
 

 

 

  

 

 

Degree Thesis 

Flexural Rigidity (D) in Beams 

 

Author: Zious Karis 

Instructor: Rene Herrmann 

 

 

 Degree Thesis 

Materials Processing Technology 

2017 



 

2 

 

 

DEGREE THESIS 

Arcada University of Applied Sciences, Helsinki, Finland 

 

Degree Programme:  Materials Processing Technology 

 

Identification number:  

Author: Zious Karis 

Title: Flexural Rigidity in Beams 

 

Supervisor (Arcada): Rene Herrmann 

 

Commissioned by:  

 

Abstract: 

 

 

This thesis presents the theory behind the symmetrical and unsymmetrical beams with 

different cross-sections, the mathematical procedure in calculating the flexural rigidity of 

symmetrical beams and summarizing the experimental verification by mathematical data 

processing of the flexural rigidity by three-point bending.  

 

The core of the method section is to test theoretically by using the composite compressive 

strength modeler (CCSM) software and experimentally in the laboratory by using the 

material bending machine a solid fiberglass and a sandwich beam. The results obtained 

for the solid fiberglass was found to be theoretically 32 Nmm2 and experimentally 31.1 

MNmm2. For the sandwich beam along the direction of the orientation of the fiber 

theoretically 155 Nmm2 and experimentally 153.3 Nmm2. As for the sandwich beam with 

the same properties but with a direction perpendicular to the fiber theoretically 45.1 

Nmm2 and experimentally 47.22 Nmm2. The comparison of flexural rigidity values was 

found to be 3.1% for the solid fiberglass, 1.1% for the sandwich beam along the direction 

of the orientation of the fiber and -4.6% with a direction perpendicular to the fiber. 

Moreover, for the four-section module, the values obtained for the moments of the outer 

layer contributed seven times more to rigidity than the inner layer and for the six-section 

module the second outermost layer contributed seven times more than the innermost layer 

and the outermost layer nineteen times more to rigidity than the innermost layer. 

 

Keywords: Flexural rigidity, deflection in beams, symmetrical 

bending, sandwich structure, composite beams, (CCSM) 

modeler, three-point bending   

Number of pages: 60 

Language: English 

Date of acceptance:  

 



 

3 

 

CONTENTS 

1 INTRODUCTION ........................................................................................ 9 

1.1 Problem Definition .................................................................................. 9 

1.2 Aims and Objectives .............................................................................. 10 

1.3 Method ................................................................................................. 10 

1.4 Background ........................................................................................... 10 

1.4.1 Flexural Rigidity ................................................................................ 11 

2 THEORY ................................................................................................... 12 

2.1 Second Moment of Area ......................................................................... 12 

2.2 Materials ............................................................................................... 13 

2.2.1 Composite Materials ........................................................................... 13 

2.2.2 Composites versus Metallic ................................................................. 14 

2.3 Bending Stiffness of Beams .................................................................... 15 

2.3.1 Theory of Simple Bending with Assumptions Made ............................... 15 

2.3.2 Bending of Composite Beams .............................................................. 16 

2.3.3 Symmetrical Bending .......................................................................... 18 

2.3.4 Examples of Symmetrical Bending ....................................................... 18 

2.3.5 Unsymmetrical Bending ...................................................................... 29 

2.4 History of Sandwich Structure ................................................................. 31 

2.4.1 Sandwich Structure ............................................................................. 32 

2.4.2 Flexural Rigidity in Sandwich Beams ................................................... 33 

2.4.3 Deflection of Beams ........................................................................... 35 

3 METHOD .................................................................................................. 41 

3.1 Composite Compressive Strength Modeler (CCSM) .................................. 41 

3.1.1 A Solid UD Lamina ............................................................................ 41 

3.2 Bending ................................................................................................ 42 

3.2.1 Three-Point & Four-Point Bending ....................................................... 43 

4 RESULTS .................................................................................................. 46 

4.1 Bending Test and CCSM Modelling ........................................................ 46 

5 DISCUSSION ............................................................................................. 56 



 

4 

 

6 CONCLUSION .......................................................................................... 58 

7 REFERENCES ........................................................................................... 59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 

 

Figures 

Figure 2.1 Composite structure [6] ................................................................................. 14 

Figure 2.2 Steel vs. sandwich [9] ................................................................................... 15 

Figure 2.3 Strain [11] ..................................................................................................... 17 

Figure 2.4 I-beam [13] .................................................................................................... 19 

Figure 2.5 Rectangular cross-section.............................................................................. 20 

Figure 2.6 Centroidal x-axis ........................................................................................... 21 

Figure 2.7 Two-sections ................................................................................................. 22 

Figure 2.8 Four-sections ................................................................................................. 23 

Figure 2.9 Six-sections ................................................................................................... 26 

Figure 2.10 Rectangular beam [15] & Figure 2.11 Upward restoring force [15] ........... 28 

Figure 2.12 T-beam [16] ................................................................................................. 30 

Figure 2.13 Efficiency of sandwich structure [9, p. 256] ............................................... 32 

Figure 2.14 Sandwich structure [18, p. 5] ...................................................................... 33 

Figure 2.15 Sandwich beam cross section [4] ................................................................ 34 

Figure 2.16 Deflection and curvature due to bending [20] ............................................ 36 

Figure 2.17 Cantilever beam [20] ................................................................................... 36 

Figure 2.18 Simply supported beam [20] ....................................................................... 38 

Figure 2.19 Simply supported beam, deflection at center .............................................. 38 

Figure 2.20 Simply supported beam, uniformly distributed load ................................... 39 

Figure 3.1 Principal material axes in a UD lamina [23] ................................................. 42 

Figure 4.1 Materials testing machine ............................................................................. 46 

Figure 4.2 Solid fiberglass - theoretical.......................................................................... 48 

Figure 4.3 Solid fiberglass – theoretical – d11 ................................................................ 48 

Figure 4.4 Solid fiberglass - experimental...................................................................... 49 

Figure 4.5 Sandwich beam 1 - theoretical ...................................................................... 51 

Figure 4.6 Sandwich beam 1 – theoretical – d11 ............................................................. 51 

Figure 4.7 Sandwich beam 1 - experimental .................................................................. 52 

Figure 4.8 Sandwich beam 2 - theoretical ...................................................................... 53 

Figure 4.9 Sandwich beam 2 – theoretical d11 ................................................................ 53 

Figure 4.10 Sandwich beam 2 - experimental ................................................................ 54 

 

 



 

6 

 

Tables 

Table 1. Composites versus metals under certain conditions. [9] .................................. 15 

Table 2. ASTM standards for three-point bend. [27] ..................................................... 44 

Table 3. ASTM standards for four-point bend. [27]....................................................... 45 

Table 4. Values for the CCSM Modeler. ........................................................................ 47 

Table 5. Results .............................................................................................................. 56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

7 

 

List of Symbols  

Name Symbol Unit 

1. Flexural rigidity D Nm2 

2. Bending modulus (material property) E Pa = N/m2 

3. Young´s modulus of faces Ef Pa 

4. Second moment of inertia I m4 

5. Width b m 

6. Thickness t m 

7. Distance d m 

8. Force F N 

9. Height h m 

10. Moment/Bending moment M Nm 

11. Stress σ Pa = N/m2 

12. Length L m 

13. Area A m2 

14. Strain Ε - or mm/mm 

15. Shear stress Q Pa 

16. Slope Θ (k) N/mm 

17. Distance along beam x m 

18. Radius of neutal axis r m 

19. Distance of surface (NS) y m 

20. Torque τ Nm 

21. Deflection Y mm 

22. Distributed load W N/m 

 

 

 

 

 

 

 

 



 

8 

 

FOREWORD 

 

I would like to thank Mr. Rene Herrmann for the supervision throughout this thesis. 

 

I would like to thank all the professors and staff for their guidance during my three years 

of studying at Arcada University of Applied Sciences. Special thanks to Mr. Erland 

Nyroth for his encouragement and advices throughout my studies. 

 

Finally, I would like to thank my family and friends for their continued support over last 

few years, particularly during the completion of this thesis. Special thanks to my father 

for his unlimited support and encouragement. Special thanks also to Mr. Manuel 

Eisenbarth for his unlimited support and help especially over the thesis time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

9 

 

1 INTRODUCTION 

The purpose of this thesis work is to summarize the mathematical procedure to calculate 

the bending stiffness of symmetrical and unsymmetrical beams with different cross 

sections such as I-, Rectangular-, and T-cross-sections. 

This paved the way for the summary of the experimental verification by mathematical 

data processing of the flexural rigidity by 3-point, a review on composites and metals as 

well the comparison between them.  

Moreover, it is intended to summarize on some examples the theoretical and 

experimental flexural rigidity and to review international measurement standards for 

polymer and composite materials, finally, using the CCSM (Composite Compressive 

Strength Modeler) for deformation analysis of composite materials. 

1.1 Problem Definition 

Structural efficiency is one of the most important character to engineers in the aerospace, 

boats, car industries and in many other fields. Therefore, a high-performance product 

made of lightweight materials and yet efficient to withstanding harsh loading conditions 

is required. 

The stiffness as a material property is very important in structural engineering as it extents 

the materials resist deformation in response to applied load. The use of sandwich 

composites has been considered in this thesis due to the relevance of its stiff light weight 

structure, which significantly increases the load resistance capacity on one hand without 

much increase in weight on the other hand. 

To design a member such as a beam, it is very essential to make sure that it satisfies 

specific strength, stability, and deflection requirements. Therefore, the bending stiffness 

analysis plays a major role in choosing materials as it shows how a component behaves 

under certain loads. 
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1.2 Aims and Objectives 

In order to fulfil the aim of this thesis, the research is conducted aiming to calculating 

mathematically the flexural rigidity of symmetrical cross sections, verify the 

experimental results of mathematical data processing of the flexural rigidity by 3-point 

bending, present some examples to illustrate the theoretical and experimental flexural 

rigidity, review of verification methods for 4-point bending, comparing composite 

materials to metals using some international measurement standards and using composite 

compressive strength modeler (CCSM) software for modelling of flexural rigidity. 

1.3 Method 

In order to achieve the aim of this thesis and get the theoretical knowledge of the 

problem, the theory of bending stiffness for different beams and plates have been 

studied. In the consideration of the bending stiffness analysis of composite material 

structures, the composite compressive strength modeler (CCSM) and experiments on 

different materials in the laboratory have been conducted. 

There are several software packages available for rigidity analysis and deformation 

tests. In this thesis work, the composite compressive strength modeler (CCSM) software 

is used for flexural rigidity simulation. 

1.4 Background  

Flexural rigidity is related to bending and non-rigid structures as a force couple that is 

required to bend a non-rigid structure in one unit of curvature, where force couples also 

known as pure moments are the forces that rotate a body without translation or 

acceleration of the center of mass. [1] 

Since force couples are free vectors in rigid bodies, their effects on a body are independent 

of the point of application. A couple is known as a combination of two forces, they are 

equal in magnitude, asymmetrically directed, and displaced by a perpendicular distance 

or moment. [1] 
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1.4.1 Flexural Rigidity  

Flexural rigidity can be modelled by using different methods. In this scientific discourse, 

three of the very well-known methods in the bending stiffness of a profile are treated.  

The first method can be applied when the modulus is constant, and the cross section is 

simple then the single formula of second moment of inertia (equation 2, p.12) can be 

used to obtain the required results of flexural rigidity D. [2] 

The second method is used when the modulus is constant, and the cross section is not 

simple but can be however reduced to a simple cross section with a displacement from 

the neutral axis, in this case the parallel axis theorem can be used effectively by 

determining the second moment of area or mass moment of inertia of a rigid body about 

any axis. [3] 

While the third method which is known as the sandwich beam theory or the Euler-

Bernoulli beam theory that describes the behavior of a beam, plate, or a shell when 

calculating the load-carrying and deflection characteristics of beams. It is used when the 

profile is not constant in bending modulus, but the profile can be approximated or 

considered as a layered structure of different materials. [4] 

The flexural rigidity (D) is defined as EI. In a beam or rod, flexural rigidity varies along 

the length as a function of (x):  

EI
dy

dx
=  ∫ M(x)dx + C1

x

0

 
(1) [1] 

Where, 

E = Young´s modulus (Pa) 

I = second moment of area (m4) 

y = transverse displacement at x (m) 

M (x) = bending moment at x (Nm) 
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2 THEORY 

The Euler Bernoulli´s Equation and the bending stiffness of a rigid body expresses clearly 

the flexural rigidity. [1] Euler Bernoulli is known as an engineer of beam theory, which 

simplifies the linear theory of elasticity. It provides a calculation for the load-carrying 

and deflection characteristics of beams and it covers the case for infinitesimal strains and 

small rotations of a beam which are only subjected to lateral loads. [5] 

 

The theory can be extended in a straightforward manner to problems with moderately 

large rotations by using the von Kármán strains, which provides that the strain remains 

small. However, in this thesis work the focus is on bending stiffness. [5] 

Stiffness describes the rigidity of an object, in other words it is the resistance to 

deformation when a force is applied on it. So, the flexibility of materials is very essential, 

the more flexible an object is, the less stiff it is. The stiffness of a body is a measure of 

the resistance offered by an elastic body to deformation.  

The bending stiffness of a beam is a function of elastic modulus “E”, the area moment of 

inertia “I “of the beam cross-section about the axis of interest, length of the beam and the 

beam boundary conditions. The bending stiffness of a beam can be analytically derived 

from the equation of beam deflection when it is applied by a force. [1] 

2.1 Second Moment of Area 

Second moment of area is the property of a cross section. It is normally used to predict 

the resistance of beams to bending and deflection. The deflection of beams under a certain 

load doesn´t depend only on the load but also on the geometry of the beam´s cross section. 

Beams with a large second moment of area are stiffer than those with a smaller second 

moment and therefore, they are more resistant to bending. The second moment of area 

has in other words the meaning of second moment of inertia: [2] 

I = I0 + Ad2 (2) [2] 

Where, 

I = second moment of inertia (m4) 

I0 = second moment of area at centroidal axis (m4) 
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A = area (m2) 

d = distance (m) 

2.2 Materials 

Nowadays, the designing of materials and material properties play a big role in the 

development of materials. However, there are two main types of materials. The first type 

is known as structural materials, where the mechanical properties are mainly considered, 

such as strength, stiffness, and deformation. And the second type is known as functional 

materials where, the magnetic properties are mainly considered, such as the sound, light, 

electricity, and heat. [6]  

Moreover, these materials can be divided into three types depending on the way the atoms 

or molecules are bonded together. Metallic materials describe the first type, where metal 

elements are combined with metal bonds, organic polymer materials stand for the second 

type, where non-metallic elements are bonded covalently to macromolecular compounds 

while ceramic materials describe the third type, where non-metallic elements and metal 

elements are combined by covalent bonds, ionic bonds, or a mixture of the two bonds. [6] 

2.2.1 Composite Materials 

Composite material also known as a multi-phase combination material. Composites are 

formed by combining materials together to form an overall structure with properties that 

differ from the sum of the individual components. [7] 

They are generally used for buildings, bridges, and structures due to their benefits such 

as chemical and corrosion resistance, durable, flexible in design, high flexural modulus 

to carry demanding loads, high impact strength, high performance at elevated 

temperature, etc. [7] 

Composite materials consist of matrix material and reinforcing material as shown in 

figure 2.1 below, where matrix materials are defined as a continuous phase, which 

includes metal matrix composite materials, inorganic non-metallic matrix composite 

materials as well polymer matrix composites by the different matrix material. Reinforcing 

material is defined as a dispersed phase which includes usually fibrous materials, such as 

glass fiber, and organic fiber. [6] 
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Figure 2.1 Composite structure [6] 

Normally the strength of fiber depends on its length and orientation with respect to the 

stress direction, however, the strength and modulus of fiber are much higher than the 

matrix material, due its length and accordingly the orientation of stress direction 

therefore, fibers are the main load-bearing components. However, to firmly bond fibers 

together, there must be a matrix material with good adhesion properties that can provide 

a uniformly distributed applied load and transfer the loads to fiber. [6] 

Composite materials should have at least four characteristics. The composite should be 

made of a non-homogeneous material, the components that make up the composite should 

have different levels of performance, the performance should be the main characteristic 

of all composites, and the fraction of each component of the composites should be larger 

than 10 percent of the volume of the composite. [6] 

2.2.2 Composites versus Metallic 

Composites and metals have different physical characteristics. For instance, composites 

are greatly anisotropic which means their properties and values are changeable with 

direction as well as their strength and stiffness, depending on the orientation of the 

reinforcing fibers. [8] 

In addition, composites are lighter in weight, they can tailor the lay-up for optimum 

strength and stiffness, improve fatigue life, corrosion resistance, etc. While the metals are 

isotropic which means their physical properties have the same values in different 

directions, they are much heavier than composites in weight. Figure 2.2 and table 1 below 

illustrate an example of some main differences between a composite and a metal. [8] 
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Figure 2.2 Steel vs. sandwich [9] 

Table 1. Composites versus metals under certain conditions. [9] 

 

Condition 

 

Comparative behavior 

relative to metals 

Load-strain relationship More linear strain to failure 

Static Greater sensitivity 

Fatigue Less sensitivity 

Transverse properties Weaker 

Mechanical property Higher 

Fatigue strength Higher 

Sensitivity to 

hydrothermal 

Greater 

Sensitivity to corrosion Much less 

Damage growth 

mechanism 

In-plane delamination instead 

of through thickness cracks 

2.3 Bending Stiffness of Beams 

This section covers some concepts about the bending stiffness of symmetrical and 

unsymmetrical beams with different cross sections, the study of simple bending, and 

bending of composite beams. 

2.3.1 Theory of Simple Bending with Assumptions Made 

Simple bending happens at the length of a beam that is subjected to a constant bending 

moment and when there is no shear force, that is (Q = 0). Which means that the stresses 

will be arranged along the length of the beam, due to the bending moments only. 

Therefore, that length of the beam is said to be in pure bending.  

The assumptions made in the theory of simple bending are known as, the beam is 

homogeneous and isotropic, the Young´s modulus of elasticity in tension and 
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compression has the same value, the transverse sections which were plane before bending 

remain plane after bending, the beam at the beginning of the experiment is straight, and 

all longitudinal filaments bend into circular arcs with a common center of curvature, the 

radius of curvature is large compared with the dimensions of the cross section, and each 

layer of the beam is free to expand or contract, independently of the layer above or below 

it. [10] 

However, there are some other tools to use for complicated designs such as a 

superposition principle or property tool. This tool is used in linear systems for the beams. 

The superposition principle is one of the most important tools for solving beam loading 

problems as it allows the simplification of very complicated designs. [10] 

For the beams that are subjected to several loads of different types the resulting shear 

force, bending moment, slope and deflection can be found at any location by summing 

the effects due to each load acting separately to the other loads. The superposition 

principle is a combination of homogeneity and additivity and satisfies the following 

equations. [10] 

Additivity: 

     F(x1 + x2) = F(x1) + F(x2) (3) [10] 

Homogeneity: 

F(ax) = aF(x) (4) [10] 

Simple bending is when a straight bar of homogeneous material is subjected to only a 

moment at one end and an equal and opposite moment at the other end.  

2.3.2 Bending of Composite Beams 

A composite beam is made of two or more different materials where these materials are 

connected rigidly, and the composite behaves like a single piece once it is made. The 

basic assumption in this case assumes that the plane surface remains plane during 

bending within the elastic limit [10]. Therefore, the strain remains constant down at the 

full width of the beam, where the deflection is proportional to the distance from the 

neutral axis of the beam, in this case the strain can be found easily, and it is equal to 

(stress/Young´s Modulus E) [11]. As shown in figure 2.3 below.  
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Figure 2.3 Strain [11] 

The dimensions of the replacement material have the same mechanical properties as the 

original material, and the overall depth of the transformed section is the same as the 

original section. Therefore, the resulting strain in any element dA of the transformed 

section must be constant. [11] 

Strain (ε) =
σ

E
 

(5) [11] 

Where, 

ε = strain (mm/mm) 

σ = stress (N/m2) 

E = bending modulus (material property) (Pa) 

 

The bending stresses of a composite beam can be calculated using two conditions as 

follows. [10] 

1. The resulted strain on a layer with an equal distance from the neutral axis is the same 

for both materials. 

σ1

E1
=

σ2

E2 
 

σ1 = σ2 ∙ (
E1

E2
) =  mσ2 

(6) [10] 

 

2. The moment of resistance of a composite beam can be determined simply by summing 

up the individual moments of resistance of the members. 

M =  M1 + M2  (7) [10] 
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M1 =  σ1 ∙ (
I1

y
) 

M2  =  σ2 ∙ (
I2

y
) 

M =
σ1   

y
I1  +  

σ2   

y
I2    

 

Where, 

σ = stress (N/m2) 

E = bending modulus (material property) (Pa) 

M = bending moment (Nm) 

I = moment of inertia (m4) 

y = distance (m) 

m = modular ratio, which means in construction the ratio of Young’s Moduli of 

elasticity of the two different materials. (N/m2) 

2.3.3 Symmetrical Bending 

The symmetrical bending can be defined as a bending where the bending moments are 

symmetrical around the neutral axis that passes through the center. Symmetrical bending 

mainly happens in beams that have symmetrical cross section which can be either single 

or double layers. [11]  

The second moment of area which is needed in calculations of bending in beams and also 

known as the moment of inertia of a shape, it depends on the geometry of objects and it 

describes how points or particles of an object or an area are distributed about an axis that 

can be chosen arbitrarily. [11] 

2.3.4 Examples of Symmetrical Bending 

One of the examples of symmetrical bending is an I-cross-section beam. Tension and 

compression loads are applied to the flanges and the body (web) is the core that keeps 

the facings in place by resisting transverse shear loads. [12] 

The second moment of area is very high in I-section beam because most of its material 

is located in the flanges which are placed far from the center of bending (neutral axis), 
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and the web has enough material that makes the flanges work together and resist shear 

and buckling. [12]  

There are different ways to calculate the bending stiffness of beams. However, for the 

following shape as an example and since the beam is symmetric from the top to bottom, 

there is no need to find the centroid of the location. [13] 

 

Figure 2.4 I-beam [13] 

As it shows from the figure 2.3 above, the I cross section consists of three pieces, 

instead of treating each piece separately and making separate calculations.  It is valuable 

to treat the whole beam as a rectangle and as a total solid cross section which can be 

divided into two symmetrical pieces around x-axis and since the centroids of all 

segments lie on x-axis, there is no need to use the parallel axis theorem. [13] 

So, the solution for this particular example can be obtained using the following simple 

moment equation. 

Ix =
1

12
bcenterh3

center 
(8) [13] 

The flexural rigidity can be determined from equation 1 page 13. 

However, in the case of taking all three pieces into consideration, knowing that the beam 

is symmetric and the center of gravity in the middle then the flexural rigidity D is: [1] 

      D = ∑ Di = E(Itop + Ibottom + Icenter) 
(9) 

Considering that, [13] 

              Icenter =
1

12
bcenterhcenter

3  
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And for the bottom and top parts, there is a distance d from the neutral line, so the 

moment is: [3] 

I = Icenter + Ad2 

Itop =
1

12
btophtop

3 + btophtopd2 

 

Where the displacement d is: 

d =
hcenter

2
+

htop

2
 

And the area A is: 

         A = btophtop 

Since it is symmetric then: 

         Itop = Ibottom  

Another well-known example of a symmetrical bending is a rectangular cross section 

beam. The calculation in this case can be done in different ways, one way is by finding 

the second moment of inertia of the area of a structural section and using the parallel 

axis theorem. Another common way used in calculations is known as section modulus 

method. An explanation of both methods is discussed below. [12] 

1. Parallel Axis Theorem: 

In this method a rectangular cross section beam that has a width b and height h is 

considered as shown in figure 2.4 below. 

 

Figure 2.5 Rectangular cross-section 

Then the area A is: 

A = b ∙ h (10) [12] 
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And the moment of inertia I around x-axis that passes through the centroid of the rectangle 

is: 

 

I =
1

12
bh3 

 

And it can be used to calculate the flexural rigidity as follows: [12] 

D = E ∙ I = E ∙
1

12
bh3 

 

When the rotation is around an axis at a distance d from x-axis and is parallel to the 

centroidal axis as shown in figure 2.6 below. 

 

Figure 2.6 Centroidal x-axis 

Then we use the following parallel axis theorem: [3] 

Ix´ = Ix + Ad2  

 

2. Section Modulus Method: 

In this method the cross-section beam is considered to be symmetric from top to bottom, 

so there is no need to find location centroid. Therefore, the entire rectangle is taken as a 

total solid cross section and divided into many sections. However, in this thesis work two-

, four-, and six sections are considered below. [13] 

 Two-Section Modulus: 

In this case a rectangular beam is cut into two-section modulus as in figure below. 
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Figure 2.7 Two-sections 

The moment of inertia for each element from top to bottom in this case can be obtained 

first and then summing up to get the main moment I which can be used to calculate the 

flexural rigidity as below: 

For each element – top or bottom: [3] 

 I = I0 + Ad2  

Where, 

A = b ∙
h

2
 

         d =
h

4
 

             I0 =
1

12
b ∙ (

h

2
)

3

 

       b = width (m) 

        h = height (m)  

 

The moment of inertia for the upper part of the beam is found by substituting A and r into 

moment equation so we get: 

Iup =
1

12
b (

h

2
)

3

+ b (
h

2
) ∙ (

h

4
)

2

 
 

Iup =
1

96
bh3 + bh3

1

32
 

And the moment of inertia for the bottom part is determined by substituting the same A 

and r values into the moment equation again, taking into consideration the negative sign 

of d, that is (-d). So, we get: 
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Idown =
1

12
b (

h

2
)

3

+ b (
h

2
) ∙ (−

h

4
)

2

 
 

   Idown =
1

96
bh3 + bh3

1

32
 

Then the total moment I is the sum of top and bottom moments: 

Itot = Iup +  Idown = 2I = bh3 (
32 + 96

32 ∙ 96
) ∙ 2 

= bh3 (
128

32 ∙ 96
) ∙ 2 =  bh3

1

12
 

 

 

So, the flexural rigidities can be calculated when E, b, h are given and as follows: 

D = E ∙ Itot 

𝐷 = 𝐸 (𝑏ℎ3
1

12
) 

 

 

 

 Four-Section Modulus: 

 

In this module the beam is divided to four sections, the individual moments are calculated 

in a similar way to the two-section modulus and then the total moment is substituted in 

the equation of flexural rigidity. The figure 2.8 below illustrates the sections and 

dimensions used in calculations. 

 

Figure 2.8 Four-sections 

For each element – top or bottom: [3] 
 

I = I0 + Ad2 
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Where, 

A = b ∙
h

4
 

 

d =
h

8
 

That leads to, 

𝐼0 =
1

12
𝑏 ∙ (

ℎ

2
)

3

 
 

The first moment 𝐼1 can be obtained by substituting these values into the following 

equation: 

I1 = I0 + Ad2 =  
1

12
b ∙ (

h

2
)

3

+
bh

4
∙ (

h

8
)

2

 

  I1 = bh3 ∙ (
1

12
∙

1

8
+

1

4
∙

1

64
) 

=  bh3 (
1

96
+

1

256
)   

 

For I2 an additional distance of  (
𝐡

𝟒
) which is (

𝐡

𝟖
) + (

𝐡

𝟖
)  is considered in calculations as 

shown below: 

𝐼2 =  
1

12
𝑏 ∙ (

ℎ

4
)

3

+
𝑏ℎ

4
∙ (

ℎ

4
+

ℎ

8
)

2

=
1

12
𝑏

ℎ3

64
+ 𝑏

ℎ

4
(

3ℎ

8
)

2

  

 

I2 =  bh3 (
1

768
+

9

256
) 

 

The moments I3 and I4 can be obtained in the same way and then Itotal which is the sum of 

the moments of all elements is substituted in the flexural rigidity equation 1 page 13. 

Moreover, the moments related to the thickness t can be calculated in a similar way. 

The general formula for the moment I in this case is: 

I =
1

12
b(4t)3 =

bt3

12
∙ 64 

(11) [3] 

So, for I1 with thickness t1 we get: 
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I1 =
1

12
bt1

3 + bt ∙ (
t

2
)

2

 
 

And for I2 we get, 

I2 =
1

12
bt2

3 + bt ∙ (−
t

2
)

2

 
 

For the first and the second moment I1/2 we get, 

I1/2 = b (
1

12
t3 + t ∙ (

t

2
)

2

) ∙ 2 

           I1/2 =  bt3 (
1

12
+

1

4
) ∙ 2 = bt3 (

4+12

48
) ∙ 2 

I1/2 = bt3
16

24
 

 

In a similar way the third and the fourth moments are obtained and then we get I3/4: 

I3/4 = b (
1

12
t3 + t ∙ (

3

2
t)

2

) ∙ 2 

    I3/4 = bt3 (
1

12
+

9

4
) ∙ 2 = bt3 (

4 + (9 ∙ 12)

48
) ∙ 2 

I3/4 = bt3
224

48
=  bt3

112

24
    

 

So,  Itotal is: 

Itot =  ∑ Ii =  I1/2 + I3/4 =
bt3

24
(128)  

Itot =
bt3

12
∙ 64 

 

 

It can be seen from the values obtained for the moments of the outer and the inner layers, 

that is values of  I1/2 and I3/4  that the outer layer contributes seven times more to the 

rigidity than the inner layer, since the ratio of the outer and the inner layer is: 

112

16
= 7 
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 Six-Section Modulus: 

In this symmetric six section module, the moments for three layers will be considered and 

calculated and then generalize the results to the other three since the module is symmetric 

as shown below. 

 

Figure 2.9 Six-sections 

For each element – top or bottom: 

I =  I0 + Ad2  

Where, 

A = b (
h

6
) 

 

And the three distances are: 

d1 =
h

6
∙

1

2
 

d2 =
h

6
+

h

12
 

d3 =
h

6
∙ 2 +

h

12
 

Applying the general moment equation below: 

 

     I =
1

12
b (

h

6
)

3

+ b
h

6
∙  (

h

12
)

2

 
(12) [2] 
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Then we get I1: 

I1 = bh3  (
1

12
∙ (

1

6
)

3

+
1

6
∙ (

1

12
)

2

) 

     = bh3 (
1

2592
+

1

864
) =  bh3

1

648
  

 

 

And for I2 we get: 

I2 =
1

12
b (

h

6
)

3

+ b (
h

6
) ∙ (

3h

12
)

2

 

   I2 = bh3  (
1

12
∙ (

1

6
)

3

+
1

6
∙ (

1

4
)

2

) 

                    =  bh3  (
1

2592
+

1

96
) =  bh3

7

648
  

 

In the same way I3: 

       I3 =
1

12
b ( (

h

6
)

3

+ b (
h

6
) ∙ (

5

12
h)

2

) 

           I3 = bh3  (
1

12
∙ (

1

6
)

3

+
1

6
∙ (

5

12
)

2

) 

                    =  bh3 (
1

2592
+

25

864
) =  bh3 19

648
 

The ratios of I2 and I1the outer and the inner layers are:  

7

1
= 7 

The second outermost contributes seven times more to rigidity than to the innermost. 

The ratios of I3 and I1the outer and the inner layers are 

19

1
= 19 
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And the outermost contributes nineteen times more to rigidity than the innermost. 

From the results and as a conclusion, it can be seen that the outer moments are also 

dominating in this case by comparing the obtained values of I1, I2, and I3 which gives a 

clear idea that the rigidity is higher at outer layers, according to the equation of flexural 

rigidity. 

It should be mentioned that in a rectangular cross section the contact force and deflections 

are of great importance, especially when the contact force is directly proportional to the 

area moment of inertia I of the cross section, where the elastic modulus of the beam 

material and the beam geometry play a big role in the amount of stress and applied force. 

So, for instance when the beam is pushed down, there will be an upward restoring force 

which is equal in magnitude but in opposite direction to the applied force as shown in 

figure 2.11 below. [14] 

 

    Figure 2.10 Rectangular beam [15]              Figure 2.11 Upward restoring force [15] 

These forces, deflection, yield, and maximum deflection can be calculated according to 

the following formulas. 

Contact Force:  

F = [
E ∙ w ∙ t

4 ∙ L3
] ∙ d  

(13) [14] 

 

Deflection at the yield: 

Yyield =  
2 ∙ L2

3 ∙ E ∙ t
 ∙  σyield 

(14) [14] 

Maximum deflection at load: 

 Y =
Fl3

48EI
 

(15) [14] 

 



 

29 

 

 

Contact force at yield: 

       Fyield =  [
E ∙ w ∙ t3

4 ∙ L3
] ∙ dyield 

    = [
E ∙ w ∙ t3

4 ∙ L3
] ∙ [

2 ∙ L2

3 ∙ E ∙ t
 ] ∙  σyield 

(16) [14] 

Where, 

Y = deflection (mm) 

d = distance (m) 

F = force (N) 

σ = stress (N/m2) 

L = length (m) 

t = thickness (m) 

w = b = width (m) 

I = area moment of inertia (m4) 

E = bending modulus (material property) (Pa) 

For known parameters such as dimensions, applied force, and other parameters then the 

maximum deflection at load for instance can be calculated from equation 19 by using 

flexural rigidity equation. Which shows the importance of flexural rigidity when 

studying deflection, contact force at yield, deflection at yield, etc. 

2.3.5 Unsymmetrical Bending 

In the case of nonsymmetrical section, the neutral axis doesn´t pass through the center of 

the geometrical section. So, the value of y which is the distance of the layer from the 

neutral axis varies for layers that are located for example at the top and bottom of the 

section. In order to calculate the bending and since the module is unsymmetrical, the 

center of gravity of the sections must be found first. [10] 

The center of gravity (Cg) is defined to be the center to an object´s weight distribution, 

where the gravity force is considered. It is the point where the object is balanced 

completely, regardless of point of rotation or turning around. Knowing that the neutral 

axis normally passes through the center of gravity of the section, so by calculating the 
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center of gravity of the section, one can find the y values for topmost layer as well for the 

bottom layer of the section. [10] 

To more explain the unsymmetrical module, a T-cross-section example is studied. The 

top part of the slab is called flange which resists the compressive stress and the part that 

lies below the slab is called rib which resists the shear stress. [10]  

 

Figure 2.12 T-beam [16] 

 

To find the moment, the centroid X̅ and y̅  of a T-section are calculated first:  

X̅ =  
a1x1 + a2x2

a1 + a2
 

(17) [16] 

y̅ =
a1y1 + a2y2

a1+a2  
   

(18) [16] 

Where, a1 and a2 are the areas of the flange and rib respectively. 

The second moment Ixx is: [16] 

Ixx1 =
1

12
W1H1

3 +  a1k3
2
 

Ixx2 =
1

12
W2H2

3 +  a2k4
2
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       Ixx = Ixx1 + Ixx2 

Where, 

     ki = Radius of gyration 

k3 =  y̅ − y1 

k4 =  y̅ − y2 

To calculate Iyy: [16] 

Iyy1 =
1

12
W1H1

3 + a1k1
2
 

Iyy2 =
1

12
W2H2

3 + a2k2
2
 

         Iyy = Iyy1 + Iyy2 

 

Where, 

     ki = Radius of gyration 

       k1 =  x̅ − x1 

       k2 =  x̅ − x2 

So, the flexural rigidity is obtained as in previous sections by substituting the total 

moment I in the rigidity formula. 

2.4 History of Sandwich Structure 

According to [17]. Delau in England introduced the first sandwich construction, back to 

Fairbairn 1849. The first use of sandwich panels “aircraft sandwich” was used in World 

War II. Mainly because of the lack of other materials during the war. 

The Sandwich Structure theoretically appeared in the 50´s. The use of sandwich structure 

had some limitation in aircraft industry as honeycomb was mainly used as core material 

and there were big problems with corrosion due to water absorption, UV-Radiation, aging 

etc. [4]. Figure 2.14 below illustrates the Sandwich Structure efficiency.  
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Figure 2.13 Efficiency of sandwich structure [9, p. 256] 

However, during the early 60´s, there was a production of different cellular plastics which 

were suitable as core materials. Soft materials were used in the beginning because of their 

insulation properties such as polystyrene and polyurethane. Later sandwich structure 

became very useful and flexible concept as harder cellular plastics with higher densities 

were possible to produce caused by diverse progresses in material production. [17] 

Nowadays, there is an enormous number of different qualities of cellular plastics that 

are used as core materials. Sandwich panels became an important composite structure in 

aerospace applications as well as in high performance automobiles, boats, and wind 

turbines, because it is an extremely lightweight type of construction that exhibits high 

stiffness and high strength-to-weight ratios. [4] 

2.4.1 Sandwich Structure  

The importance of studying and analyzing these structures is growing as mentioned in the 

history of sandwich structure. The calculation for flexural rigidity and other quantities 

can be seen clearly when considering a sandwich structures as they are a suitable example 

of composites.  

Sandwich structure consists of two stiff, strong faces separated by a lightweight core and 

joints (adhesives), which can be seen in figure 2.14 below. [4] 
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Figure 2.14 Sandwich structure [18, p. 5] 

Facing sheets of a typical sandwich structure are mainly thin with a relatively thick 

lightweight core that separates the two faces in order to increases the moment of inertia. 

It is for important for engineers or designers of sandwich structures to make the core 

strong enough to withstand heavy loads and keep their positions. [9] 

Each component of the sandwich structures has some specific properties that make the 

sandwich function effectively as a one-unit object. It is preferred by engineers to make 

the faces of the sandwich structure from some very well-known metals such as steel, 

stainless steel, or aluminum due to their stiffness and strength, due to the fact that these 

materials have some special mechanical properties and they are uncomplicated to use and 

fabricate. However, in some cases fiber - reinforced plastics are used as face materials as 

well, because they have good physical properties such as strength. [17] 

The core has several critical capacities. It must be sufficiently stiff to keep the separation 

between the faces steady and it must be so rigid in shear to prevent the faces from sliding 

over each other. The core must be strong in shear to keep the faces cooperating with each 

other, if the core is weak in shear, the sandwich loses its stiffness. 

To keep the faces and the core cooperating with each other, the adhesive layer must be 

added as it enables the transmission of the shear forces between the faces and the core. 

The adhesive must have the capacity to carry shear and tensile stresses. [4] 

2.4.2 Flexural Rigidity in Sandwich Beams 

Since sandwiches are composites and according to their properties, engineers managed to 

modify and adjust the beam theories so that they can be applied to the sandwich structures 

and can be used in analyzing and calculating flexural rigidity of sandwiches. [4] 
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Figure 2.15 Sandwich beam cross section [4] 

For beams, the sandwich is slightly different, and it consists of a few different parts 

where the entire section should be considered when measuring its parts around the 

centroidal axis. [4] So, the flexural rigidity can be determined as follows: 

D = Ef ∙ (
bt3

6
) + Ef ∙ (

btd2

2
) + Ec ∙ (

bc3

12
)  

(19) [4] 

Where, 

Ef  = moduli of elasticity of the faces (index f) 

Ec = moduli of elasticity of the core (index c)  

Equation 22 above consists of three terms that calculates flexural rigidity depending on 

the local flexural rigidity of the faces about their own centroidal axes, bending about the 

centroidal axis of the entire cross section and the flexural rigidity of the core about its 

own centroidal axis. [4] 

When this equation is applied to a sandwich structure and comparing the results to the 

results obtained earlier for a six-section modulus found in page 28-29, it can be seen that 

the sandwich is a special case of a six-layer parallel axis theorem. 

According to some studies and experiments on sandwich structure with thin faces, 

engineers and scientist concluded that the amount of flexural rigidity due to faces around 

their own centroidal axis is very small (less than 1%) compared to the rigidity of the 

bending of the entire cross section around the centroidal axis, therefore it can be neglected 

especially when: 

d

t
>  5.77 
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And the proportion is less than 0.25% at a ratio of: 

d

t
  >  11.55 

Since the faces are thin, not only the first term can be ignored but in fact experiments 

showed that the third term of equation 28 is also very small (less than 1%) of the second 

term which means that it can be ignored as well when:  

(
Ef

Ec
 ) ∙ (

td2

c2
)  >  16.7 

(20) [4] 

So, the formula for flexural rigidity D is then reduced to: 

D = Ef ∙ (
btd2

2
)  

(21) [4] 

As a mentioned earlier this is almost the same case as six-section module and when 

applying the parallel axis theorem, one would expect the same calculations and results. 

So, the expectation is that the rigidity at the outer layers contributes with a higher amount 

of flexural rigidity than the inner layers when considering the entire sandwich structure. 

2.4.3 Deflection of Beams 

This section deals with beam deflection. Deflection occurs when a specified load is 

applied to a cross section beam, and the amount of deflection and stress are very important 

to determine for sandwich structures and beams, for example in case of sandwich, as the 

core has a relatively low shear modulus, and the beam may deflect a considerable amount 

due to shear deformations, to neglect the proper consideration of the shear modulus of the 

core may lead to unconservative prediction of deflections or critical loads. [11] 

 

In addition, it is very important to know the limits of deflections for sandwich structure 

beams to ensure the integrity and stability of a structure or to prevent any attached brittle 

materials from cracking Therefore, it is essential to determine the modulus and take its 

effect into account. [19]  
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The deflection of beams depends mostly on the modulus of elasticity of the chosen 

material and must occur within the elastic limit of the material. They are determined using 

the elastic theory. There is always some additional deflection in the material due to shear, 

but it is normally so small that it can be neglected. Figure below illustrates the deflection 

and curvature due to bending. [11] 

 

 

Figure 2.16 Deflection and curvature due to bending [20] 

There are different types of supports for example supports that resist a force like a pin or 

a displacement, another supports for instance resist a moment like a fixed end support, 

resist displacement or a rotation [20]. The following examples illustrate the deflection 

of a cantilever and a simply supported beam. [21, pp. 33-35] 

 Cantilever beam: 

A cantilever beam is when a beam is attached at only one end and free on the other end 

as shown in figure below. [21, pp. 33-35] 

 

 

Figure 2.17 Cantilever beam [20] 

The deflection for a cantilever beam at any section in terms of x at free end is given by: 

        Y =
Fx2

6EI
(3L − x) 

(22)  

And the maximum deflection at the free end is: 
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Ymax =
FL3

3EI
 

(23)  

When the load F is concentrated at any point as shown below, then the deflection is: 

            Y =  
Fx2

6EI
(3a − x)   for  0 < x < a 

        Y =
Fa2

6EI
(3x − a)   for a < x < L 

(24) 

And the maximum deflection in this case is: 

Ymax =
Fa2

3EI
(3L − a) 

(25) 

When the load is constant and uniformly distributed (W), then the deflection is: 

          Y =
𝐖x2

24EI
(x2 + 6L2 − 4Lx) 

(26) 

And the maximum deflection in this case is: 

  Ymax =
WL4

8EI
 

(27) 

When the load is variable but still uniformly distributed then the deflection is: 

Y =
W0x2

120LEI
(10L3 − 10L2x + 5Lx2 − x3) 

(28) 

Similarly, the maximum deflection in this case is: 

    Ymax =
W0L4

30EI
 

(29) 

For the couple moment M at the free end of the beam, we have: 

Y =
Mx2

2EI
 

(30) 

And maximum is: 

     Ymax =
ML2

2EI
 

(31) 
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Where, 

Y = deflection (mm) 

x = d = distance (m) 

F = force (N) 

L = length (m) 

I = area moment of inertia (m4) 

E = bending modulus (material property) (Pa) 

M = bending moment (Nm) 

W = distributed load (N/m) 

 Simply supported beam: 

A simply supported beam has pinned support at one end and a roller support at the other 

end. In figure 2.17 below represents the pinned end and B the roller end. [21, pp. 33-35] 

 

Figure 2.18 Simply supported beam [20] 

The governing equations of this module are very similar to the previous case when it 

comes to types of loads, location of the loads, etc. A review and brief description of the 

equations are given and illustrated in figure below. 

 

Figure 2.19 Simply supported beam, deflection at center 
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Deflection at concentrated load (P = F) at the center is: 

Y =  
Fx

12EI
[
3L2

4
− x]  for 0 < x <

1

2
 

 

(32) [20]  

 

And the maximum deflection (𝛿𝑚𝑎𝑥 =  ymax) at the center is: 

       Ymax =  
FL3

48EI
 

(33) [20] 

 

Concentrated load F at any point: 

 

Y =
Fbx

6LEI
(L2 − x2 − b2) for 0 < x < a 

   Y =
Fb

6LEI
(

L

b
(x − a)3 + (L2 − b2)x − x2)  for a < x < L 

(34) 

 

Maximum deflection at the center: 

Ymax =
Fb(L2 − b2)3/2

9√3LEI
   at x =  √(L2 − b2)/3 

(35) 

Y =
Fb

48EI
(3L2 − 4b2)   at the center if a > b 

 

 

 

Figure 2.20 Simply supported beam, uniformly distributed load 

For a uniformly distributed load (ω = W)N/m as shown in figure 2.20 above, then 

equations are: 

Y =
Wx

24EI
(L3 − 2Lx2 − x3) 

(36) 
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Maximum deflection: 

           Ymax =
5WL4

384EI
 

(37) 

When the load is uniform and variable, then deflection can be expressed as: 

Y =
W0x

360LEI
(7L4 − 10L2x2 + 3x4) (38) 

When the couple moment M is at the right end, then: 

Y =
MLx

6EI
(1 −

x2

L2
 ) (39) 

And the maximum is: 

Ymax =
ML2

9√3EI
 at x = 1/√3 

(40) 

Where, 

Y = deflection (mm) 

x = d = distance (m) 

F = force (N) 

L = length (m) 

I = area moment of inertia (m4) 

E = bending modulus (material property) (Pa) 

M = bending moment (Nm) 

b = width (m) 

W = distributed load (N/m) 
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3 METHOD 

For the practical part and laboratory experiments of this thesis work, the following 

module, software, and concepts are considered. 

1. Composite Compressive Strength Modeler (CCSM) 

2. A case of a solid UD lamina 

3. Sandwich structure 

4. Three-Point and Four-Point bending 

5. Data analysis  

3.1 Composite Compressive Strength Modeler (CCSM)  

According to User´s Manual of CCSM modeler, it deals with many different aspects of 

beams and plates in terms of deflection, flexural rigidity, etc. Some of the main features 

of this software include classical laminate theory, stress-strain analysis, failure prediction 

for composite plates, and a very useful user-expandable database to store material and 

geometrical properties. However, in this thesis work the modeler is used for determining 

the stiffness and compliance matrices of beams when sufficient information about the 

beams, lamina, stiffness, etc. are given. [22] 

 

In this thesis work when stiffness and compliance matrices are considered using CCSM 

modeler the flexural rigidity D will be calculated using width (b) and d11. And in this 

case, it is: 

Dtheory =
b

d11
 

(41) [22] 

 

3.1.1 A Solid UD Lamina 

A lamina is a building block of modern composites laminated structures, a lamina is also 

known as a ply or a layer and in our case the UD lamina refers to a unidirectional lamina 

since each lamina may have more than one type of fibers and these fibers may be oriented 

in different directions, different thickness, fiber orientation angle and matrix material. 

[22] 
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The geometry of a laminate is normally layers that have three planes of material that are 

symmetric. Therefore, they exhibit orthotropic behavior (having three mutually 

perpendicular planes of elastic symmetry at each point).  

When a lamina cut cross these planes of symmetry, they will exhibit the same mechanical 

properties. Lines which are normal to these planes of material symmetry are called 

material axes which are designed as 1, 2, and 3 they are also known as principal material 

directions. Figure 3.1 below illustrate these axes in a UD lamina. [22] 

 

Figure 3.1 Principal material axes in a UD lamina [24] 

 

When dealing with fibers, matrix and lamina, it should be mentioned that fibers´ strength 

and stiffness are significantly larger than that of the matrix, a lamina is stiffest and 

strongest in longitudinal direction which is the 0-degree direction and they are very weak 

in the 90-degree direction because the load must be carried by the much weaker polymeric 

matrix. 

A lamina´s mechanical properties in any direction lying in the 2-3 planes are quite similar 

and therefore, a unidirectional lamina is considered as transversely isotropic. Each layer 

has approximately the same properties in-plane but different properties through the 

thickness. [23] 

3.2 Bending 

Bend testing also known as flex or flexural testing is commonly performed to measure 

the flexural strength and modulus of all types of materials and products. The bending of 

a material or product can be tested using a bending machining tool. [24] 
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A universal bending machine consists of a basic machine that can be adjusted and used 

for a variety of bends. The basic machine consists of a CNC-operated (computer 

numerically controlled), a work bench and a software for programming and operating. 

There are three key analysis when performing bend testing which are, the flexural 

modulus that deals with measuring slope, stress-strain curve, and stiffness of materials, 

flexural strength which measures the maximum force that a material can resist before it 

breaks or yields, and yield point of a material, it is a point at which the material can´t 

restore its normal shape after it. [24]  

3.2.1 Three-Point & Four-Point Bending  

Flexural rigidity, modulus of elasticity and other related quantities can be determined 

when the values of Three-Point bending are given. The advantage of using three-point 

flexural test is the ease of the specimen preparation and testing. Therefore, the three-point 

bending will be the module in the practical part of this thesis work. [25]  

 

The four-point bending flexural test is very similar to the three-point bending test. The 

major difference is the addition of a 4th bearing, which brings a much larger portion of 

the beam to the maximum stress. This difference needs to be taken into account when 

studying for example the brittle materials, since it can be used to indicate the flexural 

strength and crack initiation for instance, in case of asphalt mixtures that are used in road 

paving, however the four-point bending test won´t be included in the practical part of this 

scientific discourse. [26] 
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Tables below show some international standard testing methods. 

Table 2. ASTM standards for three-point bend. [27] 

ASTM 

 

Standard Test Method 

ASTM-C1161 Flexural Strength of Advanced Ceramics 

at Ambient Temperature 

ASTM-C1341  Flexural Properties of Continuous Fiber-

Reinforced Advanced Ceramic 

Composites 

ASTM-C1684  Flexural Strength of Advanced Ceramics 

at Ambient Temperature-Cylindrical Rod 

Strength 

ASTM-C203 Breaking Load and Flexural Properties of 

Block-Type Thermal Insulation 

ASTM-C473 Physical Testing of Gypsum Panel 

Products 

ASTM-C598 Annealing Point and Strain Point of Glass 

by Beam Bending 

ASTM-C674 for Flexural Properties of Ceramic White- 

Ware Materials 

ASTM-D1184 form Flexural Strength of Adhesive 

Bonded Laminated Assemblies 

ASTM-D143 Small Clear Specimens of Timber 

ASTM-D2344  for Short-Beam Strength of Polymer 

Matrix Composite Materials and Their 

Laminates 

ASTM-D3044  Shear Modulus of Wood-Based 

Structural Panels 

ASTM-D349  Laminated Round Rods Used for 

Electrical Insulation 

ASTM-D4476  Flexural Properties of Fiber Reinforced 

Pultruded Plastic Rods 

ASTM-D7264  Flexural Properties of Polymer Matrix 

Composite Materials 

ASTM-D790  Flexural Properties of Unreinforced and 

Reinforced Plastics and Electrical 

Insulating Materials 

ASTM-E855  Bend Testing of Metallic Flat Materials 

for Spring Applications Involving Static 

Loading 

ASTM-F1575  Determining Bending Yield Moment of 

Nails 

ASTM-F2193-02  Components Used in the Surgical 

Fixation of the Spinal Skeletal System 
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Table 3. ASTM standards for four-point bend. [27] 

ASTM 

 

Standard Test Method 

ASTM-C1161 Flexural Strength of Advanced Ceramics 

at Ambient Temperature 

ASTM-C1341  Flexural Properties of Continuous Fiber-

Reinforced Advanced Ceramic 

Composites 

ASTM-C1368 Determination of Slow Crack Growth 

Parameters of Advanced Ceramics by 

Constant Stress-Rate Strength Testing at 

Ambient Temperature 

ASTM-C1576 Determination of Slow Crack Growth 

Parameters of Advanced Ceramics by 

Constant Stress Flexural Testing (Stress 

Rupture) at Ambient Temperature 

ASTM-C158 Strength of Glass Flexure (Determination 

of Modulus of Rupture) 

ASTM-C1674  Flexural Strength of Advanced Ceramics 

with Engineered Porosity (Honeycomb 

Cellular Channels) at Ambient 

Temperatures 

ASTM-C1684 Flexural Strength of Advanced Ceramics 

at Ambient Temperature-Cylindrical Rod 

Strength 

ASTM-C393 Core Shear Properties of Sandwich 

Constructions by Beam Flexure 

ASTM-C480 Flexure Creep of Sandwich Constructions 

ASTM-C651  Flexural Strength of Manufactured 

Carbon and Graphite Articles Using 

Four-Point Loading at Room 

Temperature 

ASTM-D6272 –  Flexural Properties of Unreinforced and 

Reinforced Plastics and Electrical 

Insulating Materials by Four-Point 

ASTM-D7249  Facing Properties of Sandwich 

Constructions by Long Beam Flexure 

ASTM-D7264  Flexural Properties of Polymer Matrix 

Composite Materials 

ASTM-D790  Flexural Properties of Unreinforced and 

Reinforced Plastics and Electrical 

Insulating Materials 

ASTM-E855 Bend Testing of Metallic Flat Materials 

for Spring Applications Involving Static 

Loading 
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4 RESULTS 

This section deals with the results, graphs, CCSM modeler, experiments, and data 

analysis in both theoretical and experimental cases as below. 

4.1  Bending Test and CCSM Modelling 

In this section the goal is to make a comparative analysis between theoretical and 

experimental flexural rigidity D on a solid fiberglass and a sandwich beam with different 

orientations using the material testing machine under three-point bending with a uniform 

constant load and the CCSM modeler for the theoretical part. 

  

Figure 4.1 Materials testing machine 
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A solid beam of 10 plies and a sandwich beam of 4 plies are used as examples to obtain 

the theoretical results of stiffness and compliance matrices for zero degree [0º] using 

the software package CCSM modeler. 

The CCSM modeler program can be used by entering the obtained geometry of the 

beam, that is, the required beam dimensions, save ply data in the input and then 

calculate for elastic properties according to the user´s manual. 

It should be mentioned that for the sake of time saving and ease of use the same lamina 

properties and thickness can be saved and used for other layers as long as they are of the 

same material. However, when the lamina is of different material then the reentering 

data of each lamina along with corresponding properties is required. 

1. Theoretical test solid fiberglass (CCSM modeler): 

The module in this example as mentioned earlier is symmetric and all layers are made 

of same material (fiberglass). Both theoretical and experimental tests are applied to this 

module according to the values given in the table below. 

Table 4. Values for the CCSM Modeler. 

Property Symbol Unit 

Width b 25 mm 

Thickness (unidirection) tA 0.75 mm 

Longitudinal modulus E11 36.5 GPa 

Transverse direction E22 5.7 GPA 

Poisson number Nu 0.3 

Shear Modulus G12 2.1GPa 

Angle ℃ 0 

 

 



 

48 

 

The first step is to enter the above data to the CCSM modeler. 

 

 

Figure 4.2 Solid fiberglass - theoretical 

The data used in this example are taken from a real lamina tested in the laboratory using 

a microscope. So, the data are almost exact. After running the software, the following 

results are obtained, and we are mainly interested in the d11 value that will be used in 

determining the value of flexural rigidity.  

 

 

Figure 4.3 Solid fiberglass – theoretical – d11 
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Based on the CCSM modeler the value of d11 and knowing the total thickness of the 

lamina, that is: 

b = 25 mm 

d11 = 779.3 

So, the theoretical flexural rigidity is: [22] 

 

Dtheory =
b(mm)

d11(Nm)−1
=

25 Nmm2

779.3 
∙ 1000 = 32 Nmm2 

The flexural rigidity D𝑡ℎ𝑒𝑜𝑟𝑦 of the 10 layers fiber glass plies is according to the result 

above is 32 Nmm2.  

2. Experimental test solid fiberglass: 

This test is performed in the laboratory using material testing machine model  

M 350-3CT available at Arcada laboratory. The same exact solid beam along with the 

same exact data are used for this experimental test for the sake of comparison between 

the theoretical and experimental tests and determining the effectiveness and accuracy of 

CCSM modeler. Figure below shows the linear elasticity and the slope which is of main 

interest in calculating flexural rigidity. 

 

Figure 4.4 Solid fiberglass - experimental 
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The experimental calculations of flexural rigidity D are as follows: 

Slope =
dF

dy
= k =

48D

L3
 

 

(42) [22] 

Where, 

L = length between supports 

k = Slope = 54.898
N

mm
 

Rearranging the equation 50 leads to: 

Dexp = k
L3

48
= k 

(300mm)3

48
 

Dexp = 54.898 ∙  562500 [ 
N

mm 
 ] [

mm3

1
]  

=  30880125 Nmm2 

Dexp ≈ 31 Nmm2 

The relative error is 1 −
Dexp

Dtheory
= 1 −

31

32
= 1 −  0,96875, corresponding to 3.1%  

1.  Theoretical test sandwich beam (number 1): 

This example is a sandwich beam with four plies and width of 13mm total, with a 1.5mm 

width for each face and the longitudinal modulus in this example is assumed 15.5 GPa 

based on the obtained experimental results of this example as shown in figure 4.5 below. 
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Figure 4.5 Sandwich beam 1 - theoretical 

After entering the required data and running the simulation, the following results are 

obtained as shown below. 

 

Figure 4.6 Sandwich beam 1 – theoretical – d11 

 

In a similar way to the first case, the theoretical flexural rigidity can be calculated as 

follows: 

Dtheory =
b(mm)

d11(Nm)−1
=

100 Nmm2

644.313
1000 = 155 Nmm2 
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2.  Experimental test sandwich beam (number 1): 

In this laboratory test a sandwich beam made of core cell M80 and the facings made of 

vinyl ester is used and the other material properties and constants are taken from table 5 

page 56. 

 

Figure 4.7 Sandwich beam 1 - experimental 

Applying the flexural rigidity equation again with the obtained slope k, then: 

Dexp = k
L3

48
= k 

(300mm)3

48
 

Dexp = 272.59 ∙  562500 [ 
N

mm 
 ] [

mm3

1
]  

=  153331875 Nmm2 

Dexp = 153,3 Nmm2 

The relative error is 1 −
Dexp

Dtheory
= 1 −

153,3

155
= 1 − 0,989032258, corresponding to 1,1% 
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1. Theoretical test sandwich beam (number 2): 

The sandwich beam in this test differs from the previous one by angle of orientation, 

otherwise all the material, data, dimensions are the same. Figure below shows a 

screenshot of CCSM modeler with entered data. For convenience and suitability, the 

longitudinal modulus E11 is taken 50 GPa in this test in order to meet the results obtained 

from the experimental part, since the slope of the linear elasticity gets much smaller in 

this case due to orientation of the sandwich beam under three-point bending. 

 

Figure 4.8 Sandwich beam 2 - theoretical 

After running CCSM modeler software, then the following results are obtained for 

compliance matrix d11. 

 

Figure 4.9 Sandwich beam 2 – theoretical d11 
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In the same way the flexural rigidity D is calculated bellow: 

 

d11 = 200.264 

Dtheory =
b(mm)

d11(Nm)−1
=

90 Nmm2

200.264
1000 = 45.1 Nmm2 

 

The theoretical flexural rigidity D is about 45.1 MNmm2 which will be discussed and 

compared with the practical results in details in conclusion section. 

 

2. Experimental test for sandwich beam (number 2): 

 

For the sake of comparison, an experimental test is performed at the laboratory for the 

same sandwich beam and the following figure and calculations are obtained. 

 

 

Figure 4.10 Sandwich beam 2 - experimental 
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Applying the flexural rigidity equation with L = 300mm which is the length between the 

two supporters and slope k from the linear equation in figure above, then:  

 

Dexp = k
L3

48
= k 

(300mm)3

48
 

Dexp = 83.906 ∙  562500 [ 
N

mm 
 ] [

mm3

1
]  

=  47197125 Nmm2 

Dexp = 47.2 Nmm2 

The relative error is 1 −
Dexp

Dtheory
= 1 −

47.2

45.1
= 1 −  1.04653193, corresponding to 

−4.6%. 

The theoretical and experimental results differ by around 1.1, 3.2 and -4.6 percent in these 

tests, due to the fact that the beam measurements were not accurate 100 percent during 

the laboratory test because of the roughness and unleveled edges of the sandwich beam. 
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5 DISCUSSION 

In this scientific discourse, three laboratory experiments were conducted for practical 

tests along with the use of composite compressive strength modeler (CCSM) for 

theoretical tests for the sake of comparison between the results obtained in case of a solid 

fiberglass and a sandwich beam.  

 

The experiments were conducted using materials testing machine in order to have an 

understanding of the behavior of the beams under three-point bending. The properties of 

the material used in these tests were provided by the manufacturer (Gurit company). The 

tests were conducted in longitudinal direction in order to obtain relevant constitutive 

behavior of the facing material.  

For the theoretical part, from different available software packages, the CCSM modeler 

software was used for its simplicity, friendly user interface and its fast performance. 

Moreover, for simple geometries it may be clear what the loading is. However, for more 

complicated geometries the program may be used as part of a larger calculation to find 

d11 which can be used to calculate flexural rigidity D. As well it can be used to check for 

failure at critical points in the structure.  

Both experimental and theoretical results obtained along with a percentage comparison 

between both cases are presented in the table below. 

 

Table 5. Results

Specimen and 

material 

C  

(mm) 

b 

(mm) 

L 

(mm) 

Slope 

k(N/mm) 

Experimental 

D(MNmm2) 

Theoretical 

D(MNmm2) 

Comparison 

percentage 

Solid (fiberglass) 7.5 25 300 55.284 31.1 32 3.1% 

Sandwich beam 1 13.0 100 300 272.59 153.3 155 1.1% 

Sandwich beam 2 13.0 90 300 86.888 47.22 45.1 −4.6% 
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Where, 

L = Distance between the supports (m) 

b = width (m) 

C = thickness (m) 

k = slope (N/mm) 

D = flexural rigidity (Nm2) 

 

From the results one can see that, the theoretical results obtained using CCSM modeler 

are very close to the experimental results and in all cases the percentage difference ranged 

from 1.1 percent to 4 percent which is acceptable and reasonable. The results also show 

the effectiveness and accuracy of the CCSM modeler.  

 

For the experimental tests and under the same load and speed, it appeared that the 

direction of orientation plays a major role in the stiffness of beams as it can be seen from 

the flexural rigidity values. The composite seemed to be stronger along the direction of 

orientation of the fiber with flexural rigidity value of 153.3 Nmm2 and weaker when the 

direction was perpendicular to the fiber with flexural rigidity of 47.22 Nmm2.  

 

Results also showed that the beam displayed a linear behavior to the cracking moment in 

both cases. The sandwich beam carried most of the bending and in-plane loads in the 

facings, while the core was the main source of flexural stiffness, out-of-plane shear, and 

compressive behavior. 

 

The solid fiberglass was weaker as expected, its flexural rigidity D=31.1 MNmm2 was 

much less than that for sandwich beams of the same length L between the two supporters 

and under the same load and the rest of the conditions.  

 

 

 

 

 



 

58 

 

6 CONCLUSION 

The basic idea of this thesis work is to investigate and determine the flexural rigidity that 

is, the bending stiffness of beams with different cross sections of the same material 

properties. Three beams were tested under three-point bending using material testing 

machine and the other purpose of this thesis work was to compare the results obtained in 

both cases that is, composite compressive strength modeler (CCSM) results and 

laboratory results. 

 

The conclusions of this thesis work are based on the sandwich beam theory and 

experiments done in the laboratory as well on the CCSM modeler software. One of the 

main conclusions is that the sandwich constructions are very suitable in engineering 

structures and many other fields due to their lightweight structures and their flexural 

stiffness along with manufacturing of new composites with high qualities regarding 

bending, strength, and many other properties. 

 

From Euler-Bernoulli beam theory concept, it is essential to mention that the second 

moment of inertia of cross-sectional shapes of beams play one of the biggest roles and in 

some cases even the main key role. It is easy to see that a beam with a higher moment of 

inertia is more resistance to bending than a beam with a smaller moment of inertia 

according to the results obtained. Therefore, it is logical to have a cross sectional area 

concentrated away from the beam center. As a general rule, to increase rigidity of a beam, 

it is recommended to make the second moment of area as large as possible. 

 

One more important conclusion achieved in this thesis work is that the structural 

performance of the sandwich beam doesn´t only depend on the properties of the skin, but 

also on orientation and geometrical dimensions of the component, that is why it is 

essential to choose the right orientation, geometrical dimensions, and other factors into 

considerations to make sure the designed structure satisfies specific strength, stability, 

and deflection requirements. Therefore, the bending stiffness analysis plays a big role in 

choosing materials, as it shows how the material behaves under certain loads that helps 

engineers in building, designing, manufacturing and in many other fields. 
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