

UBIQUITOUS USE OF THE WEB STANDARDS MODEL
TO UNIFY WEB APPLICATION AND NATIVE

APPLICATION DEVELOPMENT PROCESSES
A Practical Approach

Hoque, Majedul

Bachelor’s Thesis
School of Business and Culture

Business Information Technology
Bachelor of Business Administration

2017

School of Business and Culture
Degree Programme in Business
Information Technology
Bachelor of Business Administration

Abstract of Thesis

Author Majedul Hoque Year 2017
Supervisor Johanna Vuokila
Commissioned by
Title of Thesis Ubiquitous Use of the Web Standards Model to

Unify Web Application and Native Application
Development Processes

 A Practical Approach
Number of pages 60 + 15

Web technology is one of the prominent sector in the field of software
engineering. Web development is the most sought career advancement
pathway in modern era. The web technology principles i.e. HTML, CSS, and
JavaScript usage are not limited to the web platform. However, the needs to
share common codebase across platforms has remained unsolved.

The objective of the thesis is to implement the ubiquitous usage of the Web
standards model into different platforms. More precisely, the concept of the
ubiquitous web standards model is studied. Additionally, a third-party
questionnaire and surveys were analysed to determine the suitable utilities and
features needed to achieve the objective.

The combination of the exploratory and constructive research methods was
used in this research work. The exploratory research was used to understand
the concepts of the ubiquitous web standards model. Furthermore, frameworks
and tools determined for the project were studied. The constructive research
method was used to input the gained knowledge into the practical
implementation to develop an efficient prototype. In-depth documentation of the
development procedures was included for referencing and expanding of the
produced solution.

During the practical implementation, a prototype was built to serve a common
codebase for different platforms. Webpack, a build tool providing the core
mechanisms of the application development and deployment environment
serving common codebase was studied. Finally, demonstration of the
application development and deployment environment alias build system was
given, as the outcome of the research.

Key words HTML, CSS, JavaScript, NodeJS, Electron, Cordova,

Webpack

CONTENTS

ABSTRACT

SYMBOLS AND ABBREVIATIONS

1 INTRODUCTION .. 6

1.1 Background and Motivation ... 6

1.2 Research Objectives .. 7

1.3 Structure of the Thesis ... 8

2 RESEARCH SCOPE, QUESTIONS AND METHODOLOGY 9

2.1 Research Scope .. 9

2.2 Research Questions .. 9

2.3 Research Methodology .. 10

2.4 Sources .. 12

3 CONCEPT OF UBIQUITOUS WSM ... 14

3.1 WSM .. 14

3.1.1 HTML .. 14

3.1.2 CSS ... 16

3.1.3 JS .. 17

3.2 Ubiquitous usage of WSM ... 18

4 APP DND UTILITIES IN DIFFERENT PLATFORMS 21

4.1 JS Engine .. 21

4.2 Node.js ... 22

4.3 Web ... 23

4.3.1 Front-End .. 24

4.3.2 Back-End ... 26

4.4 Desktop .. 27

4.5 Mobile .. 28

5 PROTOTYPE DESIGN AND DEVELOPMENT .. 31

5.1 Proposed Features .. 31

5.2 Build System Design .. 34

5.2.1 Desktop App Development and Deployment Environment 39

5.2.2 Mobile and Web App Development and Deployment Environment

 42

5.2.3 Plugins and loaders ... 44

6 PROTOTYPE BENCHMARK .. 47

6.1 Features demonstration ... 47

6.2 Files Comparison ... 48

7 CONCLUSION .. 50

BIBLIOGRAPHY ... 52

APPENDICES ... 60

5

SYMBOLS AND ABBREVIATIONS

HTML HyperText Markup Language

CSS Cascading Style Sheet VoIP

JS JavaScript

App Application

DnD Development and Deployment

OS Operating System

WSM Web Standards Model

W3C World Wide Web Consortium

CLI Command Line Interface

UI User Interface

ES7 ECMAScript2016

Browser Web Browser

API Application Programming Interface

SDK Software Development Kit

NPM Node Package Manager

Vue Vue.js

CEM Chromium Embedded Framework

NMAD Native Mobile Application Development

WMAD Web Mobile Application Development

HMAD Hybrid Mobile Application Development

Cordova Apache Cordova

PhoneGap Adobe PhoneGap

HMR Hot Module Replacement

URL Uniform Resource Locator

6

1 INTRODUCTION

The background information and motivation of the research work are discussed

initially. Additionally, discussions of the research objectives and thesis structure

are conducted in this chapter.

1.1 Background and Motivation

In this age of rapid changes in tools and technologies, there is a wide range of

computing platforms available. A computing platform or simply a platform is a

hardware and software architecture to develop and/or host an application

(hereinafter App) (Bridgwater 2015). Each platform has different software App

development and deployment (hereinafter DnD) processes, due to different file

system architecture in the underlying operating system (hereinafter OS).

Platform agnostic code-boilerplate can help accelerate App DnD process

regardless of target platform.

App development is one of the core concepts in the field of software

engineering. Gartner Incorporated reports that, 2.3 billion computing device

shipments are projected by the end of year 2017 (Forni & van der Meulen

2017). Despite the staggering range of computing device availability, most of

the research on App development emphasises a specific device platform. At

best, efforts of some research are given into cross OS platforms for one specific

type of device. For instance, the same App codebase is applied in mobile

platform regardless of OS. The very same applies to desktop and web App

development projects. However, the necessity of accessing an App is not

restricted to one platform, previous research has neglected App development

for multiple platforms. The scarcity of availability in multiple platforms can hinder

the success of an App, regardless of its rich functionalities, on the one hand. On

the other hand, App development typically requires the usage of multiple tools

and dedicated App development frameworks specific to a platform to eliminate

code redundancy (Vlăsceanu 2012). Emphasis should, therefore, be placed on

determining a common ground to unify App development and deployment

7

processes for different platforms. This research focuses on streamlining App

development process for multiple platforms.

My personal interest and experience in App DnD, and the opportunity of helping

App developers alike motivated me to select the topic. App development has

undergone a rapid development progress in recent years. There is an

estimation of a 17 percent growth in employment in App development industry

in the next 7 years (Bureau of Labor Statistics 2015). Experience on tools and

technologies to build modularized, scalable Apps are expected from the

candidates desiring to step into this industry. Therefore, with this development

work, I can gain in depth knowledge of App development principles to ensure a

good career perspective. Lastly, the applicability of my university education is

relevant to the thesis, which has also had a notable impact on studying this

topic.

1.2 Research Objectives

The objectives of this study are to study modern App architecture to unify App

DnD processes for multiple platforms and to investigate the impacts of using

web standards model (hereinafter WSM) globally in a project. Further, the

research is to deliver a prototype consisting of an environment for rapid App

DnD for multiple platforms. To achieve the objectives, different programming

frameworks are reviewed to determine a suitable approach for this project.

Furthermore, multiple third-party tools are investigated and proper ones are

implemented based on usage-reviews to achieve effective integration in the

research work. The concepts utilized in this development work can be studied

further and applied in different App development projects. Hence, individuals

who have interests in the similar field will find this work intellectual and

informative. A sample DnD app is built on top of outputted prototype. Extracted

benchmarks from the app helps to identify and prevent any potential bottlenecks

in the prototype.

8

1.3 Structure of the Thesis

To logically follow the research objectives, the thesis is divided into 7 chapters.

In Chapter 2, the research scope is outlined and the research questions are

delivered following a brief discussion. Additionally, arguments are given to

support the research methodology selection. Chapter 3 focuses on discussing

the core mechanisms of WSM to lay the path for discussion of ubiquitous WSM

usage in the chapter to follow. Furthermore, tools and/or programming

frameworks responsible for interoperability, cross compatibility are identified in

Chapter 4. Chapter 5 discussions deliver a prototype to successfully provide an

environment for multi-platform App DnD. Subsequently, additional features are

included in the prototype for effective and efficient project environment. In

Chapter 6, the prototype functionalities are showcased to understand the

mechanisms of the prototype. Chapter 7 concludes the research providing

results of the work and directions for further improvements in the prototype and

suggestions for further research.

9

2 RESEARCH SCOPE, QUESTIONS AND METHODOLOGY

2.1 Research Scope

 The research scope focuses on studying the concepts of App development and

deployment processes. In addition, this work concerns the study of WSM.

Readers are expected to know the basic usage of the WSM determined by the

World Wide Web Consortium (hereinafter W3C) (Lane 2007) to understand the

practical implementation of the study. Moreover, the practical implementation

consists of the usage of command line interface (hereinafter CLI) to a certain

extent and familiarity in it is required. Additionally, the research prioritizes

independent individual App development and deployment projects. This

research does not promise a delivery of guidelines to use the output of the

research in group based projects, assuming the requirements are different from

individual App development and deployment projects.

The research includes documentation for debugging and the updates relevant

to practical implementation. However, typical programming projects are not fully

free from errors. This research only intends to deliver a workable prototype. The

research also excludes hardware requirements for the prototype.

2.2 Research Questions

The research questions are presented. Moreover, brief discussions of the

research questions are provided.

1. What are the underlying building blocks of ubiquitous WSM?

To answer this question, the applicability of WSM in different platforms is

analysed. In order to accomplish the analysis, the definition and concepts of

ubiquitous WSM are discussed. Understanding JavaScript (hereinafter JS), one

of the building blocks of WSM is crucial for effective integration and interaction

to specific platform.

10

2. What is required to unify App development and deployment processes for

different platforms?

The unification of App development and deployment for different platforms is

dependent on Node.js, a JS runtime environment. Programming libraries and

frameworks responsible for compiling codes are reviewed and the appropriate

ones are identified to incorporate into platform specific development and

deployment. Following the identification of needed programming utilities, a

project structure for the prototype is set up following the Model-View-

ViewModel, otherwise known as MVVM pattern. The MVVM pattern is essential

to maintain separation of concerns between App logic and the user interface

(hereinafter UI). In addition, the MVVM pattern helps to improve App testability,

to enable developer-designer workflow (Microsoft 2012.) and above all, to

streamline App development and deployment processes for different platforms.

However, during the App development and deployment using the prototype,

following the MVVM structure is optional, nonetheless encouraged for the

reasons specified above.

3. What are the drawbacks of using ubiquitous web standards model?

This research question aims to minimise programming errors, if any, within the

prototype. During the App development and deployment processes utilising the

outputted prototype, different tools are used to document the project

benchmarks in different platforms. On the basis of reviewing the benchmarks,

possible hinders are pointed out and the prototype structure is revised.

2.3 Research Methodology

The exploratory research method provides profound understanding and clarity

of a concept. The exploratory research method is Appropriate for this research

work, due to the fact that, this study is to exploit a thorough understanding of

11

the tools and technologies used to lay the foundation for subsequent research.

(Manerikar & Manerikar 2014.)

The constructive research method is the subsequent selection to achieve the

end results of this thesis work. The constructive research method seeks to

create innovative construction (Hyötyläinen, Häkkinen & Uusitalo 2014). The

construction novelty is determined by the exposure to relevant knowledge

beforehand, and realising the possible gaps to provide a sustainable solution.

Thereby, the constructive research method is appropriate for this work as the

solution seeks to be novel in nature. The field of the research is in software

engineering and aims to solve practical problems. (Crnkovic 2010, 2.) In

addition, this research approach supports coupling with other methods; thus, it

is important for this research to interconnect both the exploratory and

constructive research findings. (Lehtiranta, Junnonen, Kärnä & Pekuri 2017.)

The research focuses on the usage of the web standards model across multiple

platforms. Figure 1 depicts the percentages of the types of software App

developer in different sectors of Information and communication technology.

Figure 1. Types of Software Application Developer (Stack Overflow 2017)

As illustrated in the figure above, the top three software App developer positions

concern the web, desktop and mobile platforms respectively. The web

development professionals occupy 72.6%, astoundingly higher than the number

of developers of the two subsequent popular platforms. (Stack Overflow 2017.)

12

The author of the research provides a solution, that enables existing web

development knowledge portability to the desktop, and mobile platforms. Using

common knowledge across different platforms ensures a common procedure,

and eliminates the gap in expertise across development platforms.

The stream of the constructive development is started by determining the

suitable utilities based on third-party questionnaires and statistics report. Based

on the in-depth understanding of the utilities determined, an App development

and deployment environment is designed and developed. Thereafter, the

sustainability of the App development and deployment environment is

measured. The constructive development procedure is concluded with the

delivery of the prototype to accomplish the motive of using the web standards

model in different platforms.

The secondary data analysis method is opted predominantly to extract

necessary information by analysing data effectively for the research (Manerikar

& Manerikar 2014). The research only utilizes relevant secondary sources, such

as books, videos, and journal articles. Both the theoretical and practical part

comprises the extensive information gathered from official documentation of

tools and programming frameworks, and libraries needed for this work. Primary

data extraction is not needed for the research.

2.4 Sources

The research uses ECMAScrip2016 (hereinafter ES7), a relatively new JS

standard. The compatibility of the ES7 is not found in established sources

during the time of this research. Not all modern web browsers (hereinafter

browser) are fully capable to use all the ES7 features. In addition, the results of

the compatibility of HTM5, and CSS3 for different browsers across desktop, and

mobile platforms are available with the use of an online tool. In chapter 3, the

tools used to extract the information of the compatibility of HTML5, CSS3, and

ES7 across different browsers are community driven and open-source in nature.

The scientific validity of the sources is loosened in order to seek the usage of

the HTML5, CSS3, and ES7 in full capacity across different browsers. This

13

research refers to the authors of the corresponding tools by their nickname

provided in the sources, in case of unavailability. The abbreviations of the terms

HTML, CSS, and ES7 are given in the next chapter with adequate explanation.

The research excludes the use of primary sources, particularly questionnaires.

This is due to the fact that there are comprehensive questionnaire results

available showcasing the popular open source JS utilities. This research avoids

reinventing the wheel, and proceeds with the available results. This research

uses the findings of the ‘2016 JavaScript Rising Stars’ statistics and ‘the state of

JavaScript 2016’ surveys to a certain extent, to determine the suitable utilities

needed for the prototype. It should be noted that the name of the author of the

‘2016 JavaScript Rising Stars’, and all the utilities used are extracted from the

GitHub link provided in the official website.

The research uses official documentation provided for task and platform specific

utilities. The official documentations that do not include date of publication, is

cited using the release date of the utility as the publication date.

14

3 CONCEPT OF UBIQUITOUS WSM

This chapter discusses the concepts of ubiquitous WSM. All the basic building

blocks of the WSM are briefly discussed in section 1. Upon successful

discussions of the individual parts of the WSM, the concept of the ubiquitous

WSM is defined in section 2, concluding the chapter.

3.1 WSM

In order to comprehend the WSM, the concept of the web standards need to be

discussed. Web standards are set of rules and guidelines recommended to

build web pages. (Schmitt, Blessing, Cherny, Evans, Lawver & Trammell 2008,

6.) The web standards define and describe a range of characteristics of the

web. The web standards are important from technical and user perspectives. It

provides enriched user experience, and overall usability of the web. (Sikos

2011, 3-4.) The systematic approach to implement the web standards in the

user interface is concerned with the distinction between the three layers i.e. the

markup layer, the presentation layer, and the behavior layer consisting of

hypertext markup language (hereinafter HTML) or extensible hypertext markup

language, cascading stylesheets (hereinafter CSS), and JS. (Schmitt, Blessing,

Cherny, Evans, Lawver & Trammell 2008, 9.)

W3C does not provide a formal definition of the WSM, rather it headlines and

discusses HTML, CSS, and JS to elaborate different aspects of the web

standards. Thus, the presumption of the concept of the WSM is the architectural

separation between the three user interface layers, i.e. HTML, CSS, and JS.

(Lane 2007.) When discussing the concepts of the ubiquitous WSM in section

3.2, the languages compositing each user interface layer of the WSM are the

subject of discussion. Each language and their compatibility in different

browsers are discussed below.

3.1.1 HTML

Several discussions are found on the usage and applicability of the HTML and

HTML5 in different literature. It is important to understand the concepts of

15

“hypertext” and “markup language” prior to discuss the concepts of ‘HTML’ and

‘HTML5’. The method of storing text in electronic-form with reference to access

text on another webpage is known as hypertext. Currently, the scope of

referencing is not limited to text only. The scope covers different kinds of web

content e.g. image, audio, and video. (Meloni 2012, 2-3.) The concept of

“markup language” defined in the dictionary is the systematic structure of

documents to accomplish logical representation on electronic medium

(Merriam-Webster Dictionary 2017).

The definitions of both the HTML, and HTML5 concepts vary from source to

source. Burka (2015) defines HTML as the content provider for the web with the

capability to modify contents, and HTML5 as the improved version containing

extended functionalities. A purely functional definition of HTML is that it is the

language that semantically describes different types of documents (W3C 2016).

Pilgrim extended the HTML5 concept by defining the language as a backward

compatible cross-platform markup language to define structured documents

with added functionalities and refined features (Pilgrim 2010, as cited by Puputti

2012, 5).

Browser is the default platform that runs web documents, and is typically used

to access websites via the Internet. Figure 2 depicts the HTML5 features

accessible by some modern browsers.

Figure 2. HTML5 Compliance Chart for Major Desktop Browsers (Digital Trends

2017)

As drawn in figure 2, The latest Chrome 55 browser from Google has the

maximum HTML5 usage capability, scoring 502 out of 555. Opera 31, and

Vivaldi, a relatively new browser, are close to Chrome 55, in terms of HTML5

16

features accessibility. Vivaldi and Opera 31 scores 499, and 496 respectively.

The least HTML5 compliant browser is Microsoft Internet Explorer 11. The

support for Internet explorer is terminated, causing the loss to adapt the

changes in the web technologies. (Digital Trends 2017.) Mobile browsers

HTML5 compatibility is crucial, as mobile usage is significantly higher than the

Desktop (comScore 2014). The figure below shows the HTML5 compatibility

rate in different browsers.

Figure 3. HTML5 Compatibility Rate for Major Mobile Browsers (Deveria 2017a)

In the figure 3 and 4, the blocks surrounded by black border represents current

stable release, and the desaturated blocks represents the preview or

experimental release of the corresponding browser. The rest of the blocks

represents the previous stable release. (Deveria 2017a.) As depicted in the

figure 3, Chrome for Android and iOS Safari, are the most HTML5 compliant

browsers. Opera mini falls short in terms of HTML 5 compatibility. This is by no

mean the full list of available browsers. The tool only shows browsers

commonly acknowledged, and are actively maintained and supported.

3.1.2 CSS

According to Bos, CSS is a “simple mechanism for adding style, e.g., fonts,

colors, spacing, to Web documents” (2017). CSS rule is a set of instructions

that browser uses to alter the presentation of the HTML elements (Schultz &

Cook 2007, 22). It can control multiple web pages with a single rule defined

(Meloni 2012, 45). It enables to abstraction between the document contents

17

from the presentation logic, to govern the presentation characteristics, and to

improve content accessibility (Aronson 2011, 15). CSS is the only standard to

style HTML documents.

CSS3 being the latest standard has backward-compatibility with the previous

CSS versions. CSS3 consists of multiple ‘modules’. Each module is responsible

for a specific functionality and is standardized by W3C if the module is stable

and non-problematic. (W3C 2001.) CSS3 modules are constantly being

developed. Many of the modules are not effectively integrated. Figure 4 below

represents the CSS3 compatibility in multiple browsers.

Figure 4. CSS3 Compatibility Chart for Major Browsers (Deveria 2017b)

As given in the figure above, in the desktop platform Firefox has the maximum

capability to provide CSS3 features. Microsoft provided Inter explorer 11 and

Edge 14 has the least support of CSS3. In the mobile, Opera mini has the

lowest rate of CSS3 features accessibility. The other browsers are competent

and maintain almost same rate of CSS3 feature integration and access.

(Deveria 2017b)

3.1.3 JS

JS is a high-level, dynamic and untyped interpreted programming language. It is

known as the language of the web, and used by all modern browsers to specify

the behaviour of a webpage. (Flanagan 2011.) JS is object oriented to the core.

All the data types are considered as objects. The primitive data types are

wrapped within an object data type. It is prototype based, follows a prototype-

inheritance model when assigns to an object. (Peschla 2012, 13.) ECMAScript

18

is the standard for JS defined by European Computer Manufacturer’s

Association to provide cross-browser compatibility of the language. The terms

ECMAScript and JS are used interchangeably (Haverbeke 2014). Typically, the

attributes of JS are associated to the use of ECMAScript standard interfacing

browser’s DOM Application programming interface (hereinafter API) and

XMLHttpRequest API, (Peschla 2012, 12). This research only uses the term

“JS” when referring the implementation of ECMAScript standard strictly.

ES7, the seventh edition of the ECMAScript language defined in ECMA-262

standard is used in the prototype construction. (Ecma International 2016.) Many

of the ES7 features are supported by modern browsers. Chrome 57 and Opera

44 have an 80% accessibility of ES7 features, while Internet Explorer 11 has

the least access of 4% of the ES7 standard. (Zaytsev 2017.)

3.2 Ubiquitous usage of WSM

The usage of HTML and CSS is restricted to the browser. JS is used as a

server-side programming language and in browsers. This section discusses the

applicability of the usage of the WSM components in different platforms,

including Desktop OS, specifically Windows OS, Mac OS, Ubuntu, Debian

based Linux OS, and CentOS, a Red hat based Linux OS; Mobile phone OS,

specifically Android OS, and iOS; and browsers, thus ensuring the applicability

of the Ubiquitous WSM.

An App DnD project consists of source codes and resources. The resource

contents can be of anything, including icons, images or data files. The

combination of source codes and resources is compiled to run as an executable

program, or as a website. (Microsoft Developer Network 2017.) However,

executable programs architectures are not same in all OS platforms. The

common executable file extensions are depicted in the table below.

19

Table 1. List of Common Executable File Extensions (Fisher 2016)

Extension OS

.exe Windows

.app Mac OS

.deb All Debian based Linux OS

.rpm All Redhat based Linux OS

.ipa iOS

.apk Android OS

The extensions listed above in Table 1 are the filetype-extensions of the

executable files of a platform. The executable files act as the entry points for an

App solution for a particular OS. The concept of the ubiquitous WSM derives

from the fact that, any App projects using the WSM can be deployed in any

platform, in order to ensure that WSM source codes and resources are

packaged within OS specific executables natively, as a form of the App.

The ambition of the prototype is to build solutions with indifferent WSM

codebase across platforms. Below in the figure, the strategy to accomplish the

App deployment using WSM codebase is depicted.

Figure 5. Ubiquitous WSM Deployment

20

Based on the approach showed in figure 5, developers decision leads to OS

specific deployment. Framework is the structural combination of tools, and

languages used to build and deploy App (Porebski et al. 2011, as cited by

Vlăsceanu 2012, 18). Software development kit (hereinafter SDK) is a toolbox

to compile source code and resources interpretable by platforms (Sandoval

2016). The usage of programming framework, and SDK are needed to compile

source codes into OS specific Apps.

21

4 APP DND UTILITIES IN DIFFERENT PLATFORMS

The chapter endeavours to understand the medium of portability of JS in

different platforms. section 4.1 covers the concepts of concept of JS engine.

section 4.2 details the discussion of Node.js, and the Node package manager.

section 4.3 elaborates the selection of web App DnD utilities with the use of the

WSM components. In section 4.4, the extended use of the WSM is explored in

cross-platform desktop DnD. In section 4.5, a similar approach is taken to seek

for cross-platform mobile App DnD utilities.

4.1 JS Engine

Node.js, or simply Node is built on a JS engine, particularly V8 and therefore,

the concept of the JS engine is studied primarily. Furthermore, the study covers

brief description of different JS engines. Emphasis is given on the V8 to

comprehend the concept of Node.js in the section to follow.

The responsibility of JS engine is to compile JS source codes, to allow the

browser to interpret and represent JS codes on a web page. JS engine is a

browser feature in nature. Different browsers use different JS engines. (White

2009, 12) Table 2 provides a list of major JS engines available for modern

browsers.

Table 2. List of JS Engines

Engine Vendor Browser

Chakra Microsoft Internet Explorer 11,

Edge

Spidermonkey Mozilla Firefox 52

JavaScriptCore WebKit Safari 10.1

V8 Google Chrome 57

Table 2 only enlists the current stable browsers. The engines are also used in

other release versions. During the development stage, BSCF App is tested on

the browsers mentioned above.

22

The core components of Chakra are open sourced under the name

“ChakraCore”. It has also powered Universal Windows applications, Azure

DocumentDB, Cortana, Outlook.com. Chakra has made it possible to use

Node.js in Windows 10 IoT Core. (Seth & Foresti 2016.) Spidermonkey is the

pioneer of the JS engine. It is written in C++, and used in various Mozilla

products in addition to Firefox browser. JavaScriptCore is based on KDE JS

engine. It is widely used for scripting in Apple’s OSX OS, and JS testing in in-

IDE for Adobe Air and Dreameweaver CS4. V8 is developed by Google, written

in C++ programming language, and is used in the Google’s Chromium, and

Chrome browser. (White 2009, 12-13.) V8 is a standalone project on its own,

although, it was primarily developed as a part of the Chromium browser.

Chromium embeds the V8 by using V8 API. Effective implementation and

modification of objects and properties, dynamic generation and optimization of

machine code, and the efficient garbage collection process are the main factors

for fast data processing in V8. (Peschla 2012, 9.)

Dahl (2010), the creator of Node, stated the reason to use V8 for building Node

is the single threaded nature of JS, and V8. Previous solution to use JS on

server-side is intended for multi-threaded operation. V8, as a virtual machine

was performant than the available virtual machines available during the time of

Node development. (Dahl 2010.) In-depth discussion of server-side is provided

in the section 4.3.

4.2 Node.js

The reason for choosing Node is apparent, i.e. at the time of conducting the

research node ecosystem consists of utilities to support App DnD with the

usage of WSM. The official Node website remarks node.as a lightweight and

efficient JS runtime environment. A runtime environment is simply the state after

program execution, providing the access to different computing services such

as processor and main memory access (TechTerms 2017).

23

The nature of Node is event-driven and performs non-blocking I/O operations.

Events, in the context of Node, are registered as soon as a Node App is

executed. Node event loop is the background process which is always running

to listen to any events to occur, and responds to the event based on

instructions, commonly known as event handlers. Event response occurs

sequentially via event-queue, because JS is single threaded in nature. (Ihrig

2013, 29.)

The non-blocking I/O operations refer to the asynchronous JS operation and is

dependent on the event-driven approach. Node does not wait for a return value

to do the next operation; rather the evet-loop waits for an event to occur to

perform the operation. Multiple parallel I/O operations are possible, and event-

handler is executed to an I/O operation. (Teixeira 2013, 16.)

Node has various built-in modules to perform a wide range of tasks, e.g.

accessing file system, creating http, and tcp server (Node.js 2017). Node

version 0.6.0 and above ships with Node package manager (hereinafter NPM).

NPM enables to use third party Modules, otherwise known as packages in App

DnD projects. NPM consists of a package repository for third-party modules.

Initializing a ‘package.json’ file is needed to maintain packages in a local

computer system (Teixeira 2013, 8-9, 12.) NPM provided command-line tool is

needed to initialize a ‘package.json’ file, and to install and modify existing

packages interactively. (NPM 2017a.) Platform specific DnD relies on the third-

party NPM packages. This section satisfies the partial needs to blueprint the

prototype by studying NPM, and the implementation of NPM.

4.3 Web

Web App is client-server app, and this section discusses the use of full-stack JS

to adopt the usage ubiquitous WSM in the web app. However, this is partial

implementation of the WSM, as JS is integrated to control the behaviour of the

App only. The browser serves as the client in this kind of App architecture.

(Shklar & Rosen 2003, 201-202.) The browser uses both the rendering engine,

24

and the JS engine to represent the UI. The layout engine takes the HTML, and

CSS source code to compile. (Wright 2013, 29-30.)

The modern web App fits into the term multi-tier architecture, as the server can

act as a client while interacting with a database server. Each tier consists of an

App layer. The bottom layer is the client that initiate requests to the server or

the intermediate layer. The intermediate layer may act as a client, or server, or

both concurrently, depending on its responsibility. (Shklar & Rosen 2003, 203.)

The client-side, and the server-side are commonly referred as the front-end,

and the back-end of the web respectively. This research uses the convention

“front-end” and “back-end” from this point forward. The front-end and back-end

DnD libraries and/or frameworks chosen for the prototype are discussed below.

It should be considered that the in-App utilities are not obligatory for developers

to use. The research only tries to clarify the popularity between different

libraries, and/or frameworks.

4.3.1 Front-End

The front-end deals with the direct interaction of the user with the web. In this

regard, all the parts of the UI layer of the WSM are used in the front-end

development. (Long 2012.) The prototype establishes the MVVM architectural

pattern for front-end of the App Development. Using plain JS in development is

cumbersome to follow MVVM correctly. Besides, using a JS library and/or

framework is often needed for improved readability. Figure 6 illustrates the

most-starred open source front-end utilities available on GitHub website.

Figure 6. Front-end Projects in 2016 (Rambeau 2017)

25

As depicted on the figure above, there is a significant popularity in the Vue and

React. React has more than 22000 stars in the GitHub, while Vue topped by a

margin of approximately 4000 stars. (Rambeau 2017.) In addition to the

popularity of front-end utilities, their awareness among App developers are

given in the chart below.

Figure 7 Front-End Frameworks Awareness (Greif 2017a)

There is a coherence between the significant satisfaction rates for React and

Vue.js (hereinafter Vue) library, and most-starred open source projects shown

in figure 7 and 6 accordingly. Based on figure 7, 92%, and 89% of the user base

would like to continue using React, and Vue respectively. (Greif 2017a.)

Vue is lightweight compare to React, providing better performance in execution

time than React. In addition, it automatically tracks component’s dependencies,

giving it edge over react, where the process is manual. The decision to choose

the suitable utility for the prototype, a performance benchmark is provided in the

table below. (Vue.js 2017a.)

26

Table 3. Performance Comparison Between Vue and React (Vue.js 2017b)

Table 3 description boosts the deciding factor between the two popular utilities.

Besides, Vue’s enriched ecosystem makes the author to choose Vue as front-

end development utility for the prototype development. Vue is a progressive

framework, that manipulates the view layer of the MVVM (Vue.js 2017b) The

concept of the progressive framework is the scaling ability of the front-end app.

The minimalistic nature of Vue helps developer to focus on App requirements.

Additional functionalities of an App are handled with the use of libraries

provided in Vue ecosystem. This helps the customization of the Vue in

compliance to App requirements. (You 2016.)

4.3.2 Back-End

The back-end powers the front-end. It “consists of a server, an application, and

a database”. User provided data from the front-end is accessed by an

application to interface with a database in a server. (Long 2012.) There are

multiple programming languages available to communicate between the three

back-end parts. The Node is developed primarily for back-end development,

and uses JS, therefore, is used in the back-end of the prototype. However,

there are various frameworks available, built on top of Node. These frameworks

provide additional functionalities. The figure below depicts the popularity of

different Node frameworks.

27

Figure 8. Most-starred Node Frameworks (Rambeau 2017)

As stated in figure 8, express is the most popular back-end framework. Express

is often considered as the de-facto Node framework. It provides easy

abstraction of codes, server side routing, and enables third-party module

injection via middleware. (Rambeau 2017.) This research, implements the

Express framework for back-end development.

4.4 Desktop

There are multiple utilities available to develop a cross-platform desktop app.

However, there are only four utilities able to compile and execute the WSM to

build Desktop app. These utilities are, Adobe air, Chromium Embedded

Framework (hereinafter CEF), NWJS, and Electron. (MobiDev 2015.) Figure 9

represents the most popular App development utilities of the year 2016.

Figure 9. Most Popular Projects in 2016 (Rambeau 2017)

28

Figure 9 enlists Electron as one of the most popular JS project. Electron and

NWJS remains the most popular open source project, on the one hand. On the

other hand, Adobe air is closed-source, and it discontinued support for Linux

Desktop App development. CEF does not have a stable version released yet.

NWJS uses CEF and Node as basis, causing large built size of deployed app.

Electron is a stable, features enriched, and actively maintained library.

(MobiDev 2015.) This research is to include Electron to provide desktop App

DnD environment.

Electron uses the UI layer components of WSM in order to create cross platform

desktop application. The combination of Chromium’s rendering engine and

Node.js API, as a shared environment of V8 is used to provide runtime for

Electron. (Lord 2016.)

4.5 Mobile

There are three approaches available to build for mobile App development i.e.

native mobile App development (hereinafter NMAD), web mobile App

development (hereinafter WMAD), and hybrid mobile App development

(hereinafter HMAD). In NMAD, vendor provided tools and technologies are used

depending on the OS. Android, and iOS, the current popular platforms use

Java, and Object C programming language for App development. WMAD is

concerned with website, not application, thus is not discussed further. HMAD

allows the usage of ubiquitous WSM languages. Hybrid mobile applications can

access the native components to implement device features as native

application. (Panhale 2016 ,15, 16, 18.) The figure below illustrates the

differences between native and hybrid application.

29

Figure 10. Differences Between Hybrid App and Native App (Panhale 2016, 18)

As seen on the figure 10, App development involves learning device specific

language for native development. Traditionally, this language does not support

on another mobile OS. However, runtime environment access is significantly

large in the Native app. On the contrary, the usage of WSM is possible in the

hybrid app. Source codes are cross-platform in nature. (Panhale 2016, 18.)

Figure 11 provides a list of renowned mobile App development frameworks.

Figure 11. Mobile Frameworks Awareness (Owens 2017)

30

As indicated in figure 11, 84% mobile App developers are satisfied with using

Native App development. React Native is popular in App development, and it

uses react, a library for JS. However, the use of the WSM in mobile App DnD is

only possible by Apache Cordova (hereinafter Cordova), and Adobe PhoneGap

(hereinafter PhoneGap), both utilizes HMAD approach. (Owens 2017.) This

research concentrates on the use of WSM and, therefore, Cordova or

PhoneGap is suitable for the research.

 Cordova is cross-platform in nature. It uses WebView rendering engine to

provide app’s UI, and set of core plugins to navigate hardware features e.g.

camera, accelerometer, geolocation. (Cordova 2015.) On the contrary,

PhoneGap is a distribution of Cordova, powered by the Cordova engine

(LeRoux 2012). The research uses PhoneGap due to the UI live-reload

capability for browser and device simultaneously, in addition to the access of all

the Cordova core features availability.

31

5 PROTOTYPE DESIGN AND DEVELOPMENT

This chapter is dedicated to delivering a workable App DnD environment for

multiple platforms. section 5.1 provides a brief explanation of the features to be

implemented in the build system. section 5.2 focuses on the actual

implementation of the identified utilities and features to the App DnD

environment.

5.1 Proposed Features

The App DnD environment seeks for features and functionalities for the

efficiency in workflow during the App DnD. However, this research excludes the

exploration of features needed for in-App development, since these features are

programming framework and library specific, and are not in the scope of this

research. Figure 12 depicts the top most important features demanded by App

developers.

Figure 12. Highest-Rated JS Features (Greif 2017b)

The top 3 highest-rated features depicted in figure 12 are parts of JS build tools

for developing a build system. The rest of the features deals with in-App

development. (Greif 2017b.) A build system is the automatization process of

program compilation. The primary purpose of build systems is to competently

map resources into executables. (Williams 2009.) The prototype is a build

system in nature, where App DnD is automatized. Specifically, the research

32

outputs a JS build system. JS build system deals with the automatization of

optimized source code translation, error detection, and third-party plug-ins

integration. (Adams 2015, 36-38.) In order to setup a build system, this research

investigates to find a build tool appropriate for the prototype. Figure 13 depicts

the most common build tools for App DnD.

Figure 13. Build Tool Awareness (Wong 2017)

As is shown in the figure above, both Webpack, and Gulp.js have the highest

satisfaction rate. Out of all, 93% of the users are satisfied with Webpack, and

75% of them are satisfied using Gulp.js. (Wong 2017.) As mentioned in the

Webpack 2 official guide, the latest iteration of Webpack, i.e. Webpack 2

provides the top three features mentioned in figure 12 natively (Webpack

2017a). On the contrary, Gulp.js relies on tools such as Webpack 1, Browserify,

or Rollup.js to integrate the additional features mentioned above. Webpack

performs a wide variety of tasks such as code minification, and generating

source maps out of the box. This research uses NPM, and Webpack 2 to deliver

a build system for App DnD environment as a form of prototype. The remainder

of the thesis uses ‘Webpack’ as naming convention for ‘Webpack 2’

The App DnD environment automation requires the need of NPM scripts, and

Webpack 2. Project dependencies are declared in package.json manifest file.

This file includes the ’scripts’ property, which enables to run NPM commands

33

from CLI (NPM 2017b). NPM script is essential to instruct project specific tasks

i.e. executing Webpack script.

Webpack brands itself as a module bundler. It takes all the modules of code

and bundles them in a single static file. The concepts of entry, output, loaders,

and plugins are core to the implementation of Webpack based build system.

Entry is the starting point, including references to dependencies of the

application. Output, as the name suggests compiles into an output as a bundle

JS file. Static assets such as CSS or HTML file executes with Webpack, not

the Browser, with the help of Loaders. Plugins help to provide additional

functionalities to Webpack

bundles. (Webpack 2017b.) The features to implement in the build system are

briefly discussed below.

The first feature needed for the App DnD environment is the compile of ES7

into ES5 standard, as all the targeted platforms rendering engine support ES5

standards fully (Zaytsev 2017). This compile is done with Babel loader for

Webpack, and all the Babel dependencies required. Babel is a tool that

enables to use the latest version of JS. (Babel 2017.)

The code splitting feature is next in line to integrate into the App DnD

environment. The code splitting concept is the on-demand code compilation of

a certain functionality (Webpack 2017c). This approach avoids the monolithic

bundles of the app. It accelerates performance due to fact that a chunk of code

is downloaded, and read by the JS engine, rather than the whole App

codebase. (Greif 2017b.)

The third feature is the Dead code elimination, known as tree shaking in the

context of Webpack. The automatic removal of unused codes is known as tree

shaking, a crucial feature for App DnD workflow. (Greif 2017b.)

Hot module reloading, the fourth feature to be available in the build system

deals with workflow flexibility. The process of keeping the App running, and

being able to adapt to changes in the codebase without resetting is known as

34

Hot module reloading (Bigio 2016). The feature is built on top of Webpack’s

Hot module replacement (hereinafter HMR) concept. HMR enables the

automatic reset only to the manipulated components of the App in real time.

The rendering engine, and layout engine does not require a restart to opt to

changes. This is performant for browsers engines, because whole App is not

needed to be rendered in case of any changes in the JS codebase. (Webpack

2017d.)

The CSS auto prefixing feature is crucial to apply vendor prefixes for CSS to

the appropriate browser. Different browsers use different notations to add

support for new CSS modules (Cook & Garber 2012, 377-378). The auto

prefixing, as the name suggest converts the source code to be usable in

different browsers, by automatically prefixing for different browsers. In addition,

the automatic code minification feature is implemented for compact build of

application.

This research focuses on both the automation, and autonomation of tasks for

App DnD. Programming is prone to errors. Error correction is a time-

consuming process. The research emphasises automatic detection to prevent

in-App errors. (Liker & Meier 2006, as cited by Tommelein 2008.) Code linters

helps to write optimised codes by providing indication of any suspicious code

that might lead to error in program execution (Spencer & Richards 2015, 74).

The build system is to include multiple linters to check both JS and CSS.

5.2 Build System Design

To start with the build system development, a project structure is planned and

implemented. The project structure helps to abstract task specific codebase.

After the success of the project structure implementation, a platform specific

environment is set up. Common utilities and their implementation are done in

parallel for the successful implementation of the features discussed previously

in this chapter to ensure the success of App DnD environment delivery.

35

The Webpack is to bundle all the source codes. The source codebase is to be

put in a single directory, and the compiled form of the codes are to be put in a

separate directory. Figure 14 is to demonstrate the systematic flow of the build

system implemented.

Figure 14. Build System Workflow

As shown in the figure 14, source codes are handled by Webpack. JS, SASS

and CSS are to be tested with linter before code compilation. It has to be noted

that, HTML is not included, as modern code editors are fully capable of linting it.

However, HTML is loaded with Webpack and directly put in a secondary

storage for the simplification of all WSM codebase transformation within source

directory. In addition, SASS otherwise known as Syntactically awesome

stylesheet is included, as modern UI development often requires the presence

of programming aspects in the markup e.g. CSS. SASS is a preprocessor for

CSS which provides various programming functionalities out of the box (Budd &

Björklund 2016, 391). The development and production environment is

determined by specifying variables, referring to the environment required. This

variable is specified in Node, and evaluated by Webpack. The production

environment is responsible for minifying codes, and outputting the source

36

codebase into physical disks, on the one hand. On the other hand, the

development environment includes source mapping for the purpose of

debugging, inline styling, and HMR. The development environment is served

from the primary memory. Source mapping is the concept of referencing the

lines of the code that executes a certain function (Seddon 2012). The mapping

is tied to the source code base, not to the bundled code. The bundled codebase

is minified for performance, and is not readable by users. The code splitting

feature, and the image optimization feature both are common to both the

production and development environment.

Figure 15 displays a project structure for the build system representing the

overall build system.

Figure 15. Project Structure for App DnD

37

Conforming to figure 15, in-App development only concerns with src, dist, and

www directories. The source directory includes three JS files. The server.js is

used as the entry point for back-end development. The electronMain.js powers

the Electron to execute, and manage the main process. The index.js file deals

with the development for the UI layer for all platforms. In addition, the

PhoneGap framework specific codes are included in the index.js file along with

common codes. The index.html file serves as the entry point for all three

platforms. Further down in this section, in depth discussion of each framework

build systems covers the reason for individual HTML files. The dist directory

consists of all the generated bundles of source codes for Desktop and Web

platform. Cordova reads and executes UI codebase from the www directory.

Therefore, bundles are directed to the www directory. Users should not modify

anything from both of the dist and www directories. The Webpack-partials

directory is the heart of the research, as it contains the mechanisms for App

DnD environment. All the files except the package.json file are modules that

webpack.config.js depends on. The webpack.config.js is executed with the NPM

from a CLI to bundle source codes based on instructions. The package.json

included in the project root contains third party packages lists, along with CLI

scripts that performs different tasks. The other package.json provided inside the

Webpack-partials directory includes electron specific codes, and copied to

dist/desktop directory dynamically to deliver desktop app solution. Two lint files

include the rules for CSS and JS coding practice. A node_modules directory is

automatically generated on the project root directory, during NPM packages

installation from CLI. The remaining files and directories are concerned with

Cordova platform operability. The research emphasizes on cross-compatibility.

However, commands for manipulating files and setting environment variables

are different between UNIX and Windows based OS. Therefore, rimraf,

copyfiles, and cross-env third party node modules are utilized to use global

command for manipulating files and setting environment variables across UNIX

and Windows OS’s. The CLI commands, listed in the package.json file to set

the base to work environment is listed in Appendix 1. All the commands, have to

be prefixed by ‘npm run’ for successful execution. For example, ‘npm run

mobile:deploy’ would result in building an apk solution with source codes.

Calling the ’prepare’ script scaffolds the outputted codebases for each platform

38

in dist directory. This is a preliminary requirement before running any other

scripts after all the modules are installed by executing npm install command

from CLI. The webpack-dev-server command runs a server that stores the files

in the main-memory, watches for file changes in the client-side, and provides

the HMR functionality (Webpack 2017e). Appendix 1 also includes the third-

party modules as devDependencies needed for the App DnD environment.

‘Babel-core’ compiles the ES7 codes into ES5 code (Babel 2017a). All the other

modules containing the name ‘Babel’ in them are dependencies for ‘Babel-core’

for Webpack. Babili is also a Babel dependency used for treeshaking, and

minification of JS code (Babel 2017b). File-loader is used to load assets i.e. css,

images, and fonts to bundle them with Webpack (Webpack-contrib 2017a).

Stylelint for Webpack is used for linting CSS, and SASS. PostCSS provides

wide ranges of features for CSS i.e. code minification, and autoprefixing

(PostCSS 2017). Image-loader for Webpack is used to compress images in

order to minimize the bulkiness of App solution (Coopman 2017). The remaining

packages’ description is briefed during build system implementation.

There are two environment variables passed into Node when executing

Webpack. The first environment variable, BUILD contains either the value of

‘production’ or ‘development’. These are provided to point out specific

functionalities needed from each BUILD. The second environment variable,

PLATFORM indicates Webpack to bundle codes for either desktop, mobile, or

web based on the declaration. The representation of the environments is shown

in figure 16.

Figure 16. Environment Variables Relevance in Webpack

39

In accordance with the figure above, all the Node environment variables are

stored in Boolean value. If the variable for a platform exists as true, Webpack

bundles the code for that particular platform. The production and development

variables are passed in a platform specific build system setup.

5.2.1 Desktop App Development and Deployment Environment

Both of the Electron processes are bundled simultaneously by Webpack. Each

of the processes are defined as an object in separate constant variables shown

in Appendix 2. The entry property includes the entry file to be bundled along

with reference to other files. The HMR is setup and is shown in the figure below.

Figure 17. HMR in Development Environment

As per figure 17, the ternary operator determines to use HMR in the

development environment. The first index value of the array starts a web server

with the entry point, and the second index provides hot reloading feature.

(Webpack 2017f.) Webpack-dev-server is started with HMR in the development

environment. The output is set to dist/desktop. Two Node global variables are

disallowed, to avoid bugs in bundle. The target properties in main, and renderer

variables guides Electron to bundle codes compatible to Electron. Most of the

plugins, and modules are needed for all the platforms. Therefore, plugins and

modules are defined in separate files, and referenced in each platform based on

the requirements. Deployment to desktop executable App for end users is a

straightforward process. Below are the commands to build desktop platform

specific executables with electron-packager.

40

Figure 18. Electron Deployment CLI Commands

As illustrated in figure 18, there are two individual package.json provided in the

root directory, and the dist/desktop directory, The reason for providing separate

package.json is that electron-package includes all the files in the directory and

sub-directories, where package.json is found, when compiling a deployable

solution. Since, the electron-packager only concern dist/desktop directory,

separate package.json is provided. The package.json file within Webpack-

partials directory is copied to dist/desktop, when desktop:prepare is called from

CLI. The ‘package.json’ includes electron, and electron-package packages.

These two packages are also installed upon invocation of desktop:prepare as

listed in the ‘package.json’ file as shown in Appendix 1. Packaging of all the

platforms as executables is done from the root of the project, although the

command is run within the context of dist/desktop. One caveat is that, executing

desktop:package:mac in windows OS requires administration privilege.

The HTML Webpack Plugin is used to compile HTML and bundle with

Webpack. JS and CSS does not require to be referenced during the

41

development or production stage. It automatically writes the appropriate JS, and

CSS reference in the output file (Nicklas 2017). However, the electron

development environment is operated within Webpack-dev-server. Referencing

‘index.js’ directly results in a static, HMR disabled app. In order to overcome the

issue, the steps taken are shown in figure 19.

Figure 19. HTML Webpack Plugin for Desktop Platform

As shown in the figure above, automatic injection of JS, and CSS is disabled.

The source of JS, and CSS are determined based on the BUILD environment

variable. The development environment server runs on http://localhost:8080,

which is why the js property declared in the figure above is prefixed by

mentioned Uniform Resource Locator (hereinafter URL). Both the js, and css

properties are declared within HTML Webpack Plugin and are used in the

index.html shown in the figure below.

Figure 20. Dynamic Attribute Injection in Index.html

42

The HTML Webpack Plugin supports embedded JavaScript syntax, in short EJS

templates. The js, css, cordova, and VueJS properties from the HTML Webpack

Plugin are used in the index.html, as shown in figure 20. This enables

dynamically referencing any EJS variable declared in the HTML Webpack

Plugin for platform specific code compilation.

The source codes representation for electronMain.js for Electron is shown in the

figure below.

 Figure 21. Electron Boot Process in ElectronMain.js

The illustration of the electron boot-up process is depicted in figure 21. This is

the minimum barebone to run Electron based Desktop App. Typically, Electron

accesses the file protocol to get the HTML file in order to render UI. Since, the

author intends to use the HMR capability in development mode, the server URL

provided by the Webpack-dev-server is used.

5.2.2 Mobile and Web App Development and Deployment Environment

As discussed in earlier chapter, running the ‘prepare’ CLI command scaffolds a

project structure. The ‘prepare’ command scaffolds mobile App DnD with the

help of clean command is shown in the figure below.

43

Figure 22. PhoneGap Scaffolding for Mobile Platform

Based on figure 22, it is understood that if any directory concerning PhoneGap

exists, is removed prior to the extraction of a PhoneGap project template. Script

in movePhoneGap.js moves all the files and subdirectories of the generated

PhoneGap template to the root of the project based on the OS, and is shown in

Appendix 3. The whole build system is a scaffold of PhoneGap as seen in the

figure below.

Figure 23. Before and after PhoneGap Template Implementation

The figure 23 shows that the hooks, platforms, plugins directories and the

config.xml file comprises of PhoneGap’s core mechanism. This research is to

ignore discussing the constructs of PhoneGap architecture, and moves on with

the implementation phase of PhoneGap only. Currently Android OS for mobile

is added, as the author uses both Linux, and Windows based environment

where iOS platform is not supported by PhoneGap for development. It should

be noted that, Apple’s MacOS is the only OS platform for iOS app development.

PhoneGap does not have support for the webpack-dev server, and files need to

be written in the secondary storage, in order to carry out in-App development.

One bug encountered during the mobile platform build system setup is that,

running Node server for backend services, and mobile development related

scripts concurrently breaks node server to operate. Running Node server after

44

mobile development related scripts is recommended, although re-executing

mobile platform specific commands results in the break of the Node server.

Executing the mobile:deploy command deploys an apk solution in

\platforms\android\build\outputs\apk directory. The bundling process of source

codes is shown in the Appendix 4. It shares almost identical codebase for web

build setup with the exception of the static input, and output sources.

The web App DnD environment is straightforward and almost identical as the

Desktop renderer setup process shown in Appendix 5. The only exclusion is the

target property that builds a bundle for client side of the web platform. For the

back-end, the target property is node, as Node itself is server-side JS

environment. The back-end environment does not have the HMR capability, as

Webpack-dev-server is meant for client side development. The back-end

concentrates on developing a server, and all the server side functionalities.

Common plugins and modules are an overkill for back-end development,

thereby custom scripts which only bundle JS core files from src/server.js are

included in the webpack-partials/web.js file.

5.2.3 Plugins and loaders

All the platforms use multiple plugins. Appendix 6 represents the script of the

plugins implementation for all the platforms. All the plugins are included in an

array, in the plugins variable. DefinePlugin, a Webpack core plugins is common

to all platform builds. DefinePlugin enables to use Node environment variables

globally in all the platform app development environments (Webpack 2017g).

Platform specific codes that are irrelevant to other platforms are needed to be

removed. The use of Node environment variables on in-app development is

needed to determine the removal of unnecessary codes. During the production

stage, all Sass, and CSS files are bundled and output into secondary storage by

extract-text-Webpack-plugin (Webpack-contrib 2017b). One other plugin used in

production environment is the babili-Webpack-plugin to provide code

minification. HTML Webpack plugin is used in all the platforms, referencing

45

three different html files discussed in section 5.2.2. The plugin is needed for

both production, and development build. Stylelint configuration file is provided to

follow a Stylint Sass guidelines of linting Sass, or CSS in the development

environment (Jankord 2017). The Webpack-dev-server serves files from in-

memory that sits on top of HTML. It does not detect changes of HTML file. The

write-file-Webpack-plugin provides bundling in the Webpack-dev-server context,

forcing Webpack-dev-server to reload due to restoration of JS entry file.

(Kuizinas 2017.) The Friendly-errors-webpack-plugin “recognizes certain

classes of webpack errors and cleans, aggregates and prioritizes them to

provide a better Developer Experience” (Warin 2017).

The loaders are used under the ‘module.rules’ property and is shown in the

desktop.js, mobile.js, and web.js files. The ‘rules’ property is an array that holds

all the filetypes to be tasted under one or more loaders. All the loaders are

provided in module.js and is shown in Appendix 8. Babel tests and bundles all

the JS files for all the platforms. It uses Babel-preset-env for both production

and development build to compile ES7 and the other standards. The Babel-

preset-env uses the compat-table by Zaytsev (2017) to determine the JS engine

of the given environment to compile into correct JS format (Babel 2017). All the

Vue files are loaded to vue-loader and passed to Babel to compile into JS

codes. The image loader, as discussed optimize and reduces image size.

However, if the image is compact, the url-loader is used to include image inline

as data URL to avoid calling as external resource (Webpack-contrib 2017c).

The url-loader is also used for different kinds of font to be used as data URL.

The linting of JS is necessary during development. During the development

stage, the eslint is used for linting. All the linting of JS needs to be done before

bundling of JS code. The ‘enforce’ property of eslint-loader precompiles the JS

with linting, and warns in the CLI if there are any errors. The bundling process is

stopped if there are any errors, correcting the errors enables Webpack to

continue bundling. Sass is compiled to CSS by sass-loader, the compiled CSS,

or raw CSS are bundled by css-loader. The style-loader injects CSS in the head

of HTML during development. The css-loader minifies and bundles CSS. During

the production stage, PostCSS is used to specifically load the css-next plugin.

The css-next plugin is used for auto prefixing CSS for different browsers

46

specifically. However, a wide range of functionalities are enabled by default with

css-next and is available in the official documentation. (Thirouin 2017.) Since,

the Sass and CSS files used in Vue templates are needed to compile

separately by vue-loader, all the necessary loaders information are passed into

Vue option property.

47

6 PROTOTYPE BENCHMARK

The focus of this chapter is on elaborating the integrity of the prototype

delivered. section 1 details a sample in-app workflow based on the prototype to

showcase the frameworks implementation, and the features’ availability

determined in the chapter 5. section 2 completes the chapter by outlining the

differences between source codes and outputted bundled codes across

platforms. In addition, the known issues developed by the author are pointed

out.

6.1 Features demonstration

The code splitting is available by using the ‘System.import(module_location)’.

Below is sample representation of the features applied.

Figure 24. Code Splitting Sample Codebase

As shown in the figure above, only clicking on a button element will trigger the

import of an image file. The bundling is split for runtime efficiency. The image

file is only loaded to a platform when the click event is triggered. Knowledge of

48

the concept of JS Promise is required to implement code splitting. The tree

shaking feature is also available on the codebase shown in Figure 24. The code

base is true for the web platform. Bundling for other platform results in

discarding the above codebase as a whole in the JS. It needs to be noted that

all the properties declared in the webpack-partials/env-variables are available

on every platform, in every context as global variable. Therefore, the web

property is available in the index.js file.

Error detection with ESlint and Stylelint is shown in the figure below.

Figure 25. Linting Features for JS and CSS/SASS

The error detection feature provides hinting of the type of error, and a reference

pointer of the source. However, restriction such as a missing semicolon is

optional. Both the eslintrc.json, and .stylelintrc files include the guideline for the

JS and CSS filetypes. Restrictions can be customised according to users’

needs. ESlint detects ‘web’ as an undefined variable. ESlint detects it as global

by adding web in the ESlint rules as shown in figure 25. The sample codebase

to illustrate the above features are excluded from the delivered prototype.

6.2 Files Comparison

The App is a basic ‘hello-world’ app, where in-app functionality is not given any

concern. In brief, the App itself implements Eventful API, a third-party API to list

all the events of given location. The location is determined by extracting users’

internet protocol address information by using IP-API. The main.js file located in

the src/Components directory is the UI entry point of the application and is

49

referenced in the src/index.js. A RESTful API server is developed to serve

Eventful API, and is located in the src/server.js.

The desktop platform does not require bundling of any third-party libraries

available in NPM registry, as Electron implements Node in its core. The same

rules apply for the back-end platform. The mobile and front-end platforms need

to bundle third party libraries along with custom codebase. All the platforms

have dedicated port in localhost. The front-end, back-end, desktop, and mobile

URL are 80, 5000, 8080, and 3003 accordingly.

The dead-code elimination process is undertaken in all the platforms. However,

due to the simplicity of the server-side, and electron main process bundling, the

result output does not show significant change due to the lack of extensive

codebase. For the sake of demonstration, ‘vue-material’ library is used. The

compressed size of the ‘vue-material’ package is 10 MB. Comparison between

the src directory files and dist/web is shown in the illustration below.

Figure 26. Size Comparison Between src and dist/web

The bundled codebase is significantly less in size compared to the source files

inside src directory. However, the confusion may arise after looking into the JS

files inside the src directory, where all the file sizes are between the range of

1KB to 2KB. The reason for a significant large bundled file is due to the fact of

referencing both the Vue and ‘vue-material’ library. The source image file is

2.38MB, and the outputted compressed format is 1.11MB. It is possible to

reference CSS files in the JS files for front-end, and mobile platform.

50

7 CONCLUSION

The thesis study achieved all the objectives by studying, and implementing the

concept of the ubiquitous WSM across different platforms. The implementation

process is the follow up of a rigorous study of publicly available questionnaire

and survey results. During the practical implementation part of the thesis study,

various programming frameworks and utilities are studied and the ones fit for

the project are implemented.

The theoretical part widened the understanding of the concept of the ubiquitous

WSM. Moreover, JS was studied as a mediator between different platforms, and

package distribution system. With the primary emphasis of implementing the

WSM model across multiple platforms, Webpack was studied to automatize the

in-app DnD work flow and to provide the features agreed upon based on the

findings of the questionnaire and surveys. The effective integration of Platform

specific frameworks depends on the knowledge of Webpack rather than the

frameworks themselves. Thus, the importance of studying Webpack was

prioritized during the course of development of the prototype.

The stability of the prototype is given the maximum priority, although the tasks

of integrating different tools under the same umbrella remained challenging up

until the delivery of the prototype. The wide ranges of tools’ available do not

always mean quick and easy integration. Lack of documentation, and

compatibility issues hardened integration of tools to the prototype. Besides,

interoperability was not straightforward. Referencing third-party modules was

different among the platforms.

 The time frame constrained the optimization of the codebase of the prototype

developed, as repetitive codes were found. Besides, bugs for one platform were

developed unintentionally when developing solution for another platform. The

realization of the bugs’ presence was not noticed till the execution of bundling

for the bugs affected platform. Debugging process is time-consuming, and do

not always point at the core of the problems.

51

In spite of all the challenges, authors personal endeavour to optimise the

projects’ codebase, and decision to make the project available as an open

source software will help expand the project. The recent revolution in the JS

community, thanks to the Node environment, creates the possibility of

expanding platforms’ availability for the WSM model. Future research on

integrating this prototype with future platforms i.e. the Internet of things, web

virtual reality, and augmented reality has great potential. Nonetheless, Webpack

as the heart of the project should be studied further if one is interested in the

field of web technology, specifically in the build system for web application.

52

BIBLIOGRAPHY

Adams C. R. 2015. Mastering JavaScript High Performance. Birmingham, UK:
Packt Publishing Ltd. Accessed 31 March 2017
http://pepa.holla.cz/wp-content/uploads/2016/08/Mastering-JavaScript-High-
Performance.pdf.

Aronson, L. 2011. HTML Manual of Style. A Clear, Concise Reference for
Hypertext Markup Language (Including HTML5). 4th Edition. Crawfordsville, IN:
Pearson Education, Incorporated. Ebook. Accessed 29 March 2017
http://3f363218c54d9808ec8.c.it-ebooks.directory/e-books/addison-
wesley/Addison.Wesley.HTML.Manual.Of.Style.4th.Edition.Oct.2010.ISBN.0321
712080.pdf?l=bfF57TeElTxQZcicqHBquQ&t=1490861145.

Babel 2017. Readme.md hosted in GitHub. Accessed 31 March 2017
https://github.com/Babel/Babel.

Babel 2017a. Babel-core. Accessed 14 April 2017
https://github.com/Babel/Babel/tree/master/packages/Babel-core.

Babel 2017b. Babili. Accessed 14 April 2017
https://github.com/Babel/babili.

Bigio, M. 2016. Introducing Hot reloading. Accessed 2 April 2017
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-
reloading.html.

Bos, B. 2017. WHAT IS CSS? Cascading Style Sheets. Accessed 13 March
2017
https://www.w3.org/Style/CSS/Overview.en.html.

Bridgwater, A. 2017. What's the Difference Between a Software Product and a
Platform? Accessed 22 February 2017
http://www.forbes.com/sites/adrianbridgwater/2015/03/17/whats-the-difference-
between-a-software-product-and-a-platform/#5fa01cdc3877.

Budd, A & Björklund, E. 2016. CSS Mastery. Advanced Web Standards
Solutions. Third edition. New York, NY: Springer Science+Business Media,
LLC. Ebook. Accessed 13 April 2017
https://books.google.fi/books?isbn=1430258640.

Bureau of Labor Statistics 2015, U.S. Department of Labor. Occupational
Outlook Handbook, 2016-17 Edition, Software Developers 2015. Accessed 22

February 2017
https://www.bls.gov/ooh/computer-and-information-technology/software-
developers.htm.

Burka, B. 2015. HTML5 - RESPONSIVE WEB DEVELOPMENT. Bachelor’s
Thesis at Turku University of Applied Sciences. Accessed 12 March 2017
http://theseus32-kk.lib.helsinki.fi/bitstream/handle/10024/95710/HTML5%20-
%20Responsive%20Web%20Development.pdf?sequence=1.

53

comScore 2014. The U.S.Mobile App Report. Accessed 29 February 2017
http://www.comscore.com/layout/set/popup/Request/Presentations/2014/The-
US-Mobile-App-Report-
Whitepaper?req=slides&pre=The+U.S.+Mobile+App+Report.

Cordova 2015. Apache 6.x Documentation, Introduction. Accessed 2 March
2017
https://cordova.apache.org/docs/en/latest/guide/overview/index.html.

Cook, C & Garber, J. 2012. Foundation HTML5 with CSS3. New York, NY:
Springer Science+Business Media, LLC. Ebook. Accessed 2 April 2017
https://books.google.fi/books?id=9XUUOdt4R5QC&pg=PA378&dq=vendor+pref
ixes&hl=en&sa=X&ved=0ahUKEwjOqfeKmobTAhWGJJoKHZ-
xAcAQ6AEIIjAB#v=onepage&q=vendor%20prefixes&f=false.

Coopman, T. 2017. Image-Webpack-loader. Accessed 14 April 2017
https://github.com/tcoopman/image-Webpack-loader.

Crnkovic, D. 2010. Constructive Research and Info-Computational Knowledge
Generation. Accessed 25 March 2017
http://www.mrtc.mdh.se/~gdc/work/MBR09ConstructiveResearch.pdf.

Dahl, R. 2010. Deep inside Node.js with Ryan Dahl. Interview with Ryan Dahl
by Dio Synodinos. InfoQ video. Accessed 31 March 2017
https://www.infoq.com/interviews/node-ryan-dahl.

Deveria, A. 2017a. Can I use? Accessed 29 March 2017
http://caniuse.com/#search=html5.

Deveria, A. 2017a. Can I use? Accessed 29 March 2017
http://caniuse.com/#search=CSS3.

Digital Trends 2017. Battle of the browsers: Edge vs. Chrome vs. Firefox vs.
Opera vs. Vivaldi. Accessed 29 March 2017
http://www.digitaltrends.com/computing/best-browser-internet-explorer-vs-
chrome-vs-firefox-vs-safari-vs-edge/2/.

Ecma International 2015. Standard ECMA-262 7th Edition / June 2015.
ECMAScript® 2016 Language Specification. Accessed 14 March 2017
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf.

Fisher, T. 2016. List of Executable File Extensions. Accessed 14 March 2017
https://www.lifewire.com/list-of-executable-file-extensions-2626061.

Flanagan, D. 2011. JavaScript: The Definitive Guide. 6th edition. CA: O’Reilly,
1-2. Ebook. Accessed 14 March 2017
http://www.stilson.net/documentation/javascript.pdf.

Forni, A. & Meulen, R. 2017. Gartner Forecasts Flat Worldwide Device
Shipments Until 2018 1/2017. Accessed 21 February 2017
http://www.gartner.com/newsroom/id/3560517.

54

Greif, S. 2017a. Front-end Frameworks. The state of JavaScript 2016.
Accessed 20 March 2017
http://stateofjs.com/2016/frontend/.

Greif, S. 2017b. Features. The state of JavaScript 2016. Accessed 20 March
2017
http://stateofjs.com/2016/features/.

Haverbeke, M. 2014. Eloquent JavaScript. A Modern Introduction to
Programming, 7. Ebook. Accessed 14 March 2017
http://eloquentjavascript.net/Eloquent_JavaScript.pdf.

Hyötyläinen, R., Häkkinen, K., & Uusitalo, K. 2014. The Constructive Approach
as a Link Between Scientific Research and The Needs of Industry. Accessed 08
March 2017
https://www.researchgate.net/publication/279183260_THE_CONSTRUCTIVE_
APPROACH_AS_A_LINK_BETWEEN_SCIENTIFIC_RESEARCH_AND_THE_
NEEDS_OF_INDUSTRY.

Ihrig, C. J. 2013, 29. Pro Node.js for Developers, 29. Ebook. Accessed 19
March 2017
https://books.google.fi/books?id=FZcQAwAAQBAJ&pg=PA29&dq=node+event
+loop&hl=en&sa=X&ved=0ahUKEwj02Y2e5OLSAhWBhSwKHW_cBl4Q6AEIG
DAA#v=onepage&q=node%20event%20loop&f=false.

Jankord, B. 2017. stylelint-config-sass-guidelines. Accessed 16 April 2017
https://github.com/bjankord/stylelint-config-sass-guidelines.

Kuizinas, G. 2017. write-file-Webpack-plugin. Accessed 16 April 2017
https://github.com/gajus/write-file-Webpack-plugin.

Lane, J. 2007. The web standards model - HTML CSS and JavaScript.
Accessed 22 February 2017
https://www.w3.org/community/webed/wiki/The_web_standards_model_-
_HTML_CSS_and_JavaScript.

LeRoux, B. 2012. PhoneGap, Cordova, and what’s in a name? Accessed 27
April 2017
http://phonegap.com/blog/2012/03/19/phonegap-cordova-and-whate28099s-in-
a-name.

Lehtiranta, L. & Juha-Matti, J. & Kärnä, S. & Pekuri, L. 2017. The Constructive
Research Approach: Problem Solving for Complex Projects. Accessed 08
March 2017
http://www.gpmfirst.com/books/designs-methods-and-practices-research-
project-management/constructive-research-approach.

Long, J 2012. I Don’t Speak Your Language: Frontend vs. Backend. Accessed
31 March 2017
http://blog.teamtreehouse.com/i-dont-speak-your-language-frontend-vs-
backend.

55

Lord, J. 2016. Building cross-platform apps with Electron - GitHub Satellite
2016. YouTube video. Accessed 2 April 2017
https://www.youtube.com/watch?v=WVb2OD49pUA&t.

Meloni, J. C. 2012. Sams Teach Yourself HTML, CSS, and JavaScript All in
One. Pearson Education, Inc. Ebook. Accessed 29 March 2017
http://53dcc0239cfababa791.c.it-ebooks.directory/e-
books/sams/Sams.Teach.Yourself.HTML.CSS.And.JavaScript.All.In.One.Dec.2
011.ISBN.0672333325.pdf?l=dnSbXD6W75Z626ne57qJHw&t=1490860922.

Merriam-Webster Dictionary 2017. Definition of markup language. Accessed 28
February 2017
https://www.merriam-webster.com/dictionary/markup+language.

Microsoft 2012. The MVVM Pattern. Accessed 28 February 2017
https://msdn.microsoft.com/en-us/library/hh848246.aspx.

Microsoft Developer Network 2017. Solutions and Projects in Visual Studio.
Visual Studio 2015. Accessed 14 March 2017
https://msdn.microsoft.com/en-us/library/b142f8e7.aspx.

MobiDev 2015. Cross-Platform Development for Desktops: Choosing the Right
Technology. Accessed 20 March 2017
https://mobidev.biz/blog/cross-
platform_development_for_desktops_choosing_the_right_technology.

Node.js 2017. Node.js v7.8.0 Documentation. Core Modules. Accessed 25
March 2017
https://nodejs.org/dist/latest-
v7.x/docs/api/modules.html#modules_core_modules.

Nicklas, J. 2017. HTML Webpack Plugin. Accessed 15 April 2017
https://github.com/jantimon/html-Webpack-plugin.

NPM 2017a. npm-init. Interactively create a package.json file. Accessed 20
March 2017
https://docs.npmjs.com/cli/init.

NPM 2017b. npm-scripts. How npm handles the "scripts" field. Accessed 20
March 2017
https://docs.npmjs.com/misc/scripts.

Owens, J. 2017. Mobile Frameworks. The state of JavaScript 2016. Accessed
20 March 2017
http://stateofjs.com/2016/mobile/.

Panhale, M. 2016. Beginning Hybrid Mobile Application Development. New
York, NY: Springer Science+Business Media, LLC. Ebook. Accessed 28 March
2017
https://books.google.fi/books?id=GqtPCwAAQBAJ&pg=PA15&dq=native+vs+hy
brid+mobile+app&hl=en&sa=X&ved=0ahUKEwih17ucvoDTAhUsJcAKHSP2CL
4Q6AEIGDAA#v=onepage&q=apress&f=false.

56

Peschla, J. 2012, 9. Information flow tracking for JavaScript in Chromium.
Master’s Thesis at University of Kaiserslautern. Accessed 19 March 2017
https://kluedo.ub.uni-kl.de/files/3442/thesis.pdf.

PostCSS 2017. PostCSS. Accessed 14 April 2017
https://github.com/postcss/postcss.

Puputti 2012. Mobile HTML5: Implementing a Responsive Cross-Platform
Application. Bachelor’s Thesis at Aalto University. Accessed 12 March 2017
http://lib.tkk.fi/Dipl/2012/urn100643.pdf.

Rambeau, M. 2017. 2016 JavaScript Rising Stars. Accessed 20 March 2017
https://risingstars2016.js.org/.

Sandoval, K. 2016. What is the Difference Between an API and an SDK?
Accessed 29 March 2017
http://nordicapis.com/what-is-the-difference-between-an-api-and-an-sdk/.

Schmitt, C., Blessing, K., Cherny, R., Evans, M. K., Lawver, K. & Trammell, M.
2008. Adapting to Web Standards: CSS and Ajax for Big Sites. Berkeley, CA:
New Riders. Ebook. Accessed 28 March 2017
https://archive.org/download/AdaptingToWebStandardsCSSAndAjaxForBigSite
s/Adapting%20to%20Web%20Standards%20'CSS%20and%20Ajax%20for%20
Big%20Sites'.pdf.

Schultz, D. & Cook, C. 2007. Beginning HTML with CSS and XHTML – Modern
Guide and Reference. Berkeley: CA: Apress, a Springer Nature company.
Ebook. Accessed 29 March 2017
http://1114668b3938c2bd4ea.d.it-
ebooks.directory/Apress.HTML.Jun.2007.ISBN.1590597478.pdf?l=UHhuPY_w
VdpHUIffi_G4Zg&t=1490860416.

Seddon, R. 2012. Introduction to JavaScript Source Maps. Accessed 13 April
2017
https://www.html5rocks.com/en/tutorials/developertools/sourcemaps/.

Seth, G. & Foresti, A. 2016. Microsoft Edge’s JavaScript engine to go open-
source. Accessed 30 March 2017
https://blogs.windows.com/msedgedev/2015/12/05/open-source-chakra-
core/#WiRuW5zA20DhQM8Q.97.

Sikos, L. 2011. Web Standards—Mastering HTML5, CSS3, and XML. New
York, NY: Springer Science+Business Media, LLC. Ebook. Accessed 28 March
2017
https://doc.lagout.org/programmation/tech_web/Web%20Standards.pdf.

Spencer, L & Richards, S 2015. Reliable JavaScript: How to Code Safely in the
World's Most Dangerous Language. Indianapolis, IN: John Wiley & Sons, Inc.
Ebook. Accessed 13 April 2017
https://books.google.fi/books?id=thezCQAAQBAJ&pg=PA74&dq=what+is+code
+linting&hl=en&sa=X&ved=0ahUKEwjuuYy2-

57

KHTAhXB1ywKHSdsB6kQ6AEIITAB#v=onepage&q=what%20is%20code%20li
nting&f=false.

Stack Overflow 2017. Developer Survey Results 2017. Accessed 25 March
2017
https://stackoverflow.com/insights/survey/2017.

Shklar, L. & Rosen, R. 2003, 201-202. Web application architecture: principles,
protocols, and practices. Chichester, West Sussex: John Wiley & Sons Ltd.
Ebook. Accessed 19 March 2017
http://www.farooka.com/pervez/files/courses/12-WebApplication.pdf.

TechTerms 2017. RTE Definition. Accessed 10 March 2017
https://techterms.com/definition/rte.

Teixeira, P. 2013. PROFESSIONAL Node.js®. BUILDING JAVASCRIPT-
BASED SCALABLE SOFTWARE. Indianapolis, IN: John Wiley & Sons, Inc.
Ebook. Accessed 19 March 19, 2017
http://htchttp.s3.amazonaws.com/books/professional_node.js.pdf.

Thirouin, M. 2017. postcss-cssnext. Accessed 16 April 2017
https://github.com/MoOx/postcss-cssnext.

Tommelein, I.D. 2008. ‘Poka yoke’ or quality by mistake proofing design and
construction systems. Accessed 13 April 2017
http://p2sl.berkeley.edu/wp-content/uploads/2016/04/Tommelein-2008-Poka-
Yoke-or-Quality-by-Mistake-Proofing-Design-and-Construction-Systems.pdf.

Vlăsceanu, M. 2012. Zend Framework functionality and web application
methodology. Bachelor’s Thesis at Kemi-Tornio University of Applied Sciences.
Accessed 14 March 2017
http://www.theseus.fi/bitstream/handle/10024/51741/zend_methodology_vlasce
anu_mihai_2012.pdf?sequence=1.

Vue.js 2017a. Introduction. What is Vue.js? Accessed 21 March 2017
https://vuejs.org/v2/guide/.

Vue.js 2017b. Comparison with Other Frameworks. Accessed 21 March 2017
https://vuejs.org/v2/guide/comparison.html.

Warin, G. 2017. Friendly-errors-webpack-plugin. Accessed 6 April 2017
https://github.com/geowarin/friendly-errors-webpack-plugin.

W3C 2001. Introduction to CSS3. W3C Working Draft, 23 May 2001. Accessed
13 March 2017
https://www.w3.org/TR/2001/WD-css3-roadmap-20010523/.

W3C 2016. HTML 5.1. W3C Recommendation, 1 November 2016. Accessed 12
March 2017
https://www.w3.org/TR/html/introduction.html#background.

Webpack 2015. Internal Webpack plugins. Accessed 15 April 2017
https://also.github.io/Webpack/internal-plugins/#NodeTargetPlugin.

http://p2sl.berkeley.edu/wp-content/uploads/2016/04/Tommelein-2008-Poka-Yoke-or-Quality-by-Mistake-Proofing-Design-and-Construction-Systems.pdf
http://p2sl.berkeley.edu/wp-content/uploads/2016/04/Tommelein-2008-Poka-Yoke-or-Quality-by-Mistake-Proofing-Design-and-Construction-Systems.pdf

58

Webpack 2017a. Guides. Accessed 31 March 2017
https://Webpack.js.org/guides/.

Webpack 2017b. Guides. Code splitting. Accessed 2 April 2017
https://Webpack.js.org/guides/code-splitting/.

Webpack 2017c. Concepts. Accessed 31 March 2017
https://Webpack.js.org/concepts/.

Webpack 2017d. Concepts. Hot Module Replacement. Accessed 31 March
2017 https://Webpack.js.org/concepts/https://Webpack.js.org/concepts/hot-
module-replacement/.

Webpack 2017e. DevServer. Accessed 13 April 2017
https://Webpack.js.org/configuration/dev-server/.

Webpack 2017f. DefinePlugin. Accessed 15 April 2017
https://Webpack.js.org/plugins/define-plugin/.

Webpack 2017g. Concepts. Hot Module Replacement - React. Accessed 14
April 2017
https://Webpack.js.org/guides/hmr-react/#components/sidebar/sidebar.jsx.

Webpack-contrib 2017a. File-loader. Accessed 14 April 2017
https://github.com/Webpack-contrib/file-loader.

Webpack-contrib 2017b. extract-text-Webpack-plugin. Accessed 16 April 2017
https://github.com/Webpack-contrib/extract-text-Webpack-plugin.

Webpack-contrib 2017c. url-loader. Accessed 16 April 2017
https://github.com/Webpack-contrib/url-loader.

White, A. 2009. JavaScript Programmer's Reference, 12-13. Ebook. Accessed
18 March 2017
https://books.google.fi/books?id=XJrXl71TITIC&printsec=frontcover&source=gb
s_ge_summary_r&cad=0#v=onepage&q=engine&f=false.

Williams, D. 2009. Overview of Build Systems. Accessed 31 March 2017
https://www.cs.virginia.edu/~dww4s/articles/build_systems.html.

Wong, J. 2017. Build Tools. Accessed 31 March 2017
http://stateofjs.com/2016/buildtools/.

Wright, T. 2013, 29-30. Learning JavaScript: a hands-on guide to the
fundamentals of modern JavaScript. Upper Saddle River, New Jersey. Pearson
Education, Inc. Ebook. Accessed 19 March 2017
http://eureka.com.ve/libros/javascript/Addison.Wesley.Learning.JavaScript.Aug.
2012.ISBN.0321832744.pdf.

You, E. 2016. Vue js the Progressive Framework - Evan You. Speech at 2016
UtahJS Conference. YouTube video. Accessed 31 March 2017
https://www.youtube.com/watch?v=pBBSp_iIiVM.

59

Zaytsev, J. 2017. ECMAScript 2016+ compatibility table. Accessed 14 March
2017
http://kangax.github.io/compat-table/es2016plus/#experimental-flag-note.

60

APPENDICES

Appendix 1. package.json

Appendix 2. webpack-partials/desktop.js

Appendix 3. movePhoneGap.js

Appendix 4. webpack-partials/mobile.js

Appendix 5. webpack-partials/web.js

Appendix 6. webpack-partials/plugins.js

Appendix 7. webpack-partials/module.js

61

package.json Appendix 1 1(2)

{

 "name": "electron-demo",

 "main": "./dist/desktop/main.js",

 "author": "Majedul Hoque",

 "scripts": { "clean": "rimraf www Electron-builds hooks platforms

plugins typings config.xml mobile npm-debug* README.md typings",

 "desktop": "cd dist/desktop && npm run electron",

 "desktop:deploy": "npm-run-all -s desktop:prepare desktop:package:win

desktop:package:linux desktop:package:mac",

 "desktop:dev": "npm-run-all -p desktop:watch desktop",

 "desktop:package:linux": "cd dist/desktop && npm run package-linux",

 "desktop:package:mac": "cd dist/desktop && npm run package-mac",

 "desktop:package:win": "cd dist/desktop && npm run package-win",

 "desktop:prepare": "rimraf ./dist/desktop && copyfiles -u 1

./webpack-partials/package.json ./dist/desktop/ && cd dist/desktop && npm

install && cd../.. && cross-env PLATFORM=desktop BUILD=production

webpack",

 "desktop:prod": "npm-run-all -s desktop:prepare desktop",

 "desktop:watch": "cross-env PLATFORM=desktop BUILD=development

webpack-dev-server",

 "mobile:build": "cross-env PLATFORM=mobile BUILD=production webpack",

 "mobile:deploy": "phonegap build android",

 "mobile:dev:android": "npm-run-all -p mobile:watch

mobile:run:android",

 "mobile:dev:browser": "npm-run-all -p mobile:watch

mobile:run:browser",

 "mobile:prepare": "npm run clean && phonegap create mobile

org.apache.cordova.mobile mobile && node movePhoneGap.js && phonegap

platform add android@6.2.2 browser && rimraf typings mobile README.md

CONTRIBUTING.md www/css www/js www/spec www/spec.html && npm run

mobile:build",

 "mobile:prod": "npm-run-all -s mobile:prepare mobile:build",

 "mobile:run:android": "phonegap run android --device -- --live-

reload",

 "mobile:run:browser": "phonegap serve -p 3003",

 "mobile:watch": "cross-env PLATFORM=mobile BUILD=development webpack

--watch",

 "prepare": "npm-run-all -s desktop:prepare web:prod mobile:prepare",

 "web:dev:back": "npm-run-all -p web:webpack:build:watch

web:back:server:watch",

 "web:back:server:watch": "supervisor ./dist/web/server.js",

 "web:dev": "npm-run-all -p web:dev:front web:dev:back",

 "web:dev:front": "cross-env PLATFORM=front BUILD=development webpack-

dev-server",

 "web:prod": "rimraf ./dist/web && cross-env PLATFORM=web

BUILD=production webpack",

62

 Appendix 1 2(3)

"web:webpack:build:watch": "cross-env PLATFORM=back BUILD=production

webpack --watch"

 },

 "devDependencies": {

 "Babel-core": "^6.24.1",

 "Babel-loader": "^7.0.0",

 "Babel-polyfill": "^6.23.0",

 "Babel-preset-babili": "^0.0.12",

 "Babel-preset-env": "^1.4.0",

 "babili-webpack-plugin": "^0.0.11",

 "copyfiles": "^1.2.0",

 "cross-env": "^4.0.0",

 "css-loader": "^0.28.1",

 "eslint": "^3.19.0",

 "eslint-config-google": "^0.7.1",

 "eslint-config-vue": "^2.0.2",

 "eslint-loader": "^1.7.1",

 "eslint-plugin-vue": "^2.0.1",

 "extract-text-webpack-plugin": "^2.1.0",

 "file-loader": "^0.11.1",

 "friendly-errors-webpack-plugin": "^1.6.1",

 "googleapis": "^19.0.0",

 "html-webpack-plugin": "^2.28.0",

 "image-webpack-loader": "^3.3.0",

 "node-sass": "^4.5.2",

 "npm-run-all": "^4.0.2",

 "postcss": "^6.0.1",

 "postcss-cssnext": "^2.10.0",

 "postcss-load-config": "^1.2.0",

 "postcss-loader": "^1.3.3",

 "postcss-reporter": "^3.0.0",

 "purifycss-webpack": "^0.6.1",

 "resolve-url-loader": "^2.0.2",

 "rimraf": "^2.6.1",

 "sass-loader": "^6.0.3",

 "style-loader": "^0.17.0",

 "stylelint-config-sass-guidelines": "^2.0.0",

 "stylelint-processor-html": "^1.0.0",

 "stylelint-webpack-plugin": "^0.7.0",

 "url-loader": "^0.5.8",

 "vue-loader": "^12.0.3",

 "vue-template-compiler": "^2.3.2",

 "webpack": "^2.5.1",

 "webpack-dev-server": "^2.4.5",

 "webpack-node-externals": "^1.5.4",

 "write-file-webpack-plugin": "^4.0.2"

 },

63

 Appendix 1 3(3)

 "dependencies": {

 "body-parser": "^1.17.1",

 "cors": "^2.8.3",

 "express": "^4.15.2",

 "glob": "^7.1.1",

 "node-fetch": "^1.6.3",

 "onsenui": "^2.2.6",

 "supervisor": "^0.12.0",

 "vue": "^2.3.2",

 "vue-onsenui": "^2.0.0-beta.4"

 }

}

64

webpack-partials/desktop.js Appendix 2 1(2)

const path = require('path');

const projectRoot = path.resolve(__dirname).replace('webpack-partials',

'');

const nodeExternals = require('webpack-node-externals');

const plugins = require('./plugins');

const rules = require('./module');

const { production, development } = require('./env-variables');

const { resolveLoader } = require('./externals');

const renderer = {

 resolveLoader,

 externals: production ?

 [nodeExternals(

 {

 whitelist: [/*'jquery', /^lodash/*/]

 }

)] : {} ,

 devtool: development ? 'eval' : false,

 entry: production ?

 [path.resolve(projectRoot, 'src', 'index')] :

 [

 'webpack-dev-server/client?http://localhost:8080',

 'webpack/hot/only-dev-server',

 path.resolve(projectRoot, 'src', 'index')

],

 devServer: {

 hot: production ? false : true

 },

 output: {

 path: path.resolve(projectRoot, 'dist', 'desktop'),

 publicPath: production ? '' : 'http://localhost:8080/',

 filename: 'index.js'

 },

 target: 'electron-renderer',

 node: {

 __dirname: false,

 __filename: false

 },

 plugins: plugins,

 module: {

 rules: rules

 },

 cache: true

};

65

Appendix 2 2 (2)

const main = {

 externals: production ? [nodeExternals(

 {

 whitelist: [/*'jquery', /^lodash/*/]

 }

)] : {},

 entry: [path.resolve(projectRoot, 'src', 'electronMain')],

 output: {

 path: path.resolve(projectRoot, 'dist', 'desktop'),

 publicPath: '',

 filename: 'main.js'

 },

 target: 'electron-main',

 node: {

 __dirname: false,

 __filename: false

 },

 module: {

 rules: rules

 },

 plugins: plugins

};

module.exports = { renderer, main };

66

movePhoneGap.js Appendix 3

'use strict';

/*eslint no-console: 0*/

const exec = require('child_process').exec;

if (process.platform === 'linux' || process.platform === 'darwin') {

 exec(['mv ./mobile/* ./'], (err, out, stdErr) => {

 if (err) console.log(stdErr);

 });

}

if (process.platform.match(/^win/)) {

 exec('xcopy mobile /e /y', (err, out, stdErr) => {

 console.log(out);

 if (err) console.log(stdErr);

 });

}

67

webpack-partials/mobile.js Appendix 4

const path = require('path');

const projectRoot = path.resolve(__dirname).replace('webpack-partials',

'');

const plugins = require('./plugins');

const rules = require('./module');

const { externals, resolveLoader } = require('./externals');

const { production } = require('./env-variables');

const phoneGap = {

 externals,

 resolveLoader,

 entry: path.resolve(projectRoot, 'src', 'index.js'),

 devServer: {

 hot: production ? false : true,

 port: 3003

 },

 target: 'web',

 output: {

 path: path.resolve(projectRoot, 'www'),

 filename: 'index.js'

 },

 module: {

 rules

 },

 plugins,

 cache: true

};

module.exports = phoneGap;

68

webpack-partials/web.js Appendix 5 1(2)

const path = require('path');

const plugins = require('./plugins');

const rules = require('./module');

const { production, development, desktop, mobile, web } = require('./env-

variables');

const projectRoot = path.resolve(__dirname).replace('webpack-partials',

'');

const webpack = require('webpack');

const BabiliPlugin = require('babili-webpack-plugin');

const nodeExternals = require('webpack-node-externals');

const {externals, resolveLoader} = require('./externals');

const front = {

 externals,

 resolveLoader,

 devtool: development ? '#eval' : false,

 entry: production

 ? [path.resolve(projectRoot, 'src', 'index')]

 : [

 'webpack-dev-server/client?http://localhost:8080',

 'webpack/hot/only-dev-server',

 path.resolve(projectRoot, 'src', 'index')

],

 devServer: {

 hot: production ? false : true,

 quiet: true

 },

 output: {

 path: path.resolve(projectRoot, 'dist', 'web'),

 publicPath: '',

 filename: 'index.js'

 },

 target: 'web',

 plugins: plugins,

 module: {

 rules: rules

 },

 cache: true };

const back = {

 externals: [nodeExternals({})],

 entry: [path.resolve(projectRoot, 'src', 'server')],

 output: {

 path: path.resolve(projectRoot, 'dist', 'web'),

 publicPath: '',

 filename: 'server.js'},

 target: 'node',

 node: {

69

Appendix 5 2(2)

 __dirname: false,

 __filename: false

 },

 plugins: [

 new webpack.DefinePlugin({

 desktop: JSON.stringify(desktop),

 mobile: JSON.stringify(mobile),

 production: JSON.stringify(production),

 development: JSON.stringify(development),

 web: JSON.stringify(web),

 })

],

 module: {

 rules: [{

 test: /\.js$/,

 exclude: /node_modules/,

 use: {

 loader: 'Babel-loader',

 options: {

 presets: development ? ['env'] : ['babili', 'env']

 }

 }

 }]

 }

};

if (production) {

 back.plugins.push(

 new BabiliPlugin({

 deadcode: true,

 mangle: true

 })

);

}

if (development) {

 back.module.rules.push(

 {

 enforce: 'pre',

 test: /\.js$/,

 exclude: /node_modules/,

 loader: 'eslint-loader',

 options: {

 formatter: require('eslint/lib/formatters/stylish'),

 emitError: true

 }

 });

}

module.exports = { front, back };

70

webpack-partials/plugins.js Appendix 6 1(2)

const { desktop, mobile, web, production, development } = require('./env-

variables');

const webpack = require('webpack');

const ExtractTextPlugin = require('extract-text-webpack-plugin');

const BabiliPlugin = require('babili-webpack-plugin');

const HtmlWebPackPlugin = require('html-webpack-plugin');

const StyleLintPlugin = require('stylelint-webpack-plugin');

const WriteFilePlugin = require('write-file-webpack-plugin');

const FriendlyErrorsWebpackPlugin = require('friendly-errors-webpack-

plugin');

const path = require('path');

const glob = require('glob');

const PurifyCSSPlugin = require('purifycss-webpack');

plugins = [

 new webpack.DefinePlugin({

 desktop: JSON.stringify(desktop),

 mobile: JSON.stringify(mobile),

 production: JSON.stringify(production),

 development: JSON.stringify(development),

 web: JSON.stringify(web),

 }),

 new HtmlWebPackPlugin({

 filename: 'index.html',

 template: './src/index.html',

 js: desktop && production ? '<script type="text/javascript"

src="index.js"></script>'

 : '<script type="text/javascript"

src="http://localhost:8080/index.js"></script>',

 link: desktop && production ? '<link rel="stylesheet"

href="css/style.css">' : '<!---->',

 VueJS: (mobile || web) && development ? '<script

type="text/javascript"

src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.2/vue.js"></script>'

: '<script type="text/javascript"

src="https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.2/vue.min.js"></scrip

t>',

 inject: desktop ? false : true,

 hash: true,

 minify: {

 collapseWhitespace: production ? true : false

 }

 }),

 new FriendlyErrorsWebpackPlugin()

];

71

Appendix 6 2(2)

if (development) {

 plugins.push(

 new webpack.HotModuleReplacementPlugin(),

 new webpack.NamedModulesPlugin(),

 new StyleLintPlugin({

 configFile: './.stylelintrc',

 files: ['src/**/*.vue', 'src/**/*.sass', 'src/**/*.scss']

 }),

 new WriteFilePlugin({

 test: /\.html$/,

 useHashIndex: true,

 log: false

 })

);

}

if (production) {

 plugins.push(

 new ExtractTextPlugin({

 filename: 'css/style.css',

 allChunks: true

 }),

 new BabiliPlugin({

 deadcode: true,

 mangle: true,

 removeConsole: true,

 booleans: true,

 simplify: true

 })/*,

 new PurifyCSSPlugin({

 // Give paths to parse for rules. These should be absolute!

 paths: glob.sync(path.join(__dirname, '', 'src/*.{js,html,vue}')),

 minimize: true,

 purifyOptions: { info: true }

 })*/

);

}

module.exports = plugins;

72

webpack-partials/module.js Appendix 7 1(4)

const { production, development } = require('./env-variables');

const ExtractTextWebpackPlugin = require('extract-text-webpack-plugin');

const cssMinimized = {

 loader: 'css-loader',

 options: {

 minimize: true

 }

};

let rules = [

 {

 test: /\.vue$/,

 loader: 'vue-loader',

 options: {

 postcss: production ? [require('postcss-cssnext')()] : null,

 loaders: {

 extractCSS: production ? true : false,

 css: production ?

 ExtractTextWebpackPlugin.extract({

 use: cssMinimized,

 fallback: 'vue-style-loader'

 }) :

 'vue-style-loader!css-loader',

 sass: production ?

 ExtractTextWebpackPlugin.extract({

 use: [cssMinimized, 'sass-loader?indentedSyntax'],

 fallback: 'vue-style-loader'

 }) :

 ['vue-style-loader!css-loader!sass-loader?indentedSyntax'],

 scss: production ?

 ExtractTextWebpackPlugin.extract({

 use: [cssMinimized, 'sass-loader'],

 fallback: 'vue-style-loader'

 }) :

 ['vue-style-loader!css-loader!sass-loader']

 }

 }

 },

 {

 test: /\.js$/,

 exclude: /node_modules/,

 use: {

 loader: 'Babel-loader',

 options: {

 presets: development ? ['env'] : ['babili', 'env']

 }

 }

 },

73

Appendix 7 2(4)

{

 test: /\.(png|jpg|jpeg|bmp|svg)$/,

 use: [

 'url-loader?limit=10000&name=images/[name].[ext]',

 {

 loader: 'image-webpack-loader',

 options: {

 mozjpeg: {

 quality: 65

 },

 pngquant: {

 quality: '10-20',

 speed: 4

 },

 svgo: {

 plugins: [

 {

 removeViewBox: false

 },

 {

 removeEmptyAttrs: false

 }

]

 },

 gifsicle: {

 optimizationLevel: 7,

 interlaced: false

 },

 optipng: {

 optimizationLevel: 7,

 interlaced: false

 }

 }

 }] },

 { test: /\.woff(\?v=\d+\.\d+\.\d+)?$/, use:

['url?limit=10000&mimetype=application/font-woff&name=fonts/[name]-

[hash].[ext]'/*, exclude: /node_modules/*/] },

 { test: /\.woff2(\?v=\d+\.\d+\.\d+)?$/, use:

['url?limit=10000&mimetype=application/font-woff&name=fonts/[name]-

[hash].[ext]'/*, exclude: /node_modules/*/] },

 { test: /\.ttf(\?v=\d+\.\d+\.\d+)?$/, use:

['url?limit=10000&mimetype=application/octet-stream&name=fonts/[name]-

[hash].[ext]'/*, exclude: /node_modules/*/] },

 { test: /\.eot(\?v=\d+\.\d+\.\d+)?$/, use: ['file?name=fonts/[name]-

[hash].[ext]'] }

];

74

Appendix 7 3(4)

if (development) {

 rules.push(

 {

 enforce: 'pre',

 test: /\.(js|vue)$/,

 exclude: /node_modules/,

 loader: 'eslint-loader',

 options: {

 formatter: require('eslint/lib/formatters/stylish'),

 emitError: true

 }

 },

 {

 test: /\.css$/,

 use: [

 'style-loader',

 {

 loader: 'css-loader',

 options: {

 sourceMap: true

 }

 }

],

 /*exclude: /node_modules/*/

 },

 {

 test: /\.(sass|scss)$/,

 use: [

 'style-loader',

 {

 loader: 'css-loader',

 options: {

 sourceMap: true

 }

 },

 'resolve-url-loader',

 'sass-loader'

],

 }

);

}

if (production) {

 rules.push(

 {

 test: /\.css$/,

 use: ExtractTextWebpackPlugin.extract([

75

Appendix 7 4(4)

 {

 loader: 'css-loader',

 options: {

 minimize: true

 }

 },

 {

 loader: 'postcss-loader',

 options: {

 plugins: function () {

 return [

 require('postcss-cssnext')()

];

 }

 }

 }]

),

 /*exclude: /node_modules/*/

 },

 {

 test: /\.(sass|scss)$/,

 use: ExtractTextWebpackPlugin.extract([

 {

 loader: 'css-loader',

 options: {

 minimize: true

 }

 },

 {

 loader: 'postcss-loader',

 options: {

 plugins: function () {

 return [

 require('postcss-cssnext')()

];

 }

 }

 },

 'resolve-url-loader',

 'sass-loader']

),

 /*exclude: /node_modules/*/

 }

);

}

module.exports = rules;

