
 

 

 

 

 

 

 

 

Automation Testing:  

Implementation Methods and Scripting 

 

 

Mari Pasanen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Bachelor’s Thesis 

Degree Programme in  

Business Information  

Technology 

 2017 



Abstract 
    

 21.11.2017 

  
    

 

Author 
Mari Pasanen 

Degree programme 
Business Information Technology 

Report/thesis title 
 
Automation Testing: Implementation Methods and Scripting 

Number of pages 
and appendix pages 
53 + 3 

This thesis presents the basic concepts of automation testing and testing in general. The 

idea was to learn about automation testing for myself in case of possible future endeav-

ours, but also to provide an easily accessible tutorial for those who might benefit from the 

knowledge as well but feel a bit overwhelmed about where to begin. 

 

The thesis comprises of presenting automation testing concepts with SDLC and V-Model, 

different types of testing methods, introduction to both test management and test automa-

tion tools, basics of the testing process in general, possible risks, a case study to demon-

strate an automated login case in action, and finally the final conclusions regarding the pro-

cess of learning from the topic. 

 
The case study was written in the form of a beginner tutorial, which gives step by step in-

structions on how to configure and build an environment to conduct a simplified case for a 

login process for a travel web site. The utilized programming language and environment 

was Java with Eclipse Oxygen, the tool selected was Selenium WebDriver and the assist-

ing framework was selected as Cucumber. The overall final result was a working demo, 

which was documented for easy replication in case of need for learning. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords 
Test Automation, Beginner tutorial, Testing process, Cucumber, Selenium Webdriver, Java 

 



 

 

Table of contents 

1 Introduction ................................................................................................................... 1 

2 Automation testing concepts ......................................................................................... 3 

2.1 What is automation testing? .................................................................................. 3 

2.2 Why implement automation testing? ..................................................................... 3 

2.3 SDLC (Software Development Life Cycle) ............................................................. 4 

2.3.1 V-Model ..................................................................................................... 6 

2.4 Test Driven Development (TDD) ........................................................................... 8 

2.5 Behaviour Driven Development (BDD) .................................................................. 9 

2.6 From manual tests to automation ........................................................................ 11 

3 Types of testing methods ............................................................................................ 12 

3.1 Regression testing .............................................................................................. 12 

3.2 Performance testing ............................................................................................ 12 

3.3 Unit testing .......................................................................................................... 13 

3.4 Integration testing ............................................................................................... 14 

3.5 System testing .................................................................................................... 15 

3.6 Exploratory testing .............................................................................................. 15 

3.7 Smoke testing ..................................................................................................... 16 

3.8 Security testing ................................................................................................... 16 

3.9 User Acceptance Testing (UAT) .......................................................................... 17 

4 Tools and Frameworks ................................................................................................ 18 

4.1 Test management tools ....................................................................................... 18 

4.1.1 Zephyr for Jira .......................................................................................... 18 

4.1.2 HP ALM ................................................................................................... 19 

4.1.3 Open-source management tools .............................................................. 19 

4.1.4 Excel-based Test Management ................................................................ 20 

4.2 Examples of automation testing tools and frameworks ........................................ 20 

4.2.1 Selenium WebDriver ................................................................................ 20 

4.2.2 Cucumber ................................................................................................ 21 

4.2.3 JBehave ................................................................................................... 22 

4.2.4 Universal Functional Tester by HP ........................................................... 22 

4.2.5 Robot Framework..................................................................................... 22 

4.2.6 JMeter ...................................................................................................... 23 

4.2.7 JUnit......................................................................................................... 24 

4.2.8 Jenkins ..................................................................................................... 24 

5 Testing process ........................................................................................................... 25 

5.1 Test Planning ...................................................................................................... 25 

5.1.1 Master Test Plan (MTP) ........................................................................... 25 



 

 

5.1.2 Requirements ........................................................................................... 25 

5.1.3 Test Cases ............................................................................................... 26 

5.1.4 Test Execution ......................................................................................... 28 

5.1.5 Defect Management ................................................................................. 28 

5.2 The importance of the planning and preparation of test tools .............................. 29 

5.3 Implementation of languages from automation testing perspective ..................... 29 

5.3.1 Gherkin .................................................................................................... 30 

5.4 Deliverables and understanding the results ......................................................... 31 

6 Risks of automation testing ......................................................................................... 34 

7 Case study .................................................................................................................. 36 

7.1 Installing tools and frameworks ........................................................................... 37 

7.1.1 Installing Java, Eclipse and the Cucumber plugin..................................... 37 

7.1.2 Downloading Cucumber and Selenium WebDriver ................................... 38 

7.2 Configuration of selected tools and frameworks .................................................. 39 

7.3 Creating and running the automated test on the Mercury Tours web site ............ 41 

7.3.1 Creating a Selenium Java Test ................................................................ 41 

7.3.2 Creating a Cucumber Feature file ............................................................ 44 

8 Conclusion .................................................................................................................. 52 

References ...................................................................................................................... 54 

Appendices ...................................................................................................................... 63 

Appendix 1. Central Keywords List .............................................................................. 63 



 

 

1 

1 Introduction 

Testing comprises of multiple techniques and phases to be implemented in software and 

system testing in the lifecycle of development and maintenance. Manual testing through 

test runs with pre-defined test cases on necessary functions is the most normative way of 

understanding testing, but with huge systems and long development lifecycles comes the 

problem of repetition, the sheer amount of implementable test runs, and the required cov-

erage through test cases.  

 

Automation testing is a form of testing that enables repetitive method for running test 

cases and reducing manual work, and it also provides easier comparison between earlier 

test runs with new results. This becomes essential when considering regression tests, 

which are necessary to conduct after minor development, changes to the current system 

and version updates as an example. When considering large-scale systems comprising of 

hundreds of manual labour test cases, it would become almost an impossible task to test 

all related changes or entire systems whenever a change takes place. Automation testing 

can provide an easy tool to tackle the problem of manual repetition, by using the base re-

sult and calibrated test cases to check the outcome for a passed or failed test, which 

would only require action had there been any errors due to any correlating modifications. 

 

Corresponding to the today’s technological advancements and elaborately constructed 

systems, for most testing specialists it is almost a requirement to at least understand the 

basics of test automation, since it is a vital part to take into consideration during the test 

planning phase and when preparing to test future releases or builds. Unfortunately for 

many, the topic does seem very unapproachable and challenging due to the very tech-

nical aspect of the subject. As many testing specialists might only use planning and test 

execution in their everyday work lives, test automation does require understanding of a 

programming language and how to configure the environments, if one chooses to con-

struct as accurate test suites as possible. Thus, the reason to choose the topic subject 

was not only to familiarize myself with automation testing concepts, but also to provide an 

easily accessible tutorial for those who might benefit from the knowledge as well but feel a 

bit overwhelmed about where to begin. 

 

This thesis will tackle the subject by introducing the very basics of testing itself and how 

test automation can be integrated into the process. A few of the most popular test automa-

tion tools and frameworks will be introduced, for the reader to grasp the essence of their 

usage and the way they work from the perspective of the subject and in order to under-



 

 

2 

stand the methods provided. Scripting is referred in the context of the thesis as the re-

quired programming scripts for the automated functionality and for the test cases which 

support the implementation. The thesis will also contain a basic but descriptive demon-

stration for the test automation implementation life cycle as a short case study, for the 

reader to see the actual process in action. Finally, a central keywords list can be found as 

an appendix at the very end of the thesis, to clarify some of the words and expression that 

may not be addressed within the thesis as profoundly. 



 

 

3 

2 Automation testing concepts 

This chapter focuses on giving an insight into what automation testing is and why it would 

be beneficial to use. Some methodologies such as the Software Development Life Cycle, 

and its derivative, the V-Model will be introduced in order to give a basic idea of the soft-

ware development process and how testing in general fits into it. 

2.1 What is automation testing? 

Automation testing is essentially tool-assisted testing, as the base function to test relies on 

the usage of a specified software that is used to automate, control and report the automa-

tion testing process of the system under test or SUT. 

The concept of automation testing can be understood broadly and can consist of the pro-

cess of automating manual tests, automating tests that can’t be done manually or only 

partially automating the test case. 

When it has been decided upon to implement automation testing to a developed or exist-

ing system, the implementation itself should be considered as a separate test implementa-

tion project as the costliness of test automation is the most prevalent during the designing, 

early implementation phase and during the maintenance of scripts. The actual running of 

the automated tests does not require manual and repetitive labour nor human interactions 

and can be done i.e. during nightly runs or while the supervising tester is doing something 

completely else.  

Hence, the difference between manual and automated tests comes down to differences in 

implementation, costs, and human input. Therefore, there also lies a similar issue as with 

manual tests that if the automated tests are not implemented correctly then the result will 

be false. This ultimately may not even be shown on the report as false which then leads to 

obvious further problems if the configuration issues are not detected properly. Similarly, a 

manual tester may have a false result if the tester is not knowledgeable of the correct end-

result or the process to be tested. (Sahla 18 September 2017.) 

2.2 Why implement automation testing? 

Automation testing itself can be an enormous benefit when it comes to repeating tests, 

testing manually unreachable background operations, and validating that integrated parts 

work together within the system. For instance, regression testing is one of the most popu-

lar phases of test automation implementation, since during this phase the modifications 

and changes of a system are tested to verify that everything works as before.  

 



 

 

4 

Performance tests can also benefit from the usage of test automation, since testing the 

capabilities of an application to handle large amounts of simultaneous traffic requires sev-

eral test users to overload the system. Manually it would be time consuming if even im-

possible to create and manoeuvre i.e. 10000 users and the behaviour during test execu-

tion, but with the use of automation testing, simulating several users at once would de-

crease the workload and enable testers even to perform such tests. 

If automation testing is implemented correctly, the benefit will definitely be the reduced 

testing time and costs, as the need to use several testers every single time to validate the 

same results can be almost completely eliminated for already run manual tests through 

automation. This does not necessarily mean that automation testing can replace manual 

testers entirely, as the need for tester’s skills and understanding of the process is required 

at least before automating all tests, automation testing and manual testing are more likely 

to be complementary towards each other. (Dustin, Garrett & Gauf 2009, 23-24.) 

2.3 SDLC (Software Development Life Cycle) 

This chapter focuses on describing the life cycle of software development, where both 

manual and automated testing is an important factor. Software or Systems Development 

Life Cycle enables certain structure and understanding through models and methodology 

on how to proceed and structure the phases within the development of a software, appli-

cation or system and is a vital part of understanding what a development project may en-

tail for everyone involved. 

What is usually included in the methodology framework is usually the following (Figure 1): 

 

 

Figure 1 Common SDLC processes (Tutorialspoint.com 2017a).  

 



 

 

5 

Starting from the communication, which refers to the negotiation phase with the potential 

client on the terms of the project. During requirement gathering, the client and stakehold-

ers are interviewed in order to map out the needs on the system performance and what is 

expected from the system in general. Feasibility study then combines the information 

gathered from the client and provides a plan for the software process, and a rough esti-

mate for the costs and the technological challenges are mapped out. During the system 

analysis phase, the developers go through the limitations and problems the system may 

phase, and also the project scope is established. In the software design stage, the re-

quirements and the system analysis findings are combined into a tangible document on 

how the system actually will be developed, and all required data dictionaries and pseudo-

code logic is meticulously provided. After the design phases have been completed, then 

the actual development and coding takes place during which errors are minimized as well 

as possible. The testing phase takes into account what has been developed and what 

should be tested the way that the product works the way the client intended, during this 

stage it is quite common for a long process of error management and fixing until the prod-

uct is ready for phases to come. The integration stage is when all the libraries, data and 

possible interfaces are integrated to the system or program seamlessly. Implementation 

phase is when the product is actually taken into production for the client and installed on 

required workspaces, and thus ready for final use. Operation and maintenance ensures 

that the system works as intended and any downtime or issue is addressed as soon as 

problems occur, this stage also may contain the need for minor development where small 

components will be added incrementally as needed while the system is in production. Dis-

position finally means the stage where over time the software or parts of its data or func-

tionality may become obsolete for future use, hence the stage may include data archiving 

or even the possibility of closing down the system completely. 

 

The SDLC framework provides several models to be used in software engineering and de-

velopment projects. Models such as the Waterfall Model, Iterative Model, Spiral Model, V-

Model, Big Bang Model and the Agile Development Model among others from which only 

a few will be introduced (Tutorialspoint.com 2017b). Probably the most well-known model 

in SDLC is the “Waterfall Model”, where the idea is to move through each step as a cas-

cading waterfall and performing each step individually. What this means from an agile per-

spective, is that if a step is skipped or a fatal error is found in earlier steps, then the old-

school approach would have been to address the issue during the corresponding step. 

Once the entire cycle of steps has been completed, then the steps will be reiterated as 

long as development continues, or faults will be found in between the steps. Newer ap-

proach has been to get rid of the meticulous step-by-step following of the model, and in-

stead agile sprints have been added in between the steps where the team can go back to 



 

 

6 

the start until the project phase can move forward.  An example of a Waterfall Model, with 

an added agile development side drawn by using the example from Tutorialspoint.com 

web site, can be seen below (Figure 2): 

 

Figure 2 Waterfall Model Example (Tutorialspoint.com 2017c.) 

 

Another well-known model from the SDLC framework called the V-Model, will be pre-

sented in the next subchapter in detail since is contains the correlating phases for testing 

and test design, thus relating more to the topic of the thesis. (Tutorialspoint.com 2017b.) 

2.3.1 V-Model 

The V-Model is an extension for the waterfall model from the SDLC conceptualisation. 

The model is also known as the Verification and Validation model and has a top-down as-

sociation structure in the shape of the letter “V”. What is meant by this is that with each 

top-down development phase, there is an ascending and corresponding test phase that is 

to be realized simultaneously.  

Even if the exact visual versions may differ from each other, especially depending on dif-

ferent schools of thought, the basic contents usually remain the same. 

The below picture (Figure 3) has been drawn by using the example from the book “TMap 

NEXT®” by the Sogeti Netherlands of the CapGemini Group in order to visualize one ex-

ample of a V-Model. 

 



 

 

7 

 

Figure 3 One interpretation of the V-Model (Koomen, T., van der Aalst, L., Broekman, B. & Vroon, M. 2014. 49). 

 

The figure 3 illustrates how the left side represents the technical implementation side 

starting from the top. The development begins with the preparations and customer re-

quests of the features, and formalizing the required preparations. The second phase 

would be the official requirements created together with the customer of the needed func-

tionalities of the software or system. After this, comes the functional design phase where 

the requirements are designed to be implemented for the system in terms of the function-

ality in general. Then comes the technical design where the actual design and any tech-

nical documentation required is formalized. The realisation phase refers to the actual im-

plementation of all the previously formalized designs from the software development as-

pect and any designs before the realisation are used as the test basis for the test design. 

 

Contrary to the left side, the right side represents the phases for the test design and how 

the phases correspond with the development side and presents which test cases are to be 

finalized in which development phases. The acceptance testing is usually done at the end 

and after all major or critical defects have been dealt with, which would be during the User 

Acceptance Test (UAT) phase and for which the input is taken from customer input and 

the designed functionality. This stage is usually only meant for the customer to verify that 

the system or software performs as requested before being accepted into production. 

System testing takes input from both the functional and technical designs and revolves 

around testing the actual system and how it performs under different scenarios. The de-

velopment test cases are usually done as the last test cases after system and acceptance 

test cases, but are also the first to be run during the testing phase. The development test 



 

 

8 

cases usually refer to integration and unit tests. The integration testing phase, which is 

done before system testing and after unit testing, checks that the interfaces work between 

the units that are being integrated in order to ensure the flow of data and undisruptive 

functionality between the separate units (Software Testing Fundamentals 2017a). The unit 

testing is testing where the written code is tested after certain rows of code have been 

created, and retested until the functionality can be deemed as fully working for the system. 

(Tutorialspoint.com 2017d.) 

2.4 Test Driven Development (TDD) 

Test Driven Development or TDD is an agile software development process that follows 

short development cycles through repetition. TDD is based mainly on unit testing, and 

since the cycles are very short, the person usually in charge of the software code ends up 

creating the unit tests in short code increments i.e. as short automated unit tests. (John-

son, E. 22 July 2015.)  

A visualization of the Test Driven Development cycle can be seen from the below picture, 

drawn by using example from the Agile Alliance glossary on TDD (Figure 4): 

 

 

Figure 4 Visualization of Test Driven Development (Agile Alliance 2017a). 

 



 

 

9 

As seen from the above diagram (Figure 4), the TDD cycle begins by writing a simple unit 

test that should fail in the beginning. This can be done either by the programmer or the as-

signed tester, though usually as mentioned before unit tests fall under the programmer’s 

territory for swifter execution. After the initial unit test has failed, the programmer writes a 

simple enough piece of code that is enough for the test to finally be passed successfully. 

(Agile Alliance 2017a).  

Refactoring stage in this case by the definition from the Agile Alliance web site glossary is 

defined as follows: 

“Refactoring consists of improving the internal structure of an existing program's source 

code, while preserving its external behavior.” (Agile Alliance 2017b). 

 

What this means is that in the refactoring stage, the code is improved until it matches a 

set of criteria for a working code and the development can move further in the process. 

(Agile Alliance 2017b.) 

The process is repeated until the functionality of the software is established through the 

development and tested after new lines of code are added in increments for new unit tests 

to be completed, it is also preferable for this approach to have only one failing unit test at 

once. TDD only tests the program stubs and single pieces of a unified system, and there-

fore does not test how the software works or if the functionality is as it was designed.  

In order to test the actual system behaviour, an approach by the name of BDD will be in-

troduced next. (Agile Alliance 2017a.) 

2.5 Behaviour Driven Development (BDD) 

Behaviour Driven Development or BDD is a derivative and an extension from TDD ap-

proach, the difference being that TDD is meant mainly for unit testing where the function-

ality of a single component is verified through a repetitive process, BDD tests the desired 

behaviour of the components in general that may be based on certain requirements set for 

the functionality. The BDD process should enable the whole development team to discuss 

about how to test, in a way that the communication between the developers, testers and 

the business analysts is guided in a way that it is clear for all to know what is being tested 

and i.e for manual testers to create the implementable automation test cases through 

BDD use (Wilcox, R. 2017). As BDD is a derivative from TDD, one can’t introduce the 

BDD approach to a team that is not already aware of the TDD, especially if the communi-

cation is to be guided throughout team members. (Agile Alliance 2017c.) 

The BDD process is based on the notion of using user stories in the form of features 

and/or scenarios through “Given-When-Then”-syntax for testable scripts to illustrate the 

behaviour of the system in generalized “test cases” that can later be used for the basis of 

the automated test scripts, opposed to traditional way of conducting automation testing 



 

 

10 

test cases through regular code. For example, the features can be written by analysts or 

testers in charge of the test design, whereas the automation can then be implemented by 

the developers based on the already configured scenarios. Even though the exact syntax 

has not been always been formally formalized for the approach, there are a few BDD 

frameworks that support the specified structure i.e. Cucumber and JBehave. Also, a com-

mon syntax simplifies the ease of adopting the approach if the user story canvas has al-

ready been designed as such. As an example the below figure 5, which was drawn from 

the example visualization from the Inviqa UK web site, elaborates the structure of the 

“Given-When-Then”-syntax: 

 

 

 

Figure 5 An Example of BDD Feature/Scenario structure (Kudryashov, K. 7 October 2015.). 

 

The feature refers to the situation to be tested, which is divided into scenarios of the situa-

tion that will be tested separately. The “Given” refers to the pre-condition, while the 

“When” refers to the situation when this takes place, for instance when certain value is en-

tered. The “Then” is the end result for the scenario i.e. a certain button that needs to be 

pushed at the end. All of these steps may contain an additional or optional action in the 

form of the “And”-condition. An example on how to write these features or scenarios will 

be addressed again in the chapter about “Gherkin” and the case study. 

 



 

 

11 

As mentioned before, BDD relates to the Cucumber framework in terms of using the 

“Given-When-Then”-syntax through a “Business Readable, Domain Specific” language 

called Gherkin, which is part of the framework functionality. Cucumber has been chosen 

as the framework for the upcoming case study, where the functionality of BDD will be 

demonstrated in action through the use of Gherkin on a later chapter. (Kudryashov, K. 7 

October 2015.). 

 

2.6 From manual tests to automation 

Automation testing should be considered as software development and in most cases, re-

quires as a separate project as the initial setup can be costly in terms of labour for the de-

sign and implementation.  It is good to remember that not everything should be automated 

as the benefits may stop there and in reverse cause additional costs without the gained 

advantage.  

The entire process requires almost always: 

 

• Planning: Requirements, user stories and descriptions of features.  

• Design: Designing and constructing environments, selecting frameworks and pri-
mary tools and possible assisting tools. 

• Implementation: The actual coding of test scripts. 

• Testing: It is also advisable to test initially that the setup and implemented tests 
work, this can be easily forgotten as human input can contain errors if not verified 
before use. 

• Deployment: Deploying the tests to the executable system and the verification of 
results. 

 

Due to this, it is virtually impossible to convert manual test cases directly into automation 

tests. Manual tests are also much more comprehensive as usually they contain the entire 

process flow or a user story, whereas an automated test should only be a small separate 

function, or several functions tested in small pieces. Mainly due to the reason that if one 

function fails in an automated test, then the testing process stops there, and the rest of the 

features will not be processed through. 

Manual testing also may not be as costly initially, as the manual testing does not require 

coding nor as much environment setup. Although automation testing itself, especially if 

only used to verify results after builds, does not require as much labour as manually test-

ing everything similarly every single time. Usually it is impossible to acquire test coverage 

of 100% of the testable tests with only using automated testing. It is vital to keep in mind 

that manual and automation testing requires completely different approaches, and one 

does not exclude the other. (Sahla 18 September 2017.) 

 



 

 

12 

  

 

 

3 Types of testing methods 

There are several different testing methods and not all directly relating to automation test-

ing directly. For the purpose of understanding the test methods from the viewpoint of test-

ing in general, some brief examples are provided in this chapter. 

3.1 Regression testing 

Regression testing takes place usually when for instance, a new update, a bug fix or a mi-

nor development solution has been integrated into the system or a previously tested por-

tion has been changed. What needs to be tested is that all the parts that are being af-

fected work as they did before, and any new updates or changes to the system under test 

did not break the previously working parts. In most cases, everything needs to be tested 

again to ensure that everything is working completely. 

 

Since usually the previous test cases need to be repeated and tested, which probably al-

ready have passed in previous versions, it could prove to be a tedious task to test every-

thing manually again. In these situations, automation testing is the solution as previous 

tests may be automated and run without as much resources and time as the manual re-

gression testing may take.  

 

Let’s say that all test cases had been run in a previous cycle of a developed system, now 

when a completely new part of the system is being under development and new function-

alities added that do not directly affect the already tested parts. Now these previously 

tested parts can be run quickly as automated versions of functionally the same tests, for 

which the end results are checked and verified that the results will not produce an error 

and function the same as in the first cycle for all the previously tested parts, while the 

other new parts will now be tested manually as before. This would then be categorized a 

basic example of regression testing in action, through verification. (Guru99 2017a.) 

3.2 Performance testing 

Performance testing is crucial especially for systems that are under heavy traffic often, 

and needs to be tested for the systems to handle the capacity of simultaneous users as 

well as possible. This would be practically impossible to test manually as it would be im-

possible to have that number of testers per project. Hence automation testing can solve 



 

 

13 

the issue as the automated scripts can be programmed for instance to generate users and 

to simulate traffic and by using i.e. Jmeter which is a load testing tool used to analyze and 

measure performance. 

 

Performance testing has different testing techniques, such as “Load Testing” for under-

standing how a system performs under a certain amount of load. “Stress Testing” for limit 

capacity testing and determining what might happen when the system reaches its maxi-

mum capacity. “Soak Testing” or endurance testing for testing how the memory or other 

parameters perform under constant system load, and also “Spike Testing” to determine 

how a system handles sudden changes in its user capacity. (Tutorialspoint.com 2017e.) 

3.3 Unit testing 

Unit testing is part of Test Driven Development, which was described in an earlier chapter, 

and follows an agile and iterative method to verify the program code correctness for iso-

lated sections through a repetitive process to ensure that as few errors as possible are be-

ing left out for following phases and are found as early as possible. Unit testing takes 

place during the development phase of the software, meaning when the application or 

software is being coded and is usually considered a part of the actual development pro-

cess and thus performed by the programmers themselves (Software Testing Fundamen-

tals 2017b). In unit testing the idea is to test separate parts of the program code and verify 

that the individual parts work. Since the required functionalities may be missing to perform 

accurate unit tests, the functionality may be instead simulated with the help of stubs or 

drivers. A unit test may be anything needed for the situation, these may be a certain line 

of the code, a whole method or a class. Unit testing is also part of the methodology called 

“Extreme programming”, which advocates the use of short development cycles through 

quick and easy integrations, and thus is fitting for the idea of testing small units at a time 

(Guru 99 2017b). (ISTQB Exam Certification 2017a.) 

 

Another similar testing method to unit testing is called “Component Testing”, which may 

follow the actual unit testing. The difference between the two is that where unit testing is 

based on methodological testing and repetition of the testing cycle and done by the devel-

opers, component testing is done by the testers instead. The functional components are 

afterwards tested to work with other internal or external components during the integration 

testing phase that follows. (ISTQB Exam Certification 2017b.) 



 

 

14 

3.4 Integration testing 

Integration testing refers to the phase which follows unit testing, where the integrated soft-

ware components are tested to verify that they work together as a fully functioning group. 

Since the unit testing tests that individual units in the software work individually, the inte-

gration testing then tests that the units then can work together. The need for this is that 

even if the units themselves may not produce any errors, the compatibility between these 

components may not function initially or the interfaces used for the communication be-

tween the components may not have the right configurations or be compatible at all. 

 

There are two types of ways to test integrations, the component integration testing tests 

that the interfaces and integrated components of the main system work together whereas 

the system integration testing tests that the interfaces to possible external interfaces and 

packages are working as well i.e. the connection to the internet or possible external data 

from another system. Figure 6 demonstrates two components where the testing consists 

of only the integrated parts. 

 

 

Figure 6 A visualization of the system integration testing where external components are combined (Guru99 2017c). 

 

Integration testing has also multiple different approaches to the testing itself: 

 

• Big Bang: Testing all components simultaneously as whole at once. 

• Top Down: A top down cascading testing model where the top-level units or high-
level components are tested first, and all following levels are tested in turns. 

• Bottom Up: Similarly to the top down approach, but starting from the bottom up or-
der. This may bring challenges as the top down levels may contain necessary con-
figurations, hence some level of test drivers or stubs may be required to mimic the 
missing functionality of the top levels. 

• Hybrid: The combination of both the top down and bottom up approaches.  
 

These approaches contain both their benefits and faults. For instance, the “Big Bang” ap-

proach may limit the time for the integration for smaller systems, but makes it difficult to 



 

 

15 

pinpoint exact errors and thus be a high-risk method when considering multiple integra-

tions. The incremental approaches “Top Down” and “Bottom Up” methods make it easier 

to detect errors more accurately and enable swift testing for individual levels, but make it 

impossible to map out the integrations as whole and since the functionality may be en-

acted through drivers the critical functionality may not be as accurate as hoped. (Software 

Testing Fundamentals 2017a.) 

3.5 System testing 

System testing phase basically is the phase when the entire system is tested as a whole, 

with all working integrated parts in accordance to the requirements set by the client. In ac-

tuality, the phase consists of multiple different testing methods used so that the system 

works in different types of usage scenarios. This definitely contributes to the fact that prior 

to the system testing, the majority of the test planning should have been done and in a 

level which covers all the aspects of the system that the functional specifications require 

according to the initial client requirements. The testing in this phase resembles somewhat 

of “Black Box Testing”, since there is no actual requirement to check the program code or 

any internal configurations of the software as the testing mainly focuses on the functional-

ity itself. System testing is the most time-consuming part of the testing process, as the 

need to cover as many required functionalities may take time to implement different types 

of testing methods and to go through a substantial amount of runnable test cases depend-

ing on the scale of the system. It is also common for this stage to mainly consist of manual 

test runs for mapping out the processes required, and receiving feedback from actual use. 

For instance, the “Usability Testing” is also part of the system testing phase, where the 

ease and intuitiveness of use of the system in question can be measured through the 

user’s experience. Also, during system testing phase parts of the performance testing (i.e. 

Load Testing and Stress Testing), security testing, and even in between builds the regres-

sion testing, these testing methods may be executed mainly during the system testing for 

the need to cover the different parts of the system. Especially since the system should be 

mostly fully realized and functioning in all major areas of use. In large scale projects, the 

testing team is usually in charge of running the manual test cases and reporting results, 

but for small scale projects it may not be uncommon for the system testing and user ac-

ceptance testing to be combined, for instance in cases with limited testing resources, 

though this is not a desired scenario. (Guru99 2017d.) 

3.6 Exploratory testing 

Exploratory testing refers to the type of testing where the system or software is being used 

as one normally would and without any specific steps. One might also be navigating 



 

 

16 

through the software and stumble upon accidentally found defects, these types of tests 

may usually be part of the final user acceptance testing or just done by the business users 

of the company. The defect reporting in these cases might be more difficult than usual, as 

the steps beforehand might have gone unnoticed during software usage and reproducing 

the actual error will be more difficult again.  

There are some tools to help with this process, for instance the “HP Sprinter” records 

every single click as a separate step from which test cases can be produced automati-

cally, and the software also takes a screenshot and video from the last steps taken (An-

gerer, M. 2015). Downside to this is of course that the software requires a costly licence 

for “HP ALM” test tool to work at all. 

Exploratory testing may not need specific test cases as the testing is done merely by ex-

ploring the environment and thus the test planning could be challenging, sole level of 

preparation would be recommended to know the processes to be tested. For instance, 

separate short one-step test cases can be created for each exploratory test run, if a test 

management tool is used in the project and the results are required for the reporting por-

tion of the project. (Guru99 2017e.) 

3.7 Smoke testing 

Smoke testing or “Build Verification Testing” is a testing method to ensure that all major 

functionalities work accordingly. It is described as “non-exhaustive” testing with limited test 

cases for only the most necessary and critical functions that determine if it is possible to 

proceed with more detailed testing. Hence the name that originated from hardware test-

ing, where a device was turned on for the first time and checked that the device would not 

catch fire or start to smoke. (Software Testing Fundamentals 2017c.) 

This test phase can be automated for repetitive use, and to ensure a quick first glance af-

ter updates or builds. For example, if new builds are created frequently, an automated 

smoke testing suite may be configured to ensure that every build has not destroyed the 

functionality of the most critical parts of the system, and can be verified as soon as possi-

ble instead of manually mapping the situation. Especially since larger projects have more 

test cases, which may be run through the configured suite and be verified in minutes. 

(Functionize.com 2017.) 

3.8 Security testing 

Security testing falls under the category of non-functional testing, and the goal is to ensure 

that the system or software is free from any possible loopholes and weaknesses that may 

result into data loss or information breach to outsiders (ISTQB Exam Certification 2017c). 

These weaknesses and loopholes may either be intentional meaning a direct attack to the 



 

 

17 

system, or unintentional which means a system loophole where the sensitive information 

may not be as protected as it should. Through security testing, these actions may be de-

tected early enough or the system can be verified to handle the possible attacks that may 

occur. There are six basic principles that should be always verified through security test-

ing: confidentiality, integrity, authentication, authorization, availability and non-repudiation 

(Tutorialspoint.com 2017f). 

 

There are several types of security testing, which contain the techniques to perform them. 

These can be for example: 

• Vulnerability Scan: Using automated testing tools to go through the system in or-
der to discover most known vulnerabilities quickly. 

• Penetration testing: Simulating attacks from malicious hackers, idea is to exploit 
every vulnerability known from security weaknesses to accessing the features and 
data of the system in order to map out how the system handles these attacks. This 
can be either done manually or with an automated software. One example would 
be to perform an SQL Injection, where an access to the database can be achieved 
in order to perform administrative operations and even modifying and deleting data 
(Tutorialspoint.com 2017g). These attacks can be done either by white box testing 
where the tester is provided with system information, or by black box testing where 
no other information is known to the tester apart from the company name.  

• Ethical Hacking: Attacking the system with the intent of exposing security flaws, in-
stead of stealing actual information. 

• Risk assessment: Defining all possible security risks either already known or that 
could occur and assigning them classifications for Low, Medium and High and ad-
dressing them according to the risk level. 

 

These are a few examples of security testing types, as security testing is a very important 

and substantial part of software development. One way to tackle such broad scale of test-

ing would be through test automation. For instance, there is a security testing framework 

called “BDD-Security”, which uses the Gherkin functionality to perform “Given-When-

Then” syntax security tests i.e. for previously mentioned “SQL Injection” testing (Continu-

umsecurity.com 2017). Although both the non-functional and functional security tests may 

be implemented through test automation, to improve the coverage of tackling as many 

risks and as quickly as possible. (Guru99 2017f.) 

3.9 User Acceptance Testing (UAT) 

UAT or also known as Acceptance testing is the final phase in the software testing pro-

cess. The purpose is for the client to verify that the finished system performs according to 

the set requirements formalized according to the client needs and validate that the system 

complies with the required business processes. This testing is performed by the actual 

end-users of the system, or client provided external testers who are familiar with how the 

system should perform. Preferably all major defects have been dealt with before even pro-



 

 

18 

ceeding to this stage and the system should be ready for production stage, but if any de-

fects are detected at this stage, a proper means of defect management and fixes should 

be discussed in order to attain client satisfaction to a degree. 

 

UAT can be performed for instance as black box testing with users that are using the sys-

tem as they would regularly and as type of usability testing where the user is using the 

system for the first time and tries to navigate and use the system without any knowledge 

of it. UAT phase can also be automated to a degree, especially in cases where the client 

lacks the resources to perform adequate acceptance testing or if the same simple tests 

only want to be verified to be correct quickly. It is important to still perform UAT mostly 

manually as user experience can’t be replaced with automation in the long run. (Sharma, 

L. 29 January 2017.) 

 

4 Tools and Frameworks 

Tools are a vital part for both automated and manual testing. For automation testing there 

are several options for tools and frameworks that can be integrated to development envi-

ronments and initiate the tests. For manual testing there are several tools to help manage 

test cases, defects and reporting, and some of which can be integrated with certain auto-

mation tools albeit only normally for commercially licensed large-scale software. 

4.1 Test management tools 

It can be tedious work to test without any documentation or tools to help with implement-

ing the testing process. The key thing would be to have a place to store and create test 

cases, run the test cases, link requirements to the test cases, manage defects and pro-

vide reporting. There are options that can be utilized to help these functions as test man-

agement tools, and it can prove beneficial to be somewhat knowledgeable about how cer-

tain test tools can be utilized for manual testing in general. 

4.1.1 Zephyr for Jira 

Zephyr for Jira is a proprietary licensed test management tool plugin integrated with the 

software development tool Jira, which is mainly developed for more agile projects. There 

is a similar option for Jira to use another management tool plugin called “TestRail for Jira”, 

which works through a cloud integration and connects with Jira for instance for defect 

trackability, depending on the preference (Atlassian Marketplace 2017b). Another tool, 

considered more of a plugin for Jira providing test management capabilities, would be 

Xray for Jira (Atlassian Marketplace 2017c.). All of these tools have the same underlying 



 

 

19 

goal, to provide test management opportunities for Jira, although all plugins contain differ-

ent pricing, contents and usability. 

  

Jira provides access for Kanban and Scrum boards which can be used for the project 

management aspect, and zephyr adds the full optimization for test management alongside 

it. It is possible for instance to create, manage and execute tests and plan the execution 

cycles related to them, along with linking possible defects and requirements as necessary. 

Compared to for instance another licensed test management tool HP ALM, Jira along with 

Zephyr can be classified into a more affordable category in terms of its pricing. Thus, Jira 

is very well known within the industry due to its variety of use. (Atlassian Marketplace 

2017a.) 

4.1.2 HP ALM 

HP ALM refers to HP Application Lifecycle Management, which was formerly known as 

HP QC or Quality Center. The tool is a proprietary licensed software by HP and is usually 

utilized by larger software development companies, especially for old-fashioned waterfall 

application development projects since the various stakeholders are thought to be from 

developers all the way to product owners, providing a larger user base and integrated 

functionalities in one location. As the licensing fee is quite substantial, there would really 

be a dire need for a powerful test management software, however the tool does provide 

most required functions in one concise package (Kaul, N. 24 April 2017). It is possible to 

add and link requirements and to track the overall requirement coverage, create test 

cases and add the test cases into runnable test suites, manage the defects and link them 

to particular test runs, and provide comprehensive reporting methods to showcase the re-

sults, among other things. This is quite beneficial, as not all test management tools con-

tain all possibilities and there may be need to use separate tools for requirements and de-

fect reporting which then again makes it more difficult to track the coverage. (Guru99 

2017g.) 

4.1.3 Open-source management tools 

There are some open-source testing tools if there is no reason nor funds to invest into a 

proprietary licensed software. For instance, there is an open-source agile test manage-

ment tool called “Tarantula” which enables test design, testing and reporting options as 

required. Unfortunately, there will be no longer any future updates for “Tarantula” as of 

now as the development has been seized (Niittyvirta, A.). There is always somewhat of a 

risk when undertaking an open-source test management tool as a default method, since 



 

 

20 

the tools may not provide full utilization required for testing nor the option to integrate any 

other management tools. (Tarantula 2017.) 

4.1.4 Excel-based Test Management 

If for some reason open-source test management options are not desirable, then one op-

tion would be to utilize Excel sheets for test management and tracking. One can provide 

defect lists, test cases and requirements through Excel, but the most obvious downfall 

would be lack of coverage and tracking between the items. It would prove to be exhaust-

ing to track the correct defects to the test runs and requirements manually, but for a small 

scale project it could be a viable short-term option if there is no reason to use that much 

effort into comprehensive test management implementation. (Kaul, N. 8 March 2016.) 

4.2 Examples of automation testing tools and frameworks 

For test automation, the tool and selection of the tool is an important aspect of the devel-

opment, since it is important to take into consideration the environment, the existing tools 

and capabilities of the developers, and any further preferences of use. Automation testing 

does require a tool for the entire functionality, so it is beneficial to know the differences of 

the usage for at least some of them. 

 

What may be confusing is the difference between an automation testing framework and 

an automation testing tool as these are important to grasp if planning to utilize the con-

cepts. The difference being that automation testing tools are used to implement the auto-

mation testing process in a tangible way, they are the platform for performing the automa-

tion testing itself and to create test cases and scripts. Frameworks are mostly meant as a 

set of guidelines and rules on how to create test cases and for the actual automation. The 

framework will also provide function libraries for plugins or applications, possible test data 

sources and any necessary modules and object details. A framework is therefore an addi-

tion to an automation testing tool, once which does not function properly without the un-

derlying tool and vice versa. This chapter presents a few examples of regular testing tools, 

automation testing tools and automation testing frameworks which could be viable options 

for utilization depending on the availability, scale of the project and need. (Aebersold, K. 

2017.) 

4.2.1 Selenium WebDriver 

Selenium is an open-source Web Automation Tool, used mainly for testing the user-inter-

faces of web sites. The tool provides a domain specific language called “Selenese” but it 



 

 

21 

is also compatible with most popular programming languages such as Java, C# and Py-

thon (Stewart, S. 2010). The Selenium WebDriver accepts programmed commands 

through a client API i.e. Java, which are then sent to the browser via a driver for a specific 

browser and returns the results of the communication between the HTML elements of a 

web page after the execution of the test. The WebDriver starts a controlled browser in-

stance, which executes the test without a need for a separate server. Since Selenium 

WebDriver is mainly designed to use for browser based testing, it would be advisable to 

use other methods when needing to test any local or legacy applications. (SeleniumHQ 

2017a.) 

Additionally, there is another version of Selenium, known as Selenium IDE. It is imple-

mented as a Firefox add-on which then records, edits and debugs tests directly on the 

browser. Through this, the scripts can be automatically recorded and edited, but are rec-

orded in Selenese instead of another programming language for any browser actions. Se-

lenium WebDriver will be used in the implementation of the case study in an upcoming 

chapter, where it’s utilization will become more familiar. (SeleniumHQ 2017b.) 

4.2.2 Cucumber 

Cucumber is essentially a collaboration tool instead of a testing framework, which is a 

popular misconception among automation developers. Cucumber does facilitate the BDD 

process into automated testing through Gherkin language and because of that could be 

referred as more of a BDD framework instead. (Nicieja, K. 2016.) 

 

Gherkin will be presented more thoroughly in an upcoming chapter, but as mentioned pre-

viously in the chapter about BDD, Cucumber provides the usage and integration of the 

Gherkin language and the “Given-When-Then” syntax. This can be implemented through 

an automation tool such as Selenium within an IDE environment, and the functional test 

case from the BDD syntax can then be linked to the programmed functionality. Thus, 

providing readability through development teams. Cucumber can be implemented with va-

riety of tools and programming languages, but was initially developed with Ruby. Since 

then the implementations have included Java and C++ among others (Cucumber.io).  

 

It could be possible to first write the Gherkin test cases by the business analysts, and af-

terwards developed into tangible automated tests and this is also where the usefulness of 

Cucumber becomes more prominent and also the danger if there is lack of understanding 

on how to formulate the Gherkin syntax into a form which makes sense for the developer 

to automate altogether. Especially if the usefulness of Cucumber is overshadowed by the 

lack of interest in use from the non-technical stakeholders (Cuadra, J. 2012).  



 

 

22 

For the purpose of demonstrating the use of BDD syntax, Cucumber has been selected as 

the BDD framework for the case study, which will be shown later on. There the utilization 

of Gherkin and the configuration of Cucumber will be elaborated more. 

4.2.3 JBehave 

Similarly to Cucumber, JBehave is another BDD framework using the Given-When-Then 

syntax. Both JBehave and Cucumber BDD frameworks are mainly utilized for acceptance 

test driven design, although usage can obviously be catered to the suitability of the situa-

tion. The main difference between the two is that JBehave was initially developed with 

Java, where Cucumber is developed with Ruby. Both also support the out of the box func-

tionality for JUnit testing. Other than that, it would seem as Cucumber has gained more 

popularity in use especially since JBehave only supports stories which in Cucumber corre-

spond to scenarios and are all gathered under Features. (JBehave 2015.) 

4.2.4 Universal Functional Tester by HP 

Universal Functional Tester, which was formerly known as QTP, is an automation testing 

tool created by HP and used mainly for system and local application testing in situations 

such as functional, regression or service testing.. The tool can be integrated with the HP 

Application Lifecycle Management (ALM for short) and formerly known as HP Quality 

Center (QC). While UFT provides a powerful tool for local and legacy system testing, the 

functionality does not translate well for browser application testing since UFT requires a 

local version on the used workstation. UFT is also heavily licensed and very expensive for 

companies to acquire, hence the tool is normally used by large-scale companies that usu-

ally have licenses for both UFT and ALM due to the cross-functionality of these testing 

tools. (Jain, A. 2017.) 

4.2.5 Robot Framework 

Robot framework is a generic automation testing framework for acceptance tests. It uti-

lizes a tabular test data syntax which is based on the use of certain keywords. The frame-

work provides Python or Java implemented libraries, where the users may create new 

keywords from the already existing ones. The framework was initially developed at Nokia 

Networks with Python programming language, and has since then become a popular au-

tomation framework sponsored by the “Robot Framework Foundation”. The software itself 

can be considered open source along with its most libraries and tools, even if it is widely 

used in test automation even by large-scale companies. 

Robot framework does support Cucumber style BDD development along with the tabular 

functionality, although there are many ways to implement Robot Framework syntax. One 



 

 

23 

example being as provided from the Robot framework tutorials on how the actual syntax 

looks (Figure 7): 

 

*** Settings *** 

Library       OperatingSystem 

 

*** Variables *** 

${MESSAGE}    Hello, world! 

 

*** Test Cases *** 

My Test 

    [Documentation]    Example test 

    Log    ${MESSAGE} 

    My Keyword    /tmp 

 

Another Test 

    Should Be Equal    ${MESSAGE}    Hello, world! 

 

*** Keywords *** 

My Keyword 

    [Arguments]    ${path} 

    Directory Should Exist    ${path} 

 

Figure 7 An example of a tabular syntax for Robot Framework (Robot Framework User Guide Version 3.0.2. 2016.). 

 

This syntax will be provided into formats such as plain text, HTML, tab-separated values 

(TSV), and reStructuredText (rest), which can be then edited in spreadsheet programs like 

Excel and also in text editors (Robot Framework User Guide Version 3.0.2. 2016.). All the 

data is provided in one large table on the file format, where the test data is recognized by 

the use of asterisks which contains the normal table name. The keywords within the syn-

tax then can utilize all of the bundled libraries within the framework but also possible ex-

ternal libraries as well. Robot framework has been known to be paired with Selenium 

WebDriver as the automation testing tool for browser automation options. (Robot Frame-

work.) 

4.2.6 JMeter 

JMeter is an Apache project used for load testing, which is an open source software writ-

ten in Java. It analyses and measures the performance and endurance of web applica-

tions through automated testing, but nowadays it can also be utilized for other functions as 

well. JMeter tests the performance of both static and dynamic resources by simulating an 

excessive load on a single server, group of servers, networks and objects. It provides ana-

lytics on overall performance depending on the level of the load simulated, and tests the 

strength on how the application can handle sudden spikes of traffic. (The Apache Soft-

ware Foundation 2017.) 



 

 

24 

4.2.7 JUnit 

JUnit is an open source framework for unit testing to write repeatable tests. JUnit is heav-

ily related to Test Driven Development, and has also been known as xUnit and SUnit. 

JUnit is imported as JAR-files, same way as Selenium and Cucumber, which are then 

added as external libraries to a corresponding project. JUnit utilizes “@”-annotations when 

using test methods, in order to invoke the methods in question into use. JUnit also re-

quires test runner classes to run the tests and in order to see the results on the console 

afterwards. (junit-team/junit4 2017.) 

Since JUnit is an out of the box feature for Cucumber, the annotations and test runner 

class will be demonstrated more comprehensively in the Case Study chapter. (JUnit Ver-

sion 4.12. 2017.) 

4.2.8 Jenkins 

Jenkins is an open source, self-contained automation server developed in Java program-

ming language and is focused on the continuous delivery approach (Jenkins). Jenkins is 

used to automate all kinds of functions that can relate to building, testing and the deploy-

ment of a software, and it can be also used to automate non-human functionality during 

the software development process. Jenkins is not actually a test automation tool nor a 

framework, but can instead be considered as a supporting tool for running automated 

tests. Jenkins can be set up to check any code changes taking place within environments 

like Git, do automatic builds with tools such as Maven, initiate tests, and provide automatic 

actions like production roll-backs or roll-forwards. Due to the described functionalities, 

Jenkins is an excellent candidate for launching automated nightly builds and tests with the 

configured Jenkins server. From the point-of-view of continuous delivery, nightly builds are 

a vital part of keeping an application clean and concise. It would be easier to launch heavy 

loading automated tests during night time, when there is no actual need for resources and 

any applications normally under use during daytime would not be affected (Berg, C. 

2009). (Cloudbees.com 2017.) 



 

 

25 

5 Testing process 

This chapter focuses on breaking down the basics of the testing process in general and 

how automation testing can be implemented in accordance to the test plan. The goal is to 

describe test planning itself and an overview on regular test tools and their use, mainly 

from the test design viewpoint as is.  

5.1 Test Planning 

Test planning forms the entire base for the actual testing process within the application or 

software development lifecycle, by skipping this part one would not be able to know the 

accurate amount of testable coverage, the risks involved and how to proceed with even-

tual regression testing. Due to this, most large-scale projects implement test planning right 

from the beginning of the project especially in agile iterative development, instead of fo-

cusing on testing only at the end of development. One reason also to start integrating the 

test automation planning from the very beginning, preferably as a project of its own, is to 

optimize its utilization as effortlessly as possible and to advance the start of the test auto-

mation use to as early as possible as the initialization will take its own time.  

 

In the next sub-chapters, the very traditional and most common test planning process will 

be introduced. However, automation testing can have multiple ways of implementation 

and even very unconventional practises may be adopted for the planning itself and for 

constructing test cases. (Homès, B. & Homes, B. 2011. 228-229.) 

5.1.1 Master Test Plan (MTP) 

Master test plan is a comprehensive documentation describing testing consisting of the 

entire application and the corresponding project. MTP is usually formalized before the ac-

tual test planning takes place and should be used as reference for everything else being 

tested. (Montvelisky, J. 2008.) 

5.1.2 Requirements 

A requirement is a single functional and physical aspect of the system that is being docu-

mented from the needs of how the system or application should perform or have as a 

function. Most commonly these are specified together with the client, from which the func-

tional design can be analysed and documented. The system or application will then be de-

veloped based on the functional design, but the testing itself will be planned and tested 

against the original requirements in order to be sure that the implementation has covered 

all the necessary client needs. 



 

 

26 

Requirements can be both functional and non-functional. Functional requirements usually 

focus on the behaviour of the system and what the stakeholders require from the system 

functionality. Non-functional requirements should cover everything else that the functional 

requirements won’t, which usually relate to i.e. security, performance and the operation of 

the system. When planning automation testing usually the non-functional requirements 

are important, since they can be used to also define the need and criteria for automated 

performance and security testing. 

 

The syntax of a requirement may vary, but constructing a single requirement into a use 

case form is a desired method, such as: 

 

Functional requirement: 

“As a user, I want to log into the system.” 

 

Non-Functional Requirement: 

“System login must require both a username and a password.”  

 

This would enable easier analysis from which the functional and technical design may be 

documented as the focus is in one client need or i.e. a security requirement, and one re-

quirement can easily be translated into one testable test case. (Eriksson, U. 5 April 2012.) 

 

The risk of course lies with the discrepancies between the original requirement and the 

execution and whether testing is even able to be implemented based on what has been 

designed. Also in many cases a system may not even have any requirements to begin 

with, and in these cases the requirements are constructed just for testing purposes or the 

testing is planned based on client consultation and available documentation on the system 

or application. (Software Testing Studio 2017.) 

5.1.3 Test Cases 

Test cases are executable scripts to test a certain function of an application. They usually 

may be formalized to test one pre-determined requirement by creating a test case based 

on the requirement in question. Requirements are usually paired with a testable test case 

in order to track the coverage rate for testing, in the sense that if the test case passes, 

then the requirement in question should be fulfilled in terms of the application. If the test 

case fails however, then depending on the determined process, a defect about an error or 

other discrepancy may be created. Once the defect has been handled, the tester re-tests 

the test case and thus repeating the process.  

 



 

 

27 

In cases where there are several test cases, these could be then bundled into test sets 

containing all test cases of a certain process or function. Each test case may then contain 

several test executions that may be part of different test cycles and be run separately. 

This helps to track the progression of the development, or if something was broken that 

worked in a previous test cycle in a different test execution. The bundling and running test 

cases in separate cycles will ultimately assist the reporting needs and traceability of the 

project progression and even enable the creation of best practices and checklists for 

known issues.  

 

The nature of the test cases may depend on the situation, but most manual testing for ex-

ample is done by using the test case with basis for all actions. Due to this, a good test 

case consists of several steps for specific testable actions, with preferred expected results 

resulting from those actions.  

 

For instance, when having a requirement “As a user, I want to log into the system.”, an ex-

ample of a test case being created from this could be as follows: 

 

Step ID Description Expected result 

Step 1 Launch <application name>. The right application should open. 

Step 2 Click the link to login page. The login page should open. 

Step 3 User enters <User name>. User name is entered. 

Step 4 User enters <Password>. Password is entered. 

Step 5  Click Login-button. The user can login to <application 

name> successfully. 

 

Here the brackets represent the input values determined for each test case. There is a 

possibility to create generic test cases, or some test tool applications allow parameters to 

be used as placeholders for the input values that can be changed by modifying fields sep-

arately within instances rather than the test case itself, which may be used by multiple 

projects at once. 

There is no specific way to formulate a test case, whatever works for the situation is the 

method to be used. Most test tool applications may be expensive, and for smaller devel-

opment projects Excel could be the only solution as mentioned in earlier chapters. Thus, 

enabling the tester to be creative during the test case creation period. Although, an Excel 

sheet may be difficult to use when tracking requirement coverage through test cases.  

Once the test case has been created, the test execution itself takes place. (Bartlett, J. 2 

December 2015.) 



 

 

28 

5.1.4 Test Execution 

Once the planning has been sufficient, the actual execution of testing will begin. Test exe-

cution mainly entails the tester to perform beforehand planned test cases from the system 

under development. The tests may entail the tester to try user log in or other specified 

tasks that the client requirements consist of. If these requirements are met through the 

performed test cases, then the result of the test case will be passed. If the test does not 

meet the conditions, then however the result of the test will be deemed as failed. 

 

Passed test cases will usually not require any further procedures except during the re-

gression testing phase, when being run again, but failed tests need to be reported as 

quickly as possible to ensure swift fixing of these errors.  

 

Once the errors have been fixed, the tester should re-test the same test case to ensure 

that the conditions are met, and the test case can be deemed as passed. If this does not 

happen, the process will be repeated until the fixes have been implemented correctly on 

between reporting and status updates. (Tutorialspoint.com 2017h.) 

5.1.5 Defect Management 

Defect management refers to the reporting of found errors during testing process, whether 

it be through test runs or free form exploratory testing. The main goal is to deliver a high-

quality software and discover any anomalies that may disrupt this. The reporting itself may 

differ from the situation or comply with the desired method, but the best practise would be 

to be as precise as possible and preferable document the steps for how to reproduce the 

error and hopefully also a descriptive screen shot or video of the situation. 

 

In most test tools the defect management feature has been integrated for ease of man-

agement, but as long as the error handling takes place and is being corrected the tester 

may even use an excel sheets for tracking purposes depending on the scale of the project 

or phase in testing. For projects with the need to handle multitude of defects, a definite 

recommendation would be to use an actual issue handling tool that can i.e. link the failed 

test case to the defect, enable the tester to give a comprehensive description on the error, 

maybe even inform the developer via email notification on the found defect and in turn no-

tify the tester when the defect can be re-tested again. Few examples for this could be HP 

ALM/QC and Jira with a test management plugin. 

 

Once the error has been appropriately handled, the defect will be reassigned back to the 

tester, who will verify how well the defect has been fixed. If however the defect still has not 



 

 

29 

been fixed, the process will be repeated until the required function is deemed fixed and 

functional. (Homès, B. & Homes, B. 2011. 257-259) 

5.2 The importance of the planning and preparation of test tools 

There are many varieties of testing tools to be used depending on the situation and pro-

ject, as presented in the previous chapter about testing tools, which range from open 

source free-to-use applications to licensed corporate software, all the way to simplified ex-

cel sheets when considering test management in general. For automation testing, the vari-

eties differ similarly, except some licensed products also integrate between test manage-

ment and automation testing tools. 

 

From the tool implementation point of view, that part of the decision to select the required 

management tools for manual and automation testing is part of the test design process. 

Different tools cater to different needs, if one is to understand the diversity and power dif-

ferent tools can provide, then the benefit will be much more prominent when fully utilized. 

For this particular reason, there may be even need for projects to map out the functionality 

and usage of proprietary tools versus open source, or even a requirement for separate 

tool specialists especially when planning for a large-scale project where the need to han-

dle thousands of requirements and test cases is required from the test management tool. 

(Koomen, T., van der Aalst, L., Broekman, B. & Vroon, M. 2014. 385-387) 

5.3 Implementation of languages from automation testing perspective 

In order to implement automation testing in a functional way, a rigorous planning of pro-

grammed scripts is in order. After all automation testing project is considered as a devel-

opment project simultaneously. In order to invoke the functionality of the executable test 

cases on a software, the tools used themselves are not enough as there is a need to un-

derstand programming logic and programming in general to achieve automation at all. For 

instance, an IDE such as Eclipse for Java can be used as the development environment 

for the code, which then has the tool libraries added within the project. 

Eclipse IDE can be just one example of an environment used to provide the code with 

Java for the automated script to work. The same could be done i.e. with Microsoft Visual 

Studio and the C# programming language. It is always important to remember the com-

patibility of the programming language and the tools being used, since not all configura-

tions necessarily go together. But along with just the programming languages, there is 

also supporting language for BDD framework, from which Gherkin will be used as an ex-

ample. 



 

 

30 

5.3.1 Gherkin 

Gherkin is not directly a programmable language, since the idea of Gherkin is to be a 

“Business Readable, Domain Specific Language” or BRDS for short that is part of the 

BDD approach as mentioned during the earlier chapters. This means that the Gherkin test 

case is written by detailing the software behaviour in certain keywords and sentences that 

the automated software code can understand, and provide the functionality from java code 

snippets.  

The purpose of Gherkin is both the documentation and the automated tests themselves, 

and the Gherkin grammar consists of several different spoken languages, not limited to 

just English language. 

 

The Gherkin syntax consists of Feature, Scenario, and Given-When-And-Then keyword 

usage. The Gherkin source file always needs the extension “.feature” to its filename and 

the test case begins with the word “Feature” and an optional description. Afterwards the 

situations will be described as scenarios, with each different scenario having its own 

Given-When-Then conditions. 

An easy example of the syntax might look as follows: 

 

Feature: Description of the situation to be tested or additional information needed. 

 

Scenario: Business situation 1 

Given Precondition 

And Additional precondition 

When Action of the user 

And Other action 

Then Final outcome 

 

Scenario: Business situation 2 

Given Precondition 

When Action of the user 

Then Final outcome 

 

This would be a basic example of the Gherkin syntax, but there is also a possibility to add 

parameters through scenario outlines (cucumber/cucumber 2017). This would be accom-

plished by adding an “Examples”- table below the entire “Feature” with highlighted key-

words. An example of a Gherkin feature file with the examples-table can be seen from be-

low as follows (Figure 8): 



 

 

31 

 

Feature: Web site Login 

  As a user, I want to login to the web site. 

   

  Scenario Outline: Login 

    Given User is on the home page 

    And User navigates to the login page 

    When User adds "<UserName>" and "<Password>" is entered 

    Then User clicks on the submit button 

     

    Examples: Animals 

      | UserName | Password      | 

      | tester1  | test1234      | 

      | tester2  | test5678      | 

 

Figure 8 An example of a Gherkin syntax with the usage of examples (Knight, A. 27 January 2017). 

 

Usage of Gherkin parameters, brings reusability for testing with Cucumber and may even 

offer multiple testing scenarios at once through scenario outlines. The parameters added 

to the Gherkin syntax can stay the same, and by adding or modifying the examples-table 

the test data should be implementable through different situations. It is also possible to 

have multiple examples-tables, just as long the referenced parameters can be found from 

the Gherkin itself.  

 

Once the Gherkin feature file has been finalized, the highlighted keywords will then be ref-

erenced with “@”-annotations in the executable code for the corresponding keyword. 

Gherkin then recognizes which steps have been run and the result of the test itself. The 

power of the use of these types of test cases lies in the possibility for the whole develop-

ment team, including even the non-technical personnel, to understand what is being 

tested and what went wrong in the results. There also lies the risk of not implementing the 

test cases as fully intended, especially if formulated by a non-technical person who does 

not understand coding functionalities. This could lead into miscommunication on results, 

but the potential does outweigh the possibility of confusion. Gherkin is used as an exam-

ple of the BDD syntax, since it has been selected along with Cucumber for the implemen-

tation of the Case Study. (Singh, V. 2014.) 

5.4 Deliverables and understanding the results 

Testing is essentially the tracking and validation of the quality of the software to the pro-

ject stakeholders. The results need to be conveyed as concisely and comprehensively as 

possible, and this is where the importance of reporting comes along as the results of the 

testing process are the deliverables that can be attained. The test status reporting can 

happen in between and at the end of the development, the idea of the reporting is always 

only to advise the project management and the leading stakeholders on the situation 



 

 

32 

based on the test results, from which the management may make decisions on where to 

move forward. Testers should not make these kinds of important decisions themselves, as 

this could lead to miscommunication of expectations. Testing can therefore be considered 

as more of an advisory method, conveyed through the reported results. (ISTQB Exam 

Certification 2017d.) 

 

What constitutes as reporting from the testing perspective? The reporting can vary de-

pending on the scale and the scope. For instance, the reporting could consist of the test 

coverage or more precisely the percentage and ratio of passed, failed and not covered 

test cases, the percentage of open and closed defects based on risk level, and the report-

ing of any obstacles from the testing point-of-view. Many test tools provide the necessary 

metrics and report exports that may come in forms of different charts, visualized pictures, 

colour coding, and traceability reports. Or if such measures would not be attainable, then 

these charts could be created manually with i.e. Excel sheets. For example, one example 

of reporting could be as follows when reporting the status of test cases using Excel  

(Figure 9): 

 

       

Summary 

 

Test Case total 18 

Run 15 

Passed 11 

Failed 4 

Not Run 3 

  

  

  

  

  

       
Figure 9 One example of test reporting using Excel. 

 

Or when using a reporting tool, the ready provided reporting options might look as seen 

below in the example of the TestRail Management tool provided by their official web site 

(Figure 10): 

Passed
61%

Failed
22%

Not Run
17%

Passed Failed Not Run



 

 

33 

 

Figure 10 TestRail management tool test run overview (TestRail 2017). 

 

As seen on the figure 10, the chart tracks the overall status of the test cases, which can 

then be generated into more comprehensive project reports. Test management tools usu-

ally also provide reporting templates to be used when presenting the findings to the stake-

holders, who can then assess the situation and decide more accurately on the changes to 

the project timing, scope and the entire production readiness of the developed software. 

(Software Testing Help 2017.) 

  



 

 

34 

6 Risks of automation testing 

This chapter revolves around the possible risks that automation testing may contain. As 

the method itself ultimately introduces a way to test multiple test cases without as many 

resources, one should remember that incomplete preparations, lack of maintenance, in-

compatible solutions and platforms may not provide as reliable results as one would hope. 

 

The biggest factor when it comes to risks, is to manage the expectations of the managers 

and other stakeholders. Too often there are misconceptions on understanding the basis of 

test automation, just because there are now automated tests, does not necessarily mean 

that the tests can find bugs more easily or that everything can be tested with 100% cover-

age. More often automation testing is used just to verify that the basic software is func-

tional, and that the previously tested results stay the same, instead of finding any new is-

sues or bugs. Also, as not everything can be automated, there always should be some-

thing left out for the testers to verify the correct functionality, usability or to see any issues 

more profoundly. As manual and automated test cases are not exactly the same, the man-

ual test cases can’t directly be copied as automated ones, or the outcome of the results 

and the implementation won’t be accurate. 

 

Another misconception is to disregard the fact that the implementation of automation test-

ing requires an actual software development project with the design, testing, deployment 

and maintenance in order to upkeep the correctness of the results and the whole process 

should not be rushed as lack of time might cause issues in the long run. In these situa-

tions, it would be obvious that if the automation testing implementation would not be de-

signed nor maintained after the deployment, any new builds or versions would change the 

programmed logic of the automated test cases/scripts and even change the results. This 

could happen maybe even unbeknownst to others, especially if the results would be re-

turned as falsely passed or falsely failed, thus, slowing down the detection rate of any 

possible new issues. It takes a lot of effort and upkeep to update everything to ensure that 

the results would not be false due to simple updating discrepancy. (Sahla 18 September 

2017.) 

 

Another risk would be not having skilful or the right people to implement the programmed 

code of the designed implementation, having team members lacking the knowledge of au-

tomation testing and the tools entirely, or completely disregarding any training opportuni-

ties for potential team members. This could lead to incompatibility issues with the environ-

ments, programming languages, used frameworks and any automation software tools, 

that may not be right for the tested software as the background knowledge would not be 



 

 

35 

there to identify the potential risks of using incompatible tools. For instance, let’s say that 

the BDD framework scripts were pre-designed by the business analysts with only the 

knowledge on the business processes but not on the functional side or on what has been 

implemented, and because of this the design of the BDD test cases could end up with il-

logical conditions that the developers would not be able to implement as automated test 

scripts. Another scenario based on the risk of lack of knowledge might be that the imple-

mentation design could state that the backend systems would be readied to be tested with 

a browser automation tool such as Selenium, or that the HTML pages would be tested 

with a tool used for local applications or systems i.e. HP UFT. Hence, these scenarios re-

sulting in failures to automate properly if the stakeholders would not be knowledgeable of 

the right use of these tools. (Software Testing Genius.) 

 

 



 

 

36 

7 Case study 

The purpose of the case study is to show case on how to implement test automation in a 

possible real-life testing scenario. For the testing itself, the tools and frameworks selected 

for the implementation are selected as follows: 

 

• Eclipse for Java developers with a Cucumber plugin. 

• Selenium Web Driver automation tool. 

• Cucumber as a BDD framework with Gherkin 
 

 
The case study will be conducted on a freely distributed and simulated travel agency 

page, that does not have any real-life functionality for precautionary measures.   

The idea is to demonstrate a one example on how to automate a login and logout test pro-

cess, on a website with a ready-made registered test user. The home page that was used 

for the demonstration of the case study is visible below in figure 11: 

 

 

Figure 11 Mercury Tours store front (Mercury Interactive 2005). 

 

The process was implemented with the instructions and help from the “Tools QA” Website 

under “Cucumber Tutorial” by Lakshay Sharma (Sharma, L. 2014a). The downloaded 



 

 

37 

files, framework jars and some lines of code were kept almost the same to ensure the 

functionality and quality of the demo, but the entire process was implemented on a differ-

ent website and different browser to demonstrate the functionality and the implementation, 

more so than to teach how to program new functionalities. 

7.1 Installing tools and frameworks 

What is needed in the beginning is to download all required tools, frameworks and librar-

ies to ensure that the automation test build can function once being set up. 

What is required altogether are in terms of tools and frameworks are:  

Eclipse for the storing the project and programming scripts with Java programming lan-

guage, Selenium Webdriver tool and its libraries that contain the knowledge to start and 

control the browser instance during test run, and Cucumber testing framework that imple-

ments the use of Gherkin language to write the automated test cases which are written in 

business readable language and will prompt the corresponding functionalities of the soft-

ware to be tested. More about separate plugin downloads related to the frameworks and 

how this will be implemented in practice will be presented in the following chapters.  

7.1.1 Installing Java, Eclipse and the Cucumber plugin 

To start, one should download the latest version of Java SE, meaning the newest Java 

development kit (JDK), to the system from the ORACLE website by following the down-

loading instructions. This is so that the system can understand the Java programming lan-

guage and run Java applications. The JDK is obviously needed for coding the functionality 

of the test scripts, so that the programmed code guides the automated tests to comple-

tion. The JDK version which was used for the purpose of the case study was Java SE 

9.0.1. (Sharma, L 2015b.) 

 

Next what is needed is to download the latest version of Eclipse IDE for Java Developers 

(version used was Eclipse Oxygen 64-bit), an environment for the development of the au-

tomation test projects and containing the project itself. To do this, the user needs to down-

load the correct version corresponding to the operating system at hand from the official 

Eclipse website, save the .zip file to computer and once extracted, start the downloading 

from the eclipse.exe installation file. (Sharma, L 2015c.) 

 

Now that Eclipse is ready to be used, a handy “Cucumber Eclipse Plugin” can be installed 

which helps the Eclipse environment to understand the Gherkin syntax better. The plugin 

is not a mandatory part of the project, but can help immensely to understand which parts 



 

 

38 

of the syntax are vital as the plugin also acts as a highlighter for the keywords and im-

proves readability.  

The plugin can be downloaded by navigating to the “Help” menu from the upper toolbar 

and selecting the option to “Install New Software”. From the prompted window the option 

“Add” should be selected, which prompts another window for inputting a web address. The 

website called “Tools QA”, which I used as the basis to implement my case study, sup-

plied the following address for the plugin location: 

“http://cucumber.github.com/cucumber-eclipse/update-site” 

By adding this address after clicking “OK”, the “Cucumber Eclipse Plugin” option will be 

visible. Check the box next to it before clicking next, after agreeing to the usage terms the 

downloading will be prompted on screen and once downloaded will be used when writing 

the Gherkin scripts. (Sharma, L. 2014d.) 

7.1.2 Downloading Cucumber and Selenium WebDriver 

Cucumber is downloaded in several separate modules which are called jars. Each jar is a 

functional library that supports the functions of Cucumber and contains the program itself. 

According to the official Cucumber website, there is no separate setup installer to install 

the framework as only the required jar files are downloaded and implemented to the pro-

ject manually. The required jar files were downloaded from the public maven repository for 

which the link was found from the official Cucumber Website and from the online maven 

repository website “https://search.maven.org” by searching the repository by the accurate 

jar names and with Java-language support and downloading them to an easily accessible 

location on the local drive so that the downloaded files can later be added to the project 

on Eclipse.  

According to the “Tools QA” example, the required cucumber jar files that enable the func-

tionality to work and which should be downloaded for the project were as follows: 

 

Jar files relating to Cucumber itself: 

• cucumber-core  

• cucumber-java 

• cucumber-junit 

• cucumber-jvm-deps 

• cucumber-reporting 

• gherkin 
 

Additional jars not exclusively affiliated to Cucumber: 

• junit 

• mockito-all 

• cobertura 
 



 

 

39 

The jar files relating to Cucumber itself can be found from “http://repo1.maven.org/ma-

ven2/info/cukes/”. 

 

The jar files for cucumber enable the framework to function as required with the addition 

of using the gherkin language from the gherkin jar file. The other jar files cover additional 

requirements for the testing. JUnit enables a visual representation of passed and failed 

tests after test runs by showing the failed tests in red and passed in green. Mockito is a 

mocking framework to create mock or test double objects to be tested in BDD testing 

(Wikipedia 2017). Cobertura on the other hand “Calculates the percentage of code ac-

cessed by tests” according to the official website (Cobertura 2.1.1.). (Sharma, L. 2014e.) 

 

The Selenium WebDriver can be installed as a zip-file from the Selenium’s Download site. 

The version to be downloaded should support Java, and once extracted to the local disk 

the extracted folder should contain a general jar-file for the client, and a library folder for 

several other jar files. Similar to cucumber jar files, these will also be added manually to 

the Eclipse project as needed. The version used in the project was the latest at the time, 

Selenium WebDriver Java version 3.5.3. (Sharma, L. 2015f.) 

7.2 Configuration of selected tools and frameworks 

Before any scripts can be written and tests can be run, all of the downloaded tools and 

frameworks need to be configured for the project itself. 

 

At first the Eclipse Oxygen client needs to be started. Every time the client is launched, a 

separate inquiry about the workspace is prompted on the screen unless the selection is 

selected as default. It is easy to select a location for the projects that can be easily acces-

sible, although this is not as important since the location is set as the Eclipse program 

folder. 

 

From the “Welcome” page, create a new project. This can be done by selecting: 

File > New > Java Project 

This action prompts a new window on the screen, and once the Project name has been 

added by clicking on “Finish” button the new project is ready to be configured. 

 

What is needed next is to add the jars to the project that were downloaded in the previous 

chapter in order to add the associations to the project for the tool and framework. Starting 

off by adding the Selenium jars, by right-clicking the project name root folder and selecting 

“Properties” a window will be prompted on screen. From the window select “Java Build 

Path” on the right side of the window and then navigate to the “Libraries” tab. From here 



 

 

40 

click on the “Add External JARs…” button on the right side and navigate to the extracted 

folder for Selenium jars. First add the “Executable Jar File” for the client jar file found in 

the root folder of the extracted Selenium folder, and afterwards add all other jar files in the 

“lib” file and click the “Apply and Close” button. This ensures that all required Selenium jar 

files containing the functionalities are associated on the project. Below in figure 12 is a 

picture of the “Properties” window. 

 

 

Figure 12 Adding Jar files for both Selenium WebDriver and Cucumber, all relevant selections have been highlighted in red. 

 

After the Selenium jar files have been added, repeat the process for all jar files that were 

downloaded for Cucumber. At this stage the project should be adequately configured and 

ready to start with the process of writing the tests. The project should look as follows on 

the Eclipse “Package Explorer” (Figure 13): 

 

 

Figure 13 Project folder after configuration 

 

The “Referenced Libraries” menu should now contain all previously added jar files and the 

next phase may begin. (Sharma, L. 2014g.) 



 

 

41 

7.3 Creating and running the automated test on the Mercury Tours web site 

Before any writing of the test cases can start, it is beneficial to create a folder structure for 

the project. Starting by right clicking the default “src” file and adding a package file from 

selections “New” > “Package” in the Package Explorer. This prompts a “New Java Pack-

age” window, where a name for the package can be added and it is advised to keep the 

source folder the same. Give the package file a suitable name, in this instance i.e. 

“testCucumber”, and click “Finish”. After this, add another package similarly to the same 

“src” folder and name it i.e. “stepDefinition”. 

 

Add a folder under the project structure by right clicking the project name and selecting 

“New” > “Folder”. Give the folder a name, i.e. in this case the name is “Feature”, and click 

“Finish”. (Sharma, L. 2014h.) 

 

The project should look something like this in the package explorer (Figure 14): 

 

 

Figure 14 How the project should look after adding the file structure. 

7.3.1 Creating a Selenium Java Test 

To start the process, create a Java test script in Selenium for the Login and Logout pro-

cess to see the functionality in action. After the code has been set to work, the same pro-

cess will be converted into Cucumber scripts, where the use of Gherkin enables to under-

stand how the test can function without trying to decipher the code too vigorously. 

 

First add a class file to the recently created “testCucumber” package and give it a name 

i.e. “TestSelenium”. This can be done by right clicking the package and selecting “New” > 

“Class”. Remember to check the radio button for the option “public static void main” before 

clicking on the “Finish” button. The selection screen can be seen below (Figure 15): 

 



 

 

42 

 

Figure 15 The selections when adding the Java Class. 

 

The project should look like this at this point (Figure 16): 

 

 

Figure 16 The project structure and outlook after adding a class, which is be highlighted in red. 

 

Add the following code snippet to the recently created class in its entirety, although the 

green text is meant for commenting the functions of the code. The base for the code was 

taken from the tutorial of the “ToolsQA” website and adapted to work on the current pro-

ject (Figure 17): 



 

 

43 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 

package testCucumber; 
  
import java.util.concurrent.TimeUnit; 
  
import org.openqa.selenium.By; 
import org.openqa.selenium.WebDriver; 
import org.openqa.selenium.chrome.ChromeDriver; 
  
public class TestSelenium { 

public static void main(String[] args) { 
// Create a new instance for the browser driver, it is important to add full path for 
the Chromedriver from the local folder downloaded on computer. 
 
WebDriver driver; 

 System.setProperty("webdriver.chrome.driver", "C:\\Full driver folder 
path\\chromedriver.exe"); 

        driver = new ChromeDriver(); 
  

//An Implicit wait, which is the amount of time that the search for the elements on the 
page can take before throwing an exception. 

  
        driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS); 
  
        //Launch the Mercury Tours Web site 
  
        driver.get("http://newtours.demoaut.com/"); 
  
        // Find the element "SIGN-ON" and click the sign-on page  
  
        driver.findElement(By.linkText("SIGN-ON")).click(); 
  
        // Enter the user name on the element found 
  
        driver.findElement(By.name("userName")).sendKeys("tester_1"); 
  
        // Enter the password on the found element 
  
        driver.findElement(By.name("password")).sendKeys("test1234"); 
  
        // Presses the "Submit" button. The WebDriver will redirect the user to the home screen. 
  
        driver.findElement(By.name("login")).click(); 
  
        // Print a Log In message to the console screen 
  
        System.out.println("Login Successful"); 
  
        // Click the corresponding element for the log off button and logs off the user 
  
        driver.findElement(By.linkText("SIGN-OFF")).click(); 
  
        // Print a Log In message to the console screen 
  
        System.out.println("Logout Successful"); 
  
        // Closing the driver 
  
        driver.quit(); 
    } 
 
} 

  

Figure 17 The initial code for the functionality of the automated test (Sharma, L. 2014h).  

 

The code above should work in the way that the browser is launched to the home page, 

the Login link is clicked automatically and the username and password are inserted as 

values. The Submit button is clicked, and a message about successful login is printed out 



 

 

44 

on the Eclipse console screen. Afterwards the user should be logged out automatically, 

and the browser should close itself.  

 

In order for the browser to be prompted on screen automatically, the appropriate driver 

needs to be downloaded separately and referenced on the code as a web driver. In this 

case the browser used was Chrome, which requires a ChromeDriver to work. The driver 

can be downloaded as an open source google API by searching with the name. The ver-

sion used in this case study was ChromeDriver 2.33. (Google Sites.) 

Similarly, if Mozilla Firefox was required for testing, the ChromeDriver would be replaced 

with GeckoDriver and downloaded and referenced in a similar way. (mozilla/geckodriver 

2017.) 

 

At this point the test code is run as a Java application by selecting:  

 

“Run” > “Run As” > “Java Application” 

 

Or by right clicking the “TestSelenium” Java file from the “testCucumber” package and se-

lecting: 

 

“Run As” > “Java Application”  

 

If the code works as it is supposed to and the automated process was prompted on 

screen, then in the next subchapter the same process is converted to a Cucumber feature 

file with Gherkin language. (Sharma, L. 2014h.) 

7.3.2 Creating a Cucumber Feature file 

Previously on chapter 3.3.2 a short introduction to Gherkin language was given. In this 

chapter the knowledge of the keywords will be utilized and used to explain functionally 

how the language connects with the Java code and works in action. 

 

At first, a feature file should be created within the previously created “Feature” folder in the 

package explorer. When creating a feature file, it is important to remember that Cucumber 

will not be able to detect the added features on the file unless the file has the “.feature” file 

extension added to the name and usually a single feature file has a single feature included 

for functional understandability. For instance, the name that will be added in this case 

study is “Login_MercuryTours.feature”. 

 



 

 

45 

Begin by right clicking the “Feature” folder in the package explorer and select “New” > 

“File”. Make sure that the selected folder is still correct and add the appropriate file name 

containing the required file extension and click “Finish”. 

Add a simple Gherkin BDD script to the newly created file that defines what is to be tested 

in the process, following this simple example (Figure 18): 

 

Feature: Login/Logout 
  
Scenario: Successful Login as an existing user 
 Given User is on Mercury Tours home page 
 When User clicks the SIGN-ON button 
 And User enters username and password 
 Then Message is displayed Login Successful 
  
Scenario: Successful Logout after Login 
 When User Logs out from the application 
 Then Message is displayed Logout Successful 

 

Figure 18 The Gherkin BDD script used in the case study (Sharma, L. 2015i). 

 

The Gherkin test case gives an insight on the functionality of the tested process and every 

single Given/When/And/Then line will have a corresponding annotation on the code file 

that will be created a bit later. When the code snippet starts with “@Given” format, the 

code recognizes the phase from the Gherkin scenario and shows it as passed or failed in 

the final reporting screen. If there is no linkage between the annotated piece of code and 

the Gherkin keyword, then the test run phase will return an error as the coverage would 

not be sufficient enough. As the Login information was added to the code directly, this 

time there is no need to implement parameters through examples-table as explained in 

the Gherkin chapter. 

 

From the point of view of the base tutorial from “ToolsQA”, it would be advisable to down-

load the “Natural Eclipse Editor” for Gherkin, which can be downloaded from the Eclipse 

Marketplace. What this addition does is to add a set of plugins that help the editing and 

maintaining of the Gherkin and other BDD files. 

 

In order to download the suggested plugin is to select:  

 

“Help” from the upper toolbar > “Eclipse Marketplace”. 

 

Search with the keyword “Natural” and click “Install” to install the plugin, confirm “Cucum-

ber Editor” as the BDD framework of choice and click “Confirm”. After this, accept the user 



 

 

46 

terms and click “Finish”. The version of the “Natural” used for the case study was “Natural 

0.7.6”.  

 

At this point, there is a need to create a new class for running the tests. JUnit framework 

was previously downloaded alongside with the Cucumber jars, and as Cucumber uses 

JUnit to run the tests and showcase the results, there is a requirement for a new separate 

“Test Runner” class. The class contains the glue code between the “.feature” file, the 

JUnit framework, and an upcoming code file for the corresponding Gherkin keywords, 

which was mentioned before as the annotated code snippets. (Sharma, L. 2015i.) 

 

Create the class by right clicking the “testCucumber” package and name the class as 

“TestRunner” as per previous instructions, only this time leave the “public static void main” 

radio button unchecked.  

 

The TestRunner class was taken directly from the “ToolsQA” website since the code snip-

pet has an important role in the process, but the class itself is not long with lines of code. 

The example utilized in the case study should look something like this (Figure 19): 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

package testCucumber; 
  
import org.junit.runner.RunWith; 
import cucumber.api.CucumberOptions; 
import cucumber.api.junit.Cucumber; 
  
@RunWith(Cucumber.class) 
@CucumberOptions( 
 features = "Feature" 
 ,glue={"stepDefinition"} 
  ) 
  
public class TestRunner { 
  
} 

 
Figure 19 The class for the glue code used by JUnit (Sharma, L. 2015j). 

 

According to the “ToolsQA” web site, the import statement on line 3 imports the “@Run-

With” annotation from the actual JUnit class, while the annotation itself communicates the 

JUnit to run tests with the Cucumber class that is included in the “Cucumber.api.junit” 

package. Also, the import statement between lines 3 and 4 called “CucumberOptions” im-

ports the same named annotation “@CucumberOptions”, which communicates with Cu-

cumber to look for the feature files created. In addition to this the annotation communi-

cates also the necessary reporting functions, usually on how to visualize the pass/fail sce-

nario once the test is completed.  



 

 

47 

 

Now the Cucumber test can be run for the first time, even though the Java code and the 

Gherkin has not been associated or created. This step allows Cucumber to make sugges-

tions for the syntax and creates the template where the code can be added easily to the 

suggested methods. 

To do this, click either the “Run” button on Eclipse or right click the test runner class and 

navigate to “Run As” > “Junit Test”. 

 

The window after the execution should look similar to this (Figure 20): 

 

Figure 20 After Junit is run the first time and the initial Gherkin script has been added to the ".feature" file. 

 

What is visible on the picture is that on the right side, the Junit has passed the test since 

the existing keywords have been found from the “.feature” file. However, since there is no 

code present yet that has been added to this section, Cucumber automatically suggests 

on the Console tab a syntax for code that corresponds to the existing Gherkin keywords 

that can be copied to the class that will be created to the “stepsDefinition” package. In 

case of possible errors, it is possible that the ”cucumber-java” version and the current 

Java version may not be compatible together after new updates have taken place. 

(Sharma, L. 2015j). 

 

The project should look like this at this stage in the Package Explorer (Figure 21): 

 



 

 

48 

 

Figure 21 Existing files and packages by this point 

 

Next, we finally add a class to the “stepDefinition” package, that contains the earlier cre-

ated Java code for each corresponding Gherking keyword. 

Add a new class with the name “TestSteps” to the “stepsDefinition”, it is important not the 

check the option for “public static void main” and finally click on the “Finish” button. 

 

After running the “TestRunner” class for the first time, in the console window there was a 

suggested code syntax. This can be now copied below the text  

“You can implement missing steps with the snippets below:”  

as it is and paste to the “TestSteps” class. 

The directly copied syntax should look like this on the class itself (Figure 22): 

 

 

Figure 22 The copied code template after JUnit is run the first time after the .feature file is created. 



 

 

49 

 

There are noticeable errors as the keywords have not yet been linked, nor the code added 

to the commented lines. There is also missing a clear definition for the WebDriver and for 

the import packages. In order to modify the code more useful, the next step is to add the 

code and the linkages. 

At this point, hover over the annotations and click on the “Import “annotation” (cucum-

ber.api.java.en), which should remove the error underlying on the annotations at this point 

and add an import linkage to the keywords (Figure 23): 

 

 

Figure 23 Click the highlighted quick fix to resolve the annotation issue. 

 

After the linkages and code has been added, the class should look similar to the code as 

shown below (Figure 24): 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

package stepDefinition; 
 
import java.util.concurrent.TimeUnit; 
 
import org.openqa.selenium.By; 
import org.openqa.selenium.WebDriver; 
import org.openqa.selenium.chrome.ChromeDriver; //Defining the import files as before 
 
import cucumber.api.java.en.Given; 
import cucumber.api.java.en.Then; 
import cucumber.api.java.en.When; 
 
public class TestSteps { 
 public static WebDriver driver; //Adding the driver declaration 
 @Given("^User is on Mercury Tours home page$") //Opens the Web site 
 public void user_is_on_Mercury_Tours_home_page() throws Throwable { 
  System.setProperty("webdriver.chrome.driver", "C:\\Us-
ers\\Mari\\Documents\\Selenium\\chromedriver_win32\\chromedriver.exe"); 
        driver = new ChromeDriver(); 
        driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS); 
        driver.get("http://newtours.demoaut.com/"); 
 } 
 



 

 

50 

24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

 @When("^User clicks the SIGN-ON button$") 
 public void user_clicks_the_SIGN_ON_button() throws Throwable { 
  driver.findElement(By.linkText("SIGN-ON")).click(); 
 } 
 
 @When("^User enters username and password$") 
 public void user_enters_username_and_password() throws Throwable { 
  driver.findElement(By.name("userName")).sendKeys("tester_1"); 
  driver.findElement(By.name("password")).sendKeys("test1234"); 
  driver.findElement(By.name("login")).click(); 
 } 
 
 @Then("^Message is displayed Login Successful$") 
 public void message_is_displayed_Login_Successful() throws Throwable { 
  System.out.println("Login Successful"); 
 } 
 
 @When("^User Logs out from the application$") 
 public void user_Logs_out_from_the_application() throws Throwable { 
  driver.findElement(By.linkText("SIGN-OFF")).click(); 
 } 
 
 @Then("^Message is displayed Logout Successful$") 
 public void message_is_displayed_Logout_Successful() throws Throwable { 
  System.out.println("Logout Successful"); 
  driver.quit(); 
 } 
} 

Figure 24 The code implementation for the generated template using the earlier functional Java code (Sharma, L. 2014k). 

 

Run the Cucumber test by right clicking on the “TestRunner” class and then clicking: 

“Run As” > “Junit Test” 

What should happen, is the exact same as when the Java program code was created for 

the first time. The browser is prompted automatically on screen, the login page is opened, 

the user name and password are inserted, the user is logged in and then immediately 

logged out, and finally the browser closes. Before this, there was no indication on the 

passed steps or for the final report on which scenarios had passed. This time the Eclipse 

should look like this after the test has completed the automated process (Figure 25): 

 



 

 

51 

 

Figure 25 The final reporting screen after the automated test has been completed. 

 

From this screen all the steps can be seen as passed, and how long each step took time 

in seconds along with the final summed up time of how long the process took altogether. 

(Sharma, L. 2014k). 

 

This concludes the very basic tutorial on how to automate a simple Login process for a 

web site as an example using testing tools like Selenium and Cucumber with Gherkin syn-

tax. The same process could be implemented on many different scenarios, depending of 

course on suitability and by tweaking the element names and code to fit the purpose. 

  



 

 

52 

 

8 Conclusion 

My initial target for my thesis was to provide the reader as compact and as comprehen-

sive guide for understanding automation testing and testing in general as it was possible 

within my own skillsets. For me the topic of automation testing seemed very unapproacha-

ble and difficult to grasp, and proved to be a great task to learn and to understand some 

basics regarding the concepts. Especially, since I have quite limited background on pro-

gramming, which proved to be a great challenge when implementing the case study. I was 

able to find a great and explanatory tutorial for helping me to get started and to immerse 

myself with new tools and environments. The only programming experience I’ve had so 

far was from learning the very basics of C# programming language for Microsoft Visual 

Studio environment. Thus, using Java programming language and Eclipse as a new envi-

ronment was a learning curve, which I was fortunately able to tackle to an extent as C# 

does share a few similarities with the syntax. Another challenge that was faced was the 

initial misconceptions and understanding of the tools that were selected from the begin-

ning for the case study. As many internet sources cited, Cucumber is a testing framework. 

Due to this, it took me by surprise after investing time in my selections to find out that this 

was in fact not the case and it was instead utilized as more of a collaboration tool for the 

BDD framework usage. Although, the discovery helped me to see the benefits and poten-

tial of the combination of Selenium and Cucumber usage from a new viewpoint. I decided 

to keep Cucumber as the framework, despite its divisive status among automation devel-

opers. 

 

Regarding the thesis itself, I wanted to start out by introducing the automation testing con-

cepts and about how testing itself fits into the stages within the software development 

lifecycle. I did not go deeper into the topic within the scope of the thesis as deciphering 

the models and methodology further could warrant too much side-tracking from the actual 

topic at hand. I did however feel the need to introduce the V-Model, since it resonated with 

the topic of testing more accurately, as did TDD and by introducing BDD for its related-

ness in terms of the case study. It is important to understand some of the testing methods 

available and how automation testing could be utilized, hence I felt the need to introduce 

some core testing methods that could be beneficial for the reader to know, especially con-

cerning methods that can be automated.  

As test automation is tool-assisted testing, I decided to give some examples of testing 

tools for both the test management and manual testing side and also for the tools and 

frameworks for automation testing. Including the tools I decided to utilize for the case 

study. Another important aspect to introduce in my thesis was the basics of the general 



 

 

53 

test process, from test planning to the test management tool planning and also regarding 

reporting. I also introduced possible risks related to automation testing, since it is im-

portant to understand situations that could cause miscommunication and issues, espe-

cially if the team implementing automation testing would be inexperienced or unfamiliar 

with possible risks. Finally, I used all that I had learned through the process of learning 

about the topic and utilized a prominent tutorial I had found to illustrate for the reader on 

how to possibly configure, build and implement a basic scenario for automated login test-

ing. The reason for this was that I wanted to learn a basic way to implement automated 

testing myself, but I also felt that it would be easier for the reader to grasp the topic 

through a tangible example.  

 

The grounds for selecting Selenium WebDriver as my automation tool was that it was a 

commonly used browser automation test tool, which would also mean a feasible realiza-

tion for almost any web site. I selected Cucumber, because it enabled the use of the BDD 

syntax. As I myself am not a particularly technical person, it seemed compelling to learn 

the syntax for possible future need as the utilization was geared toward easier communi-

cation between the technical and the non-technical team members in terms of the under-

standability of the test scripts. I had to select Java as the implementable programming lan-

guage, since Cucumber did not really support the use of C#. Although for me this seemed 

like an amazing opportunity to familiarize myself with Java programming language and 

Eclipse as the development environment. 

 

What really was beneficial for me after the entire ordeal of leaning new concepts and 

building a working demo, was the entire learning experience in itself. I feel I was able to 

convey the concepts for a person with limited initial knowledge such as myself, and to 

gather as much information to a compact package as possible. Or at least from the per-

spective of what I have learned or would have liked to learn initially. 

As a tester currently myself, I was able to utilize my prior knowledge on software testing 

concepts during the theory and research, which was beneficial in terms of shortened 

learning curve on some of the topics. By learning more of the topic of technical testing has 

given me the grounds to develop as a professional even further and to understand the 

topic more in possible future projects and more importantly to understand the possible 

risks that may be faced.  

 

 

 

  



 

 

54 

References 

Aebersold, K. 2017. Test Automation Frameworks. URL: 

https://smartbear.com/learn/automated-testing/test-automation-frameworks/. Accessed: 

15 September 2017. 

 

Agile Alliance 2017a. Glossary – TDD. URL: 

https://www.agilealliance.org/glossary/tdd/#q=~(fil-

ters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_re-

port~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'tdd))~search-

Term~'~sort~false~sortDirection~'asc~page~1). Accessed: 5 October 2017. 

 

Agile Alliance 2017b. Glossary – Refactoring. URL: 

https://www.agilealliance.org/glossary/refactoring/#q=~(fil-

ters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_re-

port~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'refactoring))~search-

Term~'~sort~false~sortDirection~'asc~page~1). Accessed: 5 October 2017. 

 

Agile Alliance 2017c. Glossary – BDD. URL: 

https://www.agilealliance.org/glossary/bdd/#q=~(fil-

ters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_re-

port~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'bdd))~search-

Term~'~sort~false~sortDirection~'asc~page~1). Accessed: 1 November 2017. 

 

Angerer, M. 12 March 2015. HP Sprinter is the Smart Alternative. URL:  

https://resultspositive.com/hp-sprinter-is-the-smart-alternative/. Accessed: 14 September 

2017. 

 

Atlassian Marketplace 2017b. TestRail for Jira - Test Management. URL: 

https://marketplace.atlassian.com/plugins/com.testrail.jira.testrail-plugin/cloud/overview. 

Accessed: 20 October 2017. 

 

Atlassian Marketplace 2017a. Zephyr for Jira - Test Management. URL: 

https://marketplace.atlassian.com/plugins/com.thed.zephyr.je/cloud/overview. Accessed: 

20 October 2017. 

 

Atlassian Marketplace 2017c. Xray - Test Management for Jira. URL: 



 

 

55 

https://marketplace.atlassian.com/plugins/com.xpandit.plugins.xray/server/overview. Ac-

cessed: 20 October 2017. 

 

Bartlett, J. 2 December 2015. How to Write Test Cases for Software (with a sample). URL: 

https://blog.testlodge.com/how-to-write-test-cases-for-software-with-sample/. Accessed: 

20 April 2017. 

 

Berg, C. 29 July 2009. Continuous Integration vs. Nightly Build. URL: 

https://www.slideshare.net/poyklr/continuous-integration-vs-nightly-build. Accessed: 28 

October 2017. 

 

Cloudbees.com 2017. About Jenkins. URL: 

https://www.cloudbees.com/jenkins/about. Accessed: 28 October 2017. 

 

Cobertura 2.1.1. URL: 

http://cobertura.github.io/cobertura/. Accessed: 25 September 2017. 

 

Continuumsecurity.com 2017. BDD-SECURITY - SECURITY TESTING FRAMEWORK. 

URL: https://www.continuumsecurity.net/bdd-security/. Accessed: 25 October 2017. 

 

Cuadra, J. 31 May 2012. Please don’t use Cucumber. URL: 

https://www.jimmycuadra.com/posts/please-don-t-use-cucumber/. Accessed: 30 October 

2017. 

 

Cucumber.io. Getting started with Cucumber. URL: 

https://cucumber.io/docs. Accessed: 16 September 2017. 

 

cucumber/cucumber 2017. Gherkin. URL: 

https://github.com/cucumber/cucumber/wiki/Gherkin. Accessed: 14 October 2017. 

 

Dustin, E., Garret, T. & Gauf, B. 2009. Implementing Automated Software Testing. Pear-

son Education. Massachusetts. 

 

Eriksson, U. 5 April 2012. Functional Requirements VS Non-Functional Requirements. 

URL: http://reqtest.com/requirements-blog/functional-vs-non-functional-requirements/. Ac-

cessed: 17 November 2017. 



 

 

56 

Functionize.com 12 June 2017. Smoke testing Suite: What it is, Why You Need it, and 

How to Automate. URL: https://www.functionize.com/blog/smoke-testing-suite. Accessed: 

15 October 2017. 

 

Google Sites. ChromeDriver - WebDriver for Chrome. URL: 

https://sites.google.com/a/chromium.org/chromedriver/. Accessed: 27 September 2017. 

 

Guru99 2017a. What is Regression Testing? Test Cases, Tools & Examples. URL: 

https://www.guru99.com/regression-testing.html. Accessed: 15 May 2017. 

 

Guru99 2017b. UNIT Testing Tutorial - Learn in 10 Minutes. URL: 

https://www.guru99.com/unit-testing-guide.html. Accessed: 20 October 2017. 

 

Guru99 2017c. System INTEGRATION Testing (SIT): Complete Tutorial. URL: 

https://www.guru99.com/system-integration-testing.html. Accessed: 2 November 2017. 

 

Guru99 2017d. What is System Testing? Types & Definition with Example. URL: 

https://www.guru99.com/system-testing.html. Accessed: 25 September 2017. 

 

Guru99 2017e. Exploratory Testing Tutorial: Process, Techniques & Examples. URL: 

https://www.guru99.com/exploratory-testing.html. Accessed: 14 September 2017. 

 

Guru99 2017f. What is Security Testing: Complete Tutorial. URL: 

https://www.guru99.com/what-is-security-testing.html. Accessed: 25 October 2017. 

 

Guru99 2017g. Introduction to HP ALM(Quality Center). URL:  

https://www.guru99.com/hp-alm-introduction.html. Accessed: 20 October 2017. 

 

Hellesøy, A. 3 March 2014. The world's most misunderstood collaboration tool. URL: 

https://cucumber.io/blog/2014/03/03/the-worlds-most-misunderstood-collaboration-tool. 

Accessed: 30 October 2017. 

 

Homès, B. & Homes, B. 2011. Fundamentals of Software Testing. John Wiley & Sons, In-

corporated.  

 

ISTQB Exam Certification 2017a. What is Unit Testing?. URL: 

http://istqbexamcertification.com/what-is-unit-testing/. Accessed: 4 October 2017. 

 



 

 

57 

ISTQB Exam Certification 2017b. What is Component Testing?. URL: 

http://istqbexamcertification.com/what-is-component-testing/. Accessed: 4 October 2017. 

 

ISTQB Exam Certification 2017c. What is Security testing in software testing?. URL: 

http://istqbexamcertification.com/what-is-security-testing-in-software/. Accessed: 25 Octo-

ber 2017. 

 

ISTQB Exam Certification 2017d. What is test status report? and How to report test sta-

tus?. URL: http://istqbexamcertification.com/what-is-test-status-report-and-how-to-report-

test-status/. Accessed: 5 November 2017, 

 

Jain, A. 1 September 2017. What is UFT (QTP)?. URL: 

https://www.learnqtp.com/what-is-qtp/. Accessed: 25 October 2017. 

 

JBehave 2015. Feature of JBehave. URL: 

http://jbehave.org/reference/stable/features.html. Accessed: 16 September 2017. 

 

Jenkins. Jenkins User Documentation. URL: 

https://jenkins.io/doc/. Accessed: 28 October 2017. 

 

Johnson, E. 22 July 2015. Test Driven Development (TDD) in a Nutshell. Intland software. 

URL: https://intland.com/blog/agile/test-management/test-driven-development-tdd-nut-

shell-overview/. Accessed: 5 October 2017. 

 

JUnit Version 4.12. 10 September 2017. About. URL: 

http://junit.org/junit4/. Accessed: 26 October 2017.  

 

junit-team/junit4 17 September 2017. Test runners. URL: 

https://github.com/junit-team/junit4/wiki/Test-runners. Accessed: 26 October 2017. 

 

Koomen, T., van der Aalst, L., Broekman, B. & Vroon, M. 2014. TMap NEXT® for result-

driven testing. Sogeti Nederland B.V. Vianen.  

 

Kudryashov, K. 7 October 2015. The beginner’s guide to BDD. URL:  

https://inviqa.com/blog/bdd-guide. Accessed: 1 November 2017 

 

Kaul, N. 24 April 2017. How JIRA Led to the Demise of HP ALM. URL: 



 

 

58 

https://blog.smartbear.com/test-management/how-jira-led-to-the-demise-of-hp-alm/. Ac-

cessed: 20 October 2017. 

 

Kaul, N. 8 March 2016. The Pros and Cons of Using Excel for Test Management. URL: 

https://blog.smartbear.com/automated-testing/pros-and-cons-using-excel-test-manage-

ment/. Accessed: 20 October 2017. 

 

Knight, A. 27 January 2017. BDD 101: GHERKIN BY EXAMPLE. URL: 

https://automationpanda.com/2017/01/27/bdd-101-gherkin-by-example/. Accessed: 14 

October 2017. 

 

Mercury Interactive 2005. Mercury Tours. URL: 

http://newtours.demoaut.com/. Accessed: 25 September 2017. 

 

Montvelisky, J. 4 March 2008. Master Test Plan – the strategic side of testing. URL: 

http://qablog.practitest.com/master-test-plan-testing-strategic-side/. Accessed: 17 Novem-

ber 2017. 

 

mozilla/geckodriver 2017. Geckodriver. URL: 

https://github.com/mozilla/geckodriver. Accessed: 27 September 2017. 

 

Nicieja, K. 2 March 2016. 3 myths about Cucumber and Gherkin. URL: 

https://pilot.co/blog/cucumber-and-gherkin-myths/. Accessed: 30 October 2017. 

 

Niittyvirta, A. Prove Expertise Ltd. URL: 

http://www.testiatarantula.com/. Accessed: 20 October 2017. 

 

Robot Framework User Guide Version 3.0.2. 2016. 2.1.2 Supported file formats. URL: 

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#sup-

ported-file-formats. Accessed: 18 November 2017. 

 

Robot Framework. Introduction. URL: 

http://robotframework.org/. Accessed: 3 November 2017. 

 

Sahla, K. 18 September 2017. Senior Consultant. Sogeti Finland Oy. Company internal 

learning course. Espoo. 

 

SeleniumHQ 19 November 2017a. Selenium WebDriver. URL: 



 

 

59 

http://www.seleniumhq.org/docs/03_webdriver.jsp. Accessed: 20 November 2017. 

 

SeleniumHQ 19 November 2017b. Selenium-IDE. URL: 

http://www.seleniumhq.org/docs/02_selenium_ide.jsp. Accessed: 20 November 2017. 

 

Sharma, L. 29 January 2017. User Acceptance Testing – UAT. URL: 

http://toolsqa.com/software-testing/user-acceptance-testing-uat/. Accessed: 29 October 

2017. 

 

Sharma, L. 31 December 2014a. Cucumber Tutorial. URL: 

http://toolsqa.com/cucumber/cucumber-tutorial/. Accessed: 25 September 2017. 

 

Sharma, L. 28 August 2015b. Download and Install Java. URL: 

http://toolsqa.com/selenium-webdriver/download-and-install-java/. Accessed: 25 Septem-

ber 2017. 

 

Sharma, L. 28 August 2015c. Download and Start Eclipse. URL: 

http://toolsqa.com/selenium-webdriver/download-and-start-eclipse/. Accessed: 25 Sep-

tember 2017. 

 

Sharma, L. 27 December 2014d. Install Cucumber Eclipse Plugin. URL: 

http://toolsqa.com/cucumber/install-cucumber-eclipse-plugin/. Accessed: 25 September 

2017. 

 

Sharma, L. 28 December 2014e. Download Cucumber JVM for Eclipse. URL: 

http://toolsqa.com/cucumber/download-cucumber-jvm-eclipse/. Accessed: 25 September 

2017. 

 

Sharma, L. 28 August 2015f. Download Selenium Webdriver Java client. URL: 

http://toolsqa.com/selenium-webdriver/download-selenium-webdriver-java-client/. Ac-

cessed: 25 September 2017. 

 

Sharma, L. 28 December 2014g. Configure Eclipse with Cucumber. URL: 

http://toolsqa.com/cucumber/configure-eclipse-cucumber/. Accessed: 26 September 2017. 

 

Sharma, L. 29 December 2014h. First Cucumber Selenium Java Test. URL: 

http://toolsqa.com/cucumber/first-cucumber-selenium-java-test/. Accessed: 27 September 

2017. 



 

 

60 

 

Sharma, L. 9 December 2015i. Cucumber Feature File. URL: 

http://toolsqa.com/cucumber/cucumber-jvm-feature-file/. Accessed: 27 September 2017. 

 

Sharma, L. 9 December 2015j. JUnit Test Runner Class. URL: 

http://toolsqa.com/cucumber/junit-test-runner-class/. Accessed: 27 September 2017. 

 

Sharma, L. 31 December 2014k. Step Definition. URL: 

http://toolsqa.com/cucumber/step-definition/. Accessed: 27 September 2017. 

 

Singh, V. 31 December 2014. Gherkin. URL: 

https://automationpanda.com/2017/01/27/bdd-101-gherkin-by-example/. Accessed: 14 

October 2017. 

 

Software Testing Fundamentals 2017a. Integration Testing. URL: 

http://softwaretestingfundamentals.com/integration-testing/. Accessed: 4 October 2017. 

 

Software Testing Fundamentals 2017b. Unit Testing. URL: 

http://softwaretestingfundamentals.com/integration-testing/. Accessed: 4 October 2017. 

 

Software Testing Fundamentals 2017c. SMOKE TESTING Fundamentals. URL: 

http://softwaretestingfundamentals.com/smoke-testing/. Accessed: 15 October 2017. 

 

Software Testing Genius. Automated Functional Testing Techniques and Risks Associ-

ated with Automation. URL: http://www.softwaretestinggenius.com/automated-functional-

testing-techniques-and-risks-associated-with-automation. Accessed: 16 November 2017. 

 

Software Testing Help 2017. A Simple 12 Steps Guide to Write an Effective Test Sum-

mary Report. URL: http://www.softwaretestinghelp.com/test-summary-report-template-

download-sample/. Accessed: 5 November 2017. 

 

Software Testing Studio, 2 March 2017. Requirements Analysis Is Vital For Effective Soft-

ware Testing. URL: 

https://hubtechinsider.wordpress.com/2011/07/28/how-do-you-write-software-require-

ments-what-are-software-requirements-what-is-a-software-requirement/. Accessed: 15 

May 2017. 

 

Stewart, S. 2010. Selenium WebDriver. URL: 



 

 

61 

http://www.aosabook.org/en/selenium.html. Accessed: 16 September 2017. 

 

Tarantula 2017. Agile Test Management. URL: 

http://www.tarantula.fi/old/. Accessed 20 October 2017. 

 

TestRail 2017. Modern test management software tool. URL: 

http://www.gurock.com/testrail/software-testing-reports.l.html. Accessed: 5 November 

2017. 

 

The Apache Software Foundation 2017. Apache JMeter™. URL: 

http://jmeter.apache.org/. Accessed: 4 November 2017. 

 

Tutorialspoint.com 2017a. Software Development Life Cycle. URL: 

https://www.tutorialspoint.com/software_engineering/software_development_life_cy-

cle.htm. Accessed: 28 October 2017. 

 

Tutorialspoint.com 2017b. SDLC - Overview. URL: 

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm. Accessed: 28 October 2017. 

 

Tutorialspoint.com 2017c. SDLC - Quick Guide. URL: 

https://www.tutorialspoint.com/sdlc/sdlc_quick_guide.htm. Accessed: 28 October 2017. 

 

Tutorialspoint.com 2017d. SDLC – V-Model. URL: 

https://www.tutorialspoint.com/sdlc/sdlc_v_model.htm. Accessed: 28 October 2017. 

 

Tutorialspoint.com 2017e. Performance Testing. URL: 

https://www.tutorialspoint.com/software_testing_dictionary/performance_testing.htm. Ac-

cessed: 5 June 2017. 

 

Tutorialspoint.com 2017f. Security Testing. URL: 

https://www.tutorialspoint.com/software_testing_dictionary/security_testing.htm: 25 Octo-

ber 2017. 

 

Tutorialspoint.com 2017g. Security Testing - Injection. URL: 

https://www.tutorialspoint.com/security_testing/testing_injection.htm. Accessed: 25 Octo-

ber 2017. 

 

Tutorialspoint.com 2017h. Test Execution. URL: 



 

 

62 

https://www.tutorialspoint.com/software_testing_dictionary/test_execution.htm. Accessed: 

15 October 2017. 

 

Wilcox, R. 2017. Your Boss Won't Appreciate TDD: Try This Behavior-Driven Develop-

ment Example. URL: https://www.toptal.com/freelance/your-boss-won-t-appreciate-tdd-try-

bdd. Accessed: 1 November 2017. 

 

Wikipedia 24 October 2017. Mockito. URL: 

https://en.wikipedia.org/wiki/Mockito. Accessed: 25 September 2017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

63 

Appendices 

Appendix 1. Central Keywords List 

 

Black-box testing Testing where the internal structures of the appli-

cation, i.e. the program code is not known to the 

tester. 

 

Cucumber Behavior Driven Development Framework, to im-

plement a syntax in the form of “Given-When-

Then”, as programmable automation test cases. 

 

Defect A reported bug in the system or application found 

from the functionality, code, or design. 

 

Driver A computer program, used to control a certain de-

vice or function attached to the computer or appli-

cation. Acts as sort of a translator between pro-

grams or devices.  

 

Framework In software development, a set of rules that pro-

vide certain functionality to tools and programs. 

These may be for example supporting programs, 

code libraries, compilers etc. 

 

Gherkin A Business Readable, Domain Specific Language 

that provides the functionality to write Behavior 

Driven Development syntax for i.e. automated 

test cases. Mimics everyday grammar for easier 

understandability. 

 

IDE Integrated Development Environment, a software 

application used by programmers to code and de-

velop a program. Usually contains an editor for 

the source code, a compiler, and possibly a de-

bugging function. Examples would be Eclipse, Mi-

crosoft Visual Studio and NetBeans. 



 

 

64 

 

Jira A software for issue, bug and project advance-

ment tracking, but does not contain native test 

management capabilities. A proprietary software 

developed by Atlassian. 

 

MTP Master Test Plan, an overall plan on how to pro-

gress with test planning and test management 

created as a first test before test planning. 

 

Non-repudiation To repudiate is to deny. Non-repudiation, the as-

surance that one can’t deny something, i.e. if a 

contract has been signed. 

 

SDLC Software Development Life Cycle, a set of models 

and methodologies to guide the progress of the 

development of a software or a system. 

 

Stub A replacement of a certain functionality (piece of 

code) within a program code. For instance when 

testing a certain part of a program that is missing 

a critical functionality in order to mimic that. 

 

SUT System Under Test, a term in software testing 

when referring to a particular system that is being 

tested for correct operations. 

 

Test Management The actual activity of managing the testing in gen-

eral in accordance to the test plan. Whether being 

for manual or automation testing. 

 

TSV Tab-separated values, a simple text format to 

store data in tabular structure. For instance data 

in Excel sheets and database tables. Used i.e. for 

Robot Framework. 

 

UAT User Acceptance Testing, the final phase in test-

ing where the client verifies the behaviour of the 



 

 

65 

program and how well the requirements were met 

before moving to production stage. 

 

White-box testing As opposed to black-box testing, the internal 

workings of the system and programming skills 

are used to formulate test cases and to test i.e. 

the backend side. 


