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Bokeh A Python interactive data visualization library  
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D3.js Data-Driven Documents, a JavaScript data visualization  
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1 Introduction 

 

This project explored new ways of visualization of game analysis data. The goal of the 

project was to find better approaches of visualizing analysis results to help the clients in 

decision making regarding mobile game design and feature selection. 

 

The mobile game industry is growing rapidly on a daily basis, and the global games 

market will reach $108.9 billion in 2017 with mobile taking 42% [1]. Markets in China, US 

and Japan are quite different from each other and the competition is fierce with very rapid 

changes of game and genre trends. 

 

The case company in this study is GameRefinery Oy, a mobile game analytics company 

that provides market specific insight into feature and implementation aspects of mobile 

game design, and helps the clients increase their games’ profitability potential by imple-

menting fact-based game design. The company is developing a SaaS (software as a 

service) platform, and is considering different ways of presenting the analysis data to the 

clients. The most valuable aspect of the company is the analysis data, and it is very 

important to use data visualization to present the data to the clients in a way that is easy 

and clear to perceive.  

 

The objective of the project is to develop new ways of visualizing game analysis data 

that helps the clients find out current genre trend and most important game features 

quickly and conveniently, and make fact-based design decisions with their findings from 

the visualizations. The project managed to deliver a solution meeting the requirements 

and is proven to be effective. 

 

The thesis starts by studying data visualization, comparing different data visualization 

tools and selecting one tool suitable for the project. Then exploring different visualization 

approaches for presenting mobile game analysis data that can be perceived fast and 

effortlessly. Matters such as the functionalities of the visualization tools, the environment 

of the visualizations and the usability of visualizations need to be taken into considera-

tion.  
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2 Background 

2.1 Data Visualization History 

 

Quantitative information and its graphical representation has its origin deeply inside the 

history of thematic cartography, statistical graphics and data visualization, three fields 

that are associated with each other [2].  

  

The earliest use of graphical representation appeared in geometric diagrams and in 

maps for helping navigating and exploring. Visualization saw its beginning of develop-

ment by 16th century when techniques and instruments for precise observation and 

measurement of physical quantities were well-developed. In the 17th century, the emer-

gences of analytic geometry, theories of errors of measurement, the birth of probability 

theory, demographic statistics and “political arithmetics”, marked the starting point of 

practice and great development in theory. During the 18th and 19th centuries, social, 

moral, medical and economic statistics - numbers related to people - were collected in a 

large scale and periodic manner. Moreover, the value of these data for planning and 

governmental response, or even as a subject by itself to be studied, started to be real-

ized. [2]. Figure 1 is a historical astronomical chart created by Chinese cartographer 

Huang Shang in 1247 [3].  
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As can be seen in figure 1, it is a planisphere along with text explanations below it. With 

the help of a adujstable disk to cover some parts of the chart on top, it displays visible 

stars for any time and date, assisting in recognizing stars and constellations [4]. 

 

Statistical thinking started with the rise in visual representation: mathematical proofs and 

functions were illustrated using diagrams; nomograms were invented to help calcula-

tions; for easier communication and visually accessible representation of properties of 

empirical numbers - their trends, tendencies and distributions, several graphic forms 

were developed. Besides, the close relation of numbers of the state (the origin of the 

Figure 1.Tianwen Tu (Astronomical chart) 



4 

 

 

 

word “statistics”) and its geography aided it to be visually represented on maps, which is 

called “thematic cartography” nowadays. [2] 

 

It has been always hard to generate maps, diagrams and graphs, and even harder to 

publish them. Originally they were hand drawn, later engraved on copper plate and man-

ually colored, after that came lithography and photo-etching. Till most recently, computer 

programs have been used to generate graphs, even though the process is still con-

strained by the available technology. [2] 

 

The rapid development of statistical computation and graphic display in recent years 

have provided tools for data visualization that was impossible half a century ago. The 

advancement in human-computer interaction has also contributed to brand new pattern 

for interactive graphical information exploration. Besides most of the progress in statisti-

cal data visual representation, information visualization itself has also evolved, especially 

for large networks, hierarchies, data base representation and so forth. [2] 

 

2.2 Varieties of Data Visualization 

 

As data visualization is constantly developing, and is being used in a wider range of 

fields, some branches of data visualization are becoming increasingly important and are 

worth researching by themselves. In this chapter, information visualization, scientific vis-

ualization, mathematical visualization and domain specific visualization are presented. 

 

2.2.1 Information Visualization 

 

Information visualization applies to the visualization of large-scale collections of non-nu-

merical, non-coordinate, more abstract data, and it relies heavily on processing of ab-

stract data into a more concrete form that can be perceived by an observer more effec-

tively. Some examples are file systems and codes in software, library and bibliographic 

database and relation networks on the internet. [2] Figure 2 is a visualization of GDP 

data of cities from Zhejiang, Guangxi and Jiangsu provinces of China. 
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As can be seen in figure 2, this visualization makes the information easier to perceive by 

presenting numbers in the form of squares. The area size reflects the relative size of 

number, making it easy to compare between cities and provinces. 

 

2.2.2 Scientific Visualization 

 

Scientific visualization is a kind of visualization that focuses on multidimensional phe-

nomena (architectural, meteorological, medical, biologic, etc.) primarily [2]. In other 

words, it is the visualization of data from scientific experiments and simulations. The data 

are measured or acquired via lengthy, expensive simulations. The most important as-

pects of scientific visualization are realistic renderings of volumes, surfaces and illumi-

nation sources. The content presented will be drawn with both visual design and infor-

mation graphics prospects, and benefit from both [2]. Interactive visualization can be 

implemented to make the visualization more productive. When visualizing scientific data, 

the data often has missing values, various methods of handling the missing values such 

as interpolation can be applied. Figure 3 shows a 3D visualization of height data matrix 

of Maunga Whau of Auckland, New Zealand. 

Figure 2. GDP of cities in three provinces in China, data gathered from Lv (2015) [30] 
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As shown in figure 3, the color of the surface changes gradually from green to blue as 

the height of the mountain increases. This figure also demonstrates that scientific visu-

alizations benefit from visual design and information graphics, by using unrealistic color 

mapping to provide better perception of height while also remaining informative by cor-

relating the height of points with color. 

 

2.2.3 Mathematical Visualization 

 

Mathematical visualization is visualization of mathematic problems. It is the visualization 

of data generated from mathematical equations using computer programs. The compu-

tation and the visualization both are very hard or nearly impossible to be achieved man-

ually, and only became possible several decades ago, with the progress in computational 

and visualization capabilities. [5] A good example for mathematical visualization is the 

Mandelbrot set.  

 

 Mandelbrot set is a set of complex c-values for which the orbit of 0 does not escape 

under iteration of 𝑥2 + 𝑐. Equivalently, the Mandelbrot set is the set of c-values for 

which the filled Julia set of 𝑥2 + 𝑐 is a connected set. [6] 
 

Figure 3. 3D Perspective view of Maunga Whau Volcano of Auckland, data gathered from R datasets 
Package 
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A complex number belongs to the Mandelbrot set if, when starting with 𝑧0 = 0 and ap-

plying the iteration of complex quadratic polynomial 𝑧𝑛+1 = 𝑧𝑛
2 + 𝑐 repeatedly, the abso-

lute value of 𝑧𝑛 remains bounded however large 𝑛 gets. Listing 1 shows the mathemati-

cal definition of Mandelbrot set. 

 

𝑧𝑛+1 = 𝑧𝑛
2 + 𝑐 

𝑐 ∈ 𝑀 ⟺ 𝑙𝑖𝑚 𝑠𝑢𝑝
𝑛→∞

|𝑧𝑛+1| ≤ 2 

Listing 1 Mandelbrot definition 

 

As shown in listing 1, elements inside Mandelbrot set changes when 𝑛 changes. As the 

complex numbers get more accurate and the iteration continues, the visual representa-

tion of the Mandelbrot set gradually demonstrates certain beautiful patterns that are very 

similar to patterns found in the nature. Figure 4 is the Mandelbrot set and an area called 

seahorse valley in 50 iterations.  

 

Figure 4 Mandelbrot set with zoom in view around seahorse valley 
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As shown in figure 4, each color in the graph represents the Mandelbrot set of one iter-

ation. The biggest circle shape is the set of numbers after the first iteration. The inner 

most shape with deep blue color, which looks like a heart, is the collection of complex 

numbers that, after 50 iterations, are still within the boundary of the Mandelbrot set. The 

beauty of the Mandelbrot set is that whether the points that are in the Mandelbrot set and 

are close to the boundary in this iteration will remain in the set after next iteration seems 

arbitrary yet obeying certain rules. As the iteration increases, the visualization of Man-

delbrot set becomes increasingly sophisticated, but if zoomed in, the patterns by the 

boundaries are composed of many simple patterns found in previous iterations. There 

are smaller bulbs attached to the biggest bulb, and smaller parts attached to the main 

body or the cardioid of the Mandelbrot set that look like the main body itself. This indi-

cates that the behavior of the Mandelbrot set is very similar to things in nature, for ex-

ample the relation between a tree trunk, branches and leaves.  

 

The zoomed-in region in figure 4 is the area near the coordinate(−0.75,0.1𝑖). The area 

is called seahorse valley because the shapes appearing in this region resemble the tail 

of a sea horse, and already it can be seen that the smaller sea horse tails look like the 

bigger ones. With enough processing power, the plot can be zoomed in infinitely. No 

matter how closely zoomed in, the boundary of the Mandelbrot set will always appear 

crinkly as if it was not zoomed in at all [7]. This demonstrates the complexity of the Man-

delbrot set. 

 

What the Mandelbrot set means is still an open question in mathematics, but after Benoit 

Mandelbrot first visualized the set of numbers in 1980, engineers and scientists have 

been inspired by it, designing antennas used in mobile phones today capable of receiving 

signals in different frequencies and rendering landscapes in movies and so on. [8] 

 

2.2.4 Domain Specific Visualization 

 

Different kinds of visualizations are used in different domains or fields. Business intelli-

gence or customer survey results need to be presented in such a way that they help 

making business decisions. Geographic visualization uses data that is geographic by 

nature, and presents it in visual form to help the viewer better understand the data and 

support the analysis of geospatial data. Educational visualization is the visualization of 
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some phenomena that is hard to understand by other methods. It aids the topic to be 

taught easier. [5] 

 

There is also medical visualization, which has been widely used nowadays to help un-

derstand medical conditions and make treatment decisions. It is the art of transforming 

medical imaging data sets to 3D images with the help of computers. Figure 5 is an ex-

ample of medical visualization of RNA and DNA.  

 

 

Figure 5 demonstrates one application of medical visualization, i.e. helping understand 

the structures of RNA and DNA. Though it is a relatively new frontier, medical visualiza-

tion is developing rapidly thanks to the increase in computing power. Almost all cancer 

and surgery treatments rely on medical visualization in the developed world. [9] 

 

2.3 Modes of Data Visualization 

 

Interactive visualization is a mode of visualization used by a single viewer to explore and 

discover hidden meanings in data. When viewing such visualization, the viewer is 

granted full control of the data, and can change which data is being presented or how 

the data is presented. The quality of visualization will not be as polished as other modes 

Figure 5 RNA and DNA visualization [26] 
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because the visualization is generated in real-time. Google Public Data Explorer is a 

good example. [5] 

 

Presentation visualization is the visualization used to deliver information to a wider group 

of audiences. This kind of visualization is often used in a video or presentation. The main 

difference between presentation visualization and interactive visualization is that, 

presentation visualization does not let the viewer to interact with the data, but just receive 

and observe the data being presented in the form that helps the viewer perceive. This 

kind of visualization is highly polished. [5] 

 

Interactive storytelling is the mode of visualization that presents data through interactive 

web pages. The viewer cannot change the dataset but can alter the visualization to a 

certain degree, for example, change how the data is presented and change the data 

presented in the visualization. [5] Table 1 shows a comparison of the different modes of 

visualization.  

 

Table 1 Comparison of different modes of visualization [5] 

Visualization 
Mode 

User Interac-
tion 

Graphics Ren-
dering 

Target Medium 

Interactive Vis-
ualization 

controls over 
everything, in-
cluding dataset 

Real-time ren-
dering 

Individual or col-
laborators 

Software or in-
ternet 

Interactive Sto-
rytelling 

filter or inspect 
details of preset 

datasets 

Real-time ren-
dering 

Mass audience Internet or kiosk 

Presentation 
Visualization 

User only ob-
serves 

Precomputed 
rendering 

Mass audience 
Slide shows, 

video 

 

As seen in table 1, different visualization modes are used in different scenarios and serve 

different purposes. This table can be used during design phase to help select visualiza-

tion modes. 

 

2.4 2-D Graphics 

 

After selecting the mode for data visualization, the next step is understanding 2-D com-

puter graphics that will be used for creating visualization. 2-D graphics are generations 
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of digital images with computer. The following part will introduce raster graphics and 

vector graphics. 

 

Vector Graphics are the graphics used for describing two-dimensional graphics with vec-

tors. The points on a graph that the vector goes through are definite and possess attrib-

utes such as thickness, curve and shape. Graphics that require to be scaled will tend to 

use vector graphics. For example, architectural drawings, CAD programs, clip arts and 

fonts. Vector graphics have small file sizes, making them to load quickly and thus widely 

used in graphics on websites. Formats for storing vector graphics include PDF and SVG 

(Scalable Vector Graphics). [5] 

 

Raster Graphics are graphics to display graphics on digital display such as computer 

screen and mobile screen. Raster graphics image has a matrix data structure, each cell 

of the matrix is the color data containing three values for color image, or one value for 

grayscale/binary image. On the screen, the pixels are assigned color to be displayed. 

The screen is scanned through and colored pixel by pixel, row by row. [10] The refresh 

rate denotes how many times the screen is being scanned every second. Most of the 

computer images are stored as raster graphic formats. Some of the formats include GIF, 

JPEG and PNG. 

 

When a graph is generated through vector graphics, in order to be displayed on raster 

display, it needs to go through the process of rasterization. Figure 6 is a comparison of 

vector graphics and raster graphics. 

 

 

Figure 6 Comparison of Vector graphics and raster graphics [27] 
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As shown in figure 6, the vector graphics triangle is taken in and mapped on the pixel 

display system. Different algorithms are used to determine the illumination and the color 

of pixels. In figure 6, it is determined by whether the center of pixel is included in the 

inner side of the shape. After the process, the raster graphics display will only show a 

matrix of pixels with some being illuminated in light blue while the others remain white. 

After the process of rasterization, the lines of raster graphics will look like stairs on the 

edge, instead of straight lines or curves in vector graphics. This is called aliasing. 

 

2.5 Data Formatting Libraries 

 

Python is a high level general purpose programming language. It is used in many fields 

including software engineering, web backend servers and statistical programming. It is 

cross-platform and easy to learn, and it is also open source [11]. In this project Python 

was used, along with several Python libraries, for extracting the data from CSV and for-

matting the data to the proper shape accepted by D3.js and exporting the data in JSON 

(JavaScript Object Notation) format. 

 

Pandas is a Python package that provides several data structures that are fast, express-

ible and flexible in addition to Python default data structures, to allow Python work with 

“relational” or “labeled” data easily and intuitively. It allows Python to perform practical 

data analysis. Its goal is to become the most powerful and flexible open source data 

analysis and manipulation tool in any language. [12] The most important use of Pandas 

library is the DataFrame data type, which provides an easy and fast way of tabular data 

I/O with many convenient functionalities for data manipulation. 

 

2.6 Data Visualization Libraries 

 

Matplotlib is a Python plotting library for the numerical library NumPy. It allows the user 

to write object-oriented codes for visualization, while also supporting MATLAB style pro-

cedural programming. It works with other libraries including NumPy for better perfor-

mance. It provides high quality visualization meeting publication standard, accepts TeX 

document expressions and includes them in the output, can be implemented within ap-

plications and is easy to code and understand. [13] Besides, Matplotlib provides a wide 

range of control to the user so it is possible to optimize the visualization until it meets the 

demand. It has been the most popular Python visualization library and thus other libraries 
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use it as default visualization library. The disadvantage is that it requires to be run in a 

Python environment, cannot provide web based interactivity and is not capable of making 

the planned visualization.  

 

Bokeh is a Python visualization library that lets the user write the code in Python, and 

generates JavaScript output so that the plot result can be embedded into a website, while 

also provides interactivity [14]. The library is well documented and the functions are easy 

to use. At the cost of a bit less control than Matplotlib, it enables Python programmers to 

make web based interactive visualization. However, it still lacks the functionalities 

needed for making the planned visualization. 

 

Chart.js is a JavaScript visualization library with minimalistic design philosophy and is 

very easy to use, thanks to good documentation. With a certain range of control over the 

visualization, it provides a quick approach to web based interactive visualization. How-

ever, it is a rather light-weight visualization library that can only make 8 types of charts 

such as line chart and bar chart. Chart.js still does not meet the functionality requirement 

for the project. 

 

D3.js is a JavaScript library for creating and manipulating DOM documents with data. By 

working together with HTML and CSS, it gives a wide range of control over the visuali-

zation from the position of an individual data node to the font of text on visualization. It is 

a standardized library while is still open-source. [15] Being a JavaScript library, it pro-

vides a wide range of interactivity to the visualization. But it is very different from other 

visualization libraries in terms of generating of the visualization, and the documentation 

of D3.js is the worst compared to the other visualization libraries mentioned above, which 

makes it hard to learn and implement. However, it is the only visualization library that 

has the functionalities needed for the project and thus D3.js was chosen to be the data 

visualization library of this project. Version 3 D3 is used instead of the newer version 4, 

since there are more tutorials, books and examples available in version 3. 

 

2.6.1 D3.js 

 

D3 offers extensive control and is capable of making informative and elegant visualiza-

tions just as Matplotlib does, which is also a weakness. It requires the programmer to 

manually set up every element of the visualization from the ground up. For making “tra-

ditional” visualizations such as pie charts and line charts that other libraries can achieve 
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with a few lines of code, D3 requires several dozen lines of code. For example, making 

a simple scatterplot, the difference is drastic. Listing 2 and 3 are the code snippets for 

generating scatterplot in D3 and Matplotlib respectively. 

 

  //width and height 

  var w = 500; 

  var h = 300; 

 

  var padding = 30; 

 

  //scale set up: 

  var xScale = d3.scale.linear() 

    .domain([0, d3.max(dataset, function(d) { 

      return d[0]; 

    })]) 

    .range([padding, w - padding * 2]); 

 

  var yScale = d3.scale.linear() 

    .domain([0, d3.max(dataset, function(d) { 

      return d[1]; 

    })]) 

    .range([h - padding, padding]); 

 

  var rScale = d3.scale.linear() 

    .domain([0, d3.max(dataset, function(d) { 

      return d[1]; 

    })]) 

    .range([2, 5]); 

 

 

  //define xAxis and yAxis 

 

  var xAxis = d3.svg.axis() 

    .scale(xScale) 

    .orient('bottom') 

    .ticks(5); 

 

  var yAxis = d3.svg.axis() 

    .scale(yScale) 

    .orient('left') 

    .ticks(5); 

 

  //create SVG element 

  var svg = d3.select('#scatterplot') 

    .append('svg') 

    .attr('width', w) 

    .attr('height', h); 

 

  //create circles 

  svg.selectAll('circle') 

    .data(dataset) 

    .enter() 
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    .append('circle') 

    .attr('cx', function(d) { 

      return xScale(d[0]); 

    }) 

    .attr('cy', function(d) { 

      return yScale(d[1]); 

    }) 

    .attr("r", function(d) { 

      return rScale(10); 

    }); 

 

  //create x and y axis 

  svg.append('g') 

    .attr('class', 'axis') 

    .attr('transform', 'translate(0, ' + (h - padding) + ')') 

    .call(xAxis); 

 

  svg.append('g') 

    .attr('class', 'axis') 

    .attr('transform', 'translate(' + padding + ', 0)') 

    .call(yAxis); 

Listing 2. D3 scatterplot code 

 

plot(time, temp, 'o') 

Ylim([0, 75]) 

Listing 3. Matplotlib scatterplot code 

 

Figure 7 presents the results of scatterplot of D3 and Matplotlib, with D3 visualization on 

the left and Matplotlib visualization on the right. 

 

 

As figure 7 shows, the plot results are almost the same, while the code snippets from 

listing 2 and listing 3 pose a huge difference in the amounts of work. What the D3 code 

does is that it first sets up the canvas size, then based on the input domain and output 

range set up by the programmer, performs scaling on x values and y values on the points. 

Next, it defines the x axis and y axis. Afterwards, the plotting finally begins by selecting 

Figure 7 Comparison of D3 scatterplot (left), and Matplotlib scatterplot (right) 
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the SVG canvas, appending the circle elements to the data node on the canvas with 

coordinate data returned by scaling function. Finally, it adds the axis elements to the plot.  

 

The plot is generated based on the data being bound to the elements, if the data is 

changed, the plot will be changed automatically, which is why D3 stands for data-driven 

documents. The D3 code example in listing 2 also demonstrates the wide range of con-

trols given to the programmer to make the perfect plot in his or her mind. And since the 

plot is generated with JavaScript, it provides all kinds of web based interactivity, and can 

be regenerated on the fly within a web browser, while not being constrained by the envi-

ronment like Matplotlib does. 

 

Since D3.js version 1.0 was released in 2011, it gradually and steadily gained popularity 

among data visualization community. It is one of the most popular visualization libraries 

that there are already some libraries built on top of D3, as a “wrapper” to its functionali-

ties, to provide easy and fast visualization solutions. However, the most important func-

tionalities of D3 to the project are layouts. 

 

2.6.2 D3 Layouts 

 

A layout is a function or strategy for mapping data nodes on the canvas. It takes in data 

and calculates the positions for each element in the data and outputs new data that in-

cludes this information for plotting. [16] Figure 8 depicts the comparison of the plot gen-

eration process between D3 and other visualization tools. 
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As figure 8 demonstrates, layouts are similar to plot functions from Matplotlib, Bokeh and 

Chart.js in terms of their roles in the process of visualization. The difference is that in-

stead of drawing the visualization, D3 applies algorithms on imported data to generate 

information such as coordinate and hierarchy depth of the node for drawing. The other 

process such as binding data to SVG elements and actual drawing process still needs 

to be implemented afterwards. It is a rather low-level concept that other visualization 

tools do not have. It could be hard to comprehend at the beginning, but once the pro-

grammer are familiar with it, it is very convenient for making specific visualizations that 

the programmer has in mind. So for developing common and widely used visualization, 

Chart.js, Matplotlib and Bokeh are better options, while for making more sophisticated, 

more informative visualization or visualization with specific demand, D3 is the better op-

tion.  

 

D3 provides 12 layouts including pack layout, partition layout, treemap layout, tree layout 

and cluster layout that are used to visualize hierarchical data and relations [17]. Hierar-

chical data are, for example family tree that contains parent-child relationships, with the 

Figure 8. Comparison of plot generation process between D3 and other visualization 
tools (Matplotlib, Bokeh and Chart.js), data gathered from Zhihua Lv [17] 
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youngest generation, presumably grandchildren at the lowest level, and the oldest gen-

eration, i.e. grandparents at the top; or academic publications with every publication be-

ing leaf nodes (nodes without children) at the lowest level, the writer at the level above 

the publication level, and the institute at the top. In this project, treemap layout and clus-

ter layout are used, along with the bundle layout that is used to assist the cluster layout. 

 

2.7 Analysis in the Mobile Game Industry 

 

Mobile gaming has been growing rapidly in recent years, with thousands of new games 

being released on a daily basis. Many investments are being poured into the industry, 

and huge amounts of revenue are generated from the market. The global games market 

will reach $108.9 billion in 2017, with 42% coming from the mobile games market. [1] 

Figure 9 shows three major areas affecting the performance of a mobile game.  

 

 

As figure 9 demonstrates, Marketing & UA, implementation and feature set make up the 

most important factors of revenue potential of a game. The market trend is changing 

rapidly, and the industry is trying to understand the trend. There are many studies re-

garding mobile game monetization being conducted, but most of resources are being 

directed toward marketing, user acquisition, analytics, creativity IP/brand and overall 

concept of games. The mobile game industry lacks a fact-based decision-making and 

feature-selection system for game design. A study of over 7000 mobile game analyses 

in the past 3 years at GameRefinery found that the game design feature sets contribute 

40-60% of the sustainable revenue of games. 

 

This kind of feature level analysis requires huge amounts of resources and work. While 

AAA studios have the resource to conduct game breakdown analysis similar to what 

GameRefinery does at a very high expense, medium to small size studios have difficulty 

Figure 9 Three major factors affecting a mobile game’s performance 
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trying to keep up with the market trend. Many studios and developers make mobile game 

design decisions based on their personal preference and experience. What GameRefin-

ery is trying to achieve is to create a platform for mobile game developers to better un-

derstand the market by looking at both high level generic trend of the market and detailed 

feature-level insights, and make fact-based feature-level game design decisions based 

on the analysis findings. 

 

GameRefinery is a mobile game analytics company that conducts analysis to thousands 

of games. For each game, the company collects over 200 features to map the game 

‘DNA’. After that the ‘DNA’ goes through the process of data crunching with machine 

learning algorithms and statistical methods. Then the findings are delivered to the clients 

in a well-formatted and easily-perceived way to help them improve and maintain game 

competence throughout the lifespan of their games and increase the monetization po-

tential of the games. 

 

As the company was developing its SaaS platform, better visualizations of the analysis 

data were considered. The data visualizations in the platform were traditional, unattrac-

tive and sometimes confusing. As the data and findings are very important to the com-

pany and its clients, it would be regretful if they were not well visualized, well communi-

cated to and perceived by clients. Therefore, this project strives to explore new ways of 

visualizing game analysis data using new technologies with the goal of helping the client 

in mobile game design and feature selection. 
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3 Materials and Methods  

 

This chapter starts by explaining reasons for selecting the visualizations and their design, 

then introduces cluster, bundle and treemap layouts used in the visualizations, followed 

by the process of data visualization, beginning from reading in database, data formatting 

and the most important aspects of generating these visualizations. Finally, the last part 

of the chapter describes the usability test. 

 

3.1 Top 50 Game Genres Design - Cluster and Bundle Layout 

  

As the company was developing the online platform for the clients and analysts, it missed 

visualization for presenting game genre trends. The company had genre data of all the 

games in the database, but lacked a good way of presenting them to the clients. When 

considering different visualizations for game genres, a visualization example on D3 offi-

cial site stood out. It was a visualization of the Guardian news article titled “Violence and 

guns in best-selling video games” with a cluster layout and bundle layout visualization. 

The right part of the visualization was best-selling computer games, the upper left part 

was the content labels, and lower left part was the weapons in the games. The visuali-

zation linked the games with their content labels and weapons. Next to each name of 

game, name of weapon or content label there is a square with height correlated to the 

game sale, count of games that had that weapon or belong to that label, providing a 

straightforward representation of related data.  

 

Unfortunately, the original article was removed, but the visualization greatly inspired the 

visualization of genre trends in this project. In GameRefinery analysis, a game was cat-

egorized into two genres, primary genre and secondary genre. The primary genre de-

scribed the action layer, or combat layer of the game, while the secondary genre de-

scribed the preparation layer, such as when the players were preparing for battle or de-

veloping their bases. For example, Clash of Clans would be categorized into the primary 

genre of strategy, and secondary genre of base development (hostile). So the original 

idea of the game genre trend visualization was, on the right part of the visualization was 

the top 50 games, with a square next to the name, representing the Game Power Score 

(GPS). GPS is a number ranging from 1 through 100, that benchmarks the game’s rev-

enue potential. The width of square would represent the GPS. On the left part were the 

primary genre and secondary genres, and each genre was linked to all the games that 
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belonged to it. A square would be added next to a genre, and its width would reflect the 

count of games in that specific genre. Cluster layout and bundle layout were used in this 

visualization. 

 

3.1.1 Cluster Layout 

 

The cluster layout produces dendrograms: node-link diagrams that place leaf nodes of 

the tree at the same depth. For example, a cluster layout can be used to organize soft-

ware classes in a package hierarchy. [18] Figure 10 is a demonstration of selected cities 

and provinces in China, with tree layout on the left, and cluster layout on the right. 

 

 

As seen from the plot in figure 10, China on the left, is the highest level, and 4 provinces 

lie on the second level, cities that belong to a specific province are on the third level, and 

the fourth level shows 4 districts from the city of Guilin. The cluster layout arranges all 

the leaf nodes on the same lowest level, no matter how many levels are there between 

the leaf node and top node. That is, as seen from the plot on the right of figure 10, the 

lowest level includes cities from 4 different provinces and districts from the city of Guilin. 

All the leaf nodes will be on the same level, despite the fact that between different 

branches, there are different levels. The tree layout, which is very similar to the cluster 

layout, keeps each level on its own level graphically, as demonstrated by the plot on the 

left of figure 10. The cluster layout and tree layout are both great for representing hierar-

chical data. 

 

Figure 10 Comparison of tree layout(left) and cluster layout(right) visualization of selected cities in China, 
data gathered from [28] 
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Since cluster layout is used to represent hierarchical data, the form of data should be 

also hierarchical. One possible form of data is demonstrated by listing 4, a city hierarchy 

JSON data.  

 

{   

    "name":"United States", 

    "children":[   

        {   

            "name":"California", 

            "children":[   

                {   

                    "name":"Los Angeles" 

                }, 

                {   

                    "name":"San Francisco" 

                } 

            ] 

        }, 

        {   

            "name":"New York", 

            "children":[   

                {   

                    "name":"New York" 

                }, 

                {   

                    "name":"Buffalo" 

                }, 

                {   

                    "name":"Rochester" 

                } 

            ] 

        } 

    ] 

} 

Listing 4 Cluster layout city data 

 

Listing 4 demonstrates one possible JSON format data accepted by D3 cluster layout. 

The name of the object is “United States”, and its children property is a list of 2 state 

items, i.e. New York State and California. Within the “children” list of each state object, 

there are several selected cities. This object contains the hierarchical information. For 

this project, the data used in creating the cluster layout of top 50 game genre visualiza-

tion was formatted similar to listing 4. 

 

3.1.2 Bundle Layout 
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Bundle layout is a layout for generating links between different nodes. A path is gener-

ated through the input node upwards to the parent hierarchy, to the least common an-

cestor, then to the output node. This layout can be used as a function, together with other 

hierarchical layouts to generate bundled splines between nodes, as demonstrated in 

Figure 11. [19] 

 

 

As seen in figure 11, bundle layout is used together with cluster layout to generate the 

visualization. The cluster layout decides the coordinates of nodes, and bundle layout 

generates the lines between the nodes. The bundle layout has one functionality: calcu-

late the path from one node to another. Figure 12 is a representation of the relation links 

with straight and curved lines. 

 

 

As can be seen in figure 12, straight lines and curved links cannot represent adjacency 

between lines well, and thus cause visual clutter. While straight lines make the graph 

Figure 11. Visualization of software dependencies [19] 

Figure 12. Adjacency representation with Straight lines and curved links [20] 
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messy, curved lines make it hard to tell where each line is leading to. The D3 bundle 

layout used Danny Holten’s hierarchical edge bundling algorithm to tackle the problem 

by bundling the lines together [20]. It looks for the input nodes, then for bundling, it 

searches upwards to the parent nodes, until common ancestors between different lines 

are found. If some lines have common ancestors, their lines will be “bundled” closer 

together. This algorithm avoids problems presented by straight lines and curved links 

while also providing a very good hierarchical relation information. [20] Listing 5 shows a 

possible form of flight data for generating D3 links. 

 

[   

  {   

    "source":"Los Angeles", 

    "target":"San Francisco " 

  }, 

  {   

    "source":"New York", 

    "target":"San Francisco" 

  }, 

  {   

    "source":"Buffalo", 

    "target":"Los Angeles" 

  }, 

  {   

    "source":"Rochester", 

    "target":"San Francisco" 

  }, 

  {   

    "source":"Los Angeles", 

    "target":"New York" 

  } 

] 

Listing 5. Airline flights between selected cities 

 

Since the data used by bundle layout is for generating links or lines between nodes, each 

element in the data object will naturally describe the link relations between nodes. As 

listing 5 demonstrates, each element in the list is an object containing source and target 

properties, source being the start of the flight, target being the terminal. This data is 

artificially generated only for demonstration. The relations data used in the visualization 

is formatted similar to listing 5. 

 

3.2 Feature Breakdown Design – Treemap 
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The mobile game analysis consisted of hundreds of features that were grouped into fea-

ture categories. Each individual feature and feature category had its own quantified con-

tribution to the game’s revenue potential. To help clients find out which features are the 

most important to be implemented in their game and prioritize their task, it was very 

important to let them acquire such information with convenience. Within GameRefinery 

SaaS platform there was one radial treemap feature breakdown visualization as shown 

in Figure 13. 

 

 

As seen in figure 13, the visualization above is a radial treemap. Each element in the 

inner circle represents feature categories, and the elements in the outer circle represent 

individual features of that category. When hovered on the partition, the graph displays a 

tooltip showing the feature. The visualization was considered confusing, and was 

planned to be removed. However, treemap was actually good for presenting quantitative 

hierarchical data, and it was considered that a normal square treemap implementation 

would be more suitable for the feature breakdown visualization. The original plan was to 

make a treemap that groups features by their categories, and differentiate feature cate-

gories with different colors. The size of the square and the darkness of the color reflects 

Figure 13. GameRefinery feature breakdown 
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their importance. If the feature is more important, the size of the square would be bigger 

and the color would be darker. 

 

3.2.1 Treemap Layout 

 

Treemap is a visualization of hierarchical structures in a limited space, it makes 100% 

use of space [21]. It represents attributes of leaf nodes effectively with size and color 

difference. With treemap, users can easily compare nodes and sub-trees of the tree from 

different scopes, and spot patterns and exceptions within the hierarchical structure. [22] 

 

Treemap was designed by Ben Shneiderman during the 1990s, and his original design 

was nesting rectangles. Then for better comprehension, borders were added to the de-

sign to show the nesting and hierarchy. The size of each square represented the quan-

titative attributes, such as the size of a file in a hard drive. The hue of its color can rep-

resent categorical or hierarchical attribute, files of same format can have the same hue. 

The lightness difference can also represent the information regarding the file size, for 

example the bigger the file, the darker the color. [22] Figure 14 shows a treemap imple-

mentation to support large data sets of one million items. 
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Treemap visualization can be implemented in different ways. The normal treemap, as 

shown in figure 14, represents the overall structure and presents a good overview of the 

system, but if the data has many hierarchical levels, some low-level information might be 

missing. One way to solve the problem is to have a zoomable treemap. A zoomable 

treemap is implemented in environments such as web browser in such a way that, on 

the first view, it only presents the highest level and second level hierarchy node. By 

clicking any square, the selected node expands to cover the whole canvas and shows 

all the children nodes within the selected node. This way of implementation provides a 

high level structural overview while also maintaining all the low-level details within the 

information structure. This implementation is suitable for hierarchical data of multiple lev-

els. Listing 6 shows GDP data for generating treemap visualization in D3. 

 

{ 

  "name":"United States", 

  "children":[   

    {   

      "name":"New York", 

      "children":[   

        {   

          "name":"New York", 

Figure 14. One Million Items Treemap [29] 
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          "GDP":1234 

        }, 

        {   

          "name":"Buffalo", 

          "GDP":5678 

        }, 

        {   

          "name":"Rochester", 

          "GDP":9012 

        } 

      ] 

    } 

  ] 

} 

Listing 6. GDP data from selected US cities 

 

Listing 6 showed one possible form of data accepted by the D3 treemap layout. All the 

data in listing 6 is randomly generated only for demonstration. For the object “United 

States”, it contains name property, and a “Children” property, i.e. a list of state objects. 

The state object in listing 6 is New York State, containing name and children property. 

The children property contains a list of city objects, with name and GDP property. In 

treemap, the value property (being GDP in listing 6) associated with the lowest level data 

is most important, because all the attributes associated with higher level objects used for 

generating the treemap plotting data are calculated based on their lowest level children’s 

values and hierarchy information. The data generated for the feature breakdown treemap 

visualization was similar to the data format shown in listing 6. 

 

3.3 Reading Database 

3.3.1 Database - Game Analysis 

 

The database is the mobile game analysis database of GameRefinery. The database 

consists of several hundred pieces of analysis, with each piece of game analysis tracking 

over 200 features. The database used in this project was a CSV database. One feature 

example:  

• How many soft currencies are there: The options for the feature are objective and 

quantitative. The analysts can acquire such information by playing the game and 

counting the numbers by themselves or searching for information on the internet. 

Analysts analyze the games on the company SaaS internal tool. With several teams of 

analysts working on different markets, we manage to keep the data up-to-date and reveal 
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the trend and pattern in the fast-changing mobile game market. These data were used 

for the data visualization. 

 

3.3.2 Reading Data with Python Pandas Library 

 

The database is formatted as a CSV file, with the first column being the features list, and 

the second column being the options of the list. The first row is the list of game names. 

Each column is a record of a game, with each cell in the column representing a feature 

with a specific option, initialized to be 0, and the selected options marked as 1. Listing 7 

shows data input from csv. 

 

df = pandas.DataFrame.from_csv('dataSet.csv', 0) 

Listing 7. Read in dataset as pandas DataFrame 

 

Listing 7 demonstrates the code for reading in the CSV data and assigning it to a Pandas 

DataFrame variable named df. After the operation above, the dataset was imported into 

the Python environment and is ready for formatting with Pandas. 

 

3.4 Data Formatting 

 

Now that the dataset is imported to the python environment, the next step is to format 

the data to the correct shape accepted by the D3 data visualization library. This chapter 

documents the process of formatting and outputting data for cluster, bundle and treemap 

layout visualizations.  

 

Since the database is not measured or generated by machine but gathered by analysts, 

they are well formatted with no empty cells or missing data. Thus, the work only requires 

formatting the data to the proper shape accepted by D3. Data formats accepted by D3.js 

include: JS objects, text files, JSON BLOB, HTML document fragments, XML document 

fragments, CSV files, and TSV (tab-separated values) files [23]. Within this project, Py-

thon Pandas and JSON library are used for data selection and output in JSON format.  

 

3.4.1 Top 50 Game Genres - Cluster Layout and Bundle Layout 
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For this visualization, the data needed from the CSV were the primary genre types, sec-

ondary genre types and game names. First, extract the rows related to primary and sec-

ondary genres of the games, are shown in Listing 8. 

 

primary = df.loc['Primary Game Type ', :] 

secondary = df.loc['Secondary Game Type ', :] 

Listing 8. Extracting primary and secondary genre 

 

Listing 8 demonstrates the extraction of game genre related feature rows. The .loc() 

method is used by dataframe for label-location based indexer for selection by label. 

The code selects all the rows with indexer being ‘Primary Game Type’ and ‘Secondary 

Game Type. Figure 15 shows an overview of the primary subset. 

 

 

As seen in figure 15, cells in the choice column contain all primary game types(primary 

genre types). Cells in the first row represent a particular game, and each game’s column 

contains the information of primary game type. If a game belongs to a particular game 

type, the corresponding cell in that column will be marked 1.0. For example, Kingdoms 

at War is a strategy game and thus the cell representing strategy game type is marked 

with 1.0. Since generating links data between nodes takes less effort than generating 

nodes data and the links data can be used later for generating hierarchical data, 

links data from the DataFrame were generated first. It began by creating a 

relations list, then looping through each cell in every game column, if the value in the 

Figure 15. Overview of primary subset 
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cell was 1.0, the column name of the cell, which was also the game name, would be 

returned as the source. The indexer of row that the cell was in, would be returned as the 

target. The source and target would together make up a Python dictionary, which would 

be appended into the relations list. 

 

Secondly, creating nodes object starting by extracting the first 50 games from df Data-

Frame. A nodesDict was created to contain all the nodes, giving it an empty name 

value, and an empty children list. The nodes would be games, primary and secondary 

genres. A for loop then looped through the column names of df DataFrame, which were 

also game names. For each loop, a dictionary as an element of the children list of 

nodesDict was created, with name attribute being the game name, category attribute 

to be “game”, and GPS attribute being a randomly generated GPS value, since the da-

tabase did not contain the GPS data.  

 

The next step was then initializing a new Python dictionary called categoryDict. This 

dictionary would be used later for recording games count of every genre. Then looping 

through the primary and secondary DataFrame genres, and appending them to the 

nodesDict with name being the genre name, category being either “primary” or “sec-

ondary” depending on which DataFrame they were from, and initializing categryDict, 

with key being genre name, and value being 0. 

 

So far the nodesDict contained all the games with their names, GPSs and 

categories, also genres with their names and categorys, but missing the genre 

game count. Thus, the next step was looping through relations, and using the 

target attribute of each element of relations list as a key, and incrementing the 

value of the key inside categoryDict. After that the categoryDict would contain the 

genre name and genre game count.  Next, another loop would go through the catego-

ryDict and nodesDict, and append the value of keys inside categoryDict to 

gamesCount attribute of genre elements inside children attribute of nodesDict. Fi-

nally the python objects would be exported and stored as two JSON file: nodes.json 

and reltions.json with json.dump() function. The complete code can be found in 

appendix 1. 
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3.4.2 Treemap Layout 

 

The dataset used for treemap was almost the same, except that the dataset contained 

the feature category as an index of the dataset, and feature names were in the second 

column, with third column being feature choices, fourth column being the choice or option 

of the game from analysis, and the last column being the weight of the feature choice. 

The weights of all the features presented in the game made up the game GPS. The 

selected analysis for implementing visualization was an analysis of Candy Crush Saga. 

 

The process of generating the treemap visualization JSON data began with creating an 

index list, containing all the indexes (which were also the feature categories) that were 

extracted from the CSV. If the index label did not exist in the index list, the index label 

would be added to the list. After that, a new Python dictionary called data was created, 

with its name being Candy Crush Saga, and a children attribute initialized to be an 

empty list. Then all the elements inside index list were appended to the children 

attribute of the data dictionary, along with an empty children list. So far, the game 

data dictionary contained a name, a children list containing all the feature genre ele-

ments. For each feature genre element, there was the name and an empty children 

list.  

 

The next step was adding features and options that were of a specific feature category 

into those empty children lists. It was a loop going through the game analysis looking 

for value 1, if the value was one, it would check the game category, and find the category 

within the game data dictionary, and append the feature, the choice and the value to 

the children list. Finally, JSON library was used to convert the python object to a JSON 

object and output that JSON object to a file called treemapNodes.json. The complete 

code can be found in Appendix 2. 

 

The data formatting and outputting of the treemap layout was relatively easy in compar-

ison to that of the cluster and bundle layout, but the idea was the same, i.e. making the 

data into the correct shape accepted by the D3 layouts. 

 

3.5 Plotting 
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After formatting the data, the next step was writing the code for plotting with D3. Since 

D3 is a JavaScript library, the plotting started by setting up a webpage with basic ele-

ments and a div element, also including the D3 library source to the page. Next a new 

script section tag was created and the visualization code would be written inside the 

tag. 

 

3.5.1 Top 50 Game Genres  

 

The function d3.json() is for reading external data into the webpage. For top 50 game 

genres, two nested d3.json() functions were used to read in both nodes.json and re-

lations.json, as demonstrated by Listing 9. 

 

d3.json('nodes.json', function(games) { 

  d3.json('relations.json', function(relations) {}) 

}) 

Listing 9. Reading in external nodes.json and relations.json as games and relations object 

 

As seen in listing 9, nodes data were first imported with relations data right after it. Then 

for sorting the nodes, the game nodes were sorted based on their GPS and game nodes 

with higher GPS came first. For primary and secondary game genres, they were sorted 

based on the games count. Next, the width and height of the SVG element were set, 

along with the radius of the radial cluster layout. Then for better graphics, two gradients 

for links from games to primary and secondary genres were set up, which later turned 

out to be confusing, and will be explained in the result chapter. But for the gradient, it 

was planned that the color of games is blue, primary genres are green and secondary 

genres are red. The two gradient coloring rules for the links were set to variables pri-

maryGradient and secondaryGradient. The next step was setting cluster layout 

and generating nodes correlated to the layout. Listing 10 shows the setup of the cluster 

layout and nodes generation. 

 

var cluster = d3.layout.cluster() 

  .size([360, r]) 

  .separation(function(a, b) { 

    return (a.category == b.category ? 1 : 2) / a.depth; 

  }); 

var nodes = cluster.nodes(games); 

var bundle = d3.layout.bundle(); 

var nodeWidth = (r * 2 * Math.PI / nodes.length) - 6; 

var oLinks = map(nodes, relations); 
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var links = bundle(oLinks); 

 

function map(nodes, relations) { 

  var hash = []; 

  var resultLinks = []; 

  for (var i = 0; i < nodes.length; i++) { 

    hash[nodes[i].name] = nodes[i]; 

  } 

  for (var i = 0; i < relations.length; i++) { 

    resultLinks.push({ 

      source: hash[relations[i].source], 

      target: hash[relations[i].target], 

    }); 

  } 

  return resultLinks; 

} 

 

var line = d3.svg.line.radial() 

  .interpolate('bundle') 

  .tension(0.85) 

  .radius(function(d) { 

    return d.y; 

  }) 

  .angle(function(d) { 

    return d.x / 180 * Math.PI; 

  }); 

Listing 10 Cluster and bundle layout initialization, nodes and links generation 

 

Listing 10 demonstrated the cluster and bundle layout initialization and nodes, links 

generation. The size() method set up the layout to be radial, with a range of 360 de-

grees, and  radius being variable r predefined. The separation() method separated 

adjacent nodes of the same category by 1, and nodes of different category by 2. This 

way it grouped the game nodes, primary nodes and secondary nodes together while 

separating the nodes of different categories. The nodes variable would be the funda-

ment of drawing nodes onto the SVG. Figure 16 shows the nodes object after D3 cluster 

function. 
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Figure 16 shows the nodes object and its contents. For each element of the nodes 

object, it contained the name, the category and GPS generated inside the 

nodes.json, and other values including the parent, x and y values generated with 

the cluster() function. The parent was the parent of the node, x and y were the 

coordinates where it should be drawn on the SVG. In the case of radial cluster layout, x 

would be the degree, y would be the radius. 

 

After nodes was generated, the map() function was created for mapping the links be-

tween nodes, with the data from relations and nodes object. By looping through 

relations, it converted elements in relations from strings to objects that D3 recog-

nizes. Figure 17 shows what the links object looked like after D3 bundle function.  

 

Figure 16. Nodes object 
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As seen in figure 17, each element within the array was one link, and each link was an 

array of three elements. The three elements together described the source, the target, 

and their common ancestor of the link. The common ancestor in this case was the high-

est-level object with no name. After the function, the next step was defining the line 

function for drawing the links. The tension() method set up how tightly lines of same 

ancestor should be bundled together, the radius() set the line function to be drawn 

within the radius, and the angle() was the angle of the source and target of line, con-

verted from degree to radian. 

 

After the set up described above, the drawing functions and objects needed were ready, 

and it was time to plot the visualization. The following will explain the rectangle genera-

tion for nodes, which was a very important part of the visualization. Listing 11 shows the 

code for generating node rectangles. 

 

var gBundle = svg.append('g') 

  .attr('transform', 'translate(' + (width / 2) + ', ' + 

(height / 2) + ')'); 

 

var node = gBundle.selectAll('.node') 

  .data(nodes.filter(function(d) { 

    return !d.children; 

  })) 

  .enter() 

  .append('g') 

  .attr('class', 'node') 

  .attr('transform', function(d) { 

Figure 17 Links object 
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    return 'rotate(' + (d.x - 90) + ')trans-late(' + d.y + ')' 

+ 'rotate(' + (90 - d.x) + ')'; 

  }); 

 

node.append('rect') 

  .attr('class', 'rectangles') 

  .attr('width', nodeWidth) 

  .attr('height', function(d) { 

    if (d.GPS) { 

      return d.GPS / 5; 

    } else if (d.gamesCount) { 

      return d.gamesCount * 2; 

    } else { 

      return 0; 

    } 

  }) 

  .style('fill', function(d) { 

    if (d.GPS) { 

      return 'hsla(240, 100%, ' + (144 - d.GPS) + '%, 0.9)'; 

    } else if (d.category == 'primary') { 

      return 'hsla(120, 100%, ' + (54 - d.gamesCount * 2) + 

'%, 0.9)'; 

    } else { 

      return 'hsla(0, 100%, ' + (54 - d.gamesCount * 2) + '%, 

0.9)'; 

    } 

  }) 

  .attr('transform', function(d) { 

    return 'rotate(' + (d.x + 180) + ')trans-late(-' + node - 

Width / 2 + ', 2)'; 

  }); 

Listing 11 Node rectangle generation 

 

As seen from listing 11, the process started by creating a node variable, and from the 

SVG gBundle element, selecting all node classes, binding data being elements inside 

the nodes variable excluding node elements with not children, and assign them the class 

of node. Since the radial cluster layout started from positive x axis, the whole layout was 

transformed to rotate 90 degrees anti-clockwise, translated the nodes to be of the dis-

tance of radius from the center, then rotate them back to pointing outward perpendicular 

to the surface of the circle. 

 

The following step was appending a rectangle for each node, and setting its heights to 

be correlated to their values. For games, their height would be their GPS value divided 

by 5, for game genre nodes, their height would be gamesCount value times 2. For the 

filling of rectangles,  hsla() color was used. Every node of the same category would 

have the same hue and saturation, but the lightness was generated based on its value. 
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For game nodes, the higher the GPS, the lower the lightness, which is the same case 

with game genres, the higher the gamesCount, the lower the lightness. The 

d.gamesCount * 2 made the lightness vary wider so it was clearer to tell the color 

difference.  

 

After the above configuration, the most important part of the cluster visualization was 

done. The nodes of different categories were nicely bundled and their values were visu-

ally represented by the height of the rectangle, also graphically by the brightness of the 

color. Figure 18 is the final version of top 50 games genre visualization.  

 

 

As shown in figure 18, the final visualization result of game genre trend presents a clear 

view of genre trend among popular games. The games and genres are sorted so it is 

Figure 18 Top 50 games genre visualization 
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clear to see which game or genre is more popular. When hovering on top of a genre 

node, the links will be highlighted and a box with the count of games of that genre will 

appear. After completing all the steps mentioned above, what remained to be done were 

drawing the links, adding the name text next to the nodes, adding tooltip function showing 

more information when hovering the mouse above it. Also, making the links related to 

the node stand out by increasing the stroke width, adding few explanatory tips on the 

graph, and setting CSS for the classes needed to be implemented. The complete code 

can be found in Appendix 3. 

 

3.5.2 Feature Breakdown 

 

The starting setup for the treemap layout was the same as cluster layout starting setup. 

After setting the SVG width and height, two layers layer1 and layer2 were appended 

to the SVG element for drawing the feature squares and feature genre text. Using two 

layers prevents the feature genre text from being shadowed by the game feature 

squares. 

 

After reading in the treemapNodes.json and converting it to nodes objects with 

treemap.nodes() function, the following part of treemap visualization was setting an 

object tracking the domains of a feature genre based on the range of the feature weights, 

and making a scaling function for the lightness. Listing 12 demonstrates the creation of 

the domain object and scaling function. 

 

var valueDict = {}; 

var categoryList = []; 

 

for (i = 0; i < nodes.length; i++) { 

  if (nodes[i].depth == 2) { 

    if (nodes[i].parent.name in valueDict) { 

      valueDict[nodes[i].parent.name].push(nodes[i].value); 

    } else { 

      valueDict[nodes[i].parent.name] = [nodes[i].value]; 

      categoryList.push(nodes[i].parent.name); 

    } 

  } 

} 

 

var domainDict = {}; 

 

for (i in categoryList) { 

  domainDict[categoryList[i]] = [val - 

ueDict[categoryList[i]][0], valueDict[categoryList[i]][0]]; 
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  for (j = 1; j < valueDict[categoryList[i]].length; j++) { 

    if (valueDict[categoryList[i]][j] < domain - 

Dict[categoryList[i]][0]) { 

      domainDict[categoryList[i]][0] = val - 

ueDict[categoryList[i]][j]; 

    } else if (valueDict[categoryList[i]][j] > domain - 

Dict[categoryList[i]][1]) { 

      domainDict[categoryList[i]][1] = val - 

ueDict[categoryList[i]][j]; 

    } 

  } 

} 

 

function scaleLightness(domainElement, value) { 

  if (domainElement[0] == domainElement[1]) { 

    return 45; 

  } else { 

    return 100 - ((value - domainElement[0]) / (domainEle - 

ment[1] - domainElement[0]) / 2 + 0.20) * 100; 

  } 

} 

Listing 12. creating domain object and scaling function definition 

 

As seen in listing 12, the data generation process started by creating a valueDict ob-

ject and categoryList array. ValueDict contained an array of dictionary elements, 

and each dictionary was a key-value pair. In the case of the project, each dictionary had 

a key of feature category name, and the value of that dictionary was an array of all the 

feature values of that specific feature category. The data of the project was constructed 

in such way that all the feature genres belong to the first level, and all the features belong 

to the second level. The code looped through all the nodes that belong to the second 

level, and checked if the node’s parent attribute (which was the feature category name) 

was a key to a dictionary element in valueDict. If so, the node’s value was appended 

into that dictionary in the valueDict. If not, first a new dictionary with the key of the 

name of the parent would be initialized, and the node’s value was appended to the dic-

tionary, then the dictionary was appended to the valueDict. Finally, the cate-

goryList was initialized and the node’s parent name was appended into it. 

 

The next step was creating the domainDict object. Within the domainDict, the code 

made an array of dictionaries with their keys to be the feature category name from the 

categoryList. Then it looped through all the elements inside valueDict to find the 

minimum and maximum values of a category, and assign them to the corresponding 

category elements of domainDict. So the result of domainDict would be an object 

containing an array. Each element in the array had a key of feature category name, and 
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the value of the element would be 2 integers. The first is the minimum value, and the 

second is the maximum value of features in that specific feature category. 

 

Finally the function scaleLightness() was defined, which took in a domainEle-

ment,  array denoting the range of a category from the domainDict, and a value of a 

specific feature of that category. If in a feature category, there was only one feature, 

where scaling did not make much sense, it returned 45. If there was a domain, it first 

normalized the value into a new value within the range of 0 to 1. Since the weights of 

features varied in a wide range, they were shrunk down the range by the factor of 2, and 

adding 0.2 to make it closer to the center of 0.5, then multiplied by 100 and let 100 

subtracted that value. Thus, after the scaling function the result was a number in range 

from 0 to 100, with higher weight returning a smaller lightness value, which resulted in 

darker brightness value. Nine colors were picked to represent 9 different feature catego-

ries. Listing 13 demonstrates initializing color and node binding. 

 

var colors = ['hsla(0, 100%, ', 'hsla(210, 100%, ', 'hsla(120, 

100%, ', 'hsla(337, 100%, ', 'hsla(300, 100%, ', 'hsla(180, 

100%, ', 'hsla(24, 100%, ', 'hsla(80, 100%, ', 'hsla(60, 100%, 

']; 

 

var rectColors = {}; 

for (i in categoryList) { 

  rectColors[categoryList[i]] = colors[i]; 

} 

 

var node = layer1.selectAll('g') 

  .data(nodes.filter(function(d) { 

    return d.parent && d.value != 0; 

  })) 

  .enter() 

  .append('g'); 

 

var genreNode = layer2.selectAll('g') 

  .data(nodes.filter(function(d) { 

    return d.parent && d.children; 

  })) 

  .enter() 

  .append('g'); 

 

var rect = node.append('rect') 

  .attr('class', 'rect') 

  .attr('x', function(d) { 

    return d.x; 

  }) 

  .attr('y', function(d) { 

    return d.y; 

  }) 
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  .attr('width', function(d) { 

    return d.dx; 

  }) 

  .attr('height', function(d) { 

    return d.dy; 

  }) 

  .style('fill', function(d) { 

    if (!d.children) { 

      var colStr = rectColors[d.parent.name] + scaleLight - 

ness(domainDict[d.parent.name], d.value) + '%, 1)'; 

      return colStr; 

    } else { 

      return 'white'; 

    } 

  }); 

Listing 13 Color initialization and node data binding of two layers 

 

As seen from listing 13, the colors array was first created, then the color array was 

combined with category data to create rectColors object to associate the categories 

with colors. Then node was bound with feature data in layer1 and nodeGenre was 

bound with feature category data. For the filling of each feature rectangles, a hsla() 

string from rectColors was constructed. The string is composed of fixed hue, satura-

tion, a lightness generated through scaleLightness() function, and alpha being 1. 

The string was returned as the fill argument. This made it possible to generate colors 

with different lightness based on the individual weight of features. Figure 19 is the result 

of treemap feature breakdown visualization.  

 

 

Figure 19 Feature breakdown visualization 
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Figure 19 is the final treemap visualization of the feature breakdown. After the previous 

steps mentioned above, the following steps were needed to make the visualization in 

figure 19: drawing the genre text on the layer2, adding mouse hover interactivities with 

a tooltip showing the feature name and the feature choice, and setting CSS for different 

classes. The complete code can be found in Appendix 4. 

 

3.6 Usability Test 

 

A usability test was conducted to evaluate the performance of visualizations. The usabil-

ity test was made up of two parts. First, the participants could familiarize themselves with 

the visualizations by completing small tasks, then the participants would fill in a SUS 

(System Usability Scale) form, and answer some open questions. The SUS is generally 

used for evaluation of a system, after the participants have tested the system. It is a fast 

and easy method for effective evaluation of usability of a system with small sample sizes. 

[24] The participants were five analysts from GameRefiney, who were familiar with the 

system where the visualizations were intended to be integrated to. There were conver-

sations with them before starting the test, to make the participants relaxed and be open-

minded about their opinions regarding the usability of the visualizations, while also col-

lecting some descriptive data. However, the conversations did not involve discussion 

regarding the visualization. When the participants were testing the visualizations, they 

were also encouraged to think out loud. The usability test processes were audio rec-

orded. Two participants were not able to attend the test and they completed the testing 

on their own. The usability test form can be found in Appendix 5. 

  



44 

 

 

 

4 Results 

4.1 Development Process 

 

The project started in September 2016, and it was a part-time project for GameRefinery. 

It started by learning data visualization and Python Bokeh data visualization library. In 

November, after some prototypes were done and experience with Bokeh was gained, it 

was realized that Bokeh did not provide enough functionalities that were required by the 

project. After that different visualization libraries were being considered and compared, 

and D3js was chosen to be the visualization tool for the project. D3 learning started from 

mid-November. Until mid-January 2017, many technical difficulties were encountered 

due to lack of explanation and weak documentation of D3 library. The project paused for 

two months, but nonetheless the prototype of top 50 grossing games genre visualization 

was completed. In mid-March the project resumed and the feature breakdown visualiza-

tion was being worked on, also the top 50 grossing game genres were being finalized. 

The usability test was conducted by the end of April. The project was planned to start in 

September 2016 and to finish by February 2017. In comparison with the timeline of the 

project, excluding the break, it took one more month than planned. The project was com-

pleted by 4th of May. 

 

4.2 Visualization Library Comparison Result 

 

When comparing and choosing visualization libraries, they were evaluated from 5 as-

pects. Web based meant whether the library could be used on a web browser; interac-

tivity checked if the library provides interactivity to the data visualization; documentation 

was about the usefulness and clarity of its documentation; user control measured the 

control a programmer had over the generation of visualization, and how many ‘fine-tun-

ings’ and minor adjustments the programmer could do; ease-to-use assessed the acces-

sibility of a library, i.e. whether the library could be learned and implemented quickly and 

easily; and finally functionality measured how powerful the library was, in terms of visu-

alization possibilities of the library. 

 

For Web based and interactivity, the choices were either yes or no, for the other aspects 

they were evaluated on a scale of 1 to 5, with 1 being the weakest and 5 being the 

strongest. Matplotlib must run on Python environment, instead of a web server. Bokeh 

and Chart.js both were very easy to use and had very good documentation, with relatively 
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good user control. However, Chart.js could only make 8 different kinds of charts, and 

though Bokeh was more powerful, it still missed the functionality needed for the project. 

Thus, D3.js was the only option left to be used for the project. Table 2 presents the 

comparison result. 

 

Table 2 Comparison of selected visualization libraries 

 Matplotlib Bokeh Chart.js D3.js 

Web based ✕ ✓ ✓ ✓ 

Interactivity ✕ ✓ ✓ ✓ 

Documentation 5 5 5 2 

User control 5 3 3 5 

ease-to-use 3 4 4 1 

Functionality 4 3 1 5 

  

4.3 Discarded Visualizations 

 

Several visualization prototypes and visualization libraries were cancelled due to differ-

ent reasons. In fact, without enough research, this project started with Bokeh as the 

visualization library. A very original idea was to visualize the history category trend of top 

100 grossing games on the App Store. It was planned to make a streamgraph visualiza-

tion of top 100 game genres, but Bokeh did not have a function for making a 

streamgraph. The plotting function for streamgraph was manually written, and the plot 

result is shown in Figure 20.  

 

Figure 20 Bokeh streamgraph prototype 
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As seen in figure 20, the problem with the streamgraph visualization was that when hov-

ering the mouse on top of one point on a specific stripe (which represents the trend of 

one game genre at a specific time point), it could not display the exact number of games 

of that genre on the tooltip but only the genre name. There was no solution to this prob-

lem as it was answered by one of the developer of Bokeh on a forum that the function 

used for generating the stripe, path function did not support the display of value yet. 

D3.js did not have a function or layout for streamgraph either, but the functionalities 

needed is achievable because it provided more controls to the programmer. And at that 

point, it was realized that the streamgraph visualization of top 100 game genre trends 

would have a fixed overall “width” with changes only in the partition size of genres and 

the result would not be as good as expected. This led to a switch from Bokeh to D3.js 

along with abandoning streamgraph visualization. 

 

After switching to D3, several versions of visualizations were discarded or improved too. 

Figure 21 shows one version of the top 50 game genres visualization that was replaced 

by the final version.  
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As seen in figure 21, this version, in comparison with the final version, lacked tips on the 

top left and right. Another difference is that, the links were of the color steelblue by 

default instead of the gradient color mapping. And when hovering the mouse on top of 

nodes, the links connected to the nodes would be highlighted in red and thickened in-

stead of only thickened in the final version. The decision to change the color was made 

based on the opinion that the links would present their connection better, which later in 

usability test, revealed to be otherwise.  

 

4.4 Usability Test Result 

 

The participants of the usability test were analysts from GameRefinery, with 4 of them 

males and 1 female, and their ages ranging from 23 to 30. Most of the participants had 

Figure 21. A discarded version of top grossing 50 game genres that provided better clarity 
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a technical background except for one who had economics background. Prior to their 

current jobs as analysts now, two participants had game development experience for 

less than half a year. The “normalized” SUS score ranged from 60 to 92.5, yielding an 

average SUS score of 81. A SUS score of 80.3 is among the top 10% of scores, based 

on the results of over 5000 users and 500 different evaluations [25].  

 

The overall results of open questions are affirmative. The feedback for “What were your 

feelings when you were looking at these visualizations?” were positive, multiple partici-

pants stated “good”, “like it”, “wow”. 

 

For the question “What was beneficial about the visualizations in comparison to your 

previous experience of collecting feature and genre related data?” participants ex-

pressed that the visualizations were simple and easy to understand. For the top 50 game 

genre cluster visualization, the opinion was that it presented a huge amount of data that 

used to be only perceived from tables, in a very small space. It also helped participants 

quickly see what genres were trending. Opinion on the feature breakdown treemap was 

that the color differentiating categories, size and lightness diffracting individual effect of 

a feature on a game, helped participants observe the importance of a feature category 

and individual feature fast and easily. 

 

Feedback on question “What was confusing/misleading about these visualizations?” also 

revealed problems. The feedback on the feature breakdown treemap visualization were 

that there were too many squares. Some features were too small, and it was hard to 

hover on top of the small squares to see the pop-up detail, and hard to see the details 

overall. Feedback on the top 50 game genres cluster visualization were that there were 

too many links colored similarly, causing it hard to tell which line was leading where. 

Also, the game names were displayed radially, leading participants to turn their heads to 

read the game name. 

 

When asked “What suggestions do you have regarding potential improvements to this 

project?”, participants gave several constructive feedbacks. Two participants suggested 

displaying more information without hovering or displaying the feature name on the 

squares treemap feature breakdown. Displaying feature names in the squares was ac-

tually one prototype of the visualization but that resulted in the visualization becoming 

too messy and confusing with too many texts. Another participant suggested displaying 
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the feature name elsewhere outside the visualization, which was considered more rea-

sonable. For top 50 game genres cluster, most opinions were to change the color of links 

to colder colors. 

 

5 Discussions and Conclusions 

 

The goal of the project was to explore new ways of presenting mobile game analysis 

data and provide better ways of presenting them to the clients for better game design 

decision making.  The SUS score and user feedback clearly showed that the top 50 

game genres visualization helped users pinpoint trending genres among most successful 

games, and the feature breakdown visualization aided in identifying important individual 

feature to a game more efficiently and easily, in comparison to how such information was 

acquired before. 

 

The change of the links color in the top 50 game genres visualization from the discarded 

steelblue mentioned in the Results chapter to the gradient caused participants to feel 

confused, proved that better graphics does not necessarily provide a better visualization 

result and help audiences better perceive the data. Now that the project is done, it seems 

clear that the treemap is probably too colorful and distracting. What potentially could be 

done for future improvement is a treemap layout that bundles features of the same cat-

egory together and separates the bundles with some space, so that all the features can 

have the same color hue to avoid the visualization from being too colorful and distracting. 

 

This project let the author realize his weakness in time management and project design 

and preparation. If the visualization library comparison had been done properly at the 

beginning of the project, it would have been done one month earlier. However, this pro-

ject also allowed the author to learn data visualization systematically and develop new 

visualization skills. 

 

After research, two ways of visualizing mobile game analysis data, with D3 cluster, bun-

dle and treemap layout were developed, and were proven to be useful. These visualiza-

tions can help the clients of GameRefinery make fast and data-driven game design de-

cisions regarding game genre concepts and pinpoint the most important features to focus 

on when developing or updating a game in the fast-changing mobile game market, where 
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time is of the essence. If similar projects will be carried out in the future, in-depth research 

on related technologies needs to be conducted during the preparation phase.  

 

Technologies used within the project includes D3.js, Bokeh, and Python. Due to the con-

cept difference D3 presents in comparison to other visualization libraries, it is recom-

mended to use other libraries such as Bokeh, Plotly, Google charts and Chart.js for fast 

and “traditional” interactive visualizations such as bar chart, line chart and scatterplots. 

D3.js is recommended for building highly customizable and relatively new visualizations, 

such as cluster visualization, treemap visualization and Sankey diagram. 
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Appendix 1: Cluster and Bundle Layout Data formatting with Python 

Pandas 

 

import pandas 

import json 

import numpy.random as rnd 

 

df = pandas.DataFrame.from_csv('dataSet.csv', 0) 

 

primary = df.loc['Primary Game Type ', :] 

secondary = df.loc['Secondary Game Type ', :] 

 

#define nodesDict, for all the nodes included in the plot 

nodesDict = {'name':'', 'children':[]} 

 

#dict for calculating games count, only for assisting calcula-

tion, is not exported for use in data visualization  

categoryDict = {} 

 

#adding game names 

for i in df.columns.values[1:]: 

    nodesDict['children'].append({'name': i, 'catego-

ry':'game', 'GPS': rnd.randint(60, 100)}) 

 

#adding secondary type first and primary type at the end so 

that the primary type end up at the very top 

(r, c) = secondary.shape     

for i in range(r): 

    if secondary.iloc[i, 0][0] == ' ': 

        if(secondary.iloc[i, 0] == ' Casino'): 

            nodesDict['children'].append({'name': second-

ary.iloc[i, 0], 'category': 'secondary'}) 

            categoryDict[secondary.iloc[i, 0]] = 0 

        else: 

            nodesDict['children'].append({'name': second-

ary.iloc[i, 0][1:], 'category': 'secondary'}) 

            categoryDict[secondary.iloc[i, 0][1:]] = 0 

    else: 

        nodesDict['children'].append({'name': second-

ary.iloc[i, 0], 'category': 'secondary'}) 

        categoryDict[secondary.iloc[i, 0]] = 0 

     

#primary game type values: 

(r, c) = primary.shape 

for i in range(r): 

    if primary.iloc[i, 0][0] == ' ': 

        nodesDict['children'].append({'name': primary.iloc[i, 

0][1:], 'category': 'primary'})  #add category name to 

nodesDict 

        categoryDict[primary.iloc[i, 0][1:]] = 0 #initialize 

categoryDict 

    else: 
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        nodesDict['children'].append({'name': primary.iloc[i, 

0], 'category': 'primary'}) 

        categoryDict[primary.iloc[i, 0]] = 0 

 

#file output 

with open('relations.json', 'w') as outfile: 

    json.dump(relations, outfile) 

         

#counting how many games fall into each category 

for i in range(len(relations)): 

    categoryDict[relations[i]['target']] += 1 

 

#adding the calculated sum to the JSON nodesDict 

for i in categoryDict: 

    for j in nodesDict['children']: 

        if j['name'] == i: 

            j['gamesCount'] = categoryDict[i] 

 

#file output 

with open('nodes.json', 'w') as outfile: 

    json.dump(nodesDict, outfile) 
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Appendix 2: Treemap Layout Data Formatting with Python Pandas 

 

import pandas 

import json 

 

#read in dataset 

df = pandas.DataFrame.from_csv('Features.csv', header = 0) 

 

index = [] 

for i in df.index: 

    if i not in index: 

        index.append(i) 

 

#formatting data 

data = {'name': 'Candy Crush Saga', 'children':[]} 

for i in index: 

    data['children'].append({'name': i, 'children':[]}) 

 

rows, cols = df.shape 

index = df.index 

for i in range(rows): 

    if df.iloc[i, 2] == 1: 

        for j in data['children']: 

            if j['name'] == index[i]: 

                j['children'].append({'name': df.iloc[i, 

0],'choice': df.iloc[i, 1], 'value': df.iloc[i, 3]}) 

 

#file output 

with open('treemapNodes.json', 'w') as outfile: 

    json.dump(data, outfile) 
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Appendix 3: Top 50 Game Genres Visualization 

 

<!DOCTYPE html> 

<html> 

 

<head> 

  <style type="text/css"> 

    .link { 

      fill: none; 

      stroke-opacity: 0.5; 

      stroke-width: 1px; 

    } 

 

    .linkHover { 

      fill: none; 

      stroke-opacity: 1; 

      stroke-width: 2px; 

    } 

 

    text { 

      font-family: sans-serif; 

      font-size: 13px; 

    } 

 

    .tooltip { 

      font-family: sans-serif; 

      font-size: 14px; 

      max-width: 300px; 

      padding: 10px 20px; 

      display: block; 

      height: auto; 

      position: absolute; 

      text-align: center; 

      border-style: solid; 

      border-width: 1px; 

      background-color: white; 

      border-radius: 5px; 

    } 

  </style> 

  <title></title> 

</head> 

 

<body> 

  <div id='bundleLayout'></div> 

 

  <script src="https://d3js.org/d3.v3.js"></script> 

 

  <script type="text/javascript"> 

    d3.json('nodes.json', function(games) { 

      d3.json('relations.json', function(relations) { 

 

        games.children.sort(function(a, b) { 
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          if (a.category == b.category && a.category == 

'game') { 

            return b.GPS - a.GPS; 

          } else if (a.category == b.category && a.category == 

'primary') { 

            return a.gamesCount - b.gamesCount; 

          } else if (a.category == b.category && a.category == 

'secondary') { 

            return a.gamesCount - b.gamesCount; 

          } 

        }); 

 

        var width = 800; 

        var height = 800; 

        var r = width / 2 - 200; 

 

        //color gradient  

        var blueColor = d3.hsl(240, 1, 0.44); //, 0.8 

        var redColor = d3.hsl(0, 1, 0.54); //, 0.8 

        var greenColor = d3.hsl(120, 1, 0.39); //, 0.8 

 

        var svg = d3.select('#bundleLayout') 

          .append('svg') 

          .attr('width', width) 

          .attr('height', height); 

 

        //gradiant color map for lines 

        var defs = svg.append('defs'); 

 

        var primaryGradient = defs.append('linearGradient') 

          .attr('id', 'primaryLinearGradient') 

          .attr('x1', '100%') 

          .attr('y1', '40%') 

          .attr('x2', '0%') 

          .attr('y2', '60%'); 

 

        var stop1 = primaryGradient.append('stop') 

          .attr('offset', '0%') 

          .style('stop-color', blueColor.toString()); 

 

        var stop2 = primaryGradient.append('stop') 

          .attr('offset', '100%') 

          .style('stop-color', greenColor.toString()); 

 

        var secondaryGradient = defs.append('linearGradient') 

          .attr('id', 'secondaryLinearGradient') 

          .attr('x1', '100%') 

          .attr('y1', '100%') 

          .attr('x2', '20%') 

          .attr('y2', '0%'); 

 

        var stop1 = secondaryGradient.append('stop') 

          .attr('offset', '0%') 
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          .style('stop-color', blueColor.toString()); 

 

        var stop2 = secondaryGradient.append('stop') 

          .attr('offset', '100%') 

          .style('stop-color', redColor.toString()); 

 

        //data conversion/layout setup 

        //because of the size setup, it will be a radial clus-

ter layout, and the x of node will be the degree from positive 

x axis, y will be the radius. 

        var cluster = d3.layout.cluster() 

          .size([360, r]) 

          .separation(function(a, b) { 

            return (a.category == b.category ? 1 : 2) / 

a.depth; 

          }); 

 

        //setting conversion functions 

        var nodes = cluster.nodes(games); 

        var bundle = d3.layout.bundle(); 

        var nodeWidth = (r * 2 * Math.PI / nodes.length) - 6; 

        var oLinks = map(nodes, relations); 

        var links = bundle(oLinks); 

 

        //plotting nodes generated from cluster layout 

        function map(nodes, relations) { 

          var hash = []; 

          var resultLinks = []; 

 

          for (var i = 0; i < nodes.length; i++) { 

            hash[nodes[i].name] = nodes[i]; 

          } 

          for (var i = 0; i < relations.length; i++) { 

            resultLinks.push({ 

              source: hash[relations[i].source], 

              target: hash[relations[i].target], 

            }); 

          } 

          return resultLinks; 

        } 

 

        //drawing function 

        var line = d3.svg.line.radial() 

          .interpolate('bundle') 

          .tension(0.85) 

          .radius(function(d) { 

            return d.y; 

          }) 

          .angle(function(d) { 

            return d.x / 180 * Math.PI; 

          }); 

 

  //label tip nodes 
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        var colorTipJson = [{ 

            "x": width / 15, 

            "y": height / 15, 

            "width": 30, 

            "height": nodeWidth, 

            "fill": 'hsla(240, 100%, 44%, 0.9)', 

            "text": "Game" 

          }, 

          { 

            "x": width / 15, 

            "y": height / 15 + 15, 

            "width": 30, 

            "height": nodeWidth, 

            "fill": 'hsla(120, 100%, 39%, 0.9)', 

            "text": "Primary genre" 

          }, 

          { 

            "x": width / 15, 

            "y": height / 15 + 30, 

            "width": 30, 

            "height": nodeWidth, 

            "fill": 'hsla(0, 100%, 54%, 0.9)', 

            "text": "Secondary genre" 

          } 

        ]; 

 

  //brightness tip nodes  

        var lightnessTipJson = [{ 

            "GPS": 60, 

            "x": width - width / 15 - 70, 

            "y": height / 15, 

            "width": 30, 

            "height": nodeWidth 

          }, 

          { 

            "GPS": 80, 

            "x": width - width / 15 - 35, 

            "y": height / 15, 

            "width": 30, 

            "height": nodeWidth 

          }, 

          { 

            "GPS": 100, 

            "x": width - width / 15, 

            "y": height / 15, 

            "width": 30, 

            "height": nodeWidth 

          } 

        ]; 

 

        var gBundle = svg.append('g') 

          .attr('transform', 'translate(' + (width / 2) + ', ' 

+ (height / 2) + ')'); 
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        //line generation 

        var link = gBundle.selectAll('.link') 

          .data(links) 

          .enter() 

          .append('path') 

          .attr('class', 'link') 

          .attr('d', line) 

          .style('stroke', function(d, i) { 

            if (d[2].category == 'primary') { 

              return 'url(#primaryLinearGradient)'; 

            } else { 

              return 'url(#secondaryLinearGradient)'; 

            } 

          }); 

 

  //nodes appending 

        var node = gBundle.selectAll('.node') 

          .data(nodes.filter(function(d) { 

            return !d.children; 

          })) 

          .enter() 

          .append('g') 

          .attr('class', 'node') 

          .attr('transform', function(d) { 

            return 'rotate(' + (d.x - 90) + ')translate(' + 

d.y + ')' + 'rotate(' + (90 - d.x) + ')'; 

          }); 

 

        //append GPS rect for games to nodes 

        node.append('rect') 

          .attr('class', 'rectangles') 

          .attr('width', nodeWidth) 

          .attr('height', function(d) { 

            if (d.GPS) { 

              return d.GPS / 5; 

            } else if (d.gamesCount) { 

              return d.gamesCount * 2; 

            } else { 

              return 0; 

            } 

          }) 

          .style('fill', function(d) { 

            if (d.GPS) { 

              return 'hsla(240, 100%, ' + (144 - d.GPS) + '%, 

0.9)'; 

            } else if (d.category == 'primary') { 

              return 'hsla(120, 100%, ' + (54 - d.gamesCount * 

2) + '%, 0.9)'; 

            } else { 

              return 'hsla(0, 100%, ' + (54 - d.gamesCount * 

2) + '%, 0.9)'; 

            } 
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          }) 

          .attr('transform', function(d) { 

            return 'rotate(' + (d.x + 180) + ')translate(-' + 

nodeWidth / 2 + ', 2)'; 

          }); 

 

        //append text to nodes 

        node.append('text') 

          .attr('dy', '.2em') 

          .attr('transform', function(d) { 

            if (d.GPS) { 

              return 'rotate(' + (d.x < 180 ? d.x - 90 : d.x + 

90) + ')translate(' + (d.x < 180 ? (d.GPS / 5) + 5 : -(d.GPS / 

5 + 5)) + ', 2)'; 

            } else if (d.gamesCount) { 

              return 'rotate(' + (d.x < 180 ? d.x - 90 : d.x + 

90) + ')translate(-' + (d.gamesCount * 2 + 5) + ', 2)'; 

            } else { 

              return 'rotate(' + (d.x < 180 ? d.x - 90 : d.x + 

90) + ')'; 

            } 

          }) 

          .attr("text-anchor", function(d) { 

            return d.x < 180 ? "start" : "end"; 

          }) 

          .text(function(d) { 

            return d.name; 

          }); 

 

  //for testing generated nodes 

        nodesT = nodes; 

        linksT = links; 

 

  //appending tooltip 

        var tooltip = d3.select('#bundleLayout') 

          .append('div') 

          .attr('class', 'tooltip') 

          .style('opacity', 0.0); 

 

  //Mouse hover interactivity 

        node.on('mouseover', function(d) { 

            if (d.GPS) { 

              tooltip.html('GPS: ' + d.GPS) 

                .style('left', (d3.event.pageX) + 'px') 

                .style('top', (d3.event.pageY + 20) + 'px') 

                .style('opacity', 1.0); 

            } else if (d.gamesCount) { 

              tooltip.html('games count: ' + d.gamesCount) 

                .style('left', (d3.event.pageX) + 'px') 

                .style('top', (d3.event.pageY + 20) + 'px') 

                .style('opacity', 1.0); 

            }; 
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            link.classed('linkHover', function(l) { 

              if (l[0].name == d.name || l[2].name == d.name) 

{ 

                return true; 

              } 

            }); 

          }) 

          .on('mousemove', function(d) { 

            tooltip.style('left', (d3.event.pageX) + 'px') 

              .style('top', (d3.event.pageY + 20) + 'px') 

          }) 

          .on('mouseout', function(d) { 

            tooltip.style('opacity', 0.0); 

            link.classed('linkHover', false); 

          }) 

 

  //appending explanatory tips 

        var colorTip = svg.selectAll('.tipSquare') 

          .data(colorTipJson) 

          .enter() 

          .append('g') 

          .attr('class', 'colorTip'); 

 

        var tipSquare = colorTip.append('rect') 

          .attr("class", "rectangles") 

          .attr("x", function(d) { 

            return d.x; 

          }) 

          .attr("y", function(d) { 

            return d.y; 

          }) 

          .attr("width", function(d) { 

            return d.width; 

          }) 

          .attr("height", function(d) { 

            return d.height; 

          }) 

          .style('fill', function(d) { 

            return d.fill 

          }); 

 

        var tipNote = colorTip.append('text') 

          .attr('dy', '.2em') 

          .attr('class', 'text') 

          .attr('transform', function(d) { 

            return 'translate(' + (d.x + 35) + ', ' + (d.y + 

7.5) + ')' //move the text to the right and downward a bit 

          }) 

          .text(function(d) { 

            return d.text; 

          }); 

 

        var lightnessTip = svg.selectAll('.tipLightness') 
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          .data(lightnessTipJson) 

          .enter() 

          .append('g') 

          .attr('class', 'tipLightness'); 

 

        var lightnessSquare = lightnessTip.append('rect') 

          .attr("class", "rectangles") 

          .attr("x", function(d) { 

            return d.x; 

          }) 

          .attr("y", function(d) { 

            return d.y; 

          }) 

          .attr("width", function(d) { 

            return d.width; 

          }) 

          .attr("height", function(d) { 

            return d.height; 

          }) 

          .style('fill', function(d) { 

            return 'hsla(240, 100%, ' + (144 - d.GPS) + '%, 

0.9)'; 

          }); 

 

        var lightnessNote = lightnessTip.append('text') 

          .attr('dy', '.2em') 

          .attr('class', 'text') 

          .attr("text-anchor", function(d) { 

            return d.GPS < 60 ? "start" : "end"; 

          }) 

          .attr('transform', function(d) { 

            return 'translate(' + (d.x + 22) + ', ' + (d.y - 

10) + ')' //move the text to the right and downward a bit 

          }) 

          .text(function(d) { 

            return d.GPS; 

          }); 

 

      }); 

    }); 

  </script> 

</body> 

 

</html> 
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Appendix 4: Feature Breakdown Visualization 

 

<!DOCTYPE html> 

<html> 

 

<head> 

  <title></title> 

  <style type="text/css"> 

    .rect { 

      stroke: white; 

      opacity: 0.8; 

    } 

 

    .rectHovered { 

      opacity: 1; 

    } 

 

    .genreText { 

      font-family: sans-serif; 

      font-size: 16px; 

      fill: black; 

      opacity: 0.6; 

    } 

 

    .tooltip { 

      font-family: sans-serif; 

      font-size: 14px; 

      max-width: 300px; 

      padding: 10px 20px; 

      display: block; 

      height: auto; 

      position: absolute; 

      text-align: center; 

      border-style: solid; 

      border-width: 1px; 

      background-color: #F0F8FF; 

      color: black; 

    } 

 

    .tooltip p { 

      color: #1E824C; 

    } 

  </style> 

</head> 

 

<body> 

  <div id='treemap'></div> 

  <script src="https://d3js.org/d3.v3.min.js"></script> 

  <script type="text/javascript"> 

    var width = 1000, 

      height = 500; 

    var nodesT; 
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    //basic setup 

    var svg = d3.select('#treemap') 

      .append('svg') 

      .attr('width', width) 

      .attr('height', height); 

 

    //two layers, 1 layer for displaying nodes, layer2 for 

displaying genreNode text 

    var layer1 = svg.append('g'); 

    var layer2 = svg.append('g'); 

 

 

    //layout 

    var treemap = d3.layout.treemap() 

      .size([width, height]) 

      .padding(1) 

      .value(function(d) { 

        return d.value; 

      }); 

 

 //read in json 

    d3.json('treemapNodes.json', function(error, root) { 

      if (error) throw error; 

 

      var nodes = treemap.nodes(root); 

 

      //leaf node value list 

      var valueDict = {}; 

      var categoryList = []; 

      for (i = 0; i < nodes.length; i++) { 

        if (nodes[i].depth == 2) { 

          if (nodes[i].parent.name in valueDict) { 

            valueDict[nodes[i].par-

ent.name].push(nodes[i].value); 

          } else { 

            valueDict[nodes[i].parent.name] = 

[nodes[i].value]; 

            categoryList.push(nodes[i].parent.name); 

          } 

        } 

      } 

 

   //creating dictionary containing the domain of val-

ues 

      var domainDict = {}; 

      for (i in categoryList) { 

        domainDict[categoryList[i]] = [valueDict[cate-

goryList[i]][0], valueDict[categoryList[i]][0]]; 

        for (j = 1; j < valueDict[categoryList[i]].length; 

j++) { 

          if (valueDict[categoryList[i]][j] < domainDict[cate-

goryList[i]][0]) { 
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            domainDict[categoryList[i]][0] = valueDict[cate-

goryList[i]][j]; 

          } else if (valueDict[categoryList[i]][j] > domain-

Dict[categoryList[i]][1]) { 

            domainDict[categoryList[i]][1] = valueDict[cate-

goryList[i]][j]; 

          } 

        } 

      } 

 

   //scaling function definition 

      function scaleLightness(domainElement, value) { 

        if (domainElement[0] == domainElement[1]) { 

          return 45; 

        } else { 

          return 100 - ((value - domainElement[0]) / (do-

mainElement[1] - domainElement[0]) / 2 + 0.20) * 100; 

        } 

      } 

 

      //red 0 

      //green lawn 90 

      //green 120 

      //inchworm 84 

      //azure 210 

      //cyan 180 

      //magenta 300 

      //orange 65, 30 

      //brown 38, 30 

 

      var colors = ['hsla(0, 100%, ', 'hsla(210, 100%, ', 

'hsla(120, 100%, ', 'hsla(337, 100%, ', 'hsla(300, 100%, ', 

'hsla(180, 100%, ', 'hsla(24, 100%, ', 'hsla(80, 100%, ', 

'hsla(60, 100%, ']; 

    

   //object containing rectangle colors 

      var rectColors = {}; 

      for (i in categoryList) { 

        rectColors[categoryList[i]] = colors[i]; 

      } 

 

      nodesT = nodes; 

      //linksT = links; 

 

   //appending game nodes  

      var node = layer1.selectAll('g') 

        .data(nodes.filter(function(d) { 

          return d.parent && d.value != 0; //filter out first 

level node and second  layer nodes 

        })) 

        .enter() 

        .append('g'); 
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   //appending genre nodes 

      var genreNode = layer2.selectAll('g') 

        .data(nodes.filter(function(d) { 

          return d.parent && d.children; //filter out first 

level node and second  layer nodes 

        })) 

        .enter() 

        .append('g'); 

 

   //appending game node rectangles 

      var rect = node.append('rect') 

        .attr('class', 'rect') 

        .attr('x', function(d) { 

          return d.x; 

        }) 

        .attr('y', function(d) { 

          return d.y; 

        }) 

        .attr('width', function(d) { 

          return d.dx; 

        }) 

        .attr('height', function(d) { 

          return d.dy; 

        }) 

        .style('fill', function(d) { 

          if (!d.children) { 

            var colStr = rectColors[d.parent.name] + scale-

Lightness(domainDict[d.parent.name], d.value) + '%, 1)'; 

            return colStr; 

          } else { 

            return 'white'; 

          } 

        }); 

 

   //appending genre node names 

      var genreText = genreNode.append('text') 

        .attr('class', 'genreText') 

        //.style('width', function(d){return d.dx;}) 

        .attr('text-anchor', 'end') 

        .attr('x', function(d) { 

          return d.x + d.dx - 5 

        }) 

        .attr('y', function(d) { 

          return d.y + d.dy - 5 

        }) 

        .text(function(d) { 

          return d.children ? d.name : null; 

        }); 

 

   //tooltip interactivity 

      var tooltip = d3.select('#treemap') 

        .append('div') 

        .attr('class', 'tooltip') 
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        .style('opacity', 0.0); 

 

      node.on('mouseover', function(d) { 

          if (!d.children) { 

            rect.classed('rectHovered', function(l) { 

              if (l.name == d.name) { 

                return true; 

              } 

            }) 

            tooltip.html(d.name + '<br/>' + "<p style=color 

:red>" + d.choice + '</p>') 

              .style('left', (d3.event.pageX) + 'px') 

              .style('top', (d3.event.pageY + 20) + 'px') 

              .style('opacity', 1.0); 

          } 

        }) 

        .on('mousemove', function(d) { 

          tooltip.style('left', (d3.event.pageX) + 'px') 

            .style('top', (d3.event.pageY + 20) + 'px') 

        }) 

        .on('mouseout', function(d) { 

          tooltip.style('opacity', 0.0) 

          rect.classed('rectHovered', false); 

        }) 

    }) 

  </script> 

</body> 

 

</html>  
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Appendix 5: Usability Test Form 

 

top 50 game genres 

 

1. Find out which primary genre is most popular among top 50 games. 

 

2. Find out which secondary genre is most popular among top 50 games. 

 

3. Find out which genres are not popular among top 50 games. 

 

4. Based on the graph, what kind of game genre combination would you think is 

reasonable and have high revenue potential? 

 

Feature breakdown Treemap 

 

1. What feature genre has the biggest contribution to its revenue potential? 

 

2. What feature genre has the smallest contribution to its revenue potential? 

 

3. At first glance, which feature has the biggest effect on the game potential? 

 

4. If you are developing a game, describe what features you would like to include 

in your game design. 
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System Usability Scale 

Field of study in university: 
 
Game development experience: 
 
 
   Strongly                        Strongly  
  
 Disagree 
  Agree 
 
1. I think that I would like to use this sys-
tem frequently  
  
   
 
2. I found the system unnecessarily com-
plex 
   
 
 
3. I thought the system was easy to use                      
  
 
 
4. I think that I would need the support of      
a technical person to be able to use this 
system  
 
 
5. I found the various functions in this 
system were well integrated 
  
  
 
 
6. I thought there was too much incon-
sistency in this system 
  
  
  
7. I would imagine that most people 
would learn to use this system very 
quickly  
  
 
8. I found the system very cumbersome 
to use 
   
  
9. I felt very confident using the system 
 
 
 
 
10. I needed to learn a lot of things before I could get going with this system  


