

CREATING A USER INTERFACE FOR HOME AUTOMATION

Bachelor’s thesis

Automation Engineering

Valkeakoski, autumn 2017

Duy Hung Tran

ABSTRACT

Automation Engineering
Valkeakoski

Author Duy Hung Tran Year 2017

Subject Creating a user interface for home automation

Supervisor(s) Timo Viitala

ABSTRACT

In this thesis, the author provides a brief theoretical background to home
automation and examines how the user interface of a home automation
system should be designed. The thesis was inspired by Jukka Aarnio (Dr.
Tech.) and carried out under his supervision. The topic of this thesis is both
practical and controversial in the field of engineering in general as home
automation is exponentially developing. The topic was suitable for a
Bachelor’s thesis because the depth of knowledge needed was
reasonable. This was also an advantageous project for the author for
gaining more experience, particularly, in the field of home automation.

The final objective in the project was to provide an example of a web-
based user interface application which would include some basic features
of a home automation system: control of lighting, energy management
and status indication. Moreover, there was a mode feature which sets
household appliances into pre-set modes. Additionally, the application
was programmed to have a security layer to protect the interface from
unauthorized users. Finally, the interface was to be controlled remotely
through WLAN to give users comfortable experience while manipulating
all the electronic devices in the house.

In order to achieve the goal, Indusoft Web Studio software was chosen as
a beneficial application for creating the user interface. Therefore, most of
the practical work for this thesis was performed on Indusoft Web Studio
v8.0.

Keywords Home automation, user interface, Beckhoff PLC, Indusoft Web Studio.

Pages 41 pages including appendices 6 pages

CONTENTS

1 INTRODUCTION .. 1

2 THEORETICAL BACKGROUND ... 2

2.1 History of home automation .. 2

2.2 Introduction to Programmable Logic Controller ... 3

2.3 Design of user interface ... 5

2.3.1 Placing users in control of the interface .. 6

2.3.2 Reducing memory load of users .. 8

2.3.3 Making the interface consistent .. 9

3 IMPLEMENTATION METHOD .. 11

3.1 Selection of software ... 11

3.2 Description of user interface .. 13

4 CREATION OF USER INTERFACE .. 14

4.1 Interface design ... 15

4.1.1 Header .. 15

4.1.2 Navigator .. 17

4.1.3 Main area ... 21

4.2 Studio Mobile access .. 29

5 INTEGRATION BETWEEN TWINCAT AND INDUSOFT WEB STUDIO 32

6 CONCLUSION ... 34

REFERENCES.. 35

Appendices
Appendix 1 TWINCAT PROJECT CODE

1

1 INTRODUCTION

Dr. Tech. Jukka Aarnio, the commissioner of the thesis, has a plan of
building a home automation system for his own needs. He is developing
an automation system to his house where he can control the lighting,
energy management and security of the house by Beckhoff PLC. Aiming to
make the control activity of the system easier and more convenient, a user
interface for the system was needed and it was the main topic of this
thesis project. The user interface runs on a web-based application and by
that application, the user can control electronic devices in the house
remotely through a wireless network.

The thesis is divided into two main parts. In the first part, the author
provides a theoretical background to the thesis topic including the
knowledge of home automation, PLC and user interface design. In the
second part, an example of the user interface is described as a practical
work of the thesis. In the user interface, there are some main features
which include: lights control and room temperature indication. There are
also some pre-set modes for the house in which the lights and
temperature are set to a certain value. For safety reasons, the interface
also has a security system which requires a username and password for
the user to get access to the interface.

In the software market, there are several options, such as Altia Design
from Altia, Indusoft Web Studio from Wonderware by Schneider Electric,
GUI Design Studio from Caretta Software, etc. from which the author
chose the best option for creating a user interface. These are all programs
used for designing automation systems. However, Indusoft Web Studio
was chosen as the implementation method of the thesis. In chapter 3.1,
there is a comparison between Indusoft Web Studio and other software
and an explanation on why Indusoft Web Studio was chosen.

After the user interface had been created, the next task was creating an
integration between the interface and the PLC system. When the
integration part was finished, the interface could remotely control the
status of real objects in the house through the PLC system.

Now that the thesis project is completed, the commissioner will apply the
results of this practical work to his own home automation system.

2

2 THEORETICAL BACKGROUND

2.1 History of home automation

Home automation or smart home is a high-developing branch of
building automation. It is basically a house where lighting, HVAC
(heat, ventilation and air conditioning), security and fire systems
are connected and controlled by using BMS (building management
system) central point.

(Smart home 2016.)

At the beginning, home automation was just an abstract idea. There was
no concrete structure or construction explicitly called “home
automation”. The time line which provides the development history of
home automation is given as follows:

• 1901-1920 – The invention of home appliances: The first
achievement of mankind in home appliances was an engine-
powered vacuum cleaner in 1901. After that, many other
appliances were invented, such as refrigerator, washing machine,
iron throughout twenty years.

• 1966-1967 – ECHO IV and Kitchen Computer: These inventions
were the very first smart devices which can do the housework.
ECCHO IV can compute shopping lists, control the room
temperature and turn on or off home appliances while Kitchen
Computer can store cooking recipes. However, because of poor
technology at the time being, they were not commercially sold.

• 1991 – Gerontechnology: This is a combination of gerontology and
technology with the aim of making the lives of elderly people easier
by the help of modern devices.

• 1998-Early 2000s – Smart Homes: Home automation started to
become more and more popular in the society. The emergence and
exponential growth of different technology lead to a sudden
financial decreasing of smart home. Therefore, home automation
became a viable technology for consumers and many of its
application started to appear on the market.

• Today’s Smart Homes: As the living-standard has reached to a high
level, solution for home automation focuses more on security and
energy saving. A smart home must be sustainable so it helps us to
make sure that we don’t use energy unnecessarily and it also has a
strong security system.

(Hendricks 2014.)

Technology has never stopped developing. Therefore, home automation
is still extremely potential in the future.

3

2.2 Introduction to Programmable Logic Controller

Basically, PLC is a computer-like controller which is used to control the
manufacturing process. A PLC system provides high reliability control,
simplicity for programming and maintenance. A PLC can work with a wide
range of task including analog and digital input/output interfaces, data
conversion, signal processing, etc. However, despite the importance of
PLCs in industry nowadays, it is surprisingly quite a young invention.
Before the 1960s, relays were the only way to control machinery. Relays
use coils which are energized and produce a magnetic force to change a
switch’s modes which are in ON and OFF positions.

Unfortunately, at that time many control engineers had encountered
some disadvantages of using relays. The worst disadvantage was reported
in “History of PLC” as: “All these relays had to be hardwired in a very
specific order for the machine to work properly, and heaven forbid if one
relay would have an issue, the system as a whole would not work. These
machines had to follow a strict maintenance schedule and they took up a
lot of space. Then what if you wanted to change something? You would
basically have to redo the entire system” (History of PLC n.d.). Therefore,
the need for a more effective solution had arisen. On New Year’s Day
1968, the PLC was introduced for the first time to the whole industrial
world. After that day, relays were gradually replaced by the PLC system in
factories. Figure 1 is an example model of a PLC.

Figure 1. Beckhoff CX90x0: Product overview (Beckhoff n.d.).

Some of the advantages which are contributing to PLCs replacing
complicated relay systems are listed as the following:

• Flexibility.

• Faster response time

• Less and simpler wiring

• Solid-state (no moving parts)

• Modular design – easy to repair and expand

• Able to handle much more complicated systems

• Sophisticated instruction sets available

4

• Allows for diagnostics “easy to trouble shooting”

• Lower expenses.
(Introduction to PLC’s 2006.)

Generally, the hardware of a PLC as seen in Figure 2, includes seven
different parts: inputs, outputs, a central processing unit, a programming
device, a programming memory, a power supply and two layers of optical
isolation. Inputs are terminals which receive information from sensors,
buttons, switches, etc. On the other hand, outputs are terminals which
send signals from the PLC to actuators like motors, indicating lights,
cylinders, etc. Input and output modules can convert voltage to any
appropriate signal used in the interface. The central processing unit (CPU)
is usually a microprocessor which is used to execute logic and arithmetic
operations in a program written in the PLC. It is also able to command the
PLC to perform internal diagnostics. The program is written by a
programming device. The programming device is a digital device, usually
a computer, where there is programming software compatible with the
PLC system. For example, the programming software for Beckhoff and
Siemens PLC are TwinCAT and SIMATIC STEP 7 respectively. After being
written by a programming device, the program is stored in the program
memory and the CPU reads the program from there. Optical isolation or
opto isolation is a layer which transfer electrical signals between the CPU
and the input/output modules by using light and this can prevent high
voltage damage to the CPU.

Figure 2. PLC system (Introduction to PLCs 2006).

According to IEC 61131-3, the international standard for the programming
languages of programmable controllers, there are five languages which
have been approved as official programming languages for PLCs:

• Ladder diagram (LD)

• Sequential function charts (SFC)

• Function block diagram (FBD)

• Structured text (ST)

5

• Instruction list (IL).
(PLC languages n.d.)

One of the benefits which the standard provides is that one PLC can use
multiple languages. Hence, the designer can decide which language is the
most suitable one for each particular task.

Last but not least, scanning operation in a PLC software is a critical feature
which also makes PLCs popular nowadays. A scanning operation is a loop
of actions executed repeatedly. The loop starts from reading inputs
proceeding to executing the program then diagnostics and
communications and lastly updating outputs.

Figure 3. PLC scanning operation (ACC Automation n.d.).

This loop as illustrated in Figure 3 is executed with a high frequency.
Therefore, many independent tasks can be executed in parallel and this
leads to time saving which is an important factor in control.

2.3 Design of user interface

A graphical user interface (GUI) or shortly, a user interface (UI) is a method
which provides means of interaction between human and computer. It
helps users understand briefly about a system’s functions and manipulate
the system by a screen of visualization.

When a UI is designed, there is a set of principles which designers should
follow to make the UI become an efficient tool for users to control a
system. According to chapter 5 of "The Elements of User Interface
Design”, Theo Mandel (1997) pointed out three areas in the design
principles of a of user interface:

• Place users in control of the interface

• Reduce users’ memory load

• Make the user interface consistent.
(Mandel 1997, 5-2.)

6

Each area contains different principles which help to achieve the area’s
idea:

• Place users in control of the interface:
1. Use modes judiciously (modeless)
2. Allow users to use either the keyboard or mouse (flexible)
3. Allow users to change focus (interruptible)
4. Display descriptive messages and text (helpful)
5. Provide immediate and reversible actions, and feedback

(forgiving)
6. Provide meaningful paths and exits (navigable)
7. Accommodate users with different skill levels (accessible)
8. Make the user interface transparent (facilitative)
9. Allow users to customize the interface (preferences)
10. Allow users to directly manipulate interface objects

(interactive).
(Mandel 1997, 5-5.)

• Reduce users’ memory load:
1. Relieve short-term memory (remember)
2. Rely on recognition, not recall (recognition)
3. Provide visual cues (inform)
4. Provide defaults, undo, redo (forgiving)
5. Provide interface shortcuts (frequency)
6. Promote an object-action syntax (intuitive)
7. User real-world metaphors (transfer)
8. User progressive disclosure (context)
9. Promote visual clarity (organize).

(Mandel 1997, 5-14.)

• Make the user interface consistent:
1. Sustain the context of users’ tasks (Continuity)
2. Maintain consistency within and across products (experience)
3. Keep interaction results the same (expectations)
4. Provide aesthetic appeal and integrity (attitude)
5. Encourage exploration (predictable).

(Mandel 1997, 5-23.)

2.3.1 Placing users in control of the interface

The first area “Place users in control of the interface” is a set of principles
which guide a designer to create an interface in perspective so that the
designer allows users to do their work by themselves rather than try to
resolve what they want. Mandel (1997) mentions that, there is a real-life
example which helps understand better the key idea of this area: An
architect designed a group of buildings without creating walkways
between them. A few months later after the buildings were brought into
use, the architect came back to build the walkways. At that time, he saw

7

many worn paths where people had walked between buildings and then
he knew where he should put the walkways.

The above example shows that it is wise to give users the control right,
observe their behaviour and then create an interface as a tool to help
them do efficiently what they want. The principles included in this area
are listed below:

• Use modes carefully (modeless): Letting users choose a mode
which they want rather than forcing them into a mode. By doing
this, users feel comfortable and pleasant when using the interface.
In order to successfully follow this principle, immediate visual
feedback should be taken into account. There should be some sort
of indication in the interface to address which mode users are in.

• Allow users to use either the keyboard or mouse (flexible): The
more means of access the interface has, the more convenient and
flexible it is. Many ways of access to the interface does not mean
that they will make the interface complicated to use but it provides
alternative way to work with the interface if users do not like a
specific one.

• Allow users to change focus (interruptible): Do not place users into
a sequence of premade tasks. It is always beneficial to create a set
of options so that users can choose where they want to focus on
firstly and they can decide what task they want to do next.

• Display descriptive messages and text (helpful): There should
always be indicative text on the interface to let users know what is
happening. In order to users to understand, this message must be
written informatively and as easy-to-understand as possible.

• Provide immediate and reversible actions, and feedback
(forgiving): Undo and redo actions are features which every
interface must have. Besides, it is also wise to inform users about
an action which cannot be undone so they have to be careful about
the decisions and offer alternative actions. After an action is done,
an indication should appear on the interface so that users know
that the action has been successfully executed.

• Provide meaningful paths and exits (navigable): By letting users
navigate effortlessly through the interface and providing ability to
move forward or backward, the process of exploring the interface
will be less stressful. Therefore, users will feel relaxed when they
try all the buttons or functions provided by the interface and they
will get used to the interface faster.

• Accommodate users with different skill levels (accessible): It is
beneficial to create many ways of interaction for different levels of
users. Beginners need a clear and simple way to interact with the
interface while experienced ones need fast paths to finish work.

• Make the user interface transparent (facilitative): The idea of
transparent interface is the synchronization between the interface
and users’ mental model. When the interface achieves this idea,
users can be flexible to focus on what they want to perform and

8

they do not have to translate the tasks into the interface’s language
which is functions provided by the interface.

• Allow users to customize the interface (preference): Allow users
to customize and personalize the interface as they like. By doing
this, users will feel comfortable while working and it leads to
increasing in productivity.

• Allow users to directly manipulate interface objects (interactive):
Direct manipulation is an ability to control the object directly in the
interface, for example, users can drag and drop an object. Direct
manipulation is usually good for interaction between users and the
interface but it has its own problem which is that it is not always
visually obvious for users to know that an object can be controlled
directly. Therefore, the interface should be explorable so that users
can be free to pick any object and try to check if it is directly
manipulated.

(Mandel 1997, 5-5 – 5-13.)

In conclusion, the general idea of this area is that a well-made interface
can make users feel entertained and comfortable while the computer
system is proceeding. This area helps to create an interface where users
are in the centre and have the full right to control the interface or at least,
make users think that they are.

2.3.2 Reducing memory load of users

The second area is “Reduce users’ memory load”. Human memory has
limitations. Therefore, the interface should also help users to remember
information while using the computer. In order to successfully accomplish
this, there are nine principles which designers should follow according to
Mandel (1997):

• Relieve short term memory (remember): Users usually do many
tasks at the same time so it is difficult to remember all information
while switching between tasks. Therefore, the interface should
have functions, for instance cut, copy, paste, etc. so that the system
can retrieve the previous information and users don’t have to
remember and retype all the information again.

• Rely on recognition, not recall (recognition): It is absolutely easier
to choose an item which users want from a list than remember the
name of the item and type it into a blank field. Hence, whenever it
is possible, it is a plus to provide a menu or a list containing suitable
item for selection instead of giving an empty field which user must
type in.

• Provide visual cues (inform): There must be an indication on the
interface to show users where they are and what they are doing.
For example, when users are using mouse, an arrow on the screen
illustrates where the mouse is and the arrow will change its shape
when users do an action.

9

• Provide default, undo and redo (forgiving): Computer has great
ability to remember and retrieve information from users.
Therefore, designers should exploit efficiently this ability of
computer by allowing users to store current work or save and name
different work. It is considered wise to create many levels of undo
and redo so users can explore the program without fear of negative
consequences.

• Provide interface shortcuts (frequency): When users have enough
experience on the interface, they will need a faster and more
efficient way to work and this is when shortcuts are needed. There
are two ways to create shortcuts: mnemonics (or access key) and
accelerator keys. An example for interface shortcut is that the
combination of keys Ctrl + N is for creating a new text editing file in
Microsoft Word.

• Promote an object-action syntax (intuitive): Object-action syntax
provides users information about relationships between objects
and actions on the interface. Users can select an object and see
what actions are available to apply on the object.

• Use real-world metaphors (transfer): Real-world metaphor is an
effective way to demonstrate visually what a function or operation
does. However, once designers have chosen a metaphor, they
should try to stick with it throughout the whole program.

• Use progressive disclosure (context): The concept of progressive
disclosure is to show what users need and then when and where
they want it. It is great to provide shortcut or easy access to
frequently-used operations and hide less common ones but still
show users how to navigate them. Additionally, it is a minus to put
all information on one window. Hence, designers should exploit
effectively extra windows for displaying less crucial information.

• Promote visual clarity (organize): Information displayed on the
interface should be put into some order and priority. In order to do
so, information should be divided into groups based on its
characteristics and then these groups are put on a menu or list. In
addition, items should be numbered after it has been classified into
some order. Using headings and prompt text also helps to make the
interface easy to perceive.

(Mandel 1997, 5-13 – 5-22.)

2.3.3 Making the interface consistent

Consistency is one of the key characteristics of an interface because it
determines whether the interface is usable or not. However, the
consistency factor depends on the environment so designers do not have
to follow strictly these principles if they are not compatible with their
environment. Therefore, this factor somehow has less priority than the
other factors. The most useful advantage of consistency is that users can
apply their old knowledge on a new program if it is consistent with
programs which they have used before.

10

This third area “Make the interface consistent” consists of six principles:

• Sustain the context of the users’ tasks (continuity): It is useful to
provide users indication when they explore an interface so they
know where they are. Users should be able to complete the task by
the same way as they stared it. For example, if users start a task by
mouse, the mouse should be the main interaction to complete the
task. Additionally, cues to predict the result of an action should also
be provided to users so that they can decide if they really need to
start the action or they can think about a plan for it. Last but not
least, information on how items work should be provided in the
same window so that users do not have to open a new window to
find supplemental information.

• Maintain consistency within and across products (experience): An
interface which achieves consistency is the one which enables the
users to apply the same knowledge about this interface to other
similar interfaces. Consistency applies in three aspects:
- Presentation: Information and objects should be displayed in

the same visual, logical and physical way. For example, if an
error message is displayed in red on one screen, error message
should appear in red throughout the whole interface.

- Behaviour: A kind of object, for instance a button, switch, list,
etc. should behave the same way everywhere.

- Interaction: Mouse technique, shortcut keys, etc. should work
the same throughout the whole interface and they should also
be the same with other similar programs.

• Interface enhancement and consistency: When an interface is
enhanced, only few behaviours or techniques should be changed
at a time. Therefore, users will not be put into a situation where
they struggle with many changes and they will adapt quickly with
the enhancement.

• Keep interaction results the same (expectations): One action can
have many results so it is professional to inform the users about a
potential future result of an action and then let them decide if they
want to perform it. Moreover, it is also good to give them the right
to cancel the process and offer alternative actions to be performed.

• Provide aesthetic appeal and integrity (attitude): All elements in
an interface should fit to each other in many aspects such as font,
size, icon, colour, etc. One interface project is usually done by many
designers. Therefore, they should make an agreement amongst
themselves about how the interface should look like so that the
final product as a whole should look harmonic. And a nice-looking
interface will absolutely create pleasing experiences to the users.

• Encourage exploration (predictability): Besides aiming at a
functional interface, designers should also aim at creating a user-
friendly interface. The user-friendly factor encourages users to
explore the interface freely without being afraid of negative
results. To accomplish this factor, designers should provide enough

11

information, guidance and even entertainment for the users while
they experience the product interface.

(Mandel 1997, 5-22 – 5-27.)

3 IMPLEMENTATION METHOD

3.1 Selection of software

Nowadays, there are various pools of options in the software market for
graphical user interface design in the field of automation, for example, the
TwinCAT integrated visualization editor, Kaseya VSA, Indusoft Web Studio,
etc. Each piece of software has its own advantages and disadvantages and
in this thesis, Indusoft Web Studio and TwinCAT integrated visualization
editor are taken as examples for comparison. Studying to the comparison,
readers can discover general features offered in a user interface
development software. Moreover, advantages and disadvantages of these
two pieces of software are also pointed out.

Wonderware Indusoft Web Studio, shortly Indusoft Web Studio, is an
object-oriented designing software product from Schneider Electric for
building HMI (Human-Machine Interface), SCADA (Supervisory Control
And Data Acquisition) and embedded instrumentation solutions. The
software contains a vast collection of automation tools and Indusoft
integrated web technologies. These integrated web technologies take
advantage of internet/intranet connectivity to provide designers an ease
to check their projects anytime and anywhere through a standard web
browser which supports XML (Extensible Markup Language). Moreover,
Indusoft Web Studio supports UNICODE, which is an international
standard for encoding. Hence, quick troubleshooting ability is enabled
since alarms and errors can be interpreted effortlessly. Indusoft Web
Studio has 14 main features for an interface:

• Design tools

• Thin clients

• Alarms

• Redundancy

• Trends

• ActiveX and .NET

• Events

• Scripting

• Security

• Recipes and reports

• Diagnostics

• Database

• Drivers/OPC

• Built-in download tools.
(Indusoft Web Studio Product Features n.d.)

12

When an interface is constructed by Indusoft Web Studio, each object is
named with a tag. Afterwards, when the integration process between the
interface and the system takes place, the tag is connected to a variable in
the system and then the object’s behaviour will affect the value of the
variable. As a result, there is a tag list including all the objects in the
interface for designers to edit and manipulate. Furthermore, scripting is a
decent feature furnished in Indusoft Web Studio. The scripting feature
allows designers to invent their own objects which the software does not
have. In other words, these objects behave suitably as designers want to
but differently to all those offered by the software. Hence, designers can
exceedingly improve the innovativeness of the interface.

Unlike Indusoft Web Studio, a visualization editor is combined directly
within TwinCAT, which is a programming software for the Beckhoff PLC
system. Therefore, users do not have to install any other interface
development software but they can still program their system and design
an interface for it in parallel on the same software. Another advantage of
this combination is that there is no tag list as users can access to variables
in the controlling system directly. In addition, OPC, which is an
interoperability standard for secure and reliable exchange of data and
usually complicated to configure, can also be omitted because both the
interface and the system are in the same program so there is no need for
data transfer. The TwinCAT integrated visualization editor provides some
ready-made functions:

• Elements:
- Rectangle, Ellipse, Rounded rectangle.
- Line, Polygon, Polyline, Curve.
- Bitmap, WMF-file.
- Button, Table, Histogram, Bar Display, Meter.
- Reference to another visualization.

• Animations (depending on element type):
- Text display.
- Colour changes.
- Visible/Invisible.
- Shift.
- Rotation.
- Scaling.
- Offset on the particular edges of an object (for Bar Display).
- Button active/inactive.

• Input possibilities:
- Toggle/tap Boolean value.
- Text input.
- Change of visualization.
- Special actions (Leave visualization, Read/Write receipts,

Switch language, call external EXE, etc.).
- Choose line (only text display).

• Further properties:
- Switching language.

13

- Tooltips for all elements.
- ASCII Import/Export.
- Background Bitmap.
- Automatic Scaling.
- Drawing operations: Alignment, Order, Grouping.
- Placeholder concept creating objects with complex graphic

elements.
- Programmed visualization expressions.

(TwinCAT PLC Control Visualization n.d.).

All the functions above are basic offers in mostly all interface development
software including Indusoft Web Studio. However, TwinCAT integrated
visualization editor does not have scripting feature, which is a vital
drawback for the software as users cannot create their own elements.
Consequently, creativeness in designing the interface is limited in some
way.

In conclusion, below is a table which illustrates briefly basic differences
between two software:

Table 1. Comparison of software.

Indusoft Web Studio 8.0 TwinCAT 3.1 integrated
visualization editor

- Used mainly for designing GUI,
SCADA.

- Interface design software must
be installed separately.

- Tag list for connecting to
system’s variables.

- Scripting feature is provided.
- Integration process and OPC are

needed for data transfer.
- Thin clients to access project

from different platforms.

- Used mainly for programming
PLC.

- Only TwinCAT is needed for both
system programming and
interface designing.

- Direct accessibility with system’s
variables.

- Scripting feature is not available.
- No integration and OPC is not

necessary.
- No thin client.

It can be seen from the comparison in Table 1 that, although the
integration process between the interface and the system causes
difficulties, Indusoft Web Studio supports creativity and flexibility in
designing the interface. Therefore, Indusoft Web Studio was chosen to
implement the practical work of this thesis.

3.2 Description of user interface

According to the commissioner’s requirements, the interface should be
able to control fundamental household appliances such as lights and
window blinds. The interface was also to manage energy consumption by

14

Figure 4. Interface layout.

controlling the heating system. Besides monitoring devices, the interface
also needed to provide users general information about the house, for
example the temperature and the status of the devices. Additionally,
there was to be a feature which allowed the users to apply a specific pre-
set mode to the house. And a mode is a set of manipulation to all the
devices so that the users do not need to control each device individually.
Finally, there was also to be a security system to protect the interface from
strange users.

4 CREATION OF USER INTERFACE

After having acquired knowledge about PLC and GUI, the author here
wants to illustrate to the reader how the process of creating the interface
was conducted. The functions of the software might be modified in
updated versions in the future. This project was conducted by Indusoft
Web Studio version 8.0 and one must bear in mind that all the descriptions
given here may be compatible with version 8.0 only.

First of all, the interface layout needs to be sketched out and divided into
small parts so that designers could work with each part at a time. By this
way, the project will be simplified and the designers will have a clear
picture of where in the process they are when they are working. In this
project, the interface layout resolution was decided to be 1024 x 768
pixels which is the common size nowadays and had three parts: the
header, the navigator and the main area with a resolution of 1024 x 150,
150 x 678 and 874 x 618 respectively. Figure 4 depicts the author’s idea as
to the layout.

15

4.1 Interface design

4.1.1 Header

Firstly, a template was created. Using a template decreases the workload
when creating each screen of the interface. The reader will see the
efficiency of using a template later in this thesis. As mentioned earlier,
each screen has three parts: the header, the navigator and the main area.
The header and the navigator are the same in each screen. Hence, the
header and the navigator were designed initially for the template.

The header is a place where users will have a look at the very beginning
when the interface is opened. Therefore, basic information about the
interface should be shown in the header. After reading all the information
here, the users should know what the interface is about and they are able
to guess what kind of functions it offers. Moreover, means of access to the
interface should be placed here in the header, for example, “log in” for the
security system and “program exit”.

To begin with, a 1024 x 768 screen was created in Indusoft Web Studio
with a name of Template. The header size was 1024 x 150 so a rectangle
with the same size and light blue background was drawn and placed on
the top of the screen. A title “Home Automation User Interface” was
inserted here as the header with the intention to give the users an idea
about the purpose of the interface. Additionally, a security system was
created in order to protect the interface from strangers. For this purpose,

a “Log on” button was created so that when this button is
pressed, a log on window will pop up and only users with right usernames
and passwords can access to the interface. This security system is a ready-
made function provided by the software so the log on button with set
configuration can be obtained from Project Explorer → Graphics tab →
Symbols → Buttons or in tool bar → Graphics tab → Libraries → Symbols

→ Buttons. Moreover, an “Exit” button can be picked up from
the same place as the log on button. This button allows users to close the
interface. These two buttons were placed on the top right corner of the
header. Finally, on the left top corner of the header, a small date and time
display was formed. This display was a rectangle whose caption was
written by built-in scripting language of the software. The caption can be
modified in the Object Properties window. By writing {Date} and {Time}
like in Figure 5, these commands will automatically retrieve the date and
time information from the operating system and display them on the
screen.

16

Figure 5. Date and Time commands.

 As a result, the header looks like in Figure 6 below.

Figure 6. Header in design mode.

It is worth noticing that when in the design mode, all the captions and
labels are shown in the form of scripting language. However, when the
project is started and in the run mode, the captions and labels are
displayed correctly as they should be when users work with the interface
(Figure 7). From now on in this thesis, most of the demonstrations are
shown only in the design mode.

Figure 7. Header in run mode.

17

4.1.2 Navigator

A navigator is a tool which is used to move between the screens of the
interface. In this case, the screens were rooms of a house where there
were electronic devices controlled by a PLC. The interface was planned to
be implemented for four rooms: the living room, bedroom, kitchen and
garage. Furthermore, two additional screens were needed for changing
the modes and the main screen of the interface. Hence, the navigator
could be pictured to have six buttons to move between six screens.

Firstly, a 150 x 678 rectangle was placed on the left side of the interface
and under the header. This rectangle was the area for the navigator’s
buttons. Next, the buttons were obtained from Indusoft Web Studio tool
bar, in the Active Objects of Graphics tab. In Objects Properties, the names
of the rooms were written into the caption of the buttons so that each
button represented a room. In order to provide the buttons an ability to
move to another screen, the buttons were selected and mounted to

Command in the Graphics tab. After this step, in the
Command window of Object Properties, the Configuration window was
opened and modified. Figure 8 illustrates the configuration of the “Living
room” button. As can be seen from Figure 8, command type was set to
“Built-in Language” and a list of actions were written. When the “Living
room” button is pressed, this list will be executed: “livingRoom.scr” which
is the screen for the living room will be opened, a Boolean tag LR_Screen
for the living room screen will be true and all other screens will be false.

Figure 8. The “Living room” button configuration.

18

Secondly, Color was applied to all buttons with the aim of
illustrating to the users which screen they were in. For example, when the
users were in the living room screen, the “Living room” button had distinct
colour from the other buttons. It can be seen from Figures 9 and 10 that
when the tag LR_Screen is 1, the button is green and it is otherwise grey.

Figure 9. Colors configuration for "Living room" button.

Figure 10. "Living room" button is selected in run mode.

Next, for simplification, it was assumed that there were only two groups
of users: owners and guests. Thus, two levels of security 0 to 1 were
established (Indusoft Web Studio offers security level from 0 to 250). This
meant that guest users can access security level 0 and owner users can

19

access both security levels 0 and 1. This security setting was configured in
Project Explorer → Global tab → Security. Figures 11 and 12 show the
security configurations for guest and owner users respectively.

Figure 11. Guest security group configuration.

Figure 12. Owner security group configuration.

Guest users can only access the main screen while owner users have
permission to access the whole interface in the run time. Therefore, all the
buttons were set to 1 in security (“Living room” button in Figure 8 is an
example) except that the “Main” button was set to 0. Furthermore,

20

“guest” was set as the default user so that whenever the interface is
opened, the user needs to log on as “owner” to gain full rights to control
the interface. Last but not least, after using the interface, owner users
must remember to log off before closing the interface, otherwise other
users can have full rights just like owner users to control the interface
when they access it.

After the buttons had been created, the background of the navigator was
set to red with the intention to help users distinguish the navigator from
the header and the main area and to make it more attractive. Figures 13
and 14 illustrate the interface in the run mode so that the reader can see
the difference in the interface between the two groups of users and the
current user can be checked from the “log on” window.

Figure 13. Navigator as guest users.

Figure 14. Navigator as owner users.

21

 Finally, the navigator and the header, which are mandatory parts of each
 screen, were designed and saved as a template for all the other screens.
This meant that whenever a new screen was created, they would
automatically have the same navigator and the same header.
Consequently, designers would not waste time for creating the header and
the navigator all over again for every screen. For that reason, the workload
was considerably reduced.

4.1.3 Main area

After the template had been built, six screens were created based on the
template: the main screen, the living room, bedroom, kitchen, garage and
the mode. In each screen, a picture depicting a room was set as the
background, for instance, a picture of the living room is the background to
the living room screen’s background. As a result, users can easily recognize
where the electronic device is which they are controlling.

The main screen is the first contact between the user and the interface.
However, there is not any function which can be performed on this screen
because the “Main” button which opens the main screen has security level
0 and the main screen is the start-up screen which is opened automatically
whenever the interface is started. Consequently, any type of user can have
access to this screen and for security reason, no function is offered from
this screen. In other words, when the interface is started, the main screen
is opened firstly and the user cannot do anything else than exit the
interface or log on as an owner user to get a higher access to the interface
from the header. To conclude, the main screen is the place to verify if the
user is authorized to utilize the interface.

The background of the main screen is a picture of the house from the
outside (the background picture was obtained from an external source
mentioned in references). Additionally, a textbox was created to provide
information on the outside temperature to make the main screen slightly
more useful for the users.

Figure 15. Main screen in run mode (Jukkatalo n.d.).

22

After this, the living room, bedroom, kitchen and garage screens were
designed by the same technique. The creation of the living room screen
was taken as example to demonstrate how these screens were designed.
First of all, a picture of the living room was set as the background for the
living room screen. Next, the all electronic devices in the picture were
mounted to functions which made them interactable on the interface.

Figure 16. Background of living room screen.

As can be seen from Figure 16, the electronic devices which can be
controlled remotely by the interface are the ceiling light, the dim light, the
table lamp, the standing lamp and the window blind. These devices can be
divided into two groups based on type of controlling input. The first group
is controlled by a digital input and it includes the ceiling light, the table
lamp, the standing lamp and the window blind. They have only two stages:
ON or OFF, while there is only dim light in the second group and it is
controlled by an analog input.

The ceiling light, the table lamp and the standing lamp were created by
the same technique. Three buttons could have been created as switches
in order to control these lights. However, with the aim of constructing a
user-friendly and professional interface, the buttons were omitted and
integrated into the lights itself. Hence, the interface looked clearer
without any button. Firstly, three white ellipses were drawn to illustrate
light bulbs. Next, these ellipses were equipped with Command

 and Color properties. The Command property acts
as a switch to turn the lights on or off and Color property indicates if the

23

lights are on ON or OFF stage. In the Command configuration window,
command type was set to “Toggle tag”, name of a Boolean tag which
controls the light was typed in and “On down” was chosen so the tag will
be toggled when the light is clicked or touched. In Colors configuration
window, the same tag name was written in Limit Expr so the tag will trigger
the light to change its color. This tag would be connected to a PLC so that
the PLC could control the tag remotely. When the tag value is 0, the light’s
color is white which means it is in OFF stage and when the tag value is 1,
the light is in ON stage and its color is yellow. When all the configurations
were done, the ellipses were moved to the real light’s position on the
background.

Figure 17. Ceiling light’s command configuration.

Figure 18. Ceiling light’s colors configuration.

24

Figures 17 and 18 are example of ceiling light’s configurations. The
standing lamp and the table lamp had the same configurations except the
tag names. There was still the window blind in the digital group. Being
different from the lights, the blind was represented by a quadrilateral and

it was equipped by only the Visibility/Position
property. This property provides the blind an ability to be visible or
invisible on the screen when its tag is triggered. However, when the blind
is invisible, it cannot be selected on the screen to toggle the tag to make
it visible so it is not feasible to integrate the blind and its switch together.

Therefore, an additional button with Command property was
created to control the blind’s visibility. This command property was
configured the same way as the lights’ command property as illustrated in
Figure 19 and 20.

Figure 19. Window blind's visibility configuration.

Figure 20. Window blind's control button's command configuration.

25

Afterwards, the dim light in the second group was handled. Since the dim
light is controlled by an analog input, a slider was inserted to the screen
to control it. The slider was obtained from software’s ready-made symbol
library (Project Explorer → Graphics → Symbols → Sliders). As can be seen
from the background picture, the dim light system consisted of three light
bulbs so three circles were drawn to represent them. These circles were

equipped with Color property. In the configuration window, a
name of an integer tag controlling the dim light was typed in Limit Expr.
For simplification, the dim light had only four limits and a color for each
limit was chosen as shown in Figure 21 so that the lowest limit 0 showed
that the light was off and the highest limit showed that the light was in its
brightest stage. For slider configuration (Figure 22), the same tag was
typed in TagName, Min and Max values of slider were also provided.

Figure 21. Dim light's color configuration.

Figure 22. Slider's configuration.

26

Then, the energy management was the last step in the screen. In order to
provide the users an ability to manage energy consumption, room
temperature control feature was added to the interface. This feature
includes showing the room’s recent temperature and changing it. Two text
boxes were created for the feature. One box is for showing the
temperature. The purpose of this box was only for providing the users
information on the room’s temperature so the users were not allowed to
enter any input to this box, therefore, ability to receive input of this box
was disabled (Figure 23). The other box took temperature input from the
users and sent it to the PLC. This box had an ability to receive input from
users and the input was about room’s temperature so max and min values
for input were set as 35 and 0 respectively so users cannot enter
accidentally input outside this range (Figure 24).

Figure 23. Showing temperature configuration.

Figure 24. Controlling temperature configuration.

27

Finally, the living room screen was finished and Figure 25 illustrates the
screen in the run mode. The bed room, kitchen and garage were
constructed by the same instruction except that the garage screen did not
have energy management feature because there is no need to do so.

Figure 25. Living room in run mode.

There was still the mode screen which is different than the other screens.
This screen contains modes setting the whole interface to some desired
stages. A mode consists of a series of operations on the house’s electronic
devices. In this project, there were three modes: Sleep/Away, Day and
Night mode. Hence, three buttons were formed and math sheets which is
a feature of Indusoft Web Studio were needed to build these modes.
Additionally, brief descriptions about the modes were written next to the
buttons, for instance “Sleep/Away mode turns off all lights, curtains and
doors”. These descriptions should be short, however, informative so that
they do not make the screen complicated but the user can still understand
the features of the buttons. As mentioned above, math sheets were
needed to build the modes and they were inserted from Project Explorer
→ Tasks → Math. A math sheet includes 3 parts: a description about the
sheet, a tag to execute the sheet and a built-in language list to set up a
series of operations. When the tag is set to TRUE by pressing the button,
the series of operations is executed. However, the stage of the tag is
always TRUE after the button is pressed, as a result, the series of
operations is executed repetitively. This leads to a problem that users
cannot change the stage of any devices after a mode is set. For example,
when Sleep/Away mode button is pressed, all the lights are turned off

28

then a user press a light on the interface to turn it on but the light still
stays off. A solution for this problem is that the last operation in the series
is to set the tag back to FALSE. After this step, the whole interface is ready
to use.

Figure 26. Away/Sleep mode button's configuration.

Figure 27. Math sheet for Away/Sleep mode.

29

Figure 28. Mode screen in run mode.

4.2 Studio Mobile access

After the interface was created, the next goal was to provide users a
convenient method to use it. Users cannot carry with them their laptops
or computers just to turn on or off a light, therefore, a more feasible and
remote method was required, and the web browser was chosen for this
purpose. Indusoft Web Studio delivers three thin clients to access a
project remotely from three different platforms:

• Secure Viewer

• Web Thin Client

• Studio Mobile Access.

Secure Viewer requires only the software installation of Secure Viewer.
This software gives users permission to access remotely the interface from
different computers running on the Windows operating system. Web Thin
Client and Studio Mobile Access are for accessing the interface via web
browsers. However, Web Thin Client works only on Internet Explorer while
Studio Mobile Access works with all browsers supporting HTML5. The
other difference between these two clients is that Web Thin Client is
mainly for viewing and interacting the interface remotely while Studio
Mobile Access is mainly for viewing and interacting with tags and alarms
remotely. Even though the purpose of Studio Mobile Access is to
manipulate tags and alarms, it was chosen as a remote-control method for
this project because it also has the ability to access the interface by the
web browser and it is compatible for many web browsers supporting
HTML5, not just for Internet Explorer like Web Thin Client. The
configuration process consisted of two parts: the configuration of Internet
Information Services and the configuration of Mobile Access
configuration.

30

First of all, Internet Information Services (IIS) Manager was installed for
the IIS configuration. IIS is an extensible web server created by Microsoft
and it was used to interact with the interface in the project. After IIS
Manager had been installed, a website for the interface was added in the
Connections window in IIS Manager. Figure 29 illustrates the Add Website
window and as can be seen from the picture, the Physical path is the
address to access the project’s web folder in the computer which usually
has the form of […]\Documents\Wonderware InduSoft Web Studio
Educational v8.0 Projects\[project’s name]\Web.

Figure 29. Add Website window.

“Test Settings…” is used to check if IIS
has permission to access the project. If
there is security on the project folder,
the test will fail and the permission must
be given to IIS in “Connect as…”. After
the website had been added, the
Connections window looked as shown in
Figure 30.

Figure 30. Connections window.

31

After this, MIME Types were configured in IIS Manager. MIME
(Multipurpose Internet Mail Extensions) Types are extensions and related
content types that are served as static files. This configuration helped the
web browser to handle files received from a server. In this project, MIME
Types were extensions found in the Web folder of the project. Below is
the list of extensions which were added in the MIME Types configuration:

• .app

• .bin

• .csv

• .gis

• .html

• .ico

• .ini

• .lst

• .rtgis

• .scc

• .scr

• .sg

• .stmp

• .tra

• .txt.
Finally, all the configuration for IIS were conducted and the website for
the interface could be started from the Manage Web Site window in the
IIS Manager.

Going back to Indusoft Web Studio, before the Mobile Access
configuration, all the screens were published as HTML by File → Publish
→ Save All As HTML (Note: All the screens needed to be closed before
publishing). Next, Mobile Access configuration could be opened from
Project Explorer → Graphics → Thin Clients → Mobile Access. In this
configuration window, there are multiple features related to trends,
alarms. However, only the screens feature which sets up for displaying the
screens on web browser was taken into use. At the bottom of the
configuration window, there is the screens setting. In the Screen column,
the main screen was chosen because it was the start-up screen of the
whole interface and all the other screens could be accessed from the Main
screen. After this, all the configurations for Mobile Access were done and
the interface could be accessed from any HTML5 supporting web browser
via URL http://localhost/iwsedu80 or http://[IPv4 address]/iwsedu80.

http://localhost/iwsedu80
http://[ipv4/

32

5 INTEGRATION BETWEEN TWINCAT AND INDUSOFT WEB STUDIO

Before going to the integration, software architecture for the project will
be introduced briefly. The project included two software: TwinCat and
Indusoft Web Studio and the architecture was that both Indusoft Web
Studio and TwinCat were placed on same computer and run at the same
time. By doing this, the integration process was simplified noticeably.
When both pieces of software were installed in the same computer, all the
files and connecting port are in the same computer, therefore, there was
no need for additional connection. Figure 31 illustrates the architecture of
the project.

Figure 31. Project architecture.

In order to prepare for the integration between TwinCat and Indusoft Web
Studio, a simple TwinCat project which had similar features as the
interface, was written and the code was attached to this thesis as
Appendix 1. This integration is basically a connection between the
Indusoft Web Studio tags and TwinCat variables. After the connection, the
stages of the tags in the interface will affect directly the variables in the
PLC program.

Firstly, the Tag Integration Source window was opened from the Project
Settings window by clicking the “Add…” button in Tag Integration area.
The information in the window was given as Figure 32 indicates.

33

Figure 32. Tag Integration Source window.

After all the needed information had been given and the source had been
added to the system, a TwinCat Interface Configuration window was
displayed. This window required AMS Net ID of the TwinCat PLC, port
number by which the two programs communicated and the symbol file of
the TwinCat project. The AMS Net ID was obtained from the System
information in the TwinCat project. Custom Port was chosen with port
number 851 as TwinCat3 Runtime. Lastly, the TwinCat project’s symbol file
with the extension .tpy in the project’s folder was given. Figure 33
illustrates these steps.

Figure 33. TwinCat Interface Configuration window.

Consequently, a list of TwinCat variables was imported to the shared
database of Indusoft Web Studio. Afterwards, objects in the interface
were linked to respective TwinCat variables by replacing old tag names
with TwinCat variables. Finally, the integration was finished and every
action in the interface would affect PLC program’s variables.

34

6 CONCLUSION

Finally, the project was completed and it met all requirements set by the
commissioner. The project had its own advantages and disadvantages.

One of the most noticeable advantages was that the interface was
programmed to be able to run on a web browser thanks to the Mobile
Access thin client of Indusoft Web Studio, therefore, it can be used by any
device which has a browser supporting HTML5. As a result, users do not
have to think of devices compatible with the interface. Additionally, users
can enjoy using the interface without worrying about wiring and distance
since it is controlled via WLAN. Lastly, the mode feature, which is a
combination of many different control operations on household
appliances, plays a significant role in the interface. The feature increases
the convenience of the interface since it minimizes actions on controlling
electronic devices.

On the other hand, one of the disadvantages of being controlled via a
wireless network is that it causes a short delay for the signal to arrive at
its destination, hence, the interface does not react immediately when an
action is made. Consequently, it produces a slightly inconvenient
experience for its users. Moreover, the Mobile Access thin client of
Indusoft Web Studio is based on WLAN. Hence, users can access the
interface only when they are in the same network as the interface. Lastly,
the security system of the application is still quite simple in a sense that if
a user forgets to log out, the interface will not log out automatically even
though it is shut down. This leads to a problem so that when the next user
turns the interface on again, he or she still has full access to the interface
without entering a correct user name and password.

Finally, the author would like to suggest some possible improvements for
the interface:

• The remote access feature of the interface was done via Mobile
Access thin client and one of the most crucial features of this client
is interacting with alarms. Therefore, an alarm feature could be
developed for the interface. The idea is that users will be notified
immediately if there is a problem, hence, they can take action in
time so that the device will not be seriously damaged.

• The visualization of the interface in the project was just a modest
demonstration and it could be improved significantly by the
animation feature of Indusoft Web Studio. This improvement will
help users get a better understanding of the interface and a more
pleasant experience.

35

REFERENCES

Beckhoff CX90x0: Product overview [Image]. Retrieved from Beckhoff
Automation website
https://infosys.beckhoff.com/english.php?content=../content/1033/cx90
00_hw/html/cx9000_prosystem.htm&id

Hendricks, D. (April 22, 2014). The History of Smart Homes. Retrieved
from http://www.iotevolutionworld.com/m2m/articles/376816-history-
smart-homes.htm

History of PLC. (n.d.). Retrieved from

http://library.automationdirect.com/history-of-the-plc/

Indusoft Web Studio Product Feature (n.d.). Retrieved from Wonderware

by Schneider Electric http://www.indusoft.com/Products-

Downloads/HMI-Software/InduSoft-Web-Studio

Introduction to PLCs [Lecture notes in PFD]. (2006). Retrieved from
http://www.srmuniv.ac.in/sites/default/files/files/IC0403-ccp-2.pdf

Main screen background [Image]. Retrieved from
http://www.jukkatalo.fi/mallisto/huippukodit-2016/115-10k/

Mandel, T. (1997). The Elements of User Interface Design. New York City:
John Wiley and Sons.

PLC languages. (n.d.). Retrieved from Kronotech Instrumentation and
Control http://www.kronotech.com/PLC/Languages.htm

PLC scanning operation [Image]. Retrieved from ACC Automation
website http://accautomation.ca/wp-content/uploads/2016/07/PLC-
Program-Scan-005-min.png

Smart Home. (October 30, 2016). Retrieved from
http://cctvinstitute.co.uk/smart-home/

TwinCAT PLC Control Visualization. (n.d.). Retrieved from Beckhoff
Automation
https://infosys.beckhoff.com/english.php?content=../content/1033/tcplc
control/html/tcplcvisu_intro.htm&id=23202

https://infosys.beckhoff.com/english.php?content=../content/1033/cx9000_hw/html/cx9000_prosystem.htm&id
https://infosys.beckhoff.com/english.php?content=../content/1033/cx9000_hw/html/cx9000_prosystem.htm&id
http://www.iotevolutionworld.com/m2m/articles/376816-history-smart-homes.htm
http://www.iotevolutionworld.com/m2m/articles/376816-history-smart-homes.htm
http://library.automationdirect.com/history-of-the-plc/
http://www.indusoft.com/Products-Downloads/HMI-Software/InduSoft-Web-Studio
http://www.indusoft.com/Products-Downloads/HMI-Software/InduSoft-Web-Studio
http://www.srmuniv.ac.in/sites/default/files/files/IC0403-ccp-2.pdf
http://www.jukkatalo.fi/mallisto/huippukodit-2016/115-10k/
http://www.kronotech.com/PLC/Languages.htm
http://accautomation.ca/wp-content/uploads/2016/07/PLC-Program-Scan-005-min.png
http://accautomation.ca/wp-content/uploads/2016/07/PLC-Program-Scan-005-min.png
http://cctvinstitute.co.uk/smart-home/
https://infosys.beckhoff.com/english.php?content=../content/1033/tcplccontrol/html/tcplcvisu_intro.htm&id=23202
https://infosys.beckhoff.com/english.php?content=../content/1033/tcplccontrol/html/tcplcvisu_intro.htm&id=23202

36

Appendix 1
TWINCAT PROJECT CODE

Main program

PROGRAM MAIN
VAR

END_VAR

LivingRoom();
Kitchen();
BedRoom();
Garage();
Outside();

Bed room

PROGRAM BedRoom
VAR
END_VAR

VAR_INPUT
 BR_CeillingLightSwitch AT %I*: BOOL;
 BR_DimLightSlider AT %I*: INT;
 BR_NightLampSwitch AT %I*: BOOL;
 BR_TVRemote AT %I*: BOOL;
 BR_WindowBlindSwitch AT %I*: BOOL;
 BR_TempInput AT %I*: REAL;
 BR_TempControlInput AT %I*: REAL;
END_VAR
VAR_OUTPUT
 BR_CeillingLight AT %Q*: BOOL;
 BR_DimLight AT %Q*: INT;
 BR_NightLamp AT %Q*: BOOL;
 BR_TV AT %Q*: BOOL;
 BR_WindowBlind AT %Q*: BOOL;
 BR_Temp AT %Q*: REAL;
 BR_TempControl AT %Q*: REAL;
END_VAR

// Ceilling light
IF BR_CeillingLightSwitch = TRUE THEN
 BR_CeillingLight := TRUE;
ELSE
 BR_CeillingLight := FALSE;
END_IF

37

// Dim light
IF BR_DimLightSlider = 0 THEN
 BR_DimLight := 0;
ELSIF BR_DimLightSlider = 1 THEN
 BR_DimLight := 1;
ELSIF BR_DimLightSlider = 2 THEN
 BR_DimLight := 2;
ELSIF BR_DimLightSlider = 3 THEN
 BR_DimLight := 3;
END_IF

// Night lamp
IF BR_NightLampSwitch = TRUE THEN
 BR_NightLamp := TRUE;
ELSE
 BR_NightLamp := FALSE;
END_IF

// TV
IF BR_TVRemote = TRUE THEN
 BR_TV := TRUE;
ELSE
 BR_TV := FALSE;
END_IF

// Window blind
IF BR_WindowBlindSwitch = TRUE THEN
 BR_WindowBlind := TRUE;
ELSE
 BR_WindowBlind := FALSE;
END_IF

// Temperature
BR_Temp := BR_TempInput;
BR_TempControl := BR_TempControlInput;

Living room

PROGRAM LivingRoom

VAR_INPUT
 LR_CeillingLightSwitch AT %I*: BOOL;
 LR_DimLightSlider AT %I*: INT;
 LR_TableLampSwitch AT %I*: BOOL;
 LR_StandingLampSwitch AT %I*: BOOL;
 LR_WindowBlindSwitch AT %I*: BOOL;
 LR_TempInput AT %I*: REAL;
 LR_TempControlInput AT %I*: REAL;
END_VAR

38

VAR_OUTPUT
 LR_CeillingLight AT %Q*: BOOL;
 LR_DimLight AT %Q*: INT;
 LR_TableLamp AT %Q*: BOOL;
 LR_StandingLamp AT %Q*: BOOL;
 LR_WindowBlind AT %Q*: BOOL;
 LR_Temp AT %Q*: REAL;
 LR_TempControl AT %Q*: REAL;
END_VAR

// Ceilling light
IF LR_CeillingLightSwitch = TRUE THEN
 LR_CeillingLight := TRUE;
ELSE
 LR_CeillingLight := FALSE;
END_IF

//Dim light
IF LR_DimLightSlider = 0 THEN
 LR_DimLight := 0;
ELSIF LR_DimLightSlider = 1 THEN
 LR_DimLight := 1;
ELSIF LR_DimLightSlider = 2 THEN
 LR_DimLight := 2;
ELSIF LR_DimLightSlider = 3 THEN
 LR_DimLight := 3;
END_IF

// Table lamp
IF LR_TableLampSwitch = TRUE THEN
 LR_TableLamp := TRUE;
ELSE
 LR_TableLamp := FALSE;
END_IF

// Standing light
IF LR_StandingLampSwitch = TRUE THEN
 LR_StandingLamp := TRUE;
ELSE
 LR_StandingLamp := FALSE;
END_IF

// Window blind
IF LR_WindowBlindSwitch = TRUE THEN
 LR_WindowBlind := TRUE;
ELSE
 LR_WindowBlind := FALSE;
END_IF

39

//Temperature
LR_Temp := LR_TempInput;
LR_TempControl := LR_TempControlInput;

Kitchen

PROGRAM Kitchen
VAR
END_VAR

VAR_INPUT
 K_CeillingLightSwitch AT %I*: BOOL;
 K_WindowBlindSwitch AT %I*: BOOL;
 K_SinkLightSwitch AT %I*: BOOL;
 K_StoveLightSwitch AT %I*: BOOL;
 K_TempInput AT %I*: REAL;
 K_TempControlInput AT %I*: REAL;
END_VAR
VAR_OUTPUT
 K_CeillingLight AT %Q*: BOOL;
 K_WindowBlind AT %Q*: BOOL;
 K_SinkLight AT %Q*: BOOL;
 K_StoveLight AT %Q*: BOOL;
 K_Temp AT %Q*: REAL;
 K_TempControl AT %Q*: REAL;
END_VAR

// Ceilling light
IF K_CeillingLightSwitch = TRUE THEN
 K_CeillingLight := TRUE;
ELSE
 K_CeillingLight := FALSE;
END_IF

// Window Blind
IF K_WindowBlindSwitch = TRUE THEN
 K_WindowBlind := TRUE;
ELSE
 K_WindowBlind := FALSE;
END_IF

// Sink light
IF K_SinkLightSwitch = TRUE THEN
 K_SinkLight := TRUE;
ELSE
 K_SinkLight := FALSE;

40

END_IF

// Stove light
IF K_StoveLightSwitch = TRUE THEN
 K_StoveLight := TRUE;
ELSE
 K_StoveLight := FALSE;
END_IF

// Temperature
K_Temp := K_TempInput;
K_TempControl := K_TempControlInput;

Garage

PROGRAM Garage
VAR
END_VAR

VAR_INPUT
 G_CeillingLightSwitch AT %I*: BOOL;
 G_DoorSwitch AT %I*: BOOL;
END_VAR
VAR_OUTPUT
 G_CeillingLight AT %Q*: BOOL;
 G_Door AT %Q*: BOOL;
END_VAR

// Ceilling light
IF G_CeillingLightSwitch = TRUE THEN
 G_CeillingLight := TRUE;
ELSE
 G_CeillingLight := FALSE;
END_IF

// Door
IF G_DoorSwitch = TRUE THEN
 G_Door := TRUE;
ELSE
 G_Door := FALSE;
END_IF

Outside

PROGRAM Outside

41

VAR
END_VAR

VAR_OUTPUT
 O_Temp AT %Q*: REAL;
END_VAR
VAR_INPUT
 O_TempInput AT %I*: REAL;
END_VAR

// Temperature
O_Temp := O_TempInput;

