
	

	
	
	
	

																				 	

	

	

	
	

Using	Google	Ventures	Design	Sprint	
Framework	for	Software	Product	De-
velopment	in	Startups		
	
	
	
Viktoriia	Poliakova	
	
	
	
	
	
	
	
Bachelor’s	thesis		
November	2017	
School	of	Business	
Degree	Programme	in	International	Business	
	
	
	

	

	

	
	
	

Description	

Author(s)	
Poliakova,	Viktoriia	

Type	of	publication		
Bachelor’s	thesis	

Date	
November	2017	
Language	of	publication:			
English	

Number	of	pages		
71	

Permission	for	web	publi-
cation:	x	

Title	of	publication		
Using	Google	Ventures	Design	Sprint	framework	for	software	product	development	in	
startups	
	
Degree	programme		
Degree	Programme	in	International	Business	

Supervisor(s)	
Saukkonen,	Juha	
	
	
Assigned	by	
Robo	Technologies	GmbH	

Abstract	

In	the	fast-paced	environment	of	the	startup	world,	companies	are	always	trying	to	dis-
cover	and	execute	the	most	efficient	and	effective	ways	of	solving	problems,	developing	
new	products	and	working	in	teams.	Some	frameworks	that	address	this	issue	have	been	
developed	during	the	recent	years,	and	they	are	actively	used	in	various	organizations.	

The	general	aim	of	this	study	was	to	evaluate	the	effectiveness	of	such	framework,	Google	
Ventures	Design	Sprint,	in	a	hardware	startup	called	Robo	Wunderkind.	The	objectives	
were	to	execute	the	Design	Sprint	in	practice	by	developing	a	concept	of	a	software	prod-
uct,	analyze	the	results	of	the	Design	Sprint	and	evaluate	its	appropriateness	for	the	com-
pany	and	its	products.	

The	theory	and	knowledge	base	part	of	this	study	presents	the	general	concepts	of	soft-
ware	development	and	its	frameworks,	design	thinking	and	Design	Sprint.	This	part	further	
justifies	the	connection	between	these	frameworks	and	their	application	in	this	research.		

Action	research	was	used	as	the	research	approach	for	this	study,	as	it	was	similar	to	the	
cyclical	nature	of	the	Design	Sprint	framework	and	allowed	deep	reflection	on	the	research	
process.	The	research	consisted	of	five	cycles	that	contained	one	action	and	one	reflection	
process	each.		

As	the	result	of	this	study,	a	concept	of	a	software	platform	was	created,	the	key	challeng-
es	for	its	further	development	have	been	identified,	and	the	appropriateness	of	the	Design	
Sprint	framework	was	assessed	using	action	research.	

The	research	findings	can	be	utilized	by	researchers	from	different	backgrounds	in	order	to	
further	study	the	Design	Sprint	framework	and	its	application	in	various	settings	and	fields.	
Keywords/tags	(subjects)		
Google	Ventures	Design	Sprint,	design	thinking,	software	development,	innovation	
	
	
Miscellaneous	(Confidential	information)	
	
Appendices	1,	2,	3	and	4	(35	pages)	are	confidential	until	12.11.2027.	

	

https://janet.finna.fi/Search/Results?lookfor=asiasanastot&prefiltered=format_Database&SearchForm_submit=Find&retainFilters=0&filter%5b%5d=format%3A%220%2FDatabase%2F%22&lng=en-gb
http://vesa.lib.helsinki.fi/
https://intra.jamk.fi/opiskelijat/student/thesis/Pages/publicity.aspx

1	
	

	

Contents	

1			Introduction	...	3	

1.1	Background	and	company	information	...	4	

1.2	Research	problem	and	research	questions	...	5	

2			Research	design	..	6	

2.1	Research	approach	selection	...	6	

2.2	Research	method	selection	-	Action	research	...	7	

2.3	Data	collection	and	analysis	..	10	

2.4	Plan	for	research	ethics	and	quality	..	11	

3			Theory	and	knowledge	base	...	12	

3.1	Software	engineering	..	12	

3.2	Software	process	...	14	

3.3	Software	development	methodologies	...	15	

3.4	Design	Thinking	..	25	

3.5	Google	Ventures	Design	Sprint	as	a	new	method	of	Design	Thinking	26	

3.6	Synthesis	of	the	conceptual	framework	..	29	

4			Results	..	32	

5			Conclusions	..	32	

6			Discussion	...	32	

References	..	33	

Appendices	...	36	

Appendix	1.	 Results	(19	pages)	...	36	

Appendix	2.	 Conclusion	(4	pages)	...	36	

Appendix	3.	 Discussion	(4	pages)	...	36	

2	
	

	

Appendix	4.	 The	developed	prototype	of	a	software	product	during	the	

Design	Sprint	at	Robo	Wunderkind	(8	pages)	...	36	

	

Figures	

	

Figure	1.	The	spiral	of	action	research	cycles	(Zuber-Skeritt	2001,	20)	8	

Figure	2.	The	implemented	research	process	of	the	study.	..	9	

Figure	3.	The	Waterfall	model	of	software	development	(SpriteCloud	n.d.)	16	

Figure	4.	Spiral	model	of	software	development	(Boehm	1988,	64)	18	

Figure	5.	Extreme	programming	(XP)	methodology	of	software	development	

(Abrahamsson,	Salo,	Ronkainen,	&	Warsta	2002,	21)	..	22	

Figure	6.	Scrum	methodology	of	software	development	(Schwaber	1995,	126)	24	

Figure	7.	Google	Ventures	Design	Sprint	5-day	process	(Tetuan	Valley	2017)	29	

	

Tables	

The	list	of	tables	of	this	study	is	confidential	until	12.11.2027.	

	

Images	

The	list	of	images	of	this	study	is	confidential	until	12.11.2027.	

	

	

	

3	
	

	

1			Introduction	

	

In	a	business	setting,	regardless	of	a	field	or	an	industry,	it	can	be	often	observed	

that	usual	working	methods	and	ways	of	solving	issues	stop	to	be	effective	and	

efficient,	and	simply	do	not	bring	outcomes.	This	observation	can	be	applied	to	

individuals	in	the	work	environment,	as	well	as	to	whole	teams	and	subteams	inside	

of	organizations	of	different	types,	be	it	corporations	or	startups.	If	something	is	not	

working,	then	certain	steps	towards	the	optimization	and	the	ways	to	finding	

solutions	to	such	sudden	lags	of	productivity	need	to	be	sought.	How	such	problems	

are	solved,	is	solely	up	to	individuals	or	teams,	and	at	the	end	of	the	day,	various	

ways	of	improving	working	processes	are	found.	However,	what	if	one	specific	

framework	could	successfully	address	all	similar	issues,	improve	work	processes	and	

help	individuals	and	teams	to	innovate,	regardless	of	the	environment	they	are	in?	

	

This	study	examines	the	effectiveness	of	such	framework	-	Google	Ventures	Design	

Sprint	(hereinafter	referred	to	as	GV	Design	Sprint,	Design	Sprint	or	Sprint)	in	a	

context	of	one	specific	company	and	a	specific	issue	that	the	company	needed	to	

solve.	This	research	is	composed	of	6	parts:	Introduction,	Research	design,	Theory	

and	knowledge	base,	Results,	Conclusions,	and	Discussion.	Introduction	part	includes	

the	background	information	to	the	study,	description	of	the	assignor	company	and	

research	problem	and	questions	of	this	thesis.	Research	design	part	elaborates	on	

the	chosen	research	approach	and	method	and	justifies	their	appropriateness	for	this	

study.	The	Theory	and	knowledge	base	chapter	creates	an	academic	background	for	

the	research	by	explaining	the	basics	of	software	development	and	its	

methodologies.	This	chapter	also	explains	the	design	thinking	concept	and	elaborates	

on	the	Design	Sprint	framework,	on	which	the	research	is	based.	The	Results	chapter	

describes	the	research	process	that	took	place.	The	Conclusions	part	presents	the	

outcomes	of	the	research	and	the	answers	to	the	research	questions.	Finally,	the	

Discussion	chapter	includes	the	discussion	about	reliability	and	validity	of	this	study,	

its	limitations	and	suggestions	for	the	future	research	on	this	topic.	

	

4	
	

	

1.1	Background	and	company	information	

The	assignor	for	this	thesis	is	the	startup	company	called	Robo	Wunderkind,	which	is	

based	in	Vienna,	Austria	and	Shenzhen,	China.	The	company	is	a	hardware	startup	in	

the	field	of	educational	technology:	it	produces	modular	programmable	robotics	kits	

for	children.	Robo	Wunderkind	was	founded	in	2013	with	the	mission	of	bringing	

robotics	and	coding	closer	to	children,	and	making	it	simple	and	entertaining	for	

them.	In	2015	the	company	has	successfully	completed	a	Kickstarter	campaign,	

raising	$246,000	from	backers	coming	from	58	countries,	subsequently	winning	a	

number	of	awards	and	getting	a	vast	media	coverage	worldwide.	At	the	moment	of	

writing	this	thesis,	the	company	is	in	the	pre-order	phase	and	has	three	hardware	

products	in	its	range,	as	well	as	two	accompanying	software	products.	

	

The	author	of	this	thesis	has	been	a	part	of	Robo	Wunderkind’s	team	since	March	

2017	as	an	intern,	and	subsequently	as	a	full-time	employee	in	the	marketing	team.	

The	motivation	to	write	this	thesis	arose,	firstly,	from	the	author’s	deep	interest	and	

dedication	to	the	company	and	its	products,	and	secondly	from	the	interest	in	the	GV	

Design	Sprint	framework	itself,	and	the	fact	that	it	hasn’t	been	widely	researched	

yet.		

	

As	a	company,	Robo	Wunderkind	operates	in	the	extremely	fast-changing	

environment	of	the	technology	business,	thus	the	startup	is	constantly	searching	for	

new	ways	of	boosting	productivity,	improving	internal	processes,	and	developing	the	

best	products	and	solutions	for	its	customers.	Moroni,	Arruda,	and	Araujo	(2015)	

believe	that,	in	order	to	do	this,	many	companies	introduce	some	aspects	of	design	

to	their	innovation	processes,	thus	making	them	design-driven.	Such	design-driven	

mindset	allows	to	look	at	the	same	context	and	environment	from	a	completely	

different	angle,	create	new	products	and	services	with	new	meanings,	and	

understand	the	target	customers	and	their	problems	better.	(ibid.,	2200.)	Prior	to	

this	study,	Robo	Wunderkind	has	already	employed	some	aspects	of	design	and	

innovation-driven	thinking	in	the	company’s	marketing	team,	as	well	as	has	worked	

with	some	modern	agile	methods	for	rapid	and	innovative	software	development	

purposes	in	the	technical	team.	However,	it	was	not	the	case	that	the	whole	team	

5	
	

	

has	worked	together	on	a	specific	problem	within	one	specific	framework	for	

innovation,	simply	due	to	the	fact	that	the	engineering,	sales	and	marketing,	product	

and	design	teams	at	Robo	Wunderkind	are	naturally	often	quite	separated	because	

of	the	essence	of	their	tasks	(although,	of	course,	they	still	work	together	as	one	big	

team).	That	said,	the	company	wanted	to	find	a	new	innovative	way	to	work	

effectively	and	efficiently	altogether	on	specific	problems,	and	the	GV	Design	Sprint	

became	such	solution	for	Robo	Wunderkind	due	to	the	reasons	explained	in	the	next	

subchapter.	

1.2	Research	problem	and	research	questions	

This	study	aims	to	research	the	GV	Design	Sprint	framework	in	the	context	of	

developing	a	software	product	in	a	hardware	startup.	The	background	of	the	

research	problem	lies	in	the	following:	Robo	Wunderkind	team	members	had	an	idea	

to	develop	a	new	software	product,	which	would	be	independent	of	the	company’s	

main	hardware	product.	The	idea	to	utilize	the	Design	Sprint	framework	for	

developing	the	product	idea	has	been	proposed,	as	the	founders	of	the	company	

have	heard	of	the	case	studies	where	it	was	used	for	similar	purposes	of	product	

development,	and	thus	were	enthusiastic	to	try	it	out	at	Robo	Wunderkind.	

Therefore,	the	following	research	problem	has	been	formulated	by	the	author:	

	

“How	could	the	Google	Ventures	Design	Sprint	methodology	be	used	for	developing	a	

software	product	in	a	hardware	startup?”	

	

The	following	research	questions	have	then	been	derived	out	of	the	whole	research	

problem:	

	

1.	What	kind	of	software	product,	which	would	be	independent	of	the	company’s	

main	hardware	product,	could	be	created	with	the	help	of	Design	Sprint	framework?	

	

2.	What	are	the	product-related	challenges	that	could	arise	after	the	product	launch?	

	

6	
	

	

3.	How	well	does	the	Design	Sprint	method	apply	to	the	development	of	a	software	

product	in	a	hardware	company?	

	

In	order	to	answer	these	questions,	the	real	Design	Sprint	process	has	been	

implemented	in	the	company,	in	which	the	author	of	this	thesis	has	also	participated	

alongside	the	other	team	members.	Action	research	has	been	chosen	as	the	research	

method	for	this	study,	as	described	and	justified	in	the	next	chapter.	

2			Research	design	

2.1	Research	approach	selection	

According	to	Creswell	(2014),	research	approaches	are	the	general	series	of	steps	

and	ways	of	undertaking	a	research	project	in	order	to	narrow	the	researcher’s	broad	

assumptions	down	to	concrete	methods	of	collecting,	analyzing	and	interpreting	the	

data.	The	decision	of	which	research	approach	to	undertake	is	mainly	based	on	the	

researcher’s	assumptions,	research	design,	the	methods	of	collecting,	analyzing	and	

interpreting	the	data,	which	apply	to	this	specific	research	and	on	the	nature	of	the	

research	problem	itself.	(ibid,	3)	

	

There	are	two	basic	approaches	to	conducting	a	research:	quantitative	approach	and	

qualitative	approach.	Quantitative	research	applies	to	a	phenomenon	that	needs	to	

be	researched	in	terms	of	its	quantity,	thus,	yielding	a	concrete	amount	as	the	re-

search	result.	Conversely,	qualitative	research	aims	to	answer	research	questions	

regarding	a	qualitative	phenomenon	through	assessment	and	analysis	of	underlying	

motives,	attitudes,	opinions,	and	behavior.	The	results	of	the	qualitative	research	

always	appear	in	the	non-quantitative	form,	or	in	a	form	that	can	not	be	analyzed	

quantitatively	(Kothari	2004,	3-5).	

	

As	answering	the	research	questions	of	this	study	does	not	yield	any	numerical	re-

sults,	but	instead	requires	verbal	interaction	in	a	group	of	people,	the	quantitative	

approach	would	not	have	been	suitable	for	this	thesis,	thus	qualitative	research	ap-

proach	was	chosen.	In	addition,	this	approach	was	deeply	rooted	in	the	research	

7	
	

	

method,	which	the	author	planned	to	select,	so	the	decision	on	selection	of	the	re-

search	approach	for	this	study	came	rather	quickly.	

2.2	Research	method	selection	-	Action	research	

Since	answering	the	research	questions	of	this	thesis	implied	developing,	prototyping	

and	testing	an	actual	software	tool	in	a	team,	the	action	research	method	has	been	

chosen	as	a	primary	method	to	complete	the	research.	

	

According	to	Stringer	(2014),	action	research	is	a	systematic	and	holistic	approach	to	

a	research,	which	allows	its	participants	to	collaboratively	find	solutions	to	their	

particular	problems.	Action	research	involves	and	engages	the	rapid	dynamics	of	any	

social	setting,	as	opposed	to	other	types	of	research,	where	general	causalities,	

correlations,	and	explanations	regarding	a	small	number	of	things	that	are	

researched,	are	sought.	An	integral	part	of	action	research	is	continuous	cycles	of	

investigation	that	show	the	solutions	to	presented	issues	and	suggest	the	possible	

means	for	participants	to	improve	their	work	and	to	make	sustainable	developments	

in	their	actions	and	practices.	The	nature	of	action	research	relies	on	the	statement	

that	generalized	solutions	of	plans	in	any	social	setting	can	be	irrelevant	and	

inapplicable	to	that	specific	setting	or	to	groups	in	it,	therefore,	they	should	be	

modified	and	adapted	to	the	environment	they	are	used	in.	In	a	nutshell,	the	main	

purpose	of	action	research	is	to	involve	all	people	who	are	influenced	by	the	

investigated	issue,	or,	conversely,	influence	it	themselves,	in	the	process	of	

systematic	investigation	and	experimentation	in	order	to	achieve	a	certain	goal	and	

reflect	on	it.	(ibid.,	1-6.)	

	

McNiff	and	Whitehead	(2002)	characterize	action	research	as	a	special	way	to	

investigate	one’s	learning	by	looking	at	one’s	practice	in	order	to	understand	if	it’s	

done	correctly,	reflect	on	it,	and	make	changes	and	improvements	if	needed.	This	

kind	of	research	can	be	conducted	in	a	variety	of	environments,	such	as	social	

sciences,	business	management,	education,	and	many	other.	Regardless	of	a	context,	

the	learnings	in	action	research	always	come	from	action	and	reflection	by	

8	
	

	

participants.	(ibid.,	15-16.)	

	

Zuber-Skeritt	(2001)	argues	that	the	action	research	process	can	be	broken	down	to	

four	phases:	(1)	strategic	planning,	(2)	acting	(implementing	the	plan),	(3)	observing	

and	evaluating,	(4)	critically	reflecting	on	the	results.	Altogether,	these	phases	

represent	a	cycle,	which,	in	an	action	research,	continuously	repeats	itself	(given	that	

the	reflection	was	utilized	and	the	action	plan	has	been	revised),	until	the	solution	to	

a	problem	is	found	and/or	the	objective	is	reached.	(ibid.,	19-20.)	McNiff	and	

Whitehead	(2002,	16),	provide	a	similar	explanation	of	these	phases,	breaking	them	

down	to	gathering	data,	reflecting	on	an	action,	generating	and	validating	evidence	

from	the	collected	data,	and	making	conclusions	out	of	it.	Below	is	the	visual	

representation	of	action	research	phases	as	per	Zuber-Skeritt	(2001,	20),	which	

suggests	perceiving	it	as	a	continuous	spiral	of	planning,	where	each	cycle	leads	to	a	

better	understanding	of	an	issue	and	brings	participants	closer	to	a	solution.	

	

Figure	1.	The	spiral	of	action	research	cycles	(Zuber-Skeritt	2001,	20)	

	

Why	action	research?	

	
The	decision	to	choose	action	research	method	for	this	study	was	made	due	to	the	

several	reasons.	First	and	foremost,	the	topic	of	the	thesis	itself	was	taken	into	the	

9	
	

	

account.	At	the	beginning,	during	the	preparations	for	this	study	at	the	stage	of	

deciding	the	topic,	it	was	acknowledged	that	researching	the	GV	Design	Sprint	

framework	in	a	real-life	setting	simply	calls	for	action	research,	due	to	the	fact	that	

this	framework	itself	represents	a	philosophy	similar	to	the	one	of	action	research.	

Design	Sprint	method	is	based	on	collaboration,	communication	and	knowledge	

sharing	among	the	Sprint	participants,	its	cornerstone	is	“learning	by	doing”	princi-

ple,	which	is	the	same	approach	that	action	research	represents.	In	addition,	Design	

Sprint	framework	is	cyclical	too,	which	deemed	to	make	researching	it	via	action	re-

search	phases	and	cycles	reasonable.	Finally,	according	to	McNiff	and	Whitehead	

(2002,	85),	action	research	is	always	practical	and	requires	a	deep	focus	of	partici-

pants	on	one	particular	issue	in	order	to	progress	in	understanding	it	better,	which	is	

why	it	suited	for	this	study	where	a	group	of	people	was	challenged	to	develop	a	

concrete	product	in	a	real-life	practical	setting.	

	

Research	process	implementation	

The	research	process	has	followed	the	pre-defined	step-by-step	framework	of	the	

Design	Sprint	method	(discussed	in	more	detail	in	Chapter	3).	In	addition,	to	meet	

the	demands	of	action	research	method,	cycles	of	action	and	reflection	have	

been	incorporated	into	the	Design	Sprint	process.	As	the	result,	the	research	had	five	

cycles	that	lasted	one	day	each	and	had	one	action	and	one	reflection	process	per	

cycle.	The	5-day	research	process	that	took	place	is	illustrated	below.	

	

	

Figure	2.	The	implemented	research	process	of	the	study.	

	

10	
	

	

After	the	data	has	been	collected	and	analyzed,	the	conclusions	of	this	study	have	

been	made	and	presented	to	the	assignor	company.	

2.3	Data	collection	and	analysis	

In	order	to	address	the	research	problem	and	answer	the	research	questions	of	the	

thesis,	this	study	has	followed	the	cyclical	nature	of	the	action	research	method,	il-

lustrated	previously.	The	data	for	this	research	has	been	collected	through	observa-

tions,	as	the	author	has	been	directly	involved	in	the	action	research	process	that	has	

been	executed	via	the	Design	Sprint	framework.	According	to	Kothari	(2004),	in	the	

observation	data	collection	method,	the	researcher	extracts	the	information	by	ob-

serving	the	environment	and	not	asking	the	respondents	directly.	When	this	method	

is	used,	the	researcher	should	address	the	questions	like	“What	should	I	observe?”,	

“How	should	the	observations	be	documented?”,	“How	to	ensure	the	validity	of	the	

results?”.	Overall,	observation	can	be	used	as	a	method	when	it	has	a	defined	re-

search	purpose,	when	it	is	planned	and	documented	in	a	systematic	way,	and	

checked	for	its	reliability	and	validity.	(ibid.,	96.)	As	stated	by	Yin,	doing	a	research	by	

observing	is	a	unique	way	of	data	collection,	since	the	collected	data	goes	through	

the	own	perceptions	and	feelings	of	the	researcher,	and	thus	it	is	not	in	any	way	al-

tered	or	biased	by	what	research	participants	are	reporting.	Such	research	can	be	

both	completely	passive	and	participatory,	but	in	both	cases,	the	primary	data	is	very	

valuable,	as	it	is	not	filtered	by	the	others.	In	addition,	for	the	researcher,	it	is	very	

important	to	decide	correctly,	when,	where	and	what	to	observe.	In	qualitative	re-

search,	researchers	usually	operate	in	a	changing	environment,	and	it	is	thus	im-

portant	to	establish	the	clear	vision	of	how	to	conduct	an	observation.	When	decid-

ing	on	what	to	observe,	many	things	can	potentially	be	a	subject	for	observation,	

namely	characteristics	of	individuals,	interactions	between	individuals,	surrounding	

environments	and	actions	that	are	happening	around,	both	human	and	technical	

(non-human).	(ibid.,	143-145.)		

Although	the	author	of	this	study	has	participated	in	the	process	of	execution	of	the	

Design	Sprint,	the	results	of	this	thesis	came	from	the	author’s	observations	of	the	

team	behavior,	the	opinions	that	the	team	members	have	expressed,	and	from	the	

whole	process	of	executing	the	Design	Sprint	framework	in	practice.	The	collected	

11	
	

	

data	has	been	analysed	through	the	reflection	processes	that	took	place	at	the	end	

of	each	of	the	five	cycles	during	the	research	process,	and	the	answers	to	the	three	

research	questions	have	been	found	at	the	various	cycles	of	this	research.		

2.4	Plan	for	research	ethics	and	quality	

Research	ethics	

According	to	Aguinis	and	Henle	(2004,	35),	prior	to	starting	a	research	project,	one	

should	assess	his	capabilities	and	proficiency	to	execute	a	research,	his	awareness	

about	the	ethical	guidelines	that	exist,	the	correctness	and	appropriateness	of	the	

created	researched	design,	and	if	the	research	is	acceptable	to	bring	to	the	life	from	

the	ethical	perspective.	Ethics	in	research	exist	for	the	sake	of	making	sure	that	the	

research	brings	more	benefits	than	harm	to	the	research	participants	and	the	socie-

ty.	This	is	done,	namely,	by	ensuring	the	informed	consent	of	all	involved	parties	re-

garding	the	nature	and	the	purpose	of	the	research,	by	minimizing	any	potential	

harm	or	risk	for	participants,	treating	all	research	participants	with	respect	to	their	

personas	and	their	privacy,	diminishing	the	chance	of	the	waste	of	time	for	partici-

pants,	etc.	(Eriksson,	&	Kovalainen	2016,	63;	Aguinis	&	Henle	2004,	36.)		

In	addition,	researchers	are	responsible	for	ensuring	the	originality	of	their	work	and	

avoiding	plagiarism	issues	at	all	costs	(Eriksson,	&	Kovalainen	2016).	Plagiarism	might	

happen	even	unconsciously	by	forgetting	to	cite	sources	or	by	doing	it	in	a	not	cor-

rect	manner,	thus	breaking	the	ethical	principles	and	potentially	infringing	the	copy-

rights.	Therefore,	researchers	should	always	give	credit	to	other	authors	they	refer	to	

in	their	works,	and	be	careful	in	citing	the	used	sources	correctly.	(ibid.,	75-76.)	

The	author	of	this	study	takes	the	ethical	principles	seriously	and	thus	is	aware	of	her	

moral	responsibility	towards	all	parties	involved	in	this	research.	All	research	partici-

pants	are	treated	with	respect	and	are	provided	with	full	information	about	the	con-

tents	of	this	thesis	and	its	purpose.	The	participants	have	given	their	permissions	to	

record	their	answers	and	to	subsequently	use	them	in	this	study;	however,	as	per	

participants’	request,	their	names	are	not	mentioned	and	not	disclosed	to	any	3d	

parties.	The	participants	have	also	given	their	consent	to	use	the	materials	that	have	

been	produced	during	the	research	process,	in	this	thesis.	No	participants	were	

12	
	

	

harmed	in	any	way	during	this	study,	and	the	research	will	benefit	their	organization	

and	to	the	further	exploration	of	the	researched	issue.	Finally,	all	ideas	and	concepts	

that	have	not	been	developed	by	the	author	of	this	thesis,	are	properly	cited,	and	the	

original	authors	are	referred	to.		

Reliability	and	Validity	

The	author	has	relied	on	the	existing	academic	literature	on	various	topics	when	

working	on	this	study.	The	examples	of	the	literature	included	course	books,	articles	

from	various	journals	and	other	research	works,	found	in	the	libraries	and	on	the	

Google	Scholar	platform,	which	is	a	source	of	information	used	by	many	academics,	

thus,	supposedly,	a	reliable	one.	This	study	can	also	be	used	in	the	future	by	other	

researchers	who	study	the	Design	Sprint	framework	or	any	similar	topic.	The	data	

collected	in	this	study	originate	from	using	the	Design	Sprint	framework	in	practice,	

and	thus	can	presumably	be	considered	reliable,	as	this	research	is	practical	and	ob-

serves	the	issue	in	the	real-life	setting.	Moreover,	the	author	of	this	study	has	

planned	the	research	process	in	a	way	that	the	finding	directly	answer	the	stated	

research	questions	and	give	a	profound	background	to	all	of	the	answers,	thus	the	

validity	of	the	research	is	planned	in	detail	and	ensured.	The	reflection	on	the	

planned	reliability	and	validity	of	this	study	can	be	found	in	Chapter	6.	

3			Theory	and	knowledge	base	

3.1	Software	engineering	

Software	engineering,	as	defined	by	Pressman	(2005),	is	a	process,	accompanied	by	a	

selection	of	tools	and	procedures	that	are	used	to	build	computer	software.	The	ob-

jective	of	software	engineering	is	to	create	customer-oriented	software	systems	that	

are	operating	with	efficiency,	are	tenable	and	sustainable.	(ibid.,	2-20.)	Furthermore,	

such	systems	should	be	designed	so	that	they	can	be	successfully	implemented	in	the	

set	project	time	frames	and	budgets	(Braude	&	Bernstein	2016,	1).	Every	software	

engineering	project	begins,	to	some	extent,	from	a	business	need:	it	could	be	a	need	

to	improve	and	widen	the	functions	of	the	existing	software,	update	it	according	to	

13	
	

	

the	changing	needs	of	the	environment,	or	the	need	to	create	a	completely	new	

software	product	or	system	completely	from	the	scratch.	Developing	a	software	

product	is	a	process	of	repeated	learning,	which	yields	something	that	can	be	named	

as	“software	capital”	-	an	array	of	collected,	distributed	and	organized	knowledge	

and	learnings	during	the	implementation	of	the	whole	software	development	

process.	In	addition,	software	engineering	shouldn’t	be	confused	with	software	

development	process.	While	both	have	to	do	with	software	development,	a	software	

development	process	can	be	generalized	as	a	general	methodology	and	philosophy	

to	development,	while	the	development	(engineering)	itself,	in	addition,	refers	to	the	

technical	methods	being	deployed	(Pressman	2005,	15-20).		

	

Software	engineering	is	a	complex	and	a	challenging	process,	which	requires	

cohesion	between	a	number	of	people	formed	into	interconnected	teams,	whose	

goals	should	be	aligned	around	a	specific	product	with	a	pre-defined	framework	to	

build	this	product.	All	this	system	should	be	then	organized	into	one	project	with	a	

step-by-step	defined	process	of	its	execution.	Altogether,	the	activities	needed	to	be	

performed	during	software	development	are	frequently	referred	as	to	“4	P’s	of	

software	engineering”,	which	are:	people,	product,	project,	process.	“People”	refers	

to	all	project	stakeholders,	in	other	words	-	participants	of	a	project,	and	those	who	

influence	it.	“Product”	is	something	that	is	being	developed,	its	subsequent	end	

result	and	the	documentation	regarding	it.	“Project”	means	all	the	activities	

implemented	in	order	to	achieve	the	result	and	get	to	the	end	product.	Finally,	

“Process”	is	characterized	as	a	shared	set	of	procedures	within	which	the	

stakeholders	execute	the	project.	If	all	of	these	elements	are	balanced,	properly	

taken	care	of	and	addressed,	a	software	project	is	deemed	to	be	successful,	

therefore,	stakeholders	need	to	make	sure	that	4	P’s	do	not	potentially	conflict	with	

each	other.	(Braude	&	Bernstein	2016,	5-6)	

	

Since	this	thesis	describes	the	development	of	a	software	product	in	a	company	

through	the	Design	Sprint	methodology	(hence,	the	specific	process),	the	Process	

element	of	the	4	P’s	of	software	engineering	is	broken	down	in	more	detail	below.	

This	is	done	in	order	to	build	a	big	picture	around	the	software	development	basics,	

14	
	

	

subsequently	address	the	Design	Sprint	framework	and	add	more	clarity	to	the	main	

issue	of	this	research.	

3.2	Software	process	

As	defined	by	Braude	and	Bernstein	(2016),	a	software	process	is	a	framework	for	

implementing	the	activities	needed	for	a	project	in	a	systematic	and	organized	way.	

Following	a	software	process	helps	to	reach	a	cohesion	in	a	team	and	guide	it	

through	the	tasks;	it	shows	how	different	phases	of	a	software	project	are	

interconnected	and	helps	to	define	and	reach	the	project’s	output.	(ibid.,	9.)	

Pressman	(2005),	summarizes	the	definition	of	software	process	as	a	“series	of	

predictable	steps	-	a	road	map	that	helps	you	to	create	a	timely,	high-quality	result”.	

He	further	claims	that	the	individuals	that	follow	software	processes	are	normally	

software	engineers	and	their	managers,	as	well	as	those	who	have	requested	

software	out	of	their	certain	business	needs.	(ibid.,	20.)	In	addition,	according	to	

Sánchez-Gordón	and	O’Connor	(2016,	2),	Zahran	(1998)	states	that	a	software	

process	is	a	series	of	practices	and	methods	that	are	utilized	in	order	to	develop,	

sustain	and	preserve	software	and	all	documentation	related	to	it.	

	

While	the	aforementioned	definitions	vary	in	wording	and	there’s	no	universal	way	

to	refer	to	software	process	yet,	still,	a	similar	pattern	can	be	seen	among	them.	

Therefore,	the	following	conclusion	can	be	made	out	of	it:	any	software	process	is	a	

systematic	and	detailed	way	that	helps	a	project’s	stakeholders	to	define	the	goals	of	

a	project,	a	step-by-step	way	to	achieve	them,	and	subsequently	to	manage	and	

sustain	the	end	result.	Nevertheless,	according	to	Sánchez-Gordón	and	O’Connor	

(2016,	3),	Pressman	(2009)	believes	that	software	process	still	doesn’t	provide	a	

definite	right	or	wrong	way	of	approaching	software	development,	but	rather	

presents	a	flexible	and	adaptable	framework	that	lets	teams	choose	and	act	upon	the	

appropriate	course	of	action	and	tasks.	Sommerville	(2011,	28)	also	suggests	that	an	

ideal	software	process	doesn’t	exist	as	it	vastly	depends	on	people	who	are	making	

decisions	and	judgments	and	thus	adapts	to	the	capabilities	and	resources	of	

stakeholders,	and	the	specifics	of	the	projects.	

15	
	

	

3.3	Software	development	methodologies	

As	stated	by	Sommerville	(2011),	software	processes	can	fall	into	the	category	of	

either	plan-driven	or	agile	processes.	Plan-driven	processes	can	be	defined	as	those	

processes,	where	the	actions	are	planned	beforehand	and	the	measurement	of	

progress	is	based	according	to	this	initial	plan.	Agile	processes,	on	the	other	hand,	

suggest	that	planning	is	adaptive,	and	thus	can	be	done	on	the	go	as	the	project	

evolves	and	the	needs	of	the	customers	are	changing.	(ibid.,	29.)	Each	of	these	two	

paradigms	represents	many	different	software	development	methodologies,	and	the	

most	significant	ones	are	further	discussed	in	this	subchapter.	

	

Plan-driven	methodologies	

Boehm’s	1988	study	(cited	in	Gill	2014,	1),	suggests	that	the	plan-driven	

methodologies	have	been	introduced	in	the	past	in	order	to	manage	large	and	

important	projects	using	fixed	and	repeatable	processes.	According	to	Petersen	and	

Wohlin	(2010,	657),	Hirsch	(2005),	defines	the	following	characteristics	of	the	plan-

driven	approach:	the	functionality	of	the	software	should	be	defined	before	the	start	

of	a	project,	a	detailed	step-by-step	plan	of	a	project	is	required,	all	requirements	are	

very	detailed	and	if	something	needs	to	be	changed,	it	is	implemented	after	the	

output	is	produced.	Moreover,	the	architecture	and	design	elements	must	be	

specified	before	the	actual	development	starts,	coding	happens	only	during	one	

specific	stage,	testing	happens	at	the	end	of	the	project,	and	quality	control	process	

is	formal.	Plan-driven	methodologies	are	considered	traditional,	and	they	have	been	

further	defined	as	“heavyweight”	due	to	a	very	elaborate	set	of	requirements,	exact	

documentation,	planning	and	inspection	(Awad	2005,	1).	There	are	many	plan-driven	

methodologies	that	are	practiced,	and	this	study	will	look	at	the	two	of	them:	the	

Waterfall	model	and	the	Spiral	model.	

	

The	Waterfall	model	

Munassar	and	Govardhan	(2010)	claim	that	the	waterfall	model	is	considered	

classical	and	one	of	the	oldest	among	the	other	models	of	software	engineering.	The	

most	common	instances	where	it’s	used	are	governmental	and	big	companies’	

16	
	

	

projects.	(ibid.,	95.)	The	basic	principle	of	using	waterfall	model	implies	that	one	can	

start	a	new	stage	of	a	project	only	after	completing	the	previous	one,	thus	the	

phases	are	independent	and	should	be	performed	in	a	sequence	(Modi,	Singh,	&	

Chauhan	2017,	117-118).	According	to	Kaur	and	Sengupta	(2011,	1),	the	waterfall	

model	has	been	frequently	used	in	the	past	due	to	the	very	formal	inspection	

requirements	that	it	imposed.	This	model	puts	emphasis	on	the	early-stage	planning	

of	a	project	in	order	to	minimize	potential	mistakes,	as	well	as	on	the	detailed	

documentation	and	planning,	which	makes	it	a	good	fit	for	those	projects,	where	the	

quality	concern	is	of	a	very	big	importance	(Munassar	&	Govardhan	2010,	95).	

Ruparelia	(2010)	believes	that	waterfall	model	performs	the	best	when	creating	big	

software	projects	that	serve	as	back-end	functional	to	smaller	software	projects.	For	

instance,	an	example	of	such	software	could	be	secure	operating	systems.	(ibid.,	8-9.)	

	

As	noted	by	Munassar	and	Govardhan	(2010,	95),	a	typical	waterfall	lifecycle	consists	

of	a	sequence	of	steps,	which	begins	from	specification	and	establishment	of	system	

and	software	requirements,	proceeding	to	modeling	and	design,	then	to	actual	

programming,	to	verification	and	testing,	and	finally	to	the	support	and	maintenance	

activities.	The	figure	below	illustrates	this	sequential	model.	

	

Figure	3.	The	Waterfall	model	of	software	development	(SpriteCloud	n.d.)	

	

The	disadvantage	of	the	waterfall	model	is	the	lack	of	feedback	in	between	the	

stages,	which	often	leads	to	problems	and	issues	with	the	software	only	being	

17	
	

	

discovered	after	the	implementation	of	the	whole	project	(Sommerville	1996).	In	

addition,	it	is	also	difficult	to	make	any	changes,	which	can	be	requested	by	the	

customer/end	user,	after	the	final	maintenance	stage.	This	results	in	the	final	

outcome	often	not	meeting	the	customers’	needs,	which	is	why	the	waterfall	model	

started	to	be	widely	criticized,	which	led	to	the	further	development	of	other	

software	development	models.	(ibid.,	269)		

	

Spiral	model	

The	spiral	model	was	firstly	developed	by	Barry	Boehm	as	a	result	of	various	cases	of	

adjustments	to	the	classic	waterfall	model	in	big	software	projects	(Awad	2005,	6).	

According	to	Pressman	(2005,	54),	this	model	combines	prototyping	of	the	desired	

end	product	with	the	very	systematic	and	detailed	approaches	of	the	waterfall	

model.	Boehm	(1988,	61)	himself	defines	the	major	feature	of	this	model	as	the	

adoption	of	the	risk-driven	approach	to	software	development,	as	opposed	to	

traditional	document-driven	or	code-driven	processes.	Fairbanks	(2010)	describes	

the	risk-driven	approach	as	the	one	where	the	efforts	that	the	stakeholders	put	into	

the	project	are	equivalent	to	the	risks	that	the	project	faces.	To	put	it	simply,	this	

approach	advocates	for	well-thought-out	allocation	of	resources,	and	it	allows	the	

project’s	stakeholders	to	identify	and	adequately	address	the	project’s	risks	in	a	

timely	manner.	(ibid.,	36.)	

	

The	basic	idea	of	the	spiral	model	implies	that	software	is	developed	in	cycles	that	

evolve:	during	the	early	cycles,	a	prototype	of	the	final	outcome	is	developed;	at	the	

later	stages,	developers	build	up	on	the	prototype	and	produce	more	sophisticated	

and	complete	versions	of	it	(Pressman	2005,	54).	In	his	later	publication,	Boehm	

(2000),	defines	the	spiral	model	as	a	“risk-driven	process	model	generator”,	which	

has	two	main	features:	cyclic	recurrence	in	order	to	gradually	reach	the	final	

outcome	of	a	software	project,	and	a	number	of	so-called	“anchor	point	milestones”	

that	ensure	the	mutual	understanding	and	commitment	of	the	stakeholders.	In	this	

definition	of	the	spiral	model,	risks	are	events	that	can	trigger	the	failure	of	a	project,	

and	anchor	point	milestones	refer	to	the	means	of	progress	tracking	and	comparison	

between	different	cycles	in	a	spiral	model.	(ibid.,	3-4.)	

18	
	

	

	

Below	is	the	visual	representation	of	the	spiral	model,	which	illustrates	its	cyclical	

nature.	

	

Figure	4.	Spiral	model	of	software	development	(Boehm	1988,	64)	

	

As	illustrated	in	Figure	3,	the	spiral	model	has	four	phases,	which	move	across	four	

quadrants	in	a	repeatable	cycle.	According	to	Ruparelia	(2010),	the	phases	are:	

	

1.	Setting	the	objectives	of	a	project.	

2.	Consideration	of	the	alternative	objectives,	analysis	of	possible	risks.	

3.	Verification,	development,	and	testing.	

4.	Planning	of	the	next	cycle.	(ibid.,	10-11.)	

	

As	the	phases	progress	and	improve,	a	prototype	of	an	end	result	is	created	along	

the	way,	in	accordance	with	the	requirements	and	testing	procedures	(Ruparelia	

2010,	10).	In	addition,	these	phases	and	cycles	of	the	spiral	model	are	adaptable	and	

applicable	to	any	stage	of	a	lifecycle	of	a	software	development	project	until	it	goes	

out	of	the	use	or	simply	gets	outdated,	unlike	the	other	models	which	lifecycles	end	

when	the	work	on	the	project	is	complete	(Pressman	2005,	55).	

	

19	
	

	

One	of	the	main	benefits	of	spiral	model	is	its	emphasis	on	the	risks	and	costs	of	the	

project	specifically	from	the	beginning	of	it	(Ruparelia	2010,	11).	This	risk	control	is	

the	cornerstone	of	this	model,	and	the	further	advantage	is	its	requirement	of	risk	

evaluation	and	reduction	during	all	stages	of	a	project	(Pressman	2005,	55-56).	

However,	according	to,	Bernal	&	Karam	(2016,	64),	the	drawback	of	the	spiral	model	

lies	in	the	assumption	that	software	developers	are	able	to	correctly	identify	and	

eliminate	risks,	which	might	not	happen	in	all	cases.	In	addition,	this	model	requires	a	

very	flexible	project	management	and	strongly	adaptable	documentation	processes	

between	the	stakeholders	as	the	product	prototype	evolves	in	the	spiral	(Ruparelia	

2010,	11).	Finally,	the	spiral	model	can	be	simply	very	costly	due	to	the	fact	that	the	

resources	needed	for	its	implementation	increase	cycle	by	cycle,	and	the	constant	

risk	analysis	is	required	all	the	time	(Modi,	Singh	&	Chauhan	2017,	118-119).	

	

Agile	methodologies	

According	to	Braude	and	Bernstein	(2016),	agile	methodologies	have	been	developed	

in	the	1990s	as	an	alternative	to	the	classic	plan-driven	methodologies	that	were	

seen	as	too	plan-	and	requirements-concentrated.	One	of	the	biggest	issues	of	such	

methodologies	is	an	unclear	set	of	requirements	for	the	end	product	at	the	very	

beginning	of	the	project,	which	causes	many	projects	that	follow	such	methodologies	

face	major	obstacles	during	the	development.	Agile	methodologies	address	such	

issue	by	providing	adaptable,	efficient	and	responsive	frameworks.	The	cornerstone	

of	all	agile	methods	lies	in	the	Agile	Manifesto	-	a	summary	of	the	key	principles	of	

agile	methodologies	that	have	evolved	over	time,	which	was	developed	in	2001	by	

the	software	industry	experts.	Agile	Manifesto	can	be	broken	down	into	four	points:	

	

1.	Interaction	between	individuals	is	put	over	processes	and	tools.	

2.	Well-developed	and	working	software	over	heavy	documentation.	

3.	Collaboration	with	customers	over	negotiating	contracts	and	requirements.	

4.	Addressing	changes	over	following	particular	plans.	(ibid.,	63-64.)	

	

Abrahamsson,	Salo,	Ronkainen,	and	Warsta	(2017)	suggest	that	a	development	

process	is	considered	agile	when	it’s	incremental,	cooperative,	straightforward	and	

20	
	

	

adaptive.	Incremental	implies	rapid	and	small	software	release,	cooperative	means	

close	cohesion	and	communication	between	the	project’s	stakeholders,	including	

customers.	Additionally,	straightforward	means	that	it	is	easy	to	learn	and	document	

the	whole	process;	finally,	adaptive	refers	to	the	ability	of	making	changes	to	the	

project	at	any	stage.	The	authors	further	specify	that	the	main	features	of	agile	

methodologies	are	simplicity	and	their	fast	speed,	which	allows	the	developers	to	

prioritize	the	most	important	functions	and	issues	first,	develop	them,	test	and	

collect	feedback	in	order	to	further	address	it.	(ibid.,	17.)	Overall,	according	to	

Braude	and	Bernstein	(2016),	agile	methods	suggest	creating	a	set	of	viable	guiding	

principles	for	a	project’s	stakeholders	rather	than	specific	rules	that	must	be	

followed.	These	guiding	principles	are	developed	in	order	for	the	stakeholders	to	

decide	on	the	appropriate	practices	and	solutions	as	the	project	evolves.	In	addition,	

agile	methods	value	creative	thinking	while	solving	problems,	as	opposed	to	the	

plan-driven	methodologies	where	adapting	to	the	prescribed	rules	is	expected	-	such	

practices	are	seen	ineffective	and	dangerous	in	the	agile	methods.	(ibid.,	65.)	

	

Similar	to	the	big	variety	of	the	plan-driven	methodologies,	many	agile	

methodologies	have	also	been	developed	over	time.	This	thesis	will	look	at	the	two	

of	them,	which	are	commonly	used:	Extreme	Programming	(XP)	and	Scrum.	

	

Extreme	Programming	methodology	(XP)	

According	to	Lindstrom	and	Jeffries	(2004),	the	method	of	Extreme	Programming	is	

based	on	simplicity,	open	communication,	and	feedback	between	the	project’s	

stakeholders.	XP	methodology	is	very	customer-centered,	and	the	other	

stakeholders,	such	as	business,	development	and	testing	teams	all	work	together	and	

handle	all	aspects	and	issues	of	the	project.	In	Extreme	Programming,	teams	develop	

software	in	small	batches	in	a	short	time	and	in	a	consistent	manner,	in	order	to	

track	the	progress,	collect	the	feedback	and	decide	on	the	further	actions	and	to	

continue	improving	the	software	design.	(ibid.,	44-45.)	Beck	(1999),	underlines	the	

following	features	of	XP:	

	

21	
	

	

1.	Planning	-	programmers	estimate	the	scope	of	work	for	a	project	and	customers	

decide	on	the	scope	and	the	timing	of	the	small	releases	that	programmers	produce.	

2.	Small	releases	-	a	software	project	is	developed	in	a	series	of	short	releases,	which	

are	regularly	updated	and	renewed.	

3.	Metaphor	-	customers	and	developers	define	the	project	by	certain	metaphors	

that	they	share	with	each	other	in	order	to	have	a	common	vision	of	how	the	system	

should	work.	

4.	Simple	design	-	the	software	solution	is	designed	as	simply	as	possible	without	any	

unnecessary	complexities.	

5.	Tests	-	programmers	constantly	test	the	functionality.	

6.	Refactoring	-	the	developed	system	is	adapted	on	the	way	by	transforming	and	

evolving	the	design	without	changing	the	functionality	of	the	software.	

7.	Pair	programming	-	the	coding	process	is	done	by	two	people	on	one	computer.	

8.	Continuous	integration	-	when	a	new	piece	of	code	is	produced,	it	is	integrated	

into	the	existing	system	immediately.	

9.	Collective	ownership	-	any	programmer	from	the	team	is	able	to	improve	any	part	

of	the	program	anytime	if	they	see	a	need	for	it.	

10.	On-site	customer:	a	customer	works	together	with	the	developer	team	and	is	

physically	present	with	them.	

11.	40-hour	weeks:	it	is	forbidden	to	work	overtime	two	weeks	in	a	row,	otherwise	

this	is	seen	as	a	problem	that	needs	to	be	solved.		

12.	Open	workspace:	team	works	in	a	large	open	space.	

13.	Rules	-	although	the	rules	for	the	project	do	exist,	they	are	flexible	and	can	be	

always	adapted	if	all	stakeholders	agree	on	them.	(ibid.,	71.)	

	

The	lifecycle	of	a	project	that	follows	the	XP	methodology	consists	of	6	phases:	

Exploration,	Planning,	Iterations	to	release,	Production,	Maintenance	and	Death	

(Awad	2005,	9).	Below	is	the	visual	representation	of	this	lifecycle.		

	

22	
	

	

Figure	5.	Extreme	programming	(XP)	methodology	of	software	development	(Abra-

hamsson,	Salo,	Ronkainen,	&	Warsta	2002,	21)

	

Exploration	phase	requires	customers	to	create	story	cards	that	communicate	their	

vision	of	the	end	product	and	its	desired	functions	(Awad	2005,	9).	In	the	planning	

phase,	the	approximate	timeframe	and	plan	for	the	product	releases	are	set	

(Lindstrom	and	Jeffries	2004).	The	Iterations	to	Release	phase	proceeds	with	the	

developing	software	in	repetitive	two-week	cycles	with	the	goal	to	produce	a	

working	software	at	the	end	of	each	iteration.	The	customer	also	contributes	by	

communicating	the	desired	features	to	be	developed	in	the	course	of	the	next	two	

weeks.	(ibid.,	47.)	This	phase	further	evolves	into	the	Production	phase,	where	extra	

testing	and	changes	are	done	before	the	final	outcome	is	released	to	the	customer	

(Awad	2005).	In	the	Maintenance	phase,	all	development	ideas	that	have	not	been	

implemented	previously,	are	integrated	into	the	system	for	the	updated	releases.	

The	final	Death	phase	occurs	when	the	customer	doesn’t	have	any	more	requests	to	

be	implemented	and	thus	no	further	changes	to	the	architecture	of	the	whole	system	

are	made.	(ibid.,	9.)	

	

Abrahamsson,	Salo,	Ronkainen,	and	Warsta	(2017,	26)	suggest	that	the	Extreme	

Programming	method	delivers	the	best	results	when	used	in	small	and	medium-sized	

teams.	However,	according	to	Lindstrom	and	Jeffries	(2004),	XP	is	often	criticized	

23	
	

	

because	it	is	seen	as	too	simple	to	develop	beyond	the	stated	criteria	that	some	

projects	require.	Thus,	as	the	authors	further	claim,	in	order	to	evaluate	the	

appropriateness	of	using	XP	in	a	project,	one	must	take	into	the	consideration	the	

following:	firstly,	whether	the	team	is	able	to	communicate	constantly	and	be	

cohesive	and	whether	the	team	is	comfortable	with	creating	simple	solutions.	

Moreover,	one	needs	to	evaluate	whether	the	stable	and	constructive	feedback	

system	is	set	up	and	whether	the	team	members	are	ready	to	show	initiative	and	are	

not	afraid	of	failure.	If	these	questions	are	positively	answered	to	a	great	degree,	

then	the	process	of	adoption	XP	practices	happens	much	easier.	(ibid.,	43-50.)	

	

Scrum	methodology	

Scrum	is	another	widely	used	agile	methodology	that	requires	high	levels	of	flexibility	

and	adaptability.	According	to	Abrahamsson,	Salo,	Ronkainen,	and	Warsta	(2017),	

the	basic	principle	of	Scrum	lies	in	the	belief	that	development	of	any	software	is	a	

complex	process	with	many	details	to	take	into	the	account,	such	as	resources,	time	

frame,	customer	requirements,	etc.,	and	these	details	can	naturally	change	during	

the	development	process.	This	is	why	development	is	complex	and	unpredictable,	

which	calls	for	a	high	level	of	teams’	adaptability	in	order	to	address	the	changes	that	

are	happening	in	the	project.	(ibid.,	27-28.)	

	

Schwaber	(1995),	suggests	that	Scrum	consists	of	three	groups	of	phases:	Pregame,	

Game,	and	Postgame.	The	Pregame	phase	consists	of	the	initial	planning	of	the	

development	process,	which	includes	the	overview	of	the	software	release,	cost	and	

timeline	estimations.	Additionally,	this	phase	also	includes	the	design	and	

architecture	of	the	software	product.	In	the	Game	phase,	the	actual	development	is	

happening	in	a	series	of	short	“Sprints”	-	sets	of	development	activities	that	are	

implemented	in	a	limited	time	frame	(usually	1-4	weeks)	in	a	rapid	manner.	The	

Game	phase	normally	consists	of	several	sprints	in	order	to	intensify	the	

development	and	constantly	improve	and	adjust	the	system.	(ibid.,	125-126.)	One	of	

the	crucial	parts	of	the	Game	phase	is	daily	team	meetings,	in	which	the	following	

questions	are	addressed	to	each	team	member:	1)	What	have	you	done	yesterday?	

2)	What	will	you	do	today?	3)	Which	challenges	might	prevent	you	from	doing	this?	

24	
	

	

(Ionel	2008).	By	answering	these	questions,	team	members	are	able	to	see	each	

other’s	progress	as	the	project	evolves,	they	presumably	become	more	eager	to	

involve	and	contribute	to	the	project	and	they	stay	more	motivated.	(ibid.,	438.)	

Finally,	the	Postgame	phase	includes	the	final	preparations	before	the	release	of	the	

software,	which	includes	final	documentation,	testing	and	the	release	itself	

(Schwaber	1995,	125-126).	Below	is	the	simple	visual	representation	of	Scrum	

process,	which	illustrates	the	three	phases	and	how	they	are	connected	to	each	

other.	

	

Figure	6.	Scrum	methodology	of	software	development	(Schwaber	1995,	126)	

Scrum	methodology	is	most	efficient	when	used	in	small	teams	that	consist	up	to	10	

engineers	(Abrahamsson,	Salo,	Ronkainen	&	Warsta	2017,	36).	The	biggest	

advantage	of	Scrum	is	its	flexibility	and	adaptability	to	changing	environments	during	

a	project	that	enable	developers	to	learn	on	the	go,	collaborate	between	each	other	

and	create	the	most	appropriate	solutions	for	a	project	(Schwaber	1995,	129-130).	

However,	according	to	Ionel	(2008),	a	potential	drawback	in	Scrum	approach,	

ironically,	lies	in	this	collaboration	and	constant	feedback	loop:	in	order	to	

successfully	implement	Scrum	in	a	project,	it	is	recommended	that	the	main	client	

constantly	participates	in	the	development	activities	by,	for	example,	testing	and	

providing	feedback.	That	said,	the	client’s	availability	is	not	always	possible,	

especially	when	the	client	is	external.	Therefore,	it	is	highly	preferable	to	use	Scrum	

in	projects	where	clients	are	always	available	and	open	for	collaboration	(or	come	

25	
	

	

from	the	same	organization	and	are	internal),	since	this	directly	influences	the	

project’s	outcome.	(ibid.,	439.)	

3.4	Design	Thinking	

Since	the	Design	Sprint	method,	which	is	the	primary	topic	of	this	thesis,	uses	design	

thinking	as	a	part	of	its	general	philosophy	(to	be	discussed	in	more	detail	in	the	next	

chapter),	the	concept	of	design	thinking	needs	to	be	broken	down	in	order	to	give	a	

clearer	picture	of	what	Design	Sprint	framework	is	based	on.	

	

According	to	Razzouk	and	Shute	(2012,	330),	design	thinking	is	usually	seen	as	an	

analytical	and	creative	process	that	lets	individuals	who	are	undertaking	it	to	create,	

experiment	and	test	ideas,	collect	feedback	about	their	projects	and	creations,	and	

make	changes	to	them	based	on	it.	This	process	can	be	seen	as	a	special	way	of	

thinking	and	approaching	a	ground	understanding	of	any	new	and	emerging	

concepts,	issues,	events,	etc.,	that	leads	to	innovation	and	alteration	in	the	way	we	

live,	manage	businesses,	people,	etc	(Tschimmel	2012).	Even	though	initially,	the	

concept	of	design	thinking	was	based	on	the	way	designers	and	creative	people	

approach	work	and	problem-solving	activities,	nowadays,	this	concept	is	applied	to	

any	of	such	processes,	regardless	of	a	team	or	of	an	organization.	Today’s	idea	of	

design	thinking	became	an	effective	solution	for	any	kind	of	innovation	process	by	

merging	creative	thinking	with	the	usual	strategic	business	mindset,	and	thus	it	is	

very	actively	explored	and	used	in	various	areas	of	different	business	functions,	for	

instance,	in	management	and	marketing.	(ibid.,	1-2.)	

	

According	to	Tschimmel	(2012),	the	cornerstone	of	design	thinking	in	solving	

problems,	seeking	solutions	or	creating	new	innovations	is	the	design	thinker’s	ability	

to	combine	and	consider	three	following	things	simultaneously:	needs	of	people,	

available	resources,	and	opportunities	and	obstacles	of	the	particular	thing	the	

design	thinker	is	working	on.	If	one	utilizes	design	thinking	approach,	he	should	also	

be	ready	to	combine	analytical	and	emphatic	thinking,	be	logical	and	emotional,	

follow	methods	and	rules,	but	be	flexible	and	spontaneous	at	the	same	time.	

Another	typical	feature	of	design	thinking	process	is	visualizing	the	ideas	in	the	forms	

26	
	

	

of	sketches,	drawings,	notes,	and	prototypes	-	this	helps	to	bring	clarity	to	the	whole	

issue	being	worked	on,	and	helps	design	thinkers	to	find	out	further	things	that	need	

to	be	worked	on	within	this	issue.	Furthermore,	an	essential	trait	of	design	thinking	is	

its	human-centered	approach,	which	means	constant	collaboration	and	

communication	between	people	in	a	team,	and	acting	in	a	participatory	way.	

Moreover,	design	thinkers	are	supposed	to	not	only	be	working	among	themselves	

but	also	to	involve	customers,	end	users	and	other	stakeholders	of	their	projects	in	

the	design	thinking	process.	Such	cooperation	improves	the	end	result	of	the	whole	

work,	increases	the	effectiveness	of	reaching	the	outcome	and	improves	the	

satisfaction	of	the	future	users.	(ibid.,	3-4.)	

	

All	in	all,	design	thinking	is	a	very	specific	approach	to	solving	complex	problems	

and/or	implementing	complex	ideas,	which	requires	multidisciplinary	groups	of	

people	deploying	user-centered	and	participatory	approach	(Thoring	&	Müller	2011).	

Design	thinking	found	its	usefulness	not	only	in	design	fields	but	also	in	business	and	

engineering	areas	in	order	to	cultivate	innovation.	Nowadays,	it	is	becoming	more	

and	more	used	and	explored	in	many	other	areas	for	such	purposes.	(ibid.,	1.)	

3.5	Google	Ventures	Design	Sprint	as	a	new	method	of	Design	Thinking

The	very	first	rough	implementation	of	Design	Sprint	framework	was	initially	made	in	

2009	by	Jake	Knapp,	who	at	that	time	was	an	employee	at	Google	(Knapp,	Zeratsky,	

and	Kowitz	2016).	The	idea	of	design	sprints	emerged	out	Knapp’s	goal	to	improve	

team	processes	at	Google	and	to	make	the	outcomes	of	usual	team	brainstorms	

better.	Several	years	later,	Knapp	joined	Google	Ventures	(later	referred	to	as	GV)	-	a	

venture	capital	created	by	Google	that	invests	in	startups.	Google	Ventures	got	

interested	in	the	idea	of	running	design	sprints	with	their	portfolio	startups,	as	these	

sprints	could	help	young	companies	to	test	their	ideas	before	launching	their	

products.	Jake	Knapp	was	joined	by	Braden	Kowitz,	John	Zeratsky,	and	Michael	

Margolis,	and	together	they	started	implementing	design	sprints	with	GV	portfolio	

startups,	experimenting	with	the	process,	adjusting	and	improving	the	framework.	

(ibid.,	1-5.)	

	

27	
	

	

According	to	Knapp,	Zeratsky,	and	Kowitz	(2016),	Design	Sprint	is	a	five-day	process	

that	helps	companies	to	answer	crucial	business	questions	and	problems	by	creating	

prototypes	and	testing	them	with	potential	customers.	In	its	essence,	this	process	

combines	the	ideas	of	business	strategy,	innovation,	design,	psychology	and	many	

more,	that	are	combined	altogether	in	a	ready	framework,	which	can	be	used	by	any	

team	regardless	of	a	background.	Since	the	introduction	of	design	sprints,	they	have	

been	run	not	only	by	startups	but	also	by	investment	bankers,	engineering	teams,	

and	even	school	students,	which	suggests	that	this	framework	is	applicable	to	various	

types	of	teams	with	different	backgrounds	and	problems.	(ibid.,	6-16.)	

	

There	are	three	things	that	need	to	be	taken	care	of	before	the	beginning	of	a	sprint	

(Knapp,	Zeratsky	and	Kowitz	2016).	Firstly,	a	specific	challenge	must	be	

acknowledged	and	understood	by	the	team.	At	GV,	startups	are	encouraged	to	use	

design	sprints	for	solving	most	critical	problems	in	the	company,	because	the	idea	of	

solving	such	extremely	important	issues	makes	team	members	be	much	more	

motivated	and	eager	to	solve	them	than	it	would	have	been	in	case	of	solving	regular	

day-to-day	questions.	Secondly,	a	team	for	running	a	sprint	should	be	formed.	It	is	

recommended	that	the	team	size	should	be	not	more	than	7	people	due	to	the	fact	

that	with	larger	numbers	of	participants	it	is	difficult	to	keep	everyone	efficient	and	

focused	on	work.	What	is	more,	teams	should	be	cross-functional	and	mixed,	and	

there	should	be	an	expert	on	specialized	topics	present	during	sprints.	This	

requirement	should	be	followed	because	having	people	from	different	backgrounds	

from	the	same	company,	working	together	in	a	sprint,	can	deliver	valuable	insights	

and	help	look	at	the	issue	from	different	perspectives.	A	“Decider”	should	be	

appointed	-	this	person	makes	the	final	decisions	during	a	sprint,	and	this	is	usually	

the	company’s	CEO/founder,	or	any	other	company’s	important	decision-maker.	

Additionally,	a	Facilitator	must	be	chosen,	who	will	guide	the	whole	team	through	

the	sprint,	manage	time,	discussions,	and	summarize	the	results.	Finally,	time	and	

space	for	a	sprint	should	be	arranged.	A	team	should	shut	down	all	operations	for	

one	working	week	and	be	present	in	the	same	room	Monday	to	Friday	from	10	a.m.	

to	5	p.m.	(from	9	a.m.	on	Friday).	Testing	design	sprints	at	GV	proved	the	sprint	

duration	of	five	days	to	be	most	efficient	among	all	other	options,	such	as	ten	days,	

one	month,	etc.,	because	five	days	give	a	sense	of	urgency,	but	at	the	same	time	they	

28	
	

	

give	enough	time	and	resources	to	get	through	a	sprint	and	solve	the	challenge.	

Moreover,	no	devices	are	allowed	to	be	used	during	the	sprint	(unless	needed	for	a	

specific	sprint’s	purpose),	and	the	main	prerequisite	is	that	the	whole	team	must	be	

100%	concentrated	on	the	challenge.	(ibid.,	21-42.)	

	

The	five-day	design	sprint	process,	developed	by	Google	Ventures,	is	the	following:		

	

1. Monday	-	the	long-term	goal	regarding	a	specific	issue	is	chosen,	and	a	map	

of	the	whole	challenge	about	it	is	created	in	the	team	so	that	everyone	has	a	

shared	vision	of	the	problem	Knapp,	Zeratsky	&	Kowitz	(2016).	Then,	the	

company’s	experts	on	specific	topics	share	their	knowledge	and	opinions,	and	

a	target	of	the	sprint	is	chosen:	what	exactly	needs	to	be	solved	in	these	five	

days,	and	what	are	the	challenges	involved.	The	whole	process	is	documented	

on	the	whiteboard	and	on	the	sticky	notes.	(ibid.,	51-88.)	

2. Tuesday	-	on	this	day,	solutions	to	the	problem	are	created	Knapp,	Zeratsky	&	

Kowitz	(2016).	Firstly,	all	team	members	conduct	a	research	on	existing	ideas	

and	case	studies.	Next,	everyone	comes	up	with	their	own	ideas	regarding	a	

potential	solution	to	the	issue	and	anonymously	sketches	them	on	in	a	limited	

time	frame.	All	sketched	are	collected	and	left	untouched	until	the	next	day.	

(ibid.,	93-118.)	

3. Wednesday	-	team	members	give	feedback	and	critique	on	each	of	the	

sketched	solutions	Knapp,	Zeratsky	&	Kowitz	(2016).	Eventually,	the	solutions	

are	voted	for,	and	the	solution	to	work	with	further	is	decided	by	the	team’s	

“Decider”.	The	idea	from	the	winning	sketch	is	taken	as	a	base	for	the	

prototype,	and	it	is	also	enhanced	by	ideas	from	other	sketches.	Based	on	all	

these	ideas,	a	storyboard	for	the	prototype	is	created.	(ibid.,	125-158.)	

4. Thursday	-	on	this	day,	a	realistic	prototype	is	created	using	the	Wednesday’s	

storyboard	Knapp,	Zeratsky	&	Kowitz	(2016).	It	can	be	created	on	screen,	on	

paper,	in	a	form	of	script	with	actors,	in	a	form	of	a	physical	space,	a	3D	

printed	object,	etc.	(ibid.,	163-190.)	

5. Friday	-	the	last	day	of	the	sprint	is	reserved	for	testing	the	created	prototype	

by	interviewing	target	customers	and	observing	their	reactions	to	the	

prototype	Knapp,	Zeratsky	&	Kowitz	(2016).	This	allows	the	team	to	look	at	

29	
	

	

their	ideas	through	the	customers’	eyes	and	to	show	them	the	problems	that	

can’t	be	seen	or	predicted	internally	in	a	team.	(ibid.,	193-211.)	

	

Figure	7.	Google	Ventures	Design	Sprint	5-day	process	(Tetuan	Valley	2017)	

	

According	to	Mucha	and	Nebe	(2017),	one	distinguishing	feature	of	GV	design	sprint	

is	that	it	delivers	very	quick	findings	and	results.	In	addition,	sprint	participants	feel	a	

sense	of	accomplishment	due	to	the	tangible	prototype	that	they	manage	to	create	

and	test	in	five	days.	(ibid.,	3.)	Moreover,	one	further	benefit	of	the	design	sprint	

framework	is	that	it	allows	to	rapidly	create	and	test	ideas	without	taking	long	

periods	of	time	to	build	and	launch	them,	so	that	potential	months	of	work	shorten	

down	to	five	days	only	(http://www.gv.com/,	2016).	It	can	be	thus	summarized	that	

design	sprints	help	find	a	way	not	to	only	solve	important	problems,	but	to	do	it	

much	faster,	efficient	and	on	a	bigger	scale	(Knapp,	Zeratsky	&	Kowitz,	2016).	With	

the	help	of	sprints,	feasibility	of	new	ideas	can	be	assessed,	existing	products	can	be	

improved	and	business	strategies	can	be	created.	(ibid.,	6-16)	

3.6	Synthesis	of	the	conceptual	framework	

In	the	theoretical	part	of	this	study,	the	concepts	related	to	software	development	

have	been	introduced	alongside	the	basics	of	design	thinking	and	the	detailed	de-

http://www.gv.com/

30	
	

	

scription	of	the	Design	Sprint	framework	as	the	ground	concepts	of	this	work.	Since	

one	of	the	questions	of	this	study	aimed	at	finding	out	what	kind	of	a	software	prod-

uct	could	be	created	through	the	Design	Sprint,	it	was	seen	as	necessary	by	the	au-

thor	to	give	an	overview	of	how	software	products	are	usually	developed,	tested	and	

brought	to	life.	Moreover,	while	software	development	methodologies	and	design	

thinking	are	not	directly	connected	to	the	Design	Sprint	method	itself,	and	during	the	

sprint,	the	actual	programming	or	any	other	technical	things	happen	quite	rarely,	still	

some	important	similarities	between	the	three	concepts	can	be	seen,	which	are	dis-

cussed	below.		

1.	Sequentiality	of	the	traditional	software	models	and	the	Design	Sprint	

As	discussed	previously,	the	traditional	software	development	frameworks	tend	to	

be	very	process-oriented	and	therefore	emphasize	a	very	detailed	and	thorough	ap-

proach	to	the	work	that	needs	to	be	done.	This	can	be	seen	from	the	Waterfall	mod-

el	and	the	Spiral	model	that	have	been	presented:	the	first	one	has	a	sequence	of	

steps,	where	one	can	move	between	the	steps	only	having	completed	the	previous	

steps;	the	latter	is	based	on	four	phases	that	repeat	themselves	in	a	cyclical	nature	

until	the	desired	outcome	is	reached.	Similarly	to	the	structure	of	the	traditional	

software	models,	the	Design	Sprint	framework	also	follows	the	concrete	series	of	

steps	that	strictly	go	one	after	another.	In	this	framework,	it	is	impossible	and	sense-

less	to	start,	for	example,	from	the	Step	2,	which	is	solution	sketching,	without	hav-

ing	identified	the	problem	to	be	solved	at	the	Step	1.	It	is	also	not	possible	to	skip	a	

step	and	to	move	forward	without	the	outcomes	that	needed	to	be	produced	during	

it.	Therefore,	the	nature	of	the	Design	Sprint	methodology	is	partially	similar	to	the	

one	of	traditional	software	models,	since	it	emphasizes	a	step-by-step	gradual	pro-

cess,	which	needs	to	be	strictly	followed.	

2.	Rapidness	of	Agile	methods	and	the	Design	Sprint	

As	mentioned	earlier,	one	of	the	core	features	of	the	agile	methodologies	is	that	the	

product	development	happens	very	rapidly,	cooperatively	and	it	is	easy	to	document.	

In	one	of	the	described	methods,	Scrum,	the	idea	of	sprints	is	even	presented	as	the	

core	one:	in	this	method,	it	is	crucial	to	be	rapid	in	the	development	activities,	be	

efficient,	and	to	produce	good	outcomes	as	quickly	as	possible.	This	corresponds	to	

31	
	

	

the	Design	Sprint	framework,	where	the	main	idea	is	to	produce	a	viable	prototype	in	

a	limited	amount	of	time	(five	days),	and	many	of	the	actions	during	each	of	the	five	

days	are	also	put	under	certain	time	limits.	In	addition,	this	framework	is	also	collab-

orative,	similarly	to	the	idea	of	the	Design	Sprint,	where	work	is	happening	in	the	

team.	Finally,	agile	methodologies	place	not	much	emphasis	to	documentation,	and	

there	is	no	need	in	heavy	documentation	in	the	Design	Sprint	framework	either,	

since	all	ideas	are	collected	on	a	whiteboard,	sticky	notes	and	A4	pieces	of	paper	

only.	Therefore,	interestingly	enough,	a	similarity	can	be	again	observed,	this	time	

between	the	agile	methods	and	the	Design	Sprint	framework	(even	though	the	Agile	

methodologies	are	completely	different	from	the	traditional	ones,	which	as	well	have	

similarities	with	the	Design	Sprint).	

3.	Creative	problem	solving	in	design	thinking	and	the	Design	Sprint	

In	the	subchapter	3.4	of	this	study	it	has	been	discussed	that	design	thinking	is	a	cre-

ative	and	collaborative	approach	to	innovation	and	problem	solving.	GV	Design	

Sprint,	in	its	essence,	has	the	same	roots:	it	also	totally	encourages	creative	thinking	

in	the	process	of	solving	problems	and	developing	ideas	and	products,	and	it	empha-

sized	collaborative	efforts.	The	creative	part	of	the	Design	Sprint	can	be	seen,	for	

instance,	in	the	sketching	and	prototyping	processes,	where	participants	need	to	

create	visual	and	tangible	solutions.	Similarly,	the	same	methods	can	be	detected	in	

the	concept	of	design	thinking.	Finally,	both	in	the	design	thinking	and	the	Design	

Sprint	frameworks,	a	big	importance	is	also	placed	on	strategic	thinking	and	planning,	

as,	usually,	business	models	are	discussed	and	strategic	product	decisions	are	made	

when	using	these	frameworks.	

To	conclude,	even	though	software	development	methodologies,	design	thinking,	

and	GV	Design	Sprint	are	essentially	different	concepts,	they,	apparently,	share	a	

number	of	similar	characteristics.	While	the	Design	Sprint	method	in	the	most	cases	

doesn’t	include	a	lot	of	coding	processes,	its	nature	can	still	be	compared	to	the	tra-

ditional	and	agile	methodologies	of	the	actual	software	development.	At	the	same	

time,	it	is	also	comparable	to	the	idea	of	design	thinking,	which	falls	in	a	completely	

different	category	from	software	development.	It	can	be	thus	said	that	the	Design	

Sprint	framework	has	combined	“the	best	from	the	two	worlds”,	meaning	that	it	has	

32	
	

	

the	structure,	logic,	and	rapidness	of	software	development	methods,	and	the	crea-

tivity	and	strategic	approach	of	design	thinking.	

4			Results	

The	results	of	this	study	are	confidential	until	12.11.2027.	The	confidentiality	of	this	

study	is	agreed	between	the	thesis	author,	JAMK	University	of	Applied	Sciences,	and	

Robo	Technologies	GmbH.	The	results	of	the	research	can	be	found	in	Appendix	1.	

5			Conclusions	

The	conclusions	of	this	study	are	confidential	until	12.11.2027.	The	confidentiality	of	

this	study	is	agreed	between	the	thesis	author,	JAMK	University	of	Applied	Sciences,	

and	Robo	Technologies	GmbH.	The	conclusions	of	the	research	can	be	found	in	Ap-

pendix	2.	

6			Discussion	

The	discussion	of	this	study	is	confidential	until	12.11.2027.	The	confidentiality	of	this	

study	is	agreed	between	the	thesis	author,	JAMK	University	of	Applied	Sciences,	and	

Robo	Technologies	GmbH.	The	discussion	of	the	research	can	be	found	in	Appendix	

3.	

	 	

33	
	

	

References	

Abrahamsson,	P.,	Salo,	O.,	Ronkainen,	J.,	&	Warsta,	J.	2002.	Agile	software	develop-
ment	methods:	Review	and	Analysis.	Technical	Research	Centre	of	Finland,	VTT	Publi-
cations.	

Aguinis,	H.,	Henle,	C.A.	2004.	Ethics	in	Research.	In	Rogelberg,	S.G.	(Eds.)	Handbook	
of	Research	Methods	in	Industrial	and	Organizational	Psychology.	Oxford,	Blackwell	
Publishing,	34-57.	

Awad,	M.A.	2005.	Report.	A	Comparison	between	Agile	and	Traditional	Software	De-
velopment	Methodologies.	The	University	of	Western	Australia,	School	of	Computer	
Science	and	software	Engineering.	

Beck,	K.	1999.	Embracing	Change	with	Extreme	Programming.	IEEE	Computer,	32,	70-
77.		

Boehm,	B.	2000.	Special	report.	Spiral	Development:	Experience,	Principles,	and	Re-
finements.	Carnegie	Mellon	University	Software	Engineering	Institute,	Pittsburgh,	PA.	

Boehm,	B.W.	1988.	A	Spiral	Model	of	Software	Development	and	Enhancement.	IEEE	
Computer,	21,	61-72.	

Braude,	E.J.,	Bernstein,	M.E.	2016.	Software	Engineering:	Modern	Approaches.	2nd	ed.	
Waveland	Press,	Inc.	

Carmines,	E.G.,	Zeller,	R.A.	1979.	Reliability	and	Validity	Assessment.	SAGE	Publica-
tions,	Inc.	

Creswell,	J.W.	2014.	Research	Design:	Qualitative,	Quantitative,	and	Mixed	Methods	
Approaches.	SAGE	Publications,	Inc.	

Eriksson,	P.,	Kovalainen,	A.	2016.	Qualitative	Methods	in	Business	Research:	A	Practi-
cal	Guide	to	Social	Research.	SAGE	Publications,	Inc.	

Fairbanks,	G.	2010.	Just	Enough	Software	Architecture:	A	Risk-Driven	Approach.	Mar-
shall	&	Brainerd.	

Gill,	A.	Q.	2014.	Hybrid	Adaptive	Software	Development	Capability:	An	Empirical	
Study.	Journal	of	Software,	9,	2614-2621.	

Golafshani,	N.	2003.	Understanding	Reliability	and	Validity	in	Qualitative	Research.	
The	Qualitative	Report,	8,	597-606.	

Ionel,	N.	2008.	Critical	analysys	of	the	Scrum	project	management	methodology.	An-
nals	of	the	University	of	Oradea,	Economic	Science	Series,	17,	435–441.	

Kaur,	R.,	Sengupta,	J.	2011.	Software	Process	Models	and	Analysis	on	Failure	of	Soft-
ware	Development	Projects.	International	Journal	of	Scientific	&	Engineering	Re-
search,	2,	1-4.	

Kimberlin,	C.L.,	Winterstein,	A.G.	2008.	Validity	and	reliability	of	measurement	in-
struments	used	in	research.	Am	J	Health	Syst	Pharm,	65,	2276.	

34	
	

	

Knapp,	J.,	Zeratsky,	J.,	&	Kowitz,	B.	2016.	Sprint:	How	to	Solve	Big	Problems	and	Test	
New	Ideas	in	Just	Five	Days.	New	York:	Simon	&	Schuster	Paperbacks.	

Kothari,	C.R.	2004.	Research	Methodology:	Methods	and	Techniques.	2nd	ed.,	Rev.ed.	
New	Age	International	(P)	Ltd.,	Publishers.	
	
Stringer,	E.T.	2014.	Action	Research.	4th	ed.	SAGE	Publications,	Inc.	
	
McNiff,	J.,	Whitehead,	J.	Action	Research:	Principles	and	Practice.	2nd	ed.	London:	
RoutledgeFalmer.	

Lindstrom,	L.,	Jeffries,	R.	2004.	Extreme	Programming	and	Agile	Software	Develop-
ment	Methodologies.	Information	Systems	Management,	24,	41–52.	

LoBiondo-Wood,	G.,	Haber,	J.	2014	Nursing	Research:	Methods	and	Critical	Appraisal	
for	Evidence-Based	Practice.	8th	ed.	Mosby,	Missouri.	

Modi,	H.S.,	Singh,	N.K.,	Chauhan,	H,P.	2017.	Comprehensive	Analysis	of	Software	
Development	Life	Cycle	Models.	International	Research	Journal	of	Engineering	and	
Technology,	4,	117-122.	

Moroni,	I.,	Arruda,	A.,	Araujo,	K.	2015.	The	design	and	technological	innovation:	how	
to	understand	the	growth	of	startups	companies	in	competitive	business	environ-
ment.	Procedia	Manufacturing,	3,	2199-2204.	

Mucha,	H.,	Nebe,	K.	2017.	Human-centered	toolkit	design.	In	HCITools:	Strategies	
and	Best	Practices	for	Designing,	Evaluating	and	Sharing	Technical	HCI	Toolkits.	
Workshop	at	CHI	2017,	Denver,	USA.	

Munassar,	N.B.A.,	Govardhan,	A.	2010.	A	Comparison	Between	Five	Models	Of	Soft-
ware	Engineering.	International	Journal	of	Computer	Science	Issues,	7,	94-101.	

Petersen,	K.,	Wohlin,	C.	2010.	The	effect	of	moving	from	a	plan-driven	to	an	incre-
mental	software	development	approach	with	agile	practices.	An	industrial	case	
study.	Empirical	Software	Engineering,	15,	654–693.	

Pressman,	R.S.	2005.	Software	Engineering:	A	Practitioner's	Approach.	6th	ed.	
McGraw-Hill.	

Razzouk,	R.,	Shute,	V.	2012.	What	Is	Design	Thinking	and	Why	Is	It	Important?	Review	
of	Educational	Research,	82,	330–348.	

Ruparelia,	N.B.	2010.	Software	Development	Lifecycle	Models.	ACM	SIGSOFT	Soft-
ware	Engineering	Notes,	35,	8-13.	

Sánchez-Gordón	M.,	O’Connor	R.V.	2016.	Understanding	the	gap	between	software	
process	practices	and	actual	practice	in	very	small	companies.	Software	Quality	Jour-
nal,	24,	549-570.	

Schwaber,	K.	1995.	Scrum	Development	Process.	OOPSLA	’95	Workshop	Proceedings,	
117-134.	

Sommerville,	I.	1996.	Software	Process	Models.	ACM	Computing	Surveys,	28,	269-
271.	

35	
	

	

Sommerville,	I.	2011.	Software	Engineering.	9th	ed.	Pearson	Education,	Inc.	

SpriteCloud,	n.d.	Waterfall	Model	of	Software	Development.	Page	on	SpriteCloud	
website.	Accessed	on	4th	of	July	2017.	Retrieved	from	
https://www.spritecloud.com/2011/06/software-lifecycle-consultancy/waterfall/		

Tetuan	Valley.	2017.	When	to	do	a	Design	Sprint?	Page	on	Medium	website.	Ac-
cessed	on	4th	of	October	2017.	Retrieved	from	https://medium.com/tetuan-
valley/when-to-do-a-design-sprint-88e1e3355f05		

The	Design	Sprint.	N.d.	Page	on	Google	Ventures	website.	Accessed	on	22nd	of	July	
2017.	Retrieved	from	http://www.gv.com/sprint/		

Thoring,	K.,	Müller,	R.	M.	2011.	Understanding	Design	Thinking:	A	Process	Model	
based	on	Method	Engineering.	In	International	Conference	on	Engineering	and	Prod-
uct	Design	Education,	City	University,	London,	UK.	

Tschimmel,	K.	Conference	Paper.	Design	Thinking	as	an	effective	Toolkit	for	Innova-
tion.	In	ISPIM	Conference	Proceedings.	Manchester:	The	International	Society	for	
Professional	Innovation	Management	(ISPIM),	1-20.	

Tsui,	F.,	Karam,	O.,	Bernal,	B.	2016.	Essentials	of	Software	Engineering.	4th	ed.	Jones	
&	Bartlett	Learning.	

Yin,	R.K.	2011.	Qualitative	Research	from	Start	to	Finish.	New	York:	The	Guilford	
Press.	

Zuber-Skerritt,	O.	2001.	Action	Learning	and	Action	Research:	Paradigm,	Praxis	and	
Programs.	In	Sankara,	S.,	Dick,	B.	and	Passfield,	R.	(Eds),	Effective	Change	Manage-
ment	through	Action	Research	and	Action	Learning:	Concepts,	Perspectives,	Processes	
and	Applications.	Southern	Cross	University	Press,	Lismore,	Australia,	1-20.	

	

	 	

https://www.spritecloud.com/2011/06/software-lifecycle-consultancy/waterfall/
https://medium.com/tetuan-valley/when-to-do-a-design-sprint-88e1e3355f05
https://medium.com/tetuan-valley/when-to-do-a-design-sprint-88e1e3355f05
http://www.gv.com/sprint/

36	
	

	

Appendices	

Appendix	1. Results	(19	pages)	

Confidential	until	12.11.2027.	
	

Appendix	2. Conclusion	(4	pages)	

Confidential	until	12.11.2027.	
	

Appendix	3. Discussion	(4	pages)	

Confidential	until	12.11.2027.	
	

Appendix	4. The	developed	prototype	of	a	software	product	during	the	
Design	Sprint	at	Robo	Wunderkind	(8	pages)	

Confidential	until	12.11.2027.	

	

	

	

	

	

	

	

	

	

	

