = d3.layout.cluster()

 .size([360, r])

 .separation(function(a, b) {

 return (a.category == b.category ? 1 : 2) /

a.depth;

 });

 //setting conversion functions

 var nodes = cluster.nodes(games);

 var bundle = d3.layout.bundle();

 var nodeWidth = (r * 2 * Math.PI / nodes.length) - 6;

 var oLinks = map(nodes, relations);

 var links = bundle(oLinks);

 //plotting nodes generated from cluster layout

 function map(nodes, relations) {

 var hash = [];

 var resultLinks = [];

 for (var i = 0; i < nodes.length; i++) {

 hash[nodes[i].name] = nodes[i];

 }

 for (var i = 0; i < relations.length; i++) {

 resultLinks.push({

 source: hash[relations[i].source],

 target: hash[relations[i].target],

 });

 }

 return resultLinks;

 }

 //drawing function

 var line = d3.svg.line.radial()

 .interpolate('bundle')

 .tension(0.85)

 .radius(function(d) {

 return d.y;

 })

 .angle(function(d) {

 return d.x / 180 * Math.PI;

 });

 //label tip nodes

Appendix 3

4 (8)

 var colorTipJson = [{

 "x": width / 15,

 "y": height / 15,

 "width": 30,

 "height": nodeWidth,

 "fill": 'hsla(240, 100%, 44%, 0.9)',

 "text": "Game"

 },

 {

 "x": width / 15,

 "y": height / 15 + 15,

 "width": 30,

 "height": nodeWidth,

 "fill": 'hsla(120, 100%, 39%, 0.9)',

 "text": "Primary genre"

 },

 {

 "x": width / 15,

 "y": height / 15 + 30,

 "width": 30,

 "height": nodeWidth,

 "fill": 'hsla(0, 100%, 54%, 0.9)',

 "text": "Secondary genre"

 }

];

 //brightness tip nodes

 var lightnessTipJson = [{

 "GPS": 60,

 "x": width - width / 15 - 70,

 "y": height / 15,

 "width": 30,

 "height": nodeWidth

 },

 {

 "GPS": 80,

 "x": width - width / 15 - 35,

 "y": height / 15,

 "width": 30,

 "height": nodeWidth

 },

 {

 "GPS": 100,

 "x": width - width / 15,

 "y": height / 15,

 "width": 30,

 "height": nodeWidth

 }

];

 var gBundle = svg.append('g')

 .attr('transform', 'translate(' + (width / 2) + ', '

+ (height / 2) + ')');

Appendix 3

5 (8)

 //line generation

 var link = gBundle.selectAll('.link')

 .data(links)

 .enter()

 .append('path')

 .attr('class', 'link')

 .attr('d', line)

 .style('stroke', function(d, i) {

 if (d[2].category == 'primary') {

 return 'url(#primaryLinearGradient)';

 } else {

 return 'url(#secondaryLinearGradient)';

 }

 });

 //nodes appending

 var node = gBundle.selectAll('.node')

 .data(nodes.filter(function(d) {

 return !d.children;

 }))

 .enter()

 .append('g')

 .attr('class', 'node')

 .attr('transform', function(d) {

 return 'rotate(' + (d.x - 90) + ')translate(' +

d.y + ')' + 'rotate(' + (90 - d.x) + ')';

 });

 //append GPS rect for games to nodes

 node.append('rect')

 .attr('class', 'rectangles')

 .attr('width', nodeWidth)

 .attr('height', function(d) {

 if (d.GPS) {

 return d.GPS / 5;

 } else if (d.gamesCount) {

 return d.gamesCount * 2;

 } else {

 return 0;

 }

 })

 .style('fill', function(d) {

 if (d.GPS) {

 return 'hsla(240, 100%, ' + (144 - d.GPS) + '%,

0.9)';

 } else if (d.category == 'primary') {

 return 'hsla(120, 100%, ' + (54 - d.gamesCount *

2) + '%, 0.9)';

 } else {

 return 'hsla(0, 100%, ' + (54 - d.gamesCount *

2) + '%, 0.9)';

 }

Appendix 3

6 (8)

 })

 .attr('transform', function(d) {

 return 'rotate(' + (d.x + 180) + ')translate(-' +

nodeWidth / 2 + ', 2)';

 });

 //append text to nodes

 node.append('text')

 .attr('dy', '.2em')

 .attr('transform', function(d) {

 if (d.GPS) {

 return 'rotate(' + (d.x < 180 ? d.x - 90 : d.x +

90) + ')translate(' + (d.x < 180 ? (d.GPS / 5) + 5 : -(d.GPS /

5 + 5)) + ', 2)';

 } else if (d.gamesCount) {

 return 'rotate(' + (d.x < 180 ? d.x - 90 : d.x +

90) + ')translate(-' + (d.gamesCount * 2 + 5) + ', 2)';

 } else {

 return 'rotate(' + (d.x < 180 ? d.x - 90 : d.x +

90) + ')';

 }

 })

 .attr("text-anchor", function(d) {

 return d.x < 180 ? "start" : "end";

 })

 .text(function(d) {

 return d.name;

 });

 //for testing generated nodes

 nodesT = nodes;

 linksT = links;

 //appending tooltip

 var tooltip = d3.select('#bundleLayout')

 .append('div')

 .attr('class', 'tooltip')

 .style('opacity', 0.0);

 //Mouse hover interactivity

 node.on('mouseover', function(d) {

 if (d.GPS) {

 tooltip.html('GPS: ' + d.GPS)

 .style('left', (d3.event.pageX) + 'px')

 .style('top', (d3.event.pageY + 20) + 'px')

 .style('opacity', 1.0);

 } else if (d.gamesCount) {

 tooltip.html('games count: ' + d.gamesCount)

 .style('left', (d3.event.pageX) + 'px')

 .style('top', (d3.event.pageY + 20) + 'px')

 .style('opacity', 1.0);

 };

Appendix 3

7 (8)

 link.classed('linkHover', function(l) {

 if (l[0].name == d.name || l[2].name == d.name)

{

 return true;

 }

 });

 })

 .on('mousemove', function(d) {

 tooltip.style('left', (d3.event.pageX) + 'px')

 .style('top', (d3.event.pageY + 20) + 'px')

 })

 .on('mouseout', function(d) {

 tooltip.style('opacity', 0.0);

 link.classed('linkHover', false);

 })

 //appending explanatory tips

 var colorTip = svg.selectAll('.tipSquare')

 .data(colorTipJson)

 .enter()

 .append('g')

 .attr('class', 'colorTip');

 var tipSquare = colorTip.append('rect')

 .attr("class", "rectangles")

 .attr("x", function(d) {

 return d.x;

 })

 .attr("y", function(d) {

 return d.y;

 })

 .attr("width", function(d) {

 return d.width;

 })

 .attr("height", function(d) {

 return d.height;

 })

 .style('fill', function(d) {

 return d.fill

 });

 var tipNote = colorTip.append('text')

 .attr('dy', '.2em')

 .attr('class', 'text')

 .attr('transform', function(d) {

 return 'translate(' + (d.x + 35) + ', ' + (d.y +

7.5) + ')' //move the text to the right and downward a bit

 })

 .text(function(d) {

 return d.text;

 });

 var lightnessTip = svg.selectAll('.tipLightness')

Appendix 3

8 (8)

 .data(lightnessTipJson)

 .enter()

 .append('g')

 .attr('class', 'tipLightness');

 var lightnessSquare = lightnessTip.append('rect')

 .attr("class", "rectangles")

 .attr("x", function(d) {

 return d.x;

 })

 .attr("y", function(d) {

 return d.y;

 })

 .attr("width", function(d) {

 return d.width;

 })

 .attr("height", function(d) {

 return d.height;

 })

 .style('fill', function(d) {

 return 'hsla(240, 100%, ' + (144 - d.GPS) + '%,

0.9)';

 });

 var lightnessNote = lightnessTip.append('text')

 .attr('dy', '.2em')

 .attr('class', 'text')

 .attr("text-anchor", function(d) {

 return d.GPS < 60 ? "start" : "end";

 })

 .attr('transform', function(d) {

 return 'translate(' + (d.x + 22) + ', ' + (d.y -

10) + ')' //move the text to the right and downward a bit

 })

 .text(function(d) {

 return d.GPS;

 });

 });

 });

 </script>

</body>

</html>

Appendix 4

1 (5)

Appendix 4: Feature Breakdown Visualization

<!DOCTYPE html>

<html>

<head>

 <title></title>

 <style type="text/css">

 .rect {

 stroke: white;

 opacity: 0.8;

 }

 .rectHovered {

 opacity: 1;

 }

 .genreText {

 font-family: sans-serif;

 font-size: 16px;

 fill: black;

 opacity: 0.6;

 }

 .tooltip {

 font-family: sans-serif;

 font-size: 14px;

 max-width: 300px;

 padding: 10px 20px;

 display: block;

 height: auto;

 position: absolute;

 text-align: center;

 border-style: solid;

 border-width: 1px;

 background-color: #F0F8FF;

 color: black;

 }

 .tooltip p {

 color: #1E824C;

 }

 </style>

</head>

<body>

 <div id='treemap'></div>

 <script src="https://d3js.org/d3.v3.min.js"></script>

 <script type="text/javascript">

 var width = 1000,

 height = 500;

 var nodesT;

Appendix 4

2 (5)

 //basic setup

 var svg = d3.select('#treemap')

 .append('svg')

 .attr('width', width)

 .attr('height', height);

 //two layers, 1 layer for displaying nodes, layer2 for

displaying genreNode text

 var layer1 = svg.append('g');

 var layer2 = svg.append('g');

 //layout

 var treemap = d3.layout.treemap()

 .size([width, height])

 .padding(1)

 .value(function(d) {

 return d.value;

 });

 //read in json

 d3.json('treemapNodes.json', function(error, root) {

 if (error) throw error;

 var nodes = treemap.nodes(root);

 //leaf node value list

 var valueDict = {};

 var categoryList = [];

 for (i = 0; i < nodes.length; i++) {

 if (nodes[i].depth == 2) {

 if (nodes[i].parent.name in valueDict) {

 valueDict[nodes[i].par-

ent.name].push(nodes[i].value);

 } else {

 valueDict[nodes[i].parent.name] =

[nodes[i].value];

 categoryList.push(nodes[i].parent.name);

 }

 }

 }

 //creating dictionary containing the domain of val-

ues

 var domainDict = {};

 for (i in categoryList) {

 domainDict[categoryList[i]] = [valueDict[cate-

goryList[i]][0], valueDict[categoryList[i]][0]];

 for (j = 1; j < valueDict[categoryList[i]].length;

j++) {

 if (valueDict[categoryList[i]][j] < domainDict[cate-

goryList[i]][0]) {

Appendix 4

3 (5)

 domainDict[categoryList[i]][0] = valueDict[cate-

goryList[i]][j];

 } else if (valueDict[categoryList[i]][j] > domain-

Dict[categoryList[i]][1]) {

 domainDict[categoryList[i]][1] = valueDict[cate-

goryList[i]][j];

 }

 }

 }

 //scaling function definition

 function scaleLightness(domainElement, value) {

 if (domainElement[0] == domainElement[1]) {

 return 45;

 } else {

 return 100 - ((value - domainElement[0]) / (do-

mainElement[1] - domainElement[0]) / 2 + 0.20) * 100;

 }

 }

 //red 0

 //green lawn 90

 //green 120

 //inchworm 84

 //azure 210

 //cyan 180

 //magenta 300

 //orange 65, 30

 //brown 38, 30

 var colors = ['hsla(0, 100%, ', 'hsla(210, 100%, ',

'hsla(120, 100%, ', 'hsla(337, 100%, ', 'hsla(300, 100%, ',

'hsla(180, 100%, ', 'hsla(24, 100%, ', 'hsla(80, 100%, ',

'hsla(60, 100%, '];

 //object containing rectangle colors

 var rectColors = {};

 for (i in categoryList) {

 rectColors[categoryList[i]] = colors[i];

 }

 nodesT = nodes;

 //linksT = links;

 //appending game nodes

 var node = layer1.selectAll('g')

 .data(nodes.filter(function(d) {

 return d.parent && d.value != 0; //filter out first

level node and second layer nodes

 }))

 .enter()

 .append('g');

Appendix 4

4 (5)

 //appending genre nodes

 var genreNode = layer2.selectAll('g')

 .data(nodes.filter(function(d) {

 return d.parent && d.children; //filter out first

level node and second layer nodes

 }))

 .enter()

 .append('g');

 //appending game node rectangles

 var rect = node.append('rect')

 .attr('class', 'rect')

 .attr('x', function(d) {

 return d.x;

 })

 .attr('y', function(d) {

 return d.y;

 })

 .attr('width', function(d) {

 return d.dx;

 })

 .attr('height', function(d) {

 return d.dy;

 })

 .style('fill', function(d) {

 if (!d.children) {

 var colStr = rectColors[d.parent.name] + scale-

Lightness(domainDict[d.parent.name], d.value) + '%, 1)';

 return colStr;

 } else {

 return 'white';

 }

 });

 //appending genre node names

 var genreText = genreNode.append('text')

 .attr('class', 'genreText')

 //.style('width', function(d){return d.dx;})

 .attr('text-anchor', 'end')

 .attr('x', function(d) {

 return d.x + d.dx - 5

 })

 .attr('y', function(d) {

 return d.y + d.dy - 5

 })

 .text(function(d) {

 return d.children ? d.name : null;

 });

 //tooltip interactivity

 var tooltip = d3.select('#treemap')

 .append('div')

 .attr('class', 'tooltip')

Appendix 4

5 (5)

 .style('opacity', 0.0);

 node.on('mouseover', function(d) {

 if (!d.children) {

 rect.classed('rectHovered', function(l) {

 if (l.name == d.name) {

 return true;

 }

 })

 tooltip.html(d.name + '
' + "<p style=color

:red>" + d.choice + '</p>')

 .style('left', (d3.event.pageX) + 'px')

 .style('top', (d3.event.pageY + 20) + 'px')

 .style('opacity', 1.0);

 }

 })

 .on('mousemove', function(d) {

 tooltip.style('left', (d3.event.pageX) + 'px')

 .style('top', (d3.event.pageY + 20) + 'px')

 })

 .on('mouseout', function(d) {

 tooltip.style('opacity', 0.0)

 rect.classed('rectHovered', false);

 })

 })

 </script>

</body>

</html>

Appendix 5

1 (2)

Appendix 5: Usability Test Form

top 50 game genres

1. Find out which primary genre is most popular among top 50 games.

2. Find out which secondary genre is most popular among top 50 games.

3. Find out which genres are not popular among top 50 games.

4. Based on the graph, what kind of game genre combination would you think is

reasonable and have high revenue potential?

Feature breakdown Treemap

1. What feature genre has the biggest contribution to its revenue potential?

2. What feature genre has the smallest contribution to its revenue potential?

3. At first glance, which feature has the biggest effect on the game potential?

4. If you are developing a game, describe what features you would like to include

in your game design.

Appendix 5

2 (2)

System Usability Scale

Field of study in university:

Game development experience:

 Strongly Strongly

 Disagree
 Agree

1. I think that I would like to use this sys-
tem frequently

2. I found the system unnecessarily com-
plex

3. I thought the system was easy to use

4. I think that I would need the support of
a technical person to be able to use this
system

5. I found the various functions in this
system were well integrated

6. I thought there was too much incon-
sistency in this system

7. I would imagine that most people
would learn to use this system very
quickly

8. I found the system very cumbersome
to use

9. I felt very confident using the system

10. I needed to learn a lot of things before I could get going with this system

