

Development of Secure IoT
Based on Modern
Microcontrollers

Juraj Haluška

Bachelor’s thesis

May 2017

Technology, communication and transport

Degree Programme in Software Engineering

Description

Author(s)
Haluška, Juraj

Type of publication
Bachelor’s thesis

Date
May 2017

Number of pages
57

Language of publication:
English

 Permission for web
publication: yes

Title of publication
Development of secure IoT based on modern microcontrollers

Degree programme
Information and Communications Technology

Supervisor(s)
Mieskolainen, Matti

Assigned by
Kotkansalo, Jouko

Description

This paper describes the development process of a secured Internet of Things (IoT) system.
Firstly, it analyses the available technologies and methods for development of secure IoT. It
also describes the most suitable microcontrollers on the market for this purpose and
discusses the basics of software development strategies. The most popular technologies
and architectures were used to develop an IoT device with encrypted data transfer.

The IoT device was developed on a prototyping board Nucleo-F767ZI which runs on a
microcontroller based on ARM architecture. The remote control of the device was
implemented by exposing RESTful API through the custom implementation of an HTTP
server and the whole communication was secured by SSL/TLS protocol. For SSL/TLS
integration, an open source library mbed TLS was used. Humidity, temperature and
atmospheric pressure sensors were connected to the device and the data captured by
these sensors was stored on an SD card.

This data is available through RESTful API. The software of the microcontroller is based on
mbed OS operating system with RTOS functionality. For a demonstration of RESTful API, the
web application was developed. This application was programmed on the top of an
Angular2 framework with UI library - PrimeNG.

The result of the thesis is an intermediate embedded system, which might be easily
integrated into real IoT application where secured connectivity is required.

Keywords (subjects)
IoT, mbed OS, mbed TLS, security, ARM, microcontroller, REST, HTTPS

Miscellaneous

http://finto.fi/fi/?clang=en

1

Contents

1 Introduction .. 3

1.1 Motivation .. 3

1.2 Objective ... 3

2 Microcontrollers ... 5

2.1 What microcontrollers are .. 5

2.2 History and presence ... 6

2.2 ARM and their portfolio .. 8

2.3 ARM Cortex-M series .. 10

2.4 Cortex-M7 core .. 11

2.4.1 Instruction set .. 11

2.4.2 Interrupt controllers ... 11

2.4.3 SysTick timer ... 12

2.4.4 Extensional buses ... 12

2.4.5 Debugger interfaces .. 13

2.4.6 Computation modules ... 13

2.4.7 Memory protection unit ... 13

2.5 Choice of microcontroller .. 14

3 Software of microcontroller .. 17

3.1 Common software strategies ... 17

3.2 mbed OS ... 22

3.2.1 Task management ... 23

3.2.2 I/O and interfaces .. 26

3.2.3 Networking .. 27

4 Network security .. 30

4.1 TLS .. 30

4.1.1 Roles ... 30

4.1.2 Structure .. 32

4.1.3 Session resumption ... 33

4.2 Entropy .. 35

4.3 HTTPS ... 36

5 Implementation .. 37

5.1 System architecture and technologies ... 37

5.2 Software on Nucleo board ... 40

2

5.2.1 Threads ... 40

5.2.2 TCP Sockets ... 41

5.2.3 mbed TLS Integration .. 42

5.2.4 HTTP Server ... 44

5.2.5 IP whitelist and user authentication ... 45

5.2.6 Sensors ... 47

5.3 Client application ... 49

6.1 Issues .. 51

6.2 Discussion ... 52

6.3 Summary ... 53

References ... 54

3

1 Introduction

1.1 Motivation

The Internet of Things (IoT) is increasingly set to become an inherent part of a

human’s everyday life. Today, there is a great number of objects that are

connected to the internet already. For example, household appliances,

vehicles, health and sleep monitoring devices, weather stations, heating units,

etc. The connection of elementary things used every day on a network

provides many benefits and simplifications of a human’s life. As the popularity

of IoT is rapidly rising, concerns have been raised about security and privacy.

IoT devices could monitor sensitive information which no one wants to share

with the unwanted subjects. Another issue with connecting things to the

internet is the taking of control over the device by an unprivileged person. In

some cases, this could result in catastrophic consequences. The rising

popularity of IoT has a strong foundation in recent developments in

microcontroller area. In the last decade, microcontrollers based on cores with

ARM architecture have become very successful in areas of IoT. One of the

main features of these microcontrollers is low power consumption, which is

demanding due to continuous operation of IoT devices while providing

relatively high computation power. Another significant advantage of ARM-

based microcontrollers is a relatively low price and the availability of many

kinds of prototyping boards. These boards give the developers’ ability of rapid

product development.

1.2 Objective

This thesis focuses on the development of the IoT device driven by a modern

microcontroller with the emphasis on security aspects. The first part of the

thesis contains an analysis of microcontrollers available on the market and

gives a brief overview of their hardware and architecture. There are also

mentioned common strategies, how software for microcontrollers can be

designed with or without the operating system. The second part of the thesis

4

describes confidential information transfer over the internet using TLS. The

last and main objective of this thesis is the development of an embedded

system based on prototyping board Nucleo-F767ZI from STMicroelectronics.

This system shall provide a web server secured by TLS, a simplistic HTTPS

API, and web interface for simple control of board’s peripherals.

5

2 Microcontrollers

2.1 What microcontrollers are

Microcontrollers are small, integrated circuits which can be considered as self-

contained systems with a CPU, memory and peripherals (Heath 2002).

Microprocessors known from classic personal computers do not contain

memory and peripherals, which is why they need external ones connected via

some kind of a bus system. On account of the fact that microcontrollers

contain everything needed to form a computer, in most cases the only one

necessity to make them work is to provide a software for them (Heath 2002).

“Microcontrollers are designed to perform specific tasks. Specific means

applications where the relationship of input and output is defined. Depending

on the input, some processing needs to be done and output is delivered”

(Choudhary 2017). Given that the applications of microcontrollers are very

specific, they could be very optimized, and therefore they significantly reduce

sizes and costs. They do not need such fast CPU as can be found in personal

computers and they also have much smaller memory requirements. Since

microcontrollers do not require rich resources, their power consumption is very

small. This gives the ability to run microcontrollers from batteries and in some

cases, they can run on battery uninterrupted for years.

Very important components of microcontrollers are peripherals. Peripherals

give microcontroller the ability to interact with the surrounding environment

and they can help the CPU with some functionality. Modern microcontrollers

contain plenty of peripherals which can be used optionally due to the current

needs of a particular application. Examples of the most common peripherals

are listed as follows (Electronics hub 2015):

● GPIO - general pin input output

● ADC - analog to digital converter

● Serial protocol controllers - SPI, UART, I2C

● Timers

● Memories - RAM, Flash, EEPROM

6

There are also many other peripherals available, however, their presence in

microcontrollers depends on the choice of particular models and also on the

manufacturer. The availability of many kinds of peripherals, low power

consumption, small size and high possibility of software optimization are the

main factors why use microcontrollers in IoT applications.

2.2 History and presence

One of the most popular microcontrollers in history was the Intel 8051. This

microcontroller was developed in 1980 by Intel Corporation and it was one of

the first 8-bit microcontrollers. It can be seen in Figure 1. that this

microcontroller was designed according to Harvard architecture. It means that

it had separate memories for program and data, and those memories had their

own address spaces. Later, the Intel 8051 was replaced by microcontrollers

from many other companies such as Atmel, Infineon, NXP, Microchip (PIC),

Texas Instruments. A widely recognized microcontroller architecture is 8-bit

Atmel AVR. This architecture is still recognized nowadays because of its

simplicity and also because Atmel AVR microcontrollers are used in a popular

hobbyist platform - Arduino.

When 8-bit microcontrollers became no longer sufficient for certain tasks, 16-

bit microcontrollers were developed and replaced them. They became the

largest volume MCU category in 2011 (IC Insights 2013). Nowadays, there are

microcontrollers available which architectures are based on 32-bit word size.

Architectures with wider word size provide fewer restraints on resources,

particularly memory and the width of registers used for doing arithmetic and

logical operations. This feature gives the ability to perform real-time operations

on high precision data. These days, 32-bit microcontrollers are mainstream.

There are still some microcontroller manufacturers, which use their own 32-bit

architectures, however the majority of them rely on processor cores which are

designed by ARM Holdings. ARM based microcontrollers are the most popular

ones. They are very favored because of extremely low power consumption

and software support from ARM Holdings. Another advantage of ARM cores is

portability. Because of standards (CMSIS) defined by ARM Holdings, it is

much easier to move from one MCU to another. 32-bit microcontrollers with

7

ARM cores provide more options for developers while they can still maintain

comparable power consumption with the old-fashioned 8-bit MCUs

(STMicroelectronics 2017).

Figure 1. Block diagram of Intel 8051 (EngineersGarage 2017)

8

2.2 ARM and their portfolio

ARM is an acronym of Advanced RISC Machine. It is a designation of

processor architecture which has become very famous in the last years. The

high popularity of ARM architecture is caused by the low power requirements

of processors based on it. With over 100 billion ARM processors produced as

of 2017, ARM is the most widely used processor architecture in terms of

quantity produced (Wikipedia 2017). ARM architecture is developed and

designed by a British company called ARM Holdings. Their main business

interest is in the design of ARM architecture based processor cores but they

design software solutions also. ARM Holdings does not manufacture

processor cores themselves, they just sell the design of cores to other

companies, usually semiconductor manufacturers. Then, they embed

processor cores from ARM Holdings into their own products (ARM 2017).

As mentioned earlier, ARM is RISC kind of processor. Thanks to RISC design

approach, the actual implementation of a processor requires less transistors

than typical CISC processors. This approach reduces costs, heat and power

consumption (Wikipedia 2017). Most of the ARM cores use 32-bit word width,

however, the newest variation of ARM architecture (ARMv8-A) supports also

64-bit word width. The current portfolio of ARM cores can be divided into four

families based on different use cases (ARM 2017).

a) ARM Cortex-A Series

In this family, there are cores designated for high level performance

applications. Cortex-A processors offer support for a range of full operating

systems including Linux, as well as others requiring a memory management

unit such as Android, Chrome and MontaVista (ARM 2017). The processors in

this family use ARMv7-A or ARMv8-A architectures, including their variations,

and some of them support multi-core designs. The intended applications of

ARM Cortex-A Series are (ARM 2017):

● Smartphones ● Servers and networking

https://en.wikipedia.org/wiki/Instruction_set_architecture

9

● Tablets and Readers

● Automotive

● Satellite receivers

● Wearables

● Home gateways

● Robotics

b) ARM Cortex-R Series

“The ARM Cortex-R real-time processors offer high-performance computing

solutions for embedded systems where reliability, high availability, fault

tolerance and/or deterministic real-time responses are needed. Cortex-R

processors are used in products where performance requirements and timing

deadlines must always be met. In addition, Cortex-R processors are used in

electronic systems which must be functionally safe to avoid hazardous

situations, for example, in medical applications or autonomous systems” (ARM

2017). Common applications of Cortex-R processors are (ARM 2017):

● Industrial

● Home

● Enterprise

● Cameras

● Storage

● Automotive

● Medical equipment

● Military

c) ARM Cortex-M Series

The processors in this family are smaller and come with the lowest power

consumption of ARM products. These processors are optimized for

deterministic real-time embedded processing and microcontroller application.

ARM Cortex-M processors use 32-bit ARMv6-M, ARMv7-M and ARMv8-M

architectures. The intended applications of processors from this family are

(ARM 2017):

● Wireless sensors

● Smart watch

● Home automation

● Medical instruments

● Retail

● Industrial

● Smart watch

● Smart lighting

10

d) SecurCore

SecurCore is a family of 32-bit processors based on architectures ARMv6-M

and ARMv7-M. They are derived from ARM Cortex-M processors, in addition,

they contain anti-tampering mechanisms. Therefore, these cores are designed

for use in highly secure applications. Some examples of use cases are listed

below (ARM 2017):

● Advanced payment systems

● Transportation

● Electronic tickets, passports

● Smart and SIM cards

2.3 ARM Cortex-M series

As mentioned before, cores from this family are the most suitable for

microcontrollers, which is the reason why this thesis gives more attention to

this family. The ARM offers following cores from Cortex-M family (ARM 2017):

a) Cortex-M0, Cortex M0+, and Cortex-M23

These cores are for applications requiring minimal cost, power and area.

Cortex-M0+ is the improvement of Cortex-M0 core. It is fully compatible with

Cortex-M0, the difference is reduced power consumption, increased

performance and added memory protection unit. It is not recommended to use

older Cortex-M0 cores in new products. Cortex-M0/0+ use 32-bit ARMv6-M

architecture. Cortex-M23 is the newest member of the Cortex-M family. This

core uses ARMv8-M architecture, and it includes TrustZone technology.

b) Cortex-M3, Cortex-M4, and Cortex-M33

These cores are for all applications where a balance between 32-bit

performance and energy efficiency is desirable. Cortex-M3 is the oldest

member of the Cortex-M family. This core is useful when middle-level

performance is required without the need for special features such as digital

11

signal processing or fast floating point operations. This features can be found

in cores Cortex-M4 and Cortex-M33. Cortex-M33 also has built-in TrustZone

technology (ARM 2017).

c) Cortex-M7

This is one of the newest cores available on microcontroller market. It was

launched in 2014. Cortex-M7 is the most powerful core from Cortex-M family

and it is fully binary compatible with Cortex-M3 and Cortex-M4 cores. It is

possible to execute instructions from Cortex-M3/M4 on Cortex-M7. The main

improvement is that it can run on a much higher frequency while maintaining

double power efficiency in comparison with the older Cortex-M4 (ARM 2017).

2.4 Cortex-M7 core

2.4.1 Instruction set

This core supports execution of Thumb-1, Thumb-2 and special DSP

instructions with saturated arithmetic. The Thumb-1 instruction set is the

subset of the classic ARM instruction set. ARM instructions are 32-bit long;

however, Thumb-1 are 16-bit long, which allows bigger code density. The

disadvantage of Thumb-1 instructions is that some tasks which could be done

by one ARM instruction take more Thumb-1 instructions. Thus, it is a

compromise between the execution time and code density. Older cores were

able to execute only one type of instructions, either Thumb-1 or ARM and it

was necessary to switch between the two. Thumb-2 is technology which

enables execution of Thumb-1 instructions with 32-bit long instructions also.

This technology also adds conditional execution instruction. Thumb-2

technology combines code density of Thumb-1 instruction set and

performance or ARM instruction set (Yiu 2010).

2.4.2 Interrupt controllers

In older cores, when the interrupt occurred, the software was needed to

determine the starting address of an interrupt handler. This caused the

12

interrupt processing to be relatively slow. In every Cortex-M processor, there is

NVIC which is a solution to that problem. Vectored interrupt support means

that the interrupt handler address is saved in memory relating to its source.

Thus, there is no need to perform additional software processing when an

interrupt occurs. It is faster to process the interrupt request. Nested interrupt

support adds prioritization to interrupt sources (My Hobbies 2017). “When an

interrupt occurs, the NVIC compares the priority of this interrupt to the current

running priority level. If the priority of the new interrupt is higher than the

current level, the interrupt handler of the new interrupt will override the

currently running task” (Yiu 2010). In Cortex-M7, there is available optional

Wakeup Interrupt Controller. The function of this controller is to wake up core

from a deep sleep when almost all processor modules are powered down

(ARM 2017).

2.4.3 SysTick timer

SysTick is a configurable, countdown 24-bit timer. This timer might be used as

a time base generator for real-time operating systems. Depending on the clock

source, it could also serve as a counter. SysTick might be configured to

generate an interrupt each time it reaches zero value; as an alternative, it can

operate in polling mode. SysTick timer is optional and it is part of NVIC.

(ARM 2017).

2.4.4 Extensional buses

Cortex-M7 processor is designed according to Harvard architecture. It has two

separate buses, one for instructions (I-TCM) and one for data (D-TCM). Both

of these buses are designed to provide tightly coupled memory for the

processor core. This approach causes low-latency access, thus there is no

need for cache memories. Peripherals such as GPIO, Timers and UART might

be connected to the core with two AHB-Lite buses. AXI-M is an interface

designed for connection of the external memory system. External memories

are usually slower than those connected with TCM buses (e.g. Flash memory),

thus, there is a need for cache memories, which is the purpose of I and D

caches in the Cortex-M7 processor (Freescale 2015).

13

2.4.5 Debugger interfaces

Cortex-M7 processor has rich debugging possibilities. It contains ETM and

ITM modules. ITM module enables printf style debugging, ETM gives the core

real-time tracing of instruction and data. Another debugging module is DWT.

“The DWT is an optional debug unit that provides watchpoints, data tracing,

and system profiling for the processor” (ARM 2010). Debugging modules are

connected to a debugger application via JTAG or SWD port. SWD is a newer

alternative to JTAG. JTAG usually uses 5-pin port while SWD uses only two

wires: one for bidirectional data, another for clock transmission. This

technology is widely used in microcontrollers from STMicroelectronics and in

addition to debugging, it is also used for memory flashing (ARM 2017).

2.4.6 Computation modules

Cortex-M7 is enhanced by DSP and FPU modules. The presence of these

modules means that instruction set of Cortex-M7 is extended by special

instructions belonging to these modules. Examples of the most common DSP

instructions are multiply and accumulate. These modules are useful for fast

algorithm performance in e.g. audio encoding, motor control, voice and image

recognition, graphics, and data processing.

2.4.7 Memory protection unit

MPU is an inherent part of secure systems. This unit allows segmentation of

memory and control access to a particular segment. “The main purpose of

memory protection is to prevent a process from accessing memory that has

not been allocated to it. This prevents a bug or malware within a process from

affecting other processes, or the operating system itself” (Wikipedia 2017).

Modules mentioned above can be seen in following Figure 2. (ARM 2017):

14

Figure 2. Cortex-M7 module diagram (ARM 2017)

2.5 Choice of microcontroller

The device developed in this thesis is required to run a web server with a

secured connection. One step to get closer to secured web is by adding the

encryption layer. Strong encryption algorithms need high computing rate.

In the software of a web server, there is also need for fast string parsing,

which is an operation consuming processor and memory. Because of high

computing power, better power efficiency and availability of fast memory

buses, a microcontroller with Cortex-M7 core was chosen for the practical part

of this thesis.

ARM Cortex-M7 is quite a new core. As of April 2017, there are only three

manufacturers which have caught up integrating Cortex-M7 in their products.

The current manufacturers of Cortex-M7 based MCUs are Atmel (SAM E70,

SAM S70, SAM V70), NXP (Kinetis KV5x) and STMicroelectronics (STM32

F7, STM32 H7). A significant role while choosing MCU was played by the

availability of development materials and price. The chosen microcontroller is

STM32F767ZI. This microcontroller is manufactured by STMicroelectronics,

15

and they also provide very cheap development board with it (Nucleo - F767ZI).

MCU STM32F767ZI contains TRNG module, which is an integral part of

systems, where encryption is involved. In addition, it also contains an Ethernet

module. Therefore, there is no need to use an external Ethernet shield when

implementing network connectivity. Another significant reason, why this board

was chosen, is support of mbed OS. Barebone programming of ARM-based

microcontrollers is not an easy task, especially for beginners. mbed OS

significantly simplifies software development of embedded systems and in

addition, it provides real-time operating system functionality, networking stack

and security features (mbed 2017). Key features of STM32F767ZI

(STMicroelectronics 2017):

● Core Cortex-M7 with 16 Kbytes I/D cache memories, frequency up to

216 Mhz, Dhrystone 2.1: 462 DMIPS/2.14 Mhz

● Up to 2 Mbytes of Flash memory organized into two banks allowing

read-while-write

● SRAM: 512 Kbytes (including 128 Kbytes of data TCM RAM for critical

real-time data) + 16 Kbytes of instruction TCM RAM (for critical real-

time routines) + 4 Kbytes of backup SRAM

● Graphical accelerator, hardware JPEG coder/decoder, TFT and DSI

display controllers

● Low power modes

● 3×12-bit 2.4 MSPS ADC - up to 24 channels, 2×12-bit D/A converters

● DMA, Ethernet, 4x I2C, 4x USART, 4x UART, 6x SPI, 3x CAN, 2x

SDMMC, 2x USB controller, 18 Timers, 168 I/O ports

● True random number generator

● CRC calculation unit

● Real time clock

● 96-bit unique ID

Following figure (STMicroelectronics 2017) shows all blocks of STM32F767ZI:

16

Figure 3. STM32F767ZI module diagram (STMicroelectronics 2017)

17

3 Software of microcontroller

As mentioned in the first chapter, microcontrollers are small, self-contained

systems the role of which is to perform specific tasks where the relationship

between input and output is defined (Choudhary 2017). This makes the

software of microcontrollers also very specific. In the past, the architecture of

microcontrollers was much simpler than these days, therefore, they could be

programmed in assembly language and without the need for an operating

system. With the increasing complexity of microcontrollers, it has become

impossible to write software purely in assembly language. These days, there

are very good C/C++ compilers available, which simplifies the whole software

design and enables to implement operating systems for microcontrollers. It

should be mentioned that assembly language is still used, however, only in

very hardware specific setup procedures, which cannot be written in C/C++.

This chapter focuses on common software strategies and possibilities of using

the operating system in microcontrollers. The last section of this chapter is

about mbed OS, which is a relatively new project in the world of embedded

systems. mbed OS significantly simplifies and accelerates the development of

ARM-based microcontrollers software.

3.1 Common software strategies

There are several strategies, how software of microcontroller can be designed.

Choice of software strategy depends on complexity of particular application of

microcontroller. There might be extremely simple systems, the task of which is

just to respond when a button is pressed. On the other hand, there are more

complex systems, e.g. systems which constantly monitor multiple parameters

and need to adjust their outputs in real-time. Mentioned systems are very

different, therefore their softwares are designed by different strategies. This

chapter presents the most common software strategies used in MCUs.

a) Polling loop

18

This is the simplest strategy and it might be used in simple systems, the only

task of which is to quickly react to some external events. An example of an

event might be e.g. timer overflow, pressed the button, or incoming data. The

principle of this strategy lies in repetitive checking if the event occurred. If the

condition indicating an event is met, the microcontroller starts reacting to the

event. After the reaction, the microcontroller is checking the condition again.

The main disadvantage of this strategy is the waste of microcontroller’s time

while it is waiting for the condition to be met. Following figure is an example of

simple polling loop implemented in C language.

while(1) {

 if (buttonPressed) {

 reaction();

 buttonPressed = !buttonPressed;

 }

}

Figure 4. Example of polling loop in (C language)

b) Interrupt-driven

This strategy is in most cases a better alternative to polling loop because

polling (also called busy waiting) is replaced by interrupts. An interrupt is a

signal to the processor emitted by hardware or software indicating an event

that needs immediate attention (Wikipedia 2017). When an interrupt occurs,

the processor will suspend the execution of the current code and start the

execution of code associated with the source of the interrupt. This code is

usually called ISR. The main advantage of this strategy is that it does not

waste processing time by busy waiting. The main loop might perform some

useful processing while it can be interrupted at any time when needed. This

approach is also called foreground/background system. Another advantage

over the polling loop is that responses to events can be prioritized thanks to

the interrupt mechanism. The Figure 5. shows an example of interrupt-driven

system. In the left column, there is a main task which can be interrupted by

interrupt controller and routines ISR_1 or ISR_2 will be executed instead.

19

while(1) {

 somethingUseful();

}

void ISR_1 {

 ...

}

void ISR_2 {

 ...

}

Figure 5. Example of interrupt-driven strategy in (C language)

c) Cyclic executive

This strategy can provide the illusion of simultaneity by taking advantage

of relatively short processes in a continuous loop (Ayav 2017). Cyclic

executive works only if the processes are short enough and their execution

time is constant. As an example, a system with three processes (P1, P2, P3)

can be considered where P1 needs to be executed every 20 ms. Cyclic

executive might be used in this case only if the sum of durations of processes

P1, P2, P3 is less than 20 ms. The Figure 6. shows how processes in cyclic

executive are executed. The main loop of cyclic executive program can be

seen in Figure 7.

Figure 6. Diagram of process execution time in cyclic executive

while(1) {

 P1();

 P2();

 P3();

 synchroDelay(); // optional

}

Figure 7. Example of cyclic executive strategy in (C language)

d) Cooperative multitasking

Cooperative multitasking is a multitasking technique that enables two or more

programs to cooperatively share the processing time and resources of the host

processor (Technopedia 2017). This strategy is an extension of the cyclic

20

executive, however, the difference is that processes are coded in the state-

driven fashion (state machines). Processes are executed the same way as in

cyclic executive but each time when the process is executed, it performs only

one phase which corresponds to a certain state of that process. This phase

has to be short enough to allow other processes to perform their phases in

acceptable time. This approach allows processes to be more complex, but it is

more difficult to synchronize them. Following figure presents an example of the

two independent tasks in cooperative multitasking strategy.

void P1() {

 switch (P1_state) {

 case START: … break;

 case REGULATE: … break;

 case FINISH: … break;

 }

}

void P2() {

 switch (P2_state) {

 case START: … break;

 case RECEIVE_DATA: … break;

 case FINISH: … break;

 }

}

Figure 8. Example of processes in cooperative multitasking (C language)

d) RTOS

“Real time system is any system in which the time at which output is produced

is significant. This is usually because the input corresponds to some

movement in the physical world, and the output has to relate to that same

movement. The lag from input time to output time must be sufficiently small for

acceptable timeliness” (Daintith, J., Wright E. 2008). The acceptable timelines

are often also referred to as deadlines. An example of real time system might

be a digital audio mixer. This device is used by sound engineers and

musicians for live performances. Audio mixer receives an audio from multiple

sources (e.g. microphones, musical instruments) and its task is to mix those

sources into one or more channels. Mixed audio is then amplified and played

back to the audience through speakers. To obtain an effect of a live show (that

an audience will not notice a delay between what they see and what they

hear), it is required to keep the delay between recording and playing back

under 20 ms. Thus the time, under which the digital mixer must mix and

process each bunch of samples, is 20 ms. This is the real time system the

21

deadline of which is 20ms. If this deadline is not met, the quality of live

performance is being degraded. Real time systems could be classified into

three categories:

1) Hard Real Time

In these systems, the processing has to be done before a deadline. If the

deadline is not met, it will result in catastrophic consequences. As examples of

hard real time might be e.g. air traffic control systems, car braking system,

navigation system of missile, self-driving car (Ayav 2017).

2) Soft Real Time

Soft real time systems are those where missing a deadline causes a

degradation of a system’s quality instead of a catastrophe. An example of this

system might be a digital audio mixer, which was already mentioned

previously (Ayav 2017).

3) Firm Real Time

These systems are similar to hard real time systems in a manner that they

have hard deadlines defined, however, some low probability of missing a

deadline can be tolerated. An example of this might be an automated

assembly line (Ayav 2017).

From the included examples of real time systems above might be seen that

they are often used in embedded applications. This is the point where real

time operating systems occur. The real time operating system is a kind of

operating system where tasks are scheduled in a fashion that they can meet

their deadlines. The characteristics of real time system in an embedded

application can be obtained by using one of the strategies mentioned in this

chapter, however, real time operating systems simplify the software design.

The common implementations of real time operating systems take care of

process scheduling, IPC, memory allocation and memory protection, resource

sharing and interrupt handling on software layer. Many of the available real

22

time operating systems offer additional features such as device drivers, file

systems, or networking stacks. These real time operating systems are often

referred to as full-featured real time operating systems. As mentioned, real

time operating systems are often used in embedded applications and therefore

they are optimized to run on microcontrollers. The characteristics of the

operating system and optimization for microcontrollers usually make usage of

real time operating systems convenient in applications where real time system

characteristics are not even required. A list of the most popular real time

operating systems follows below:

● FreeRTOS

● RIOT

● eCOS

● µC/OS-III

● RTLinux

● VxWorks

● Keil RTX

● QNX

3.2 mbed OS

Because of the high complexity of modern 32-bit microcontrollers, the

development of barebone software for them has become a difficult task. There

are several hardware-related configurations involved, e.g. clock distribution for

peripherals, PLLs and frequency dividers, power distribution, bus

configurations. Fortunately, there are solutions which abstract away hardware-

related issues from programmers and even more, they also bring to a software

features, which simplifies the whole development. One of the solutions is

presented in this chapter and it is called mbed OS. mbed OS is a modern,

open source operating system designated for IoT devices running on

microcontrollers with ARM Cortex-M cores. It is collaboratively developed by

ARM Holdings and their partners. mbed OS is a full-featured RTOS

programmed in C/C++. It contains a low level security kernel called mbed

uVisor, RTOS based on Keil RTX, peripheral drivers, drivers for the external

devices and TCP/IP stack. For a quick and easy development of a secure IoT

application, mbed OS supports many development boards from several

manufacturers. These properties had a significant impact on the choice of the

development board for the practical part of this thesis.

23

3.2.1 Task management

mbed OS provides a comprehensive API for task management. An important

part of this API is RTOS, an implementation of Keil RTX which allows the

creation of programs simultaneously, performing multiple functions and helps

to create better structured and more easily maintainable applications (Keil

2017). RTOS in mbed OS handles the creation and destruction of threads and

safe inter-thread communication as well. It is composed of the following

classes (mbed 2017):

a) Thread

“The Thread class allows defining, creating and controlling thread functions in

the system“ (mbed 2017). The thread can be in one of the following states

(Figure 9.): Running, Ready, Waiting and Inactive. It is possible to configure

the stack size and priority for each thread through their constructor (mbed

2017).

Figure 9. States of thread in mbed OS RTOS (mbed 2017)

b) Mutex

Mutex (mutual exclusion) is a locking mechanism of the operating system to

protect shared resources. It ensures thread synchronization. Resource (e.g.

variable, a bunch of memory, etc.) might be locked by mutex; it can be then

24

modified only by the thread which has locked it. Mutex operations in mbed OS

are: lock, trylock and unlock. These operations can be called only by threads.

The following figure (Figure 10) presents mutex mechanism and its operations.

Figure 10. Mutex mechanism (mbed 2017)

c) Semaphore

Semaphore is a mechanism for sharing a pool of resources of the same kind

between multiple threads. The number (size of the pool) of resources which

will be protected by semaphore is defined via its constructor. There are two

operations associated with the semaphore: wait and release. Calling wait

operation will appropriate one resource, or it will wait if the resource is not

available. The release operation will release the resource so that it can be

used by the other threads. Figure 11 shows how multiple threads can control

the access to shared resources using the semaphore.

Figure 11. Semaphore mechanism (mbed 2017)

d) Signal

A signal is a simple tool for notification of events between threads. There are

only two calls defined: wait and signal. The parameter of this calls is a flag

25

which is the 4-byte integer. If one thread is waiting for a particular flag, other

threads can interrupt that waiting by calling the signal on the same flag.

e) Queue and Mail

These classes provide a safe way of data transfer between threads. The data

transfers between threads are often also referred to as messages. The queue

allows sending messages which are 4-byte long (pointers or integers). “Mail

works like a queue, with the added benefit of providing a memory pool for

allocating messages (not only pointers or integers)” (mbed 2017).

In addition to RTOS specific functions, mbed OS has other built-in functions

which might be used for task management:

a) Event loop

The event loop is a mechanism that can be used to defer the execution of the

code to a different context. “In particular, a common use of an event loop is to

postpone the execution of a code sequence from an interrupt handler to a user

context” (mbed 2017). The ISRs are not thread-safe, thus it is recommended

to divide them into two sections. One section, which is a part of ISR, should

contain only time critical operations. The second section, the execution of

which could be scheduled (some delay tolerance), should be deferred from

ISR to user context using the event loop.

b) Time-based classes

The ticker class serves for calling a function repeatedly in a specified time

interval. For calling a function only once after a specified delay, there is the

Timeout class available. The last time-based class for task management is a

Wait. “When Wait is called inside thread, the OS scheduler will put the current

thread in waiting state, allowing another thread to execute” (mbed 2017). It is

worth mentioning that there are other classes which work with the time,

however, their functionality is not for task management. These classes are

Time and Timer. Time class provides an interface of hardware real-time clock

26

and it has functions for date conversions and formatting. For measurement of

time intervals, there is Timer class available. Timer uses 32-bit signed integer

for counting microsecond steps (mbed 2017).

3.2.2 I/O and interfaces

The following table is an outline of API abstraction in mbed OS:

Table 1. I/O API in mbed OS (mbed 2017)

Type Class Description

Analog I/O AnalogIn

AnalogOut

read the voltage of an analog input pin

set the voltage of an along output pin

Digital I/O DigitalIn

DigitalOut

DigitalInOut

read a single digital input pin

write to a single digital output pin

read and write to a single bidirectional digital pin

Bus I/O BusIn

BusOut

BusInOut

read multiple pins as a single value

write a single value to multiple pins

read and write to multiple bidirectional pins

Port I/O PortIn

PortOut

PortInOut

read pins from port as a single value

write a single value to pins in the port

read and write to multiple bidirectional pins in the

port

Interrupt InterruptIn triggers an event when a digital input pin

changes value

PWM PwmOut controls the frequency and duty cycle of PWM

mbed OS has also built-in drivers for following digital interfaces:

Table 2. Digital interfaces API in mbed OS (mbed 2017)

27

Interface Class

UART Serial

SPI SPI, SPISlave

I2C I2C, I2CSlave

CAN CAN

3.2.3 Networking

The mbed OS has built-in drivers for Ethernet and Wi-Fi modules of many

development boards. Communication with those modules is accomplished by

corresponding classes - EthernetInterface and WifiInterface. As a default

TCP/IP stack, mbed OS uses a lightweight open source project designed for

embedded devices - lwip. On the top of the TCP/IP stack, mbed OS provides a

simple socket API. “It’s a class-based interface, which should be familiar to

users experienced with other socket APIs” (mbed 2017). The socket API

works in the same way with both of the interface classes mentioned above.

There are three important classes in socket API:

1) UDPSocket

“The UDPSocket class provides the ability to send packets of data over UDP,

using the sendto and recvfrom member functions. Packets can be lost or

arrive out of order, so we suggest using a TCPSocket (described below) when

guaranteed delivery is required” (mbed 2017).

2) TCPSocket

“The TCPSocket class provides the ability to send a stream of data over TCP.

TCP sockets maintain a stateful connection that starts with the connect

member function. After successfully connecting to a server, you can use the

send and recv member functions to send and receive data (similar to writing

or reading from a file)” (mbed 2017).

28

3) TCPServer

“The TCPServer class provides the ability to accept incoming TCP

connections. The listen member function sets up the server to listen for

incoming connections, and the accept member function sets up a stateful

TCPSocket instance on an incoming connection” (mbed 2017).

3.2.4 Development environment

There are basically three possible options, how microcontroller’s software

based on the mbed OS can be developed. The first development option is

using the mbed CLI. “mbed CLI is the name of the ARM mbed command-line

tool, packaged as mbed-cli. mbed CLI enables Git- and Mercurial-based

version control, dependencies management, code publishing, support for

remotely hosted repositories (GitHub, GitLab and mbed.org), use of the ARM

mbed OS build system and export functions and other operations” (mbed

2017). The mbed CLI allows a simple import of libraries from the mbed

repository, compilation using one of the available compilers (GCC ARM, ARM

Compiler 5, IAR), and testing and source control, while the developers can still

use their favorite text editor. The practical part of this thesis was developed

using mbed CLI with a Geany text editor.

The second option is called mbed Online Compiler. It is the simplest way how

to develop software with the mbed OS. mbed Online Compiler is in-browser

IDE which provides the same functionality as mbed CLI with text editor added.

Using the mbed Online Compiler avoids the need to install anything on the

local computer, which is its main advantage.

The third option involves third-party toolchains. It is possible to export project

files from mbed CLI and mbed Online Compiler to many of available IDEs. If

the developer does not use IDE, or it is not supported, there is also the

possibility to generate GNU Makefile. Then it can be used with one of the

three mentioned compilers above. The list of supported IDEs (mbed 2017) is

as follows:

29

● Keil uVision5

● IAR Systems

● Eclipse CDT/GNU ARM

● Atmel Studio

● Simplicity Studio

● DS-5

● LPCXpresso

● Kinetis Design Studio

● CooCox CoIDE

● e2studio

30

4 Network security

The internet is a place full of threats. The connection of objects to the internet

makes them possible victims for attackers. When connecting objects to the

internet, it is very important to ensure that the transmitted data cannot be read

by unwanted subjects and that parties of communication are what they claim

to be. There is a standardized way how to ensure security over the network. It

is called Transport Layer Security (TLS) and it is used in practical part of this

thesis to provide data protection and the identity of an IoT device.

4.1 TLS

4.1.1 Roles

TLS is a cryptographic protocol that provides security for devices connected to

the network. TLS is a follower of the older SSL protocol and its newest version

is TLS 1.2. “The primary goal of the TLS protocol is to provide privacy and

data integrity between two communicating applications“(RFC 5246 2008). It is

commonly used to secure web protocol (HTTPS), email communication, VoIP,

Instant Messaging, remote login (SSH), etc. When the connection is secured

by TLS, it has one or more of the following properties (Wikipedia 2017):

a) Privacy

The privacy of data is reached by encryption. Encryption is a mechanism

which encodes information or messages so that only authorized parties can

access it. “Encryption works by using a mathematical formula called a cipher

and a key to convert readable data (plain text) into a form that others cannot

understand (ciphertext). The cipher is the general recipe for encryption, and

the key makes the encrypted data unique. Only parties with the unique key

and the same cipher can unscramble it” (Sans 2011). For encryption, TLS

offers several symmetric cipher algorithms, e.g., AES, Blowfish, Camellia,

DES/3DES, XTEA, RC4 (mbed TLS 2017).

31

b) Identity

The identity of communicating parties is achieved by public-key cryptography.

This property is optional, however, it is usually used at least by one party. TLS

also uses public-key cryptography for the exchange of symmetric encryption

key. Examples of these public-key cryptographic algorithms are RSA, DSA, D-

H.

c) Integrity

For integrity check, TLS inserts to each message an authentication code

(MAC). It is a mechanism that makes it possible to determine whether the data

has been changed by an unwanted subject. MAC is a sort of checksum and it

uses hash functions (e.g., SHA-1).

“One advantage of TLS is that it is application protocol independent. Higher-

level protocols can layer on top of the TLS protocol transparently” (RFC 5246

2008). Application protocol independent means that TLS is inserted between

the application protocol (HTTP, SMTP, etc.) and the transport protocol (TCP).

Figure 12 illustrates that TLS is represented as a part of the application layer

in the common TCP/IP model.

Figure 12. ISO/OSI and TCP/IP models with TLS (Luedtke 2012)

32

4.1.2 Structure

“The TLS protocol is composed of two layers: the TLS Record Protocol and

the TLS Handshake Protocol” (RFC 5246 2008).

a) TLS Record Protocol

This layer communicates directly with the transport layer of TCP/IP model. The

role of this layer is to process data from higher layers and to transmit them to

the transport layer. The data processing operations performed by this layer are

listed below (RFC 5246 2008):

● fragmentation/defragmentation

● compression/decompression

● MAC computation and verification

● encryption/decryption

b) TLS Handshake Protocol

When the communication between a client and server begins, they must

exchange and agree on the protocol version and cryptographic algorithms.

The public-key encryption is used to transfer shared keys and optionally, one

or both of communicating peers are authenticated. These procedures are

handled by TLS Handshake Protocol, which works on the top of TLS Record

Protocol. The steps involved in TLS Handshake Protocol (RFC 5246 2008) are

listed as follows:

● “Exchange hello messages to agree on algorithms, exchange random

values, and check for session resumption.

● Exchange the necessary cryptographic parameters to allow the client

and server to agree on a premaster secret.

● Exchange certificates and cryptographic information to allow the client

and server to authenticate themselves.

● Generate a master secret from the premaster secret and exchanged

random values.

33

● Provide security parameters to the record layer.

● Allow the client and server to verify that their peer has calculated the

same security parameters and that the handshake occurred without

tampering by an attacker” (RFC 5246 2008).

Figure 13. TLS Handshake Protocol (Zoompf 2017)

If the handshake was successful, the TLS Record Protocol will set up the

exchanged parameters and the TLS session is created. Now, the application

protocol (HTTP, etc.) can start using the secured TLS Record Layer directly.

4.1.3 Session resumption

The TLS Handshake Protocol involves the usage of an asymmetric cipher

(public-key cryptography). Asymmetric cipher algorithms are more difficult than

symmetric and require a more computing power. This brings a significant

latency to the communication. For example, web browsers usually make

multiple requests to the server in a row. Each request performs its own

handshake and if there are more clients connecting to the same server, it will

overload the server and will lead to DoS. In order to increase computational

performance and to prevent DoS, TLS contains a mechanism called session

resumption. This mechanism ensures a much faster handshake because

34

performing the asymmetric cipher algorithm at each request is no longer

needed. There are two ways of session resumptions in TLS (Lin, Z. 2015).

a) Session ID resumption

“Resuming an encrypted session through a session ID means that the server

keeps track of recently negotiated sessions using unique session IDs. This is

done so that when a client reconnects to a server with a session ID, the server

can quickly look up the session keys and resume the encrypted

communication” (Lin, Z. 2015). The disadvantage of session resumption by

session ID is that the server has to store information according to the

particular session. This disadvantage takes place only in cases where there is

a significant number of clients using the session resumption of which the

server has to keep track.

b) Session ticket resumption

In order to prevent the server from keeping session information to save its

memory, an alternative to session ID resumption was developed. It is called

session ticket resumption and the principle of this way is that the session

information is stored on the client side instead of the server. “A session ticket

is a blob of a session key and associated information encrypted by a key only

known by the server. The ticket is sent by the server at the end of the TLS

handshake. The clients supporting session tickets will cache the ticket along

with the current session key information. Later the client includes the session

ticket in the handshake message to indicate it wishes to resume the earlier

session. The server on the other end will be able to decrypt this ticket, recover

the session key and resume the session” (Lin, Z. 2015).

35

4.2 Entropy

Cryptographic algorithms use random number generators for the creation of

keys. The whole power of cryptographic algorithms lies in the randomness of

numbers provided by random number generators. Entropy is a term which

expresses unpredictability or randomness of some system. Random number

generators use entropy sources to generate random numbers. If the random

number generator uses weak entropy, its output can be predicted and the

security of the system can be compromised by attackers. Random number

generators can be divided into two categories (Hoffman, Ch. 2014):

● Pseudo Random Number Generator (PRNG)

● True Random Number Generator (TRNG)

PRNGs use deterministic algorithms with some kind of seed to generate the

random number. Since the deterministic algorithms are used, the number

which was generated is not truly random. The output sequence of PRNG can

be predicted, which makes it unusable in cryptographic algorithms. On the

other hand, PRNGs are relatively fast and they can find their usage in many

other applications (games, simulations, etc.) (Hoffman, Ch. 2014).

For cryptographic purposes, TRNGs are used. TRNGs produce sequences of

numbers which are unable to predict. They are also called nondeterministic

RNGs. TRNG depends on some unpredictable entropy source outside of any

human control (STMicroelectronics 2016). These entropy sources are usually

some physical events or phenomena, which behave randomly. As an example

of these sources might be cosmic radiation, radioactive decay of an atom, and

radio frequency noise. Due to the physical nature of these entropy sources,

they are usually presented by some electronic device. Another example might

be how Linux kernel generates a random number. Linux kernel combines

multiple sources of entropy such as keyboard and interrupt timings, hard drive

operations, noise in audio input, etc., which are hardly-predictable (Linux

kernel 2005).

In general, the generation of true random number takes more time than the

36

generation of the pseudo random number. This is because truly random

numbers are generated by measuring entropy, not with computing by some

algorithm as it is done in pseudo random number generators. Slow generation

of true random numbers would be especially true in microcontrollers, which

suffer from lack of entropy sources in comparison with personal computers.

Fortunately, microcontrollers designated for the usage in applications where

security is demanded contain hardware modules for true random number

generation. The microcontroller, which was chosen for the practical part of this

thesis (STM32F767ZI) contains a true random number generator based on an

analog circuit. “This circuit generates a continuous analog noise that will be

used on the RNG processing in order to produce a 32-bit random number. The

analog circuit is made of several ring oscillators whose outputs are XORed.

The RNG processing is clocked by a dedicated clock at a constant frequency

and for a subset of microcontrollers, it can also be clocked with a different

value of frequency” (STMicroelectronics 2016). The hardware TRNG module

in STM32F767ZI is used in the practical part of this thesis as a source of

random numbers for TLS.

4.3 HTTPS

The device developed in this thesis communicates with the surrounding world

through HTTPS, which is HTTP protocol secured by SSL/TLS mentioned

in section 4.1. The default TCP/IP port of HTTPS communication is 443

and the URI uses ‘https’ protocol identifier instead of ‘http’. HTTPS protocol

was chosen for this thesis because it gives enough security and it is relatively

simple to implement on embedded systems. However, the main reason why

HTTPS was chosen is that it is very universal. The device can be controlled

directly through the web browser or mobile application using a uniform API.

The web browser application used for the control of the IoT device was

implemented as a part of this thesis.

37

5 Implementation

5.1 System architecture and technologies

As mentioned in the previous chapter, the HTTPS protocol was chosen for the

communication between the client and server. The server is implemented on a

Nucleo board with mbed OS, and the board exposes its functionality to the

client through the RESTful API. The data exchanged between the client and

server is in JSON format. The mentioned technologies were chosen because

they are relatively simple and easily integrated into many of the modern

applications. The client application developed in this thesis is web-browser

based, however, the usage of the mentioned technologies allows to easily

implement alternative client applications on the other platforms such as

Android, iOS, etc. Figure 14 represents the top layer architecture of the

system:

Figure 14. Diagram of system architecture

CLIENT
(web browser)

SERVER
(Nucleo board)

Web application

LEDs

Sensors

REST + JSON

HTTPS

38

The web application is not provided to the client by a server implemented on

the Nucleo board. The role of that server is just to expose its functionality by

the RESTful API to the client. As shown in Figure 14, the web application is

not a part of the server nor even a client. The web application might be stored

on the client side, however, it might also be served to the client by an external

web server.

“A RESTful API is a remote API that follows the REST style of software

architecture” (McVetta 2012). REST stands for representational state transfer.

The REST architecture can be used with other protocols than HTTP, however,

it is mostly used with it. The REST API exposes resources of the server in a

logical way, identified by the uniform resource identifier (URI). The URI

structure of REST API usually represents the logical layout of the resources on

the server side. For example, on a file server, it might represent the directory

structure of the underlying file system. Data transferred by REST API is

represented in various formats. The most common formats are JSON and

XML which can easily model the objects of an underlying system. The REST

API is stateless, which is a very important characteristic. Stateless means that

the server does not keep information about the client. “Each request from any

client contains all of the information necessary to service the request, and any

session state is held in the client” (McVetta 2012). The REST API used on the

web uses HTTP methods corresponding to CRUD operations. CRUD

operations with corresponding HTTP methods are listed as follows

(RestApiTutorial 2017):

Table 3. CRUD operations and corresponding HTTP methods

CRUD Operation HTTP Method

Create POST

Read GET

Update PUT / PATCH

Delete DELETE

39

The following table, Table 4 shows an example on how IP addresses are

manipulated in a server’s whitelist using REST API (more details on whitelist

implementation will be given further in this thesis).

Table 4. REST API for manipulation of IP addresses in server’s whitelist

HTTP
Method

URI Description

GET https://server/ip Get list of all IP addresses in

whitelist

POST https://server/ip/192.168.1.1 Add IP address 192.168.1.1

to whitelist

DELETE https://server/ip/192.168.1.1 Remove IP address

192.168.1.1 from whitelist

PUT /
PATCH

 not implemented

The data transferred between client and server using HTTP protocol is in the

text form. The client application in this thesis is web-browser based and is

programmed in JavaScript. It is very favorable to use JavaScript Object

Notation (JSON) format for data exchange between the client and server

because JSON is just a text format and JavaScript objects are easily

converted to/from JSON. “JSON (JavaScript Object Notation) is a lightweight

data-interchange format. It is easy for humans to read and write. It is easy for

machines to parse and generate” (JSON 2017). “JSON is a text format that is

completely language independent but uses conventions that are familiar to

programmers of the C-family of languages, including C, C++, C#, Java,

JavaScript, Perl, Python, and many others. These properties make JSON an

ideal data-interchange language” (JSON 2017). The implementation of JSON

in the server on Nucleo board is not a full implementation according to official

document (RFC 7159) describing JSON format. Many of available open-

source JSON parsers are too heavy for use in microcontrollers and use

dynamic memory allocation. On account of the fact that the format of all JSON

40

objects received by the server is known in a compile-time, a custom simplistic

JSON parser was developed for the purposes of this thesis. This custom

parser supports only non-nested key-value pairs, while it still maintains JSON

formatting. An example of the JSON data acceptable by the server in this

thesis can be seen in Figure 15:

{

 "led1":true,

 "led2":false,

 "led3":true

}

Figure 15. Example of JSON used in the server developed on Nucleo board

5.2 Software on Nucleo board

5.2.1 Threads

The software on Nucleo board performs two tasks: serving content to the client

via HTTPS, and reading and storing sensor values. The thread mechanism of

mbed OS was utilized to attain multitasking. Currently, there are three threads

implemented in software of Nucleo board:

● Main thread

● Server thread

● Sensor thread

The main thread is a thread which must be present in every mbed OS

application. This thread is automatically executed after a system boot-up by

mbed OS. The only role of this thread is to initialize global variables and to

execute another two threads (Server and Sensor thread). The whole

networking logic is implemented in the Server thread. The sensor thread reads

the sensor’s values at the specific time interval and stores them in the SD

card’s flash memory. Each of these threads is divided into two parts -

initializations and infinite loop.

41

5.2.2 TCP Sockets

mbed OS socket mechanism was used for networking. There are two socket

classes used to accomplish client-server communication. One class

represents server (TCPServer), the other one represents the client

(TCPSocket). Before the sockets can be used, the Ethernet interface has to be

configured and connected. These steps are performed in the initializations part

of the Server thread. The configuration of Ethernet interface involves setting

up of network parameters such as IP address, network mask and gateway.

After the network interface has been successfully configured and connected, it

can be used by the TCPServer socket by calling the open method with that

network interface as a parameter. After opening this socket, it has to be bound

to the configured IP address and a TCP port. As soon as the application layer

used on the top of this socket mechanism is HTTPS, port 443 is used. When

the TCPServer socket has been successfully bound to an IP address and a

TCP port, it can start listening for a client connection. Listening is realized in

the infinite loop of the Server thread. When the client has connected to the

server, the accept method will set-up the TCPSocket instance for the client

and save the client’s IP address in the SocketAddress structure. Now, the

communication with the client can be done by calling recv and send methods

on the client’s TCPSocket instance. The following chart represents the socket

utilization:

Figure 16. Flowchart of socket mechanism utilization in Server thread

42

5.2.3 mbed TLS Integration

The integration of mbed TLS into the server application was realized in four

steps:

1) Inclusion of mbed TLS header files

The first step was to include the needed mbed TLS header files in the main

source file of the server application. The included files are listed in the

following table:

Table 5. Included header files with description

Header file Description

ssl.h contains the most important functions for SSL/TLS

entropy.h implements entropy accumulator

ctr_drbg.h functions and macros for random number generation

pk.h functions and macros for public and private keys handling

x509_crt.h functions and macros for certificate handling

2) mbed TLS initialization

The initialization of mbed TLS is performed in the initializations part of the

Server thread. This initialization involves the following steps:

a) creation and initialization of mbed TLS structures

b) certificate and private key parsing (they are stored in an internal flash

memory of microcontroller)

c) setting up parsed certificate and key to be used by TLS

d) seeding and connection of entropy source to mbed TLS drbg random

number generator

e) setting up random number generator callback for TLS functions

f) configuration of mbed TLS in server mode on the transport layer

g) resetting TLS connection

43

The connection of hardware TRNG to mbed TLS entropy accumulator is

realized by the implementation of glue functions and the indication of TRNG

presence by “TRNG” flag in “targets.json” file (mbed OS file which describes

each supported platform and its features). Luckily, these steps were done for

Nucleo-F767ZI board by mbed OS developers, therefore the hardware TRNG

will be used by mbed TLS entropy accumulator by default.

3) Implementation of callbacks for mbed TLS

As mentioned in section 4.1.1, SSL/TLS is built on top of the transport layer of

the TCP/IP model. The connection between the TLS and transport layer is

realized by two callback functions – the first for data receiving, the second for

data sending. As soon as the socket mechanism was used, these callbacks

are connected to the client instance of the TCPSocket returned by the accept

function mentioned in the previous section. The type of these callbacks is

defined in the “ssl.h” file. Figure 17 shows an implementation of those callback

functions:

static int ssl_recv(void *socket, unsigned char *buf, size_t len)

{

 TCPSocket *client = (TCPSocket *)socket;

 int count = client->recv(buf, len);

 return count;

}

static int ssl_send(void *socket, const unsigned char *buf, size_t len)

{

 TCPSocket *client = (TCPSocket *)socket;

 int count = client->send(buf, len);

 return count;

}

 Figure 17. Implementation of callbacks connecting mbed TLS and socket

4) Setting up TLS binary input/output and performing TLS handshake

After the client has been connected, the TLS connection to the client’s socket

44

can be realized by calling the function “mbedtls_ssl_set_bio” which is declared

in “ssl.h”. This function takes as parameters the client’s socket and sends and

receives the callbacks shown in Figure 17. The last required step to ensure

encrypted communication is to perform a handshake by calling

“mbedtls_ssl_handshake” function. If the handshake was successful, a

secured channel was created between the client and server. Now, there are

two functions available for the exchange of data between the client and server,

which basically replaced the socket methods for data sending and receiving

(send and recv).

These functions are “mbedtls_ssl_read” and “mbedtls_ssl_write”. The HTTP

server was implemented on top of these functions which makes it HTTPS.

Figure 18 shows the socket utilization with added TLS:

Figure 18. Flowchart of socket mechanism utilization with TLS

5.2.4 HTTP Server

The HTTP server implemented in this thesis consists of two important

functions. The first function is called “http_parser” and its role is to parse the

incoming request from a client and separate it into several elements. These

elements are headers array, HTTP method, URI and content. After the request

was parsed to these elements, the second important function is executed with

those elements passed as parameters. This second function is called router

and its role is to execute specific functions assigned to a particular URI path.

These functions then handle the incoming requests and return the response

45

with HTTP status code. As an example of URI to which a specific function is

assigned might be “https://server/time”. When the router receives a URI with a

time path, it will execute the “timeRoute” function responsible for time handling

(getting and setting). Figure 19 represents the flow of the HTTP server

implemented in this thesis (this figure also represents Transfer data block in

Figure 18.):

Figure 19. Flow of HTTP server implementation

5.2.5 IP whitelist and user authentication

For an increase of a system’s security, IP whitelist was implemented. IP

whitelist is a list of IP addresses, the only ones allowed to communicate with

the server. Incoming communication from IP addresses not listed in the IP

whitelist is dropped. This measure could somewhat improve the server’s

resistance to possible DDoS attacks. The capacity of the IP whitelist is

configured at the compile time and is not allowed to be modified in runtime.

One “master” IP address also has to be configured at the compile time. The

management of other IP addresses is realized at the runtime by REST API

shown in Table 4. The IP lookup in the whitelist is performed right after the

client has been connected to the server. It is important to place the IP lookup

before any TLS functionality, because TLS operations consume the CPU

most. Figure 20 shows how the whitelist was inserted into the Server thread

loop:

46

Figure 20. Socket mechanism utilization with IP whitelist

The authentication was solved using HTTP Basic Authentication mechanism

(BA). BA is a very simple mechanism which does not require the server to

keep session information about a logged user. The principle of this mechanism

lies in appending of the BA header to each user’s request which should be

authenticated.

BA header contains a username and password encoded in base64 format.

When the server receives any request, it will loop through the request headers

and try to find a BA header. If the server finds the BA header, it will perform

the user lookup in a similar way how IP whitelist works. If the request does not

contain the BA header, or lookup of the username and password failed, the

server will respond with HTTP status code 401 (Unauthorized).

Figure 21. Added BA mechanism into HTTP server

47

5.2.6 Sensors

For demonstration purposes, two sensors were connected to the Nucleo

board. These sensors were HTS221 (temperature and humidity) and LPS25H

(atmospheric pressure and temperature). Both of these sensors are a part of

the board designed for Raspberry Pi computer - Sense Hat. Even though this

board is designed for the Raspberry Pi, is was convenient to use it also in this

thesis because it eases the connection of sensors. Both of these sensors

support the connection via I2C bus and they are connected on the same bus

on the Sense Hat board. The I2C bus is master-slave and it uses addressing

via transferred data through it. It gives away the need for addressing/chip-

enable signals via another wires. The only necessary wires for the connection

of those sensors to Nucleo board were SDA (serial data), SCL (clock), VCC

and GND. SDA and SCL signals were connected to VCC through internal pull-

up resistors of MCU. mbed OS contains a driver for I2C bus and also on the

mbed OS repository, there were open-source drivers available for the

mentioned sensors. Thanks to mbed OS, it was very simple to use those

sensors without much programming and datasheet reading. Figure 22 shows

how sensors are connected to the Nucleo board. Pull-up resistors are not

shown because they are inside MCU.

Figure 22. Connection of sensors to Nucleo via I2C bus

In the designed software in this thesis there is a separate thread designated

for reading and storing values of these sensors. The values of the sensors are

read in a specific time interval and stored to the file on the SD card connected

through the SPI interface. mbed OS repository provides a driver for the SD

card, and it has also implemented a FAT file system with POSIX compatible

48

interface. The data read by sensors is exposed through REST API in two

ways. The first way serves records which were stored in the file on the SD

card by the above-mentioned thread. The data stored in the file are in the

following CSV format: “unix_time, temperature, humidity, pressure”. This

format makes it convenient to read records also with some programs on a PC.

The second way does not use the stored data. This way will perform a reading

of the sensor’s values right after the request, thus, this way gives only the

actual data. Table 6 shows the implemented API for reading data of sensors.

Table 6. Implemented API for sensors

HTTP
Method

URI Description

GET https://server/sensor read and get data from all

sensors

GET https://server/sensor/temp read and get temperature

GET https://server/sensor/humi read and get humidity

GET https://server/sensor/press read and get atmospheric

pressure

GET https://server/file/[filename] fetch the whole csv file

The following figure shows an example of the returned JSON data of the

sensors by API:

{

 "temp":25.123150,

 "humi":35.781921,

 "press":1000.176758

}

Figure 23. JSON data returned by calling GET on “https://server/sensor” route

49

5.3 Client application

A simple and intuitive web application was developed to provide a user

interface for Nucleo server. This application communicates with Nucleo board

over a secured REST API, and modern web technologies were used to

develop it. The heart of the whole application is the Angular2 framework. The

Angular2 framework uses HTML, CSS and TypeScript language which is a

modern scripting language derived from JavaScript developed by Microsoft,

and its main advantage is the support for static typing. It allows developers to

write cleaner and more maintainable code in comparison with JavaScript.

Since web browsers do not support the execution of TypeScript, it had to be

translated to JavaScript using a command line tool called Angular CLI that

also contains other functionalities such as project and code generation,

bundling, automated testing and web application serving.

For the user interface (UI) elements, the PrimeNG library was used. This

library was created especially for the Angular2 framework. It comes with a

great number of UI elements such as buttons, tables, dialogs, input fields,

headers, charts, etc. PrimeNG also contains multiple graphical themes for

free. The UI of the client application is basically composed of two parts:

connection header and dashboard. The connection header contains three

elements. The first element is an input filed for Nucleo server’s URI with the

save button. The second element is the credentials form for the username and

password. The third element is a status indicator. When the users set up their

credentials and URI of Nucleo server, the save button can be pressed. After

the save button has been pressed, the user’s credentials and the server’s URI

are stored in the browser’s memory. Since this moment, every HTTP request

made from this application will be directed to the server’s URI and will contain

the BA header with the encoded user’s credentials. Pressing the save button

will also perform the check request. If the user’s credentials are correct and

the server is alive on a particular URI, the status indicator will show the status:

“OK”. Figure 24 is a screenshot of the connection header:

50

Figure 24. Screenshot of connection header from client web application

The second part of UI is the dashboard. On top of the dashboard, there is a

tab view component placed, through which the content of dashboard can be

switched. The content under each tab usually represents the functionality of

the Nucleo server exposed by a specific URI path. The following figure is a

screenshot from the dashboard of the web application. The tab opened on the

screenshot is called Access control and it utilizes the functionality of Nucleo

server on “ip” path. There is the possibility to add and remove IP addresses to

and from IP whitelist mentioned in section 5.2.5.

Figure 25. Dashboard with IP whitelist opened

51

6 Conclusion

6.1 Issues

The development of the software for the Nucleo board faced several issues.

In the first version of the server’s software, TLS integration did not use the

session resumption. TLS handshake involves a use of public-key cryptography

which causes a significant load of the CPU. When a 2048-bit private key was

used, the TLS handshake with the Nucleo board took more than two seconds.

It was not acceptable to perform a full TLS handshake in every request

because of a huge latency. This issue was solved by adding session

resumption to TLS handshake. This measure gave away the need for

performing public-key computation by every request. Now, the full TLS

handshake is performed only by the first request. Every other request uses

cached keys, and there is no more a noticeable latency. The integration of the

TLS session resumption was relatively easy, the only need was to include

“ssl_cache.h” from mbed TLS library and insert three lines of code. Another

issue was caused by HTTP access control mechanism (CORS) implemented

in web browsers. For security reasons, the web browsers do not allow to

perform HTTP requests to the server which is different from the server that

provided them the main content. If requests to a different server are needed,

the server must let the the browser know that it allows those requests. As soon

as the content of the user application developed in this thesis was served from

a different source, the web browser blocked all requests to the REST API on

the Nucleo board. A solution to this issue was also relatively simple. The only

necessary feature was to add special headers to the server’s responses which

tell the web browser that browser can access it. The added headers to the

server’s responses are listed as follows:

● Access-Control-Allow-Origin: *

● Access-Control-Allow-Methods: GET, POST, PUT, DELETE

● Access-Control-Allow-Headers: Authorization,...

52

6.2 Discussion

While the encrypted network communication was implemented in an IoT

device, it still cannot be considered as fully secure. There are other possible

attacks which could compromise the functionality of the IoT device. As an

example might be a Distributed Denial-of-Service (DDoS) attack. The principle

of this attack lies in repetitive sending of useless requests to the server by

multiple hosts thus causing the overload of the server. Then, the server will

become unavailable for the real user. This kind of attack was considered while

implementing the software of the server. The implemented IP whitelist was an

attempt to eliminate this kind of attack but in a case of a real attack, it would

not help so much. This IP whitelist is working on top of the transport layer,

which is not a very good approach. A slightly better way would be if the IP

whitelist was implemented on the lower layer of the TCP/IP model.

Another big question for discussion would be the design of the used system

architecture. In the current design, the IoT device acts like a server. This

architecture might be useful in cases when there are no other devices

performing similar tasks present and the device is not a part of a bigger

network of IoT devices. If the device should be a part of some network (e.g.

temperature sensors in every room of a building), a more clever approach

would be if the single device were a client and it were pushing its data to some

central server. With this question also comes another uncertainty about the

chosen application protocol. There are several protocols more suitable for IoT

than HTTP protocol. Examples of better alternatives would be CoAP, LWM2M,

MQTT or XMPP. Since these protocols are less heavy for network transport,

CPU and memory, it would not be so easy to connect a web application to

control an IoT device through them. For example, CoAP protocol is very

similar to HTTP protocol, however, the straight connection from the web

browser to the device using CoAP is still not possible. CoAP uses UDP

protocol instead of TCP. To achieve a connection between an CoAP device

and a web browser, the presence of some proxy server is necessary.

53

6.3 Summary

The purpose of this thesis was to develop an IoT application with secured data

transfer over the network. The first part of the thesis analyzed the available

ARM cores on the market which are powerful enough to ensure encryption

and security. This part also gave a brief overview of the ARM architecture,

which needs to be understood when developing software for it. The next part

of the thesis focused on software development for microcontrollers and how

multiple software strategies can be utilized on it. There is also a description of

mbed OS - the full-featured real-time operating system. This system was used

to develop a secure IoT application on top of it. Security on the network was

ensured by adding encryption and basic authentication mechanism present in

the HTTP protocol. Encryption was realized by Transport Layer Security (TLS)

described in Chapter 4. The result of this thesis is a working device connected

to the internet through an encrypted channel. This device is controlled by

REST API, and a simple web application using that API was also developed.

The most challenging part of this thesis was the theoretical research. I had to

read through many documents from the ARM company. ARM architecture is

relatively complicated and it was difficult for me to extract the most important

information about it. Another difficult task was to find information about and

describe common software strategies. However, these obstacles were

overcome and now I have much stronger knowledge in the area of

microcontrollers. I am particularly glad that I got to know mbed OS, which

rapidly simplified the whole process of software design and programming. I am

looking forward to using it again.

The source code of software for the Nucleo board and web application which

was developed in this thesis can be accessed at the following link:

https://www.github.com/spacive/restiot

https://www.github.com/spacive/restiot

54

References

Heath, S. 2002. Embedded Systems Design.

Accessed on 3.4.2017. Retrieved from:

https://books.google.fi/books?id=BjNZXwH7HlkC&pg=PA11&redir_esc=y#v=o

nepage&q&f=false

Choudhary, H. Difference between Microprocessor and Microcontroller.

Accessed on 4.4.2017. Retrieved from:

https://www.engineersgarage.com/tutorials/ difference-between

microprocessor-and-microcontroller

Engineersgarage, 2017. Accessed on 4.4.2017. Retrieved from:

https://www.engineersgarage.com/sites/default/files/imagecache/Original/wysi

wyg_imageupload/1/8051-Architecture_4.gif

ARM, 2017. Accessed on 6.4.2017. Retrieved from:

http://www.arm.com/products/processors/cortex-a

ARM, 2010. Accessed on 19.4.2017. Retrieved from:

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_

m4_r0p0_trm.pdf

Yiu, J. 2010. The Definitive Guide to the ARM® Cortex-M3. Accessed on

12.4.2017. Retrieved from:

https://www.eecs.umich.edu/courses/eecs373/labs/refs/M3%20Guide.pdf

STMicroelectronis, 2017. Accessed on 12.4.2017. Retrieved from:

http://www.st.com/en/microcontrollers/stm32f767zi.html

IC Insights, 2013. MCU Market on Migration Path to 32-bit and ARM-based

Devices. Accessed on 12.4.2017. Retrieved from:

http://www.icinsights.com/news/bulletins/MCU-Market-On-Migration-Path-To-

32bit-And-ARMbased-Devices/

https://books.google.fi/books?id=BjNZXwH7HlkC&pg=PA11&redir_esc=y%23v=onepage&q&f=false
https://books.google.fi/books?id=BjNZXwH7HlkC&pg=PA11&redir_esc=y%23v=onepage&q&f=false
https://www.engineersgarage.com/tutorials/%20difference-between%20microprocessor-and-microcontroller
https://www.engineersgarage.com/tutorials/%20difference-between%20microprocessor-and-microcontroller
https://www.engineersgarage.com/sites/default/files/imagecache/Original/wysiwyg_imageupload/1/8051-Architecture_4.gif
https://www.engineersgarage.com/sites/default/files/imagecache/Original/wysiwyg_imageupload/1/8051-Architecture_4.gif
http://www.arm.com/products/processors/cortex-a
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
https://www.eecs.umich.edu/courses/eecs373/labs/refs/M3%20Guide.pdf
http://www.st.com/en/microcontrollers/stm32f767zi.html
http://www.icinsights.com/news/bulletins/MCU-Market-On-Migration-Path-To-32bit-And-ARMbased-Devices/
http://www.icinsights.com/news/bulletins/MCU-Market-On-Migration-Path-To-32bit-And-ARMbased-Devices/

55

Ayav, T. 2017. Accessed on 18.4.2017. Retrieved from:

http://web.iyte.edu.tr/~tolgaayav/courses/ceng523/lecture2-RTOS1.pdf

Technopedia, 2017. Accessed on 19.4.2017. Retrieved from:

https://www.techopedia.com/definition/3344/cooperative-multitasking

Daintith, J.; Wright E. 2008. A Dictionary of Computing. Accessed on

20.4.2017. Retrieved from:

http://www.oxfordreference.com/view/10.1093/acref/9780199234004.001.0001

/acref-9780199234004-e-4360?rskey=YZo8xo&result=1

Keil, 2017. RTX Real-Time Operating System. Accessed on 20.4.2017.

Retrieved from:

http://www.keil.com/arm/rl-arm/kernel.asp

mbed, 2017. Accessed on 21.4.2017. Retrieved from:

https://docs.mbed.com/docs/mbed-os-api-

reference/en/latest/APIs/tasks/rtos/#mutex

Sans, 2011. Understanding Encryption. Accessed on 25.4.2017. Retrieved

from:

https://securingthehuman.sans.org/newsletters/ouch/issues/OUCH-

201107_en.pdf

Dierks, T.; Rescorla, E. 2008. RFC 5246. Accessed on 25.4.2017. Retrieved

from:

https://tools.ietf.org/html/rfc5246#section-1

mbed TLS, 2017. Accessed on 25.4.2017. Retrieved from:

https://tls.mbed.org/module-level-design-cipher

Luedtke, 2012. Accessed on 25.4.2017. Retrieved from:

http://image.slidesharecdn.com/20120418luedtkessltlscbcbeast-

150301075556-conversion-gate01/95/beast-attack-on-ssltls-explained-6-

638.jpg?cb=1425196642

http://web.iyte.edu.tr/%7Etolgaayav/courses/ceng523/lecture2-RTOS1.pdf
https://www.techopedia.com/definition/3344/cooperative-multitasking
http://www.oxfordreference.com/view/10.1093/acref/9780199234004.001.0001/acref-9780199234004-e-4360?rskey=YZo8xo&result=1
http://www.oxfordreference.com/view/10.1093/acref/9780199234004.001.0001/acref-9780199234004-e-4360?rskey=YZo8xo&result=1
http://www.keil.com/arm/rl-arm/kernel.asp
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/rtos/%23mutex
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/rtos/%23mutex
https://securingthehuman.sans.org/newsletters/ouch/issues/OUCH-201107_en.pdf
https://securingthehuman.sans.org/newsletters/ouch/issues/OUCH-201107_en.pdf
https://tools.ietf.org/html/rfc5246#section-1
https://tls.mbed.org/module-level-design-cipher
http://image.slidesharecdn.com/20120418luedtkessltlscbcbeast-150301075556-conversion-gate01/95/beast-attack-on-ssltls-explained-6-638.jpg?cb=1425196642
http://image.slidesharecdn.com/20120418luedtkessltlscbcbeast-150301075556-conversion-gate01/95/beast-attack-on-ssltls-explained-6-638.jpg?cb=1425196642
http://image.slidesharecdn.com/20120418luedtkessltlscbcbeast-150301075556-conversion-gate01/95/beast-attack-on-ssltls-explained-6-638.jpg?cb=1425196642

56

Zoompf, 2017. Accessed on 26.4.2017. Retrieved from:

https://zoompf.com/wp-content/uploads/2014/10/handshake.png

Lin, Z. 2015. TLS Session Resumption: Full-speed and Secure. Accessed on

26.4.2017. Retrieved from:

https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/

Rescorla, E. 2000. RFC 2818. Accessed on 27.4.2017. Retrieved from:

https://tools.ietf.org/html/rfc2818

Hoffman, Ch. 2014. How Computers Generate Random Numbers. Accessed

on 27.4.2017. Retrieved from:

https://www.howtogeek.com/183051/htg-explains-how-computers-generate-

random-numbers/

Wikipedia, 2017. Accessed on 5.4.2017, 6.4.2017, 11.4.2017, 25.4.2017,

26.4.2017. Retrieved from:

https://en.wikipedia.org/wiki/ARM_Holdings

https://en.wikipedia.org/wiki/ARM_architecture

https://en.wikipedia.org/wiki/Interrupt

https://en.wikipedia.org/wiki/Memory_protection

https://en.wikipedia.org/wiki/Transport_Layer_Security

STMicroelectronics, 2016. AN4230. Accessed on 10.4.2017. Retrieved from:

http://www.st.com/content/ccc/resource/technical/document/application_note/4

a/6a/82/05/8e/9e/4e/94/DM00073853.pdf/files/DM00073853.pdf/jcr:content/tra

nslations/en.DM00073853.pdf

STMicroelectronics, 2016. STM32F765xx STM32F767xx STM32F768Ax

STM32F769xx. Accessed on 10.4.2017. Retrieved from:

http://www.st.com/content/ccc/resource/technical/document/datasheet/group3/

c5/37/9c/1d/a6/09/4e/1a/DM00273119/files/DM00273119.pdf/jcr:content/transl

ations/en.DM00273119.pdf

https://zoompf.com/wp-content/uploads/2014/10/handshake.png
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://tools.ietf.org/html/rfc2818
https://www.howtogeek.com/183051/htg-explains-how-computers-generate-random-numbers/
https://www.howtogeek.com/183051/htg-explains-how-computers-generate-random-numbers/
https://en.wikipedia.org/wiki/ARM_Holdings
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Memory_protection
https://en.wikipedia.org/wiki/Transport_Layer_Security
http://www.st.com/content/ccc/resource/technical/document/application_note/4a/6a/82/05/8e/9e/4e/94/DM00073853.pdf/files/DM00073853.pdf/jcr:content/translations/en.DM00073853.pdf
http://www.st.com/content/ccc/resource/technical/document/application_note/4a/6a/82/05/8e/9e/4e/94/DM00073853.pdf/files/DM00073853.pdf/jcr:content/translations/en.DM00073853.pdf
http://www.st.com/content/ccc/resource/technical/document/application_note/4a/6a/82/05/8e/9e/4e/94/DM00073853.pdf/files/DM00073853.pdf/jcr:content/translations/en.DM00073853.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/group3/c5/37/9c/1d/a6/09/4e/1a/DM00273119/files/DM00273119.pdf/jcr:content/translations/en.DM00273119.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/group3/c5/37/9c/1d/a6/09/4e/1a/DM00273119/files/DM00273119.pdf/jcr:content/translations/en.DM00273119.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/group3/c5/37/9c/1d/a6/09/4e/1a/DM00273119/files/DM00273119.pdf/jcr:content/translations/en.DM00273119.pdf

57

Linux kernel, 2005. Accessed on 20.4.2017. Retrieved from:

http://elixir.free-electrons.com/linux/latest/source/drivers/char/random.c

McVetta, J. 2012. What is a RESTful API?. Accessed on 3.5.2017. Retrieved

from:

http://advanced-python.readthedocs.io/en/latest/rest/what-is-rest.html

RestApiTutorial, 2017. Accessed on 5.5.2017. Retrieved from:

http://www.restapitutorial.com/lessons/httpmethods.html

JSON, 2017. Accessed on 4.5.2017. Retrieved from:

http://www.json.org/

http://elixir.free-electrons.com/linux/latest/source/drivers/char/random.c
http://advanced-python.readthedocs.io/en/latest/rest/what-is-rest.html
http://www.restapitutorial.com/lessons/httpmethods.html
http://www.json.org/

	1 Introduction
	1.1 Motivation
	1.2 Objective

	2 Microcontrollers
	2.1 What microcontrollers are
	2.2 History and presence
	2.2 ARM and their portfolio
	2.3 ARM Cortex-M series
	2.4 Cortex-M7 core
	2.4.1 Instruction set
	2.4.2 Interrupt controllers
	2.4.3 SysTick timer
	2.4.4 Extensional buses
	2.4.5 Debugger interfaces
	2.4.6 Computation modules
	2.4.7 Memory protection unit

	2.5 Choice of microcontroller

	3 Software of microcontroller
	3.1 Common software strategies
	3.2 mbed OS
	3.2.1 Task management
	3.2.2 I/O and interfaces
	3.2.3 Networking

	4 Network security
	4.1 TLS
	4.1.1 Roles
	4.1.2 Structure
	4.1.3 Session resumption

	4.2 Entropy
	4.3 HTTPS

	5 Implementation
	5.1 System architecture and technologies
	5.2 Software on Nucleo board
	5.2.1 Threads
	5.2.2 TCP Sockets
	5.2.3 mbed TLS Integration
	5.2.4 HTTP Server
	5.2.5 IP whitelist and user authentication
	5.2.6 Sensors

	5.3 Client application
	6.1 Issues
	6.2 Discussion
	6.3 Summary

	References

