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ABSTRACT 

The thesis was commissioned by the Degree Programme of
Automation Engineering and the Sheet Metal Center research unit of
Häme University of Applied Sciences for the “Healthy Digital House” 
project. The empirical targets for this thesis project included the 
commissioning of a programmable logic controller based system for 
data acquisition from the building automation system of the Sheet Metal
Center. In addition, the system is designed to be capable of controlling 
of the lighting system and communicating with the wireless indoor
environment sensor network. Finally, the targets also included
deployment of a data server system to record and supply collected
data for visualization and research purposes.  

To realize the solution, theoretical concepts concerning sensors,
actuators, programmable logic controllers and industrial data 
communications were reviewed in addition to concepts concerning 
software engineering, including database management systems and 
web application programming interfaces. The discussed theoretical 
concepts were focused on a smart building automation system for
zero-energy buildings and capable of integration into the Internet of 
Things and Industry 4.0 

The outcome of this thesis project consisted of a Beckhoff PLC
system developed for data communication with an existing building
automation system, as well as a DALI-based lighting control system 
and EnOcean-based wireless indoor sensor network ready for 
implementation. In addition, a data server unit was deployed, which
utilized the InfluxDB time series database management system and a 
REST API for data and web services. The data acquired from thesis
project was used to support energy optimization researches and 3D web 
visualization model of Sheet Metal Center. The targets of this thesis
project were achieved, with further development planned for
implementation in the following year.  
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1 INTRODUCTION 

1.1 Outline of thesis 

This thesis is divided into six chapters as follows. 

Chapter one discusses the background of the problem, the author’s 
motivation for solving the problem and the targets of his empirical work. 
This included the involved parties in this thesis, overview on the target 
building and the current situation before this thesis was commissioned.  

Chapter two reviews and discusses the theoretical aspects for the solution, 
which includes the structure of an automation system, data access and 
communication, the structure of the software system and building 
automation systems. 

Chapter three describes in detail the solution which was commissioned at 
the target building, the structure of the software system solution and the 
author’s reasoning for designing these solutions.  

Chapter four describes the results of the commissioning process and 
preliminary data collection.  

Chapter five discusses current limitations, as well as near-future goals for 
development continuation of this thesis in the following year.  

1.2 Project background 

The Sheet Metal Center building (SMC), operated by Ruukki and Sheet 
Metal Center Research Unit of Häme University of Applied Sciences (from 
herein referred to as HAMK), was one of the pilot case studies for the 
“Healthy Digital House” (Terveellinen Digitalo) project, which involved 
using building data to improve the occupancy experience of the 
inhabitants, as well as optimizing the energy consumption. The heating 
system of SMC was designed and implemented to be highly efficient and 
to provide the best possible indoor experience. For example, the ceiling 
radiant elements and the floor heating system were used for providing the 
comfortable indoor environment, whereas heat recovery from operating 
industrial machinery and geothermal pumps were used for energy storage 
and recycling. The ventilation of the building also affected the heating 
process, due to the massive doors frequent opening and closing. 
Furthermore, all the indoor space of the building was equipped with 
windows, for the purpose of taking advantage of natural lighting to 
decrease the consumption of electricity for lighting, but simultaneously 
also caused increased heat losses. Ruukki and Sheet Metal Center came to 
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the conclusion, that collecting data from the heating and air conditioning 
system, as well as increasing the quantity of indoor air quality 
measurements would assist in the building modeling process, thereby 
supporting the energy optimization process. The data collection process 
would involve recording data from the building automation system, as well 
as installing more sensors to perform measurements which were not 
available with the current system, e.g. temperature, air pressure, humidity 
and carbon dioxide (CO2) levels in the offices and common areas.  
 
The building’s heating and ventilation system was commissioned and is 
being operated by Caverion Oy, which offers connectivity to other data 
infrastructures through the OPC DA standard. Originally, a data connection 
program was written by the Tampere Unit for Computer-Human 
Interaction from Tampere University, and further revised by automation 
students Khoa Dang and Minh Tran from HAMK. Due to the network 
structure within HAMK, and the security as well as reliability requirements 
of the control room computer, it was decided that the data connection 
program should not be used, and the data collection task would be 
conducted using a Beckhoff Industrial PC (IPC) system, which also allows 
additional sensors and other functionalities, namely light control, to be 
easily implemented at a later point. The Beckhoff IPC system also allows 
developing additional functions without affecting the operation of the 
Caverion system, therefore not compromising the current operation 
process of the building.  

1.3 Empirical targets 

The targets of this thesis work included:  

 Commissioning a Beckhoff control system for the following functions:  
o Light control for Sheet Metal Center common area with 

the Beckhoff IPC, for performing cost analysis of a smart 
lighting control system 

o Extensive indoor quality measurement systems 
o Establish the connectivity to the existing building 

automation system of Caverion and collect all the building 
data from Caverion SCADA 

 Designing and deploying an application programming interface (API) 
and backend data storage system to store and provide the data for 
different parties and purposes 

2 THEORETICAL BASIS 

2.1 Industry 4.0 and Internet of Things (IoT) 

The Internet of Things (IoT) is a term, referring to the trend of enabling 
connectivity for all devices, to allow more information provided for human 
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and optimization of device operation, whereas Industry 4.0 specifically 
applies the IoT trend to industrial scenarios and use cases. Such advances 
are possible thanks to the development of the data communication in 
general, specifically the Internet and wireless technologies, as well as 
increase in computational and storage capability of computers. Figure 1 
describes components of an IoT platform.  
 

 

 IoT platform components and communication channels 
(InfluxData, 2017) 

In figure 1, data flows from end devices to a hub, optionally through a 
gateway for standardization purposes, then stored and served for 
applications. Examples of end devices are sensors, actuators, 
programmable logic controllers and smart appliances like phones, tablets 
computer or smart watches. In general, any electronic hardware or 
software that generate data can be classified as “devices” in the IoT 
architecture. Edge devices, or gateways, are devices equipped with ability 
to communicate with and control end devices through different data 
communication protocols, as well as condition and format the data 
received from end devices for sending to the hub. The hub, usually a server 
or a cluster of server computers, stores all the data as well as performs 
analytics on said data, ultimately finalizing and serve the data. The client 
for the final data can be end-users, other applications or services, and back 
to the devices themselves. In addition to the data flow, figure 1 also depicts 
the power picture of an IoT architecture. End devices and gateways often 
work with a local small power supply, such as batteries, renewable energy 
sources or low voltage power supplies, capable of only small data storage 
and simple calculations. On the other hand, the minimum power supply 
required for hubs are wall sockets and own power plant, in case of data 
centers, where much larger demand for computational power must be 
met.  
 
Data collection has always been necessary in the industrial world, where 
extensive analytics of end devices would lead to economic benefits such 
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as precise production planning, downtime reduction and preventive 
maintenance. Data from end devices and production lines would be 
integrated with the Enterprise Resource Planning (ERP) and Manufacturing 
Execution System (MES) and translated into Key Performance Indicators 
(KPIs) which would aid the process of optimizing the business and 
production operation. With IoT, data collection expands itself to the 
consumer usage, i.e. collection of data from all kinds of devices ranging 
from household appliances to building management systems to increase 
the performances of said devices and improve the living conditions of 
human beings. Furthermore, the collection of said data goes hand-in-hand 
with the deployment of Application Programming Interfaces, allowing 
software developers to turn data into value-added services and further 
increases the benefits of IoT.  

2.2 Sensors and actuators in automation systems 

This chapter discusses the components of an automation system and their 
functionalities. In general, a classic automation system consists of sensors 
and actuators interfacing with a Programmable Logic Controller (PLC) via 
input/output cards. The PLC is responsible for automation and regulation 
processes, by controlling actuators based in the data received by different 
sensors. Vital information from these processes is then passed to a control 
room, where a supervisory control and data acquisition (SCADA) system is 
located. The SCADA system, in general, allows an operator with process 
expertise to monitor and regulate the processes, as well as performs the 
task of data storage and connectivity for further analytics of processes. In 
the following sections, each component of an automation system is further 
described.  

2.2.1 Sensors 

This chapter discusses the definition of a sensor, the typical challenges 
associated with metrology and smart measurement systems. Metrology, 
as defined by the International Bureau of Weights and Measures, “is the 
science of measurement, embracing both experimental and theoretical 
determinations at any level of uncertainty in any field of science and 
technology” (Mesures, n.d.). In the context of this thesis, it can be 
understood as applied metrology or measurement technology applied in 
the field of automation engineering. Generally, in automation systems, 
measurements are achieved by using sensors to measure and convert 
physical phenomena signals into electrical signals, which can be read and 
reacted to appropriately by the control system.   

 
A sensor consists of a sensing element and signal conditioning 
components. According to McMillan (2010), the sensing element is 
responsible for the conversion of a process variable into a quantifiable 
output, which can be passed on to another sensing element, a transmitter 
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or a controller input. The output signal of a sensing element is called a 
measurand (McMillan, 2010, p. 10). In this case, the sensing element is 
connected to the signal conditioning components, which is responsible for 
converting the measurand into standardized signals or digital values, such 
as 4 – 20 mA or 0 – 10 V. In the case of digital values output, the definition 
of such values must be documented in the sensors datasheet. The values 
can be read using a microcontroller or a control system through 
communication protocols specified by the manufacturer.  
 
Typically, the following signals are measured using a sensor, with their 
respective nominative units denoted in brackets: 

 Temperature (°C or K) 

 Relative humidity (%) 

 Pressure (Pa, bar, hPa or mmHg) 

 Force (N) 

 Level (m) 

 Flow speed and mass flow (m/s, m3/s or l/s) 

 Concentration (kg/m3, ppm, ppb) 
 
The quality of any given measurement is often reduced due to noise, 
interference and sensor self-fault. Hence, modern sensors often include 
features such as multiple measurements, real-time compensation, remote 
configuration and extensive embedded digital signals and information. 
Also, advances in wireless communication and sensing element technology 
have further evolved the sensor industry, allowing more measurements to 
be made with less commissioning effort and higher measurement quality.  
 
In a building context, usually the following measurements are conducted: 
temperature, pressure, flow, volatile organic components, carbon dioxide 
(CO2) and carbon monoxide (CO) concentrations. Said measurements are 
essential to the functioning of a building automation system, directly 
affecting the indoor environment quality and habitant experience. For 
example, temperature and pressure of air and water flow are measured in 
the heating and air ventilation control (HVAC) system. Gas component 
measurements can be used to adjust the power of the air ventilation 
system to achieve on-demand ventilation, enabling the optimal habitant 
experience while saving energy when there are no habitants in the 
building.  

2.2.2 Final Control Elements - Actuators 

This chapter discusses the definition and functionalities of the final control 
elements, also known as “effectors” or “actuators”. An actuator is 
responsible for converting the controller output from the control system 
into physical actions, to control the process. Usually, the action is achieved 
by manipulating one or multiple flows of material in the process, namely 
water or air flow. The flow manipulation is typically achieved using control 
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valves, motors and pumps (Hughes, 2007, p. 275). Additionally, motors and 
pumps can be connected to variable speed drives (VSD) to achieve precise 
speed and/or torque control.  
 
Control valves can be separated into five types based on their mechanical 
construction: globe, gate, diaphragm, butterfly and ball valves; each with 
their own application areas depending on control function, flow material 
and pipe size. For example, gate valves are typically used for manual on-
off use cases, diaphragm valves are used for liquid flow manipulation and 
butterfly valves are used for large pipe size (Hughes, 2007, p. 276). Another 
way to classify valves is based on the characteristic curve which describes 
the relationship between a valve’s opening percentage to the change in 
flow through the valve (Hughes, 2007, p. 277). The valve’s opening 
percentage can be changed using solenoids, hydraulic or pneumatic 
actuators. Figure 2 describes different types of characteristic curves.  
 

 

 Control Valve Flow Characteristics (Inc, 2017) 

Motors and pumps are necessary in scenarios where speed, pressure or 
position of the flow of material needs to be controlled. Quite often they 
are coupled with a variable speed drive (VSD) for speed control and local 
process control applications, and the whole unit is then referred to as a 
“drive”. Communication between the drive and the control system is 
achieved via the use of analog or digital I/O, and mostly nowadays through 
fieldbuses.  
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Typically, selecting a drive requires knowledge on process mechanical 
requirements: mechanical load, pressure, angular velocity, etc. After the 
motor has been selected using the previously mentioned criteria, the 
speed drive is then chosen based on the motor’s power requirements.  
 
Finally, there are other types of actuator. For example, heating resistors 
and lights can also be considered as actuators.  

2.3 Programmable logic controller (PLC) 

This chapter discusses the definition, functionalities and programming of 
a programmable logic controller. A programmable logic controller, as 
defined within IEC 61131-1 (2003) standard, is “digitally operating 
electronic system, designed for use in an industrial environment, which 
uses a programmable memory for the internal storage of user-oriented 
instructions for implementing specific functions such as logic, sequencing, 
timing, counting and arithmetic, to control, through digital or analogue 
inputs and outputs, various types of machines or processes” (IEC, 2003).  
 
The program on a PLC is developed using elements defined in the IEC 
61131-3 standard. Data types, programming languages, program 
organization units (POUs), keywords and variable type definition are some 
examples of the content of the standard. Typically, a programmable logic 
controller system consists of a central processing unit (CPU) and I/O cards 
for interfacing with other devices, namely sensors, actuators and other 
PLCs. Nowadays, both the CPU unit and the I/O cards are designed to be 
modular, allowing hot-swap and a quick replacement in case of failure.  
 
Modern PLC systems are equipped with a real-time runtime (PLC runtime), 
responsible for the process logics and an operating system (OS) runtime, 
usually Microsoft’s Windows Embedded, Windows 10 IoT Core or a Linux 
distribution. The OS runtime is meant to perform more advanced 
programming tasks, allowing high-level programming language application 
to be developed and run on the controller.  
 
On the aspect of programming languages, the PLC runtime applications 
(real-time applications) are developed using languages and elements 
defined in IEC 61131-3 (2013). Software and controller vendors, such as 
Codesys, Beckhoff, Wago or Siemens implement their own development 
tools following the standard and add their own specific applications and 
brandings as part of their product portfolio. For example, applications such 
as interlocking control, sequence control and motion control are 
implemented on the PLC runtime. These applications require less than 20 
milliseconds of cycle time, which is the time for the output to react 
according to the input, often referred to as real-time capabilities.  
 



8 
 

 
 

On the other hand, high level applications on the OS runtime have no 
language limitations, as the programmable logic controller is 
fundamentally identical to any full-scale computer, although the OS 
runtime lacks real-time operation capability, a necessity for process 
control application. The types of application on the OS runtime may 
include e.g.: machine vision, webservice or information exchange services; 
implemented with C/C++, Python or JavaScript programming languages. 
Such applications serve the data integration process in the enterprise 
environment and does not require real-time capability.  
 
In general, the term programmable logic controller has been understood 
to represent the PLC runtime for process control. Recent technological 
advances allowed the programmable logic controller to execute high level 
applications, bridging the gap between a PLC programmer and a software 
developer.  
 

2.4 Fieldbus and data communication protocols 

This chapter discusses fieldbuses and data communication in automation 
systems. In particular, the Open Systems Interconnection seven-layer 
model is described as the fundamental framework, followed by the 
descriptions and use cases of different protocols for data communication 
used in the empirical part of this thesis work.  

2.4.1 Open Systems Interconnection (OSI) model 

The OSI model provides a common basis for consistency between all types 
of network communication protocols. First published by the International 
Organization for Standardization (ISO) in 1984 as standard ISO 7498 
(1984), the OSI model defined the seven-layer abstract model to profile 
any communication protocols. The functionalities of the layers are shown 
in figure 3.  
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 OSI seven-layer model (Cisco, 2017) 

In general, the functionalities of OSI layers, from 1 to 7, are summarized 
and listed in Table 1.  

Table 1. OSI model functionalities summary (Dye, McDonald, & Rufi, 
2008, p. 53; Microsoft, 2017) 

Number Layer name Functionality 

1 Physical Definition of how data is transmitted, 
encoding of the signal and transmission 
physical media (cable, wireless, etc.) and the 
connection topology of devices in the network 

2 Data Link Definition of nodes addressing, how data 
should be encapsulated or “framed”, methods 
of controlling communication traffic and error 
reduction 

3 Network Definition of the communication path based 
on network conditions and how frames are 
routed to their destination 

4 Transport Definition of how data are transmitted with 
least amount of errors, losses and duplication 

5 Session Definition of how nodes can establish, 
maintain and terminate connections; 
optionally logging and security of said 
connections  

6 Presentation Definition of how data is formatted, 
compressed and encrypted 

7 Application Definition of services available to end-users 
and end-devices 



10 
 

 
 

 
The layers are usually referred to by their number, and any given protocols 
can be defined using some or all the OSI layers (Dye, McDonald, & Rufi, 
2008, p. 53). The missing layers in the implementation could either indicate 
a lack of implementation, or an open implementation. For example, the 
Modbus protocol definition only match the application layer, lacking the 
definition of the lower layers. Due to this, there exist multiple 
implementations of the lower layers ranging from twisted pair cable 
communication (Modbus RTU or ASCII) to TCP/IP over ethernet or internet 
communication (Modbus TCP). Regardless, all implementations provide 
services according to guidelines defined in the Modbus protocol.  

2.4.2 Digital Addressable Lighting Interface (DALI) 

Digital Addressable Lighting Interface was developed in the 1990s, based 
on the IEC 60929 (2011) standard, for controlling lighting ballasts, drivers 
and relays. In a DALI network, each lighting device is assigned its own 
address and communication is achieved using low voltage digital signaling 
on two conductors. Before DALI was developed, lighting control was 
achieved using analog signals, which caused complexity in design and 
inferior communication signal quality. Each DALI master (or controller) can 
assume command of up to 64 addresses and 16 groups of addresses. 
(Sinopoli, 2010, p. 57). Examples of DALI installation and analog control 
installation are shown in figures 4 and 5.  
 

 

 DALI light control installation (Beckhoff Automation GmbH, 
n.d.) 
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 Analog 1-10V light control installation (Beckhoff Automation 
GmbH, n.d.) 

As can be seen from figures 4 and 5, using DALI allows the cabling and 
functional design to be simplified significantly. The advantages of using 
DALI include flexible topology, interoperability between different 
manufacturers, real-time feedback of lighting values and flexible control of 
individual devices or groups. Firstly, the DALI network allows almost all 
types of topology, excluding only ring topology. Furthermore, the network 
requires no termination resistor, no polarity requirement and allows 
connection length of up to 300 meters. The DALI communication standard 
is maintained by DALI working group which includes reputable 
manufacturers, e.g.  Siemens, Philips, Helvar, etc. therefore ensuring the 
continuous development and enforcement of the protocol. On the DALI 
network, the control and measurement values are repeatedly exchanged 
between the host controller and the end devices. Furthermore, said values 
are stored on both ends, allowing coherence and fast reaction within the 
network. Finally, each end devices are freely addressable and can be 
reconfigured programmatically, without physical change, allowing easy 
maintenance and flexible functionality throughout the lifecycle of the 
installation (Beckhoff Automation GmbH, n.d.).  
 
The communication telegrams of the DALI network are illustrated in figure 
6. Each block in the figure denotes one bit. The communication speed in 
the DALI network is achieved at 1200 bits per second.  
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 DALI query and response telegrams (Beckhoff Automation 
GmbH, 2010) 

Each DALI device has two associated addresses: a 6-bit individual address 
(address range equals 0 to 63) and 4-bit group address (address range 
equals 0 to 15). Up to 16 scenes or output combinations are supported by 
one DALI network.  Each device can be configured to response to multiple 
group requests. The commissioning process of a DALI network is started by 
connecting all devices and randomizing the individual addresses of the end 
devices. Following that, each device address is reassigned according to 
engineering design, based on ease of programmability and grouping 
functions.  
 
Typically, in building electrification, the power distribution to end devices 
is done with three-core cables (e.g. MMJ 3x1.5 cable), five-core cables are 
used for three phase electrifications. In the case of DALI, the designer can 
choose to use a five-core cable for both DALI communication and 
electrification, or run a separated cable for DALI communication and use 
the existing three-core cable for electrification. The latter method is 
applicable for upgrading of existing installations, where changing the cable 
would require efforts and downtime of the site. On the other hand, for 
new installations the first method should be applied due to economic 
reasons and maintainability.  

2.4.3 EnOcean 

EnOcean is innovative wireless technology based on energy-harvesting, in 
other words, efficient energy exploitation of mechanical motions and 
changes in the environment. After acquiring sufficient power, data is 
transmitted wirelessly. Most commonly used environmental effects used 
for energy harvesting are ambient lights and temperature differences. 
Data is transmitted and received through radio frequencies and is 
compatible with most major building automation protocols and PLC 
systems. The technology is in depth explained in the international standard 
ISO/IEC 14543-3-10. The protocol itself is regulated and maintained by the 
EnOcean Alliance, which consists of reputable manufacturer in the building 
automation field, e.g. EnOcean, Siemens, Texas Instruments, etc. Finally, 
typical use cases of EnOcean technology includes wireless control and 
indoor measurements. (Dang, Lupea, Multaniemi, & Tran, 2016, pp. 1,3) 
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The protocol employs the 868MHz frequency band in Europe, allowing up 
to 300 meters free space communication distance and 30 meters indoor 
communication distance. Due to its energy harvesting nature, the 
messaging rate between devices are typically from 5 to 15 minutes per 
message. Furthermore, the protocol is equipped with security mechanism 
such has encryption and message counting, allowing secured usage in 
sensitive environment applications. EnOcean data frames and security 
mechanisms are described in figure 7.  

 EnOcean communication frames (Dang, Lupea, Multaniemi, 
& Tran, 2016, p. 4) 

An EnOcean device is typically identified via the chip ID and the sender ID.  
Chip ID is a 32-bit sequence, specific to each EnOcean device. The sender 
ID consists of the Base ID and a “sub” sender ID. Said IDs are 
reprogrammable, allowing faster device replacements without having to 
go through the teach-in process with the master module. The ID length is 
32 bits in total, although the total number of reprogrammable addresses 
is only 65536 (16 bits). EnOcean devices communication is achieved by 
exchanging message packets conforming to EnOcean Equipment Profiles 
(EEP), which also provides the basis for programming EnOcean 
applications. The commissioning process of an EnOcean installation 
includes range planning and antenna placement to ensure the network 
coverage for all devices. Simultaneously, the list of devices, their IDs and 
profiles should be documented. After the installation of devices is done, 
the programming can be conducted.  

2.4.4 Modbus TCP and RTU 

Modbus was developed by Modicon (Schneider Electric) and has since 
become the de facto standard for multivendor device communication 
(Mackay, Wright, Park, & Reynders, 2007, p. 96). The protocol defined the 
message frame format between devices and the services which should be 
available on slave devices. In a Modbus network, each slave device is 
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assigned an address, which can be reconfigured if necessary. With Modbus 
RTU/ASCII, the slave device count is limited to 248, whereas with Modbus 
TCP the slave quantity is limited by the IP address range. The data points 
in each slave device is presented and classified into registers and coils, with 
registers representing numerical values (e.g. setpoint and measurement 
values) and coils representing binary values (e.g. alarm signals and 
contacts statuses). The master then interacts with the slaves through read 
and write operations on registers and coils, as the documentations of the 
slave devices often provide the definition and functionality of each coil and 
registers. Tables 2 and 3 describes the service (function) listing of the 
Modbus protocol and the message frame format, respectively.   

Table 2. Modbus data point address ranges and functions (Mackay, 
Wright, Park, & Reynders, 2007, p. 98)  

Data 
type 

Addresses Function 
codes 

Function descriptions 

Coils 0  9998 01 Read coil status 

Coils 0  9998 05 Force single coil 

Coils 0  9998 15 Force multiple coils 

Discrete 
inputs 

0  9998 02 Read single input 

Input 
registers 

0  9998 04 Read multiple input 

Holding 
registers 

0  9998 03 Read holding registers 

Holding 
registers 

0  9998 06 Write holding register 

Holding 
registers 

0  9998 16 Write holding registers 

- - 07 Read exception status 

- - 08 Diagnostic test 

Table 3. Format of Modbus message frame (Mackay, Wright, Park, & 
Reynders, 2007, p. 97) 

Address field Function field Data field Error check field 

1 byte 1 byte Vary 2 bytes 

 
Devices that support Modbus ranges from field devices such as sensors, 
variable speed drives to control room PLCs, SCADA and DCS systems. 
Typically, PLCs and control room devices act as master and field devices 
act as slaves in a Modbus network. Modbus RTU and ASCII uses physical 
layer defined in EIA-232 and EIA-485 standards, which is commonly known 
as twisted pair cables. Modbus TCP encapsulates the Modbus 
communication frame into a TCP message and uses the TCP network, 
usually Ethernet, to perform communication. A summarized comparison 
of Modbus TCP and Modbus RTU/ASCII is provided in table 4.  
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Table 4. Comparison of Modbus RTU/ASCII and TCP 

 Modbus RTU/ASCII Modbus TCP 

Communication media Twisted pair cable Category 5/6 cable 

Maximum speed 115 Kbps 57.6 Mbps with 
100Mbps ethernet 

Maximum length 1200 m at 9600 bps 100m 

Redundancy CRC16 Handled by TCP 
protocol 

Concurrency Half-duplex Multiple session full-
duplex 

Topology Single master 
network, typically line 
topology 

Multiple masters 
network, line or star 
topology 

Application notes  Baud rate and parity 
settings, termination 
resistor at furthest 
slave 

TCP port and firewall 
settings 

 
The commissioning of a Modbus network consists of installation and 
programming processes. The installation process should comply with 
information provided in Table 4, especially the application notes. Also, 
each slave device must be assigned a unique address. In the programming 
process, the datasheet and manual of each device in the network should 
be collected, as the register’s and coil’s map of each device should be listed 
in said documentations.  
 
In building automation, Modbus is mainly used for communication 
between VSDs in air handling units or pumps, and the controller. Recently, 
heat pump units and solar inverters are also supporting Modbus as their 
communication method.  

2.4.5 TCP/IP 

Transmission Control Protocol (TCP) and Internet Protocol (IP), known 
together as the Internet protocol suite or TCP/IP, is generally 
acknowledged as the backbone for the Internet. The protocol suite was 
developed by the Advanced Research Projects Agency (ARPA), more 
commonly known nowadays as the Defense Advanced Research Projects 
Agency (DARPA). The protocol suite matches layer 3 and 4 in the OSI 
model, with IP acting as layer 3 and TCP acting as layer 4. (Mackay, Wright, 
Park, & Reynders, 2007, pp. 257,258).  
 
The Internet Protocol’s responsibility is the delivery of datagrams between 
hosts or devices in a network. This is achieved via the use of IP addresses 
for device identification and packet fragmentation, as networks might 
have different packet size requirements.  Currently, the most widely used 
version of IP is IPv4, with plans for migration to version 6 (IPv6), due to the 
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limitation of the address pool with IPv4. Each IPv4 address is made up of 
32 bits, usually denoted as four octets in their decimal presentation, e.g. 
“192.168.0.69”.  
 
To achieve the intended functionality of IP, a header of at least 20 bytes, 
i.e. five 32-bit combinations, is attached to the information passed down 
from the upper layers (Mackay, Wright, Park, & Reynders, 2007, p. 260). 
The header content for IP version 4 (IPv4) is attached in figure 8.  
 

 
 

 Content of IPv4 header (Mackay, Wright, Park, & Reynders, 
2007, p. 260) 

 
The fields shown in figure 8 is further explained as follows: 

 Ver: indicates the protocol version. In IPv4 case, this field has the 
value of “4”.  

 IHL: Abbreviation for Internet Header Length. Indicates the length of 
the header in 32-bit segments. 

 Type of Service: Used to indicate the quality of service (QoS) of the 
datagram, e.g. minimal delay, maximum throughput, maximum 
reliability, minimum monetary cost.  

 Total Length: contains the length of the whole datagram. Combined 
with the IHL field, the host can determine the content of the 
datagram. The minimum length requirement accepted by all hosts is 
576 bytes.  

 Identifier: Used for unique identification of datagrams. In case of 
fragmentation, also used for reconstruction.  

 Flags: Indicates whether a datagram could be fragmented or not.  



17 
 

 
 

 Fragment offset: indicates the position of one datagram for 
reconstruction use, in the case of fragmentation.  

 Time to Live (TTL): Indicates the travel distance of one datagram. The 
value is decreased through each router that the datagram traversed. 
On the other hand, the field enforce deletion of datagram in case of 
undeliverable datagram, as a datagram will be discarded when the 
TTL value reaches zero.  

 Protocol: indicates the protocol used in layer 4 for one datagram. 
Typical values are 6 for TCP and 17 for UDP.  

 Checksum header: contains a check value for the IPv4 header. 
Recalculated at every point which the datagram passed through, due 
to constant changes in some parts of the header, e.g. TTL.  

 Source and destination address fields: indicates the source and 
destination of a datagram, represented by their IPv4 address.  

 Options and padding: used for appending additional information, or 
to fulfill the 20-byte length requirement.  

 
Operating on the basis provided by IP, TCP provides the means for session 
establishment between two hosts, to ensure the reliability of data 
transmission. TCP allows large datasets to be transmitted partially and 
reconstructed, as well as provides verifications mechanism, flow control 
and socket services for multiple connections between two hosts. In 
addition to TCP, User Datagram Protocol (UDP) is an alternative to data 
transmission in use cases where synchronization is not required, or low 
data volume is needed. Both TCP and UDP uses the “port” concept for 
source – destination addressing and to achieve flow control as well as 
multiple connections between two hosts. The main difference between 
TCP and UDP is the reliability of data transmission. TCP headers are 
significantly larger than UDP headers, therefore allowing sequencing for 
large data transmission, error control mechanisms and retransmission for 
guaranteed data delivery. On the other hand, the small header size allows 
UDP to be used in situations such as network announcement, broadcasting 
and data streaming (Mackay, Wright, Park, & Reynders, 2007, pp. 270-
272).  

2.5 Data access and presentation in software engineering 

This chapter provides information on the structure and abstract 
components of a software system, namely, the data access layer and 
presentation layer, often referred to as the backend and the frontend 
respectively. Specifically, the backend and frontend for the Internet of 
Things and web services use cases are discussed. The terms “data access” 
and “presentation” in this section do not refer to the meaning described 
in the OSI model, as these functionalities strictly belong to the application 
layer in the OSI model. In general, the backend is responsible for providing 
reliable data for different uses, e.g. monitoring, data collection, sharing 
and visualization, whereas the frontend is responsible for efficient human-
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machine interaction, converting machine data into human-friendly useful 
indicators as well as interpreting human intent into machine directives and 
data manipulation.  
 
In comparison with the backend, the frontend involves developing 
applications which are responsive, reactive and meaningful to the human 
user. Examples of backend products include computer programs, mobile 
applications and web applications. Within the scope of this thesis work, 
only backend development is discussed and was commissioned.  

2.5.1 Database management system 

Usually in the context of the IoT and web development, the backend 
involves the design and deployment of database systems and data 
connectivity platforms, commonly known as Application Programming 
Interfaces (APIs). The main challenges in backend development are 
scalability and reliability requirements, as it is necessary for the backend 
to store large quantity of data and handle data requests for multiple 
different clients with acceptable latency while maintaining high availability 
and uptime. With regards to web services, the main responsibility of the 
backend is to provide continuous interaction with the frontend and ensure 
synchronization between the stored data and the user interaction. 
Furthermore, with regards to IoT, the backend also handles machine-to-
machine communication and decision-making functionalities to achieve 
maximum machine efficiency.   
 
Data storage is achieved via the use of database management systems, 
often abbreviated as DBMS or commonly known simply as “database”. The 
performance of a database system heavily depends on the computing 
power and storage capability of the server computer. Modern database 
systems support distributed computation solutions, i.e. deployment of 
database systems in a large array of hardware, to achieve load reduction 
on each server unit and ease of hardware addition in case of increased 
computational requirement. In other words, this allows the server to 
“scale” as the application requirements grow, while also provides higher 
data availability.   
 
Database model are unofficially classified into two categories: relational 
and Not-only-SQL or NoSQL. Relational database is also known as SQL 
(pronounced as “sequel”) database, as almost every relational database 
solution uses the Structured Query Language (SQL) for access and 
modification of data inside the database. This database model organize 
data into tables, using columns to describe different attributes of one 
dataset and rows to store different records of said dataset. NoSQL 
database system, on the other hand, offers data storage in different forms, 
e.g. key-value pair, document, graph and column.  
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The empirical work of this thesis involved processing and storing large 
quantity of time series (TS) data, i.e. data associated with time values. For 
example, a collection of different measurements recorded at different 
timestamps is considered a time series. SQL and NoSQL database systems 
could be implemented to warehouse TS data, at the cost of high latency 
and disk storage, due to their general purposed nature. Recently, time 
series database solutions were developed, offering higher data throughput 
and lower latency as well as optimized data warehouse algorithms, leading 
to lower storage requirements. Figures 9, 10 and 11 illustrates the 
performance comparison between InfluxDB and MongoDB, as examples of 
time series database system and NoSQL database system, respectively.  
 

 

 Write throughput comparison – InfluxDB vs MongoDB 
(Persen & Winslow, 2016, p. 6)  

 

 

 Disk storage comparison – InfluxDB vs MongoDB (Persen & 
Winslow, 2016, p. 6)  
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 Query throughput comparison – InfluxDB vs MongoDB 
(Persen & Winslow, 2016, p. 7)  

As can be seen from figures 9, 10 and 11, time series database system 
offers superior data writing throughput and disk storage optimization, 
while maintaining similar query performance. In conclusion, for the use 
cases of the IoT and Industry 4.0 data collection, time series database 
systems offer the most advantages compared to other database systems 
and therefore is the most optimal choice.  

2.5.2 Application Programming Interface (API) 

The term “application programming interface” can be understood as the 
platform for computer programs to interact and communicate with each 
other. As examples, Microsoft provides the Windows API for software 
developers to program applications which can be used on the Windows 
operating system and Google provides the Maps API for developers to 
build applications which needs location data. The first example 
represented the APIs provided for a specific platform, in this case machines 
which run the Windows operating system. The second example 
demonstrated APIs provided for multiple platforms, such as mobile 
operating systems and web-based systems. An API is usually associated 
with a ready-made software and typically defines a set of methods, 
protocols, data interpretation and access points so that software 
developers can write new software that interacts with the existing 
software. Consequently, an API provides encapsulation and controlled 
access to the existing software, i.e. allowing the existing software to be 
expanded and supportive of new software. This section discusses the 
Representational State Transfer web APIs, commonly known as REST APIs 
and their use case in the context of IoT and Industry 4.0. Any web services 
which provide a REST API are commonly denoted as RESTful web services.  
 
With respect to the database systems discussed in section 2.5.1, it is 
necessary to develop an API so that devices and users can safely exchange 
data with the database, as well as assuring control over which party can 
have access to the data stored within the database. The API construction 
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can be separated into two parts, dealing with data input and output, 
respectively. The main clients of the input interface are devices, whereas 
the clients of the output interfaces are software developers, researchers 
and other software which can take advantage of the data.  
 
The REST model was documented by Roy Fielding in his doctoral 
dissertation, as principles based on which web servers and clients could 
exchange data over the Internet. Those four principles included: 
identification of resources; manipulation of resources through 
representations; self-descriptive messages; hypermedia as the engine of 
application state. (Fielding, 2000; Wilde & Pautasso, 2011). To explain the 
principles, the term “resource” is explained as the data owned by the 
server, whereas the term “representation” is explained as the data 
received by the client from a request sent to the server through the 
“message”. The fourth principle can be understood as, the interaction 
between the server and client is contained within the hypermedia, i.e. web 
addresses or links. (Wilde & Pautasso, 2011, p. 37). REST API employs 
hypertext transfer protocol (HTTP) as the transport service, the same 
scheme with the world wide web. Links and web addresses are classified 
as Uniform Resource Identifier (URI), as standardized in the RFC3986 
publication of the Internet Engineering Task Force (IETF). Figure 12 
demonstrates an URI for retrieving all latest measurement points from the 
SMC building, provided by the API commissioned in the empirical part of 
this thesis.  
 

 

 API URI demonstration 

Typically, the client will send a HTTP request to the server in the format of  
"{𝑎𝑐𝑡𝑖𝑜𝑛} {𝑈𝑅𝐼} 𝐻𝑇𝑇𝑃 1.1", where the action could be one of those listed 
in Table 5 and the URI, usually referred to as the “REST endpoint”, in similar 

http://konttiserver.ddns.net/api/v1/olk/point/121_TE16

konttiserver.ddns.net

general location of 
resources

/api/v1/ 

denotes API usage. v1 
denotes the version 

of the API

/olk/point/121_TE16

denotes detail on 
resource, in this case 

the datapoint 
"121_TE16" from 

"OLK"
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format with one demonstrated in figure 11. Additional information such as 
details about the client, authorization or expected response content type 
can be, and very often is, embedded into the header of the request.  

Table 5. REST API actions and descriptions 

Action Change resource on 
server 

Usage 

GET No Used to retrieve data from server 

POST Yes Used to create new data on server 

PUT Yes Used to update existing resource on 
server 

PATCH Yes Used to update resource on server, 
partially 

DELETE Yes Delete resource on server 

Table 6 demonstrates a GET request sent to an API, and the response to 
said request.  

Table 6. REST API request and response example 

Request Response 

GET 
konttiserver.ddns.net/api/v1/olk/point/ 
121_TE16 

{ 
    "id":"121_TE16", 
    "desc":"Air temperature in 
room 121", 
    "unit":"°C", 
    "value":20.39, 
    "timestamp":"2017-12-
18T14:27:53.066Z" 
} 

The example in table 6 is explained as an enquiry from a web client, asking 
for the temperature in room 121, which is identified by the string 
“121_TE16”. The API server responded with a JavaScript Object Notation 
(JSON) string containing general information about the “121_TE16” point 
in the “desc” and “unit” keys; the measurement value and the timestamp 
at which the measurement was taken is stored in the “value” and 
“timestamp” key. JSON is a widely used string-based data representation, 
which allows different data structure to be represented in key – value 
notations while maintaining human-readability as it can be seen in the 
table 6 example. Furthermore, nowadays almost all programming 
languages have their own JSON parser, allowing developers from multiple 
programming paradigms to use JSON for data exchange in their 
applications (Ecma International, 2017). Finally, REST APIs are released 
with their own documentation, containing information on all endpoints; 
methods; descriptions of request and response; authorization 
requirements and limitations.   
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2.6 Building Automation System 

The building automation system (BAS) is the network of sensors, actuators, 
controllers and computers used in the building environment, responsible 
for regulation and adjustment of the indoor environment. The 
responsibility of the BAS often includes heating, ventilation, air 
conditioning, lighting, alarms and access control of a property or a building. 
Modern BAS also includes features such as equipment management, and 
facility management, audio – visual control and video surveillance. In this 
section, the HVAC control and lighting control are emphasized and 
described, due to their vital necessity for building operation and energy 
optimization in Finland.  

2.6.1 Heating, Ventilation and Air Conditioning (HVAC) control system 

The HVAC system typically consists of two sectors: heating control and 
ventilation – air conditioning control. The heating system is responsible for 
controlling the temperature of radiator network, domestic water network 
and incoming air of the building through heat exchange or generation; 
whereas the air conditioning system is responsible for maintaining the 
indoor air quality by controlling the indoor air flow, air humidity and air 
filter.  

In Finland, the heating energy supply for one building usually comes from 
a boiler unit or a district heating supply. A boiler-based system generates 
heat from burning different kind of fuels, whereas a district heating system 
would get the energy from local district heating network, which generates 
heat from various production activities. Recently, the use of heat pumps 
and solar heating systems in building heating system are increased, due to 
the combined effect of price reduction, performance, long-term benefits 
and energy resource scarcity. Following the heat generation section, the 
heat is carried through the whole building through the radiator network. 
In appendix 1, pages 11 to 14, the block diagram of the building heating 
system of Sheet Metal Center, which is equipped with geothermal heat 
pump and solar heating system is described.  

The air conditioning system, or air handling unit (AHU), consists of the air 
piping network and fan units for supplying and removing the air from the 
building, with air filters for blocking small particles in the air circulation.  
The air supply process involves taking air from the outdoor environment, 
passed through a filter, heated up and then propagated inside the building. 
On the other hand, the air removal process takes the air out passively using 
pressure difference, or actively with the use of a fan unit and very often, 
the exhaust air is passed through an air heat recycling unit to take 
advantage of the heated air and reduce the heating costs. Figure 13 
describes an air handling unit with heat recycling, in which the upper path 
is the air removal process and the lower path is the air intake process. The 
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full version of figure 13, included with the control signal and functional 
description (in Finnish) is included in Appendix 1, pages 30 to 32.  
 

 

 Air handling unit with air recycling PI-diagram 

The HVAC control system is usually equipped with schedule control for 
optimal energy saving, which sometimes leads to excess energy wasting 
when the building is not occupied, as well as discomfort indoor 
environment when the control schedule does not meet with the current 
inhabitant capacity of the building. Therefore, on-demand HVAC control is 
necessary to maintain optimal indoor environment quality and energy 
saving targets. To achieve this, additional measurements such as 
occupancy and CO2 concentration are needed. The traditional HVAC 
control system is often not equipped with such measurements, although 
recent advances in sensor technology and IoT could allow addition of these 
measurements, therefore making the further optimization of HVAC control 
system feasible.  

2.6.2 Lighting control system and occupancy management 

Smart lighting control and occupancy management contributes 
significantly to the energy optimization process of a building. As an 
example, Pirelli Deutschland GmbH in Germany performed a renovation to 
their warehouse lighting system, which involves adding occupancy control 
to only turn on the lights at areas which employees are working at. The 
warehouse has a floor area of 10000 square meters, where constant 
lighting 24/7 was used before the renovation. Furthermore, the company 
replaced conventional fluorescent lamps with LED lighting fixtures with 
DALI control for higher efficiency. The electricity power requirement for 
lighting reduced from 20 kW to 11.5 kW with the change from fluorescent 
to LED lighting and further went down to 1.5 kW with the addition of DALI 
control, directly translates into a 92.5 percent energy consumption 
reduction (Beckhoff Automation GmbH, 2016).   
 
Smart lighting control involves multiple strategies to mobilize the lighting 
equipment based on real-time demands of the building occupants. 
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Sinopoli (2010) listed examples of those strategies which included 
scheduling, occupancy control, daylight utilization and windows coating 
usage. The first two strategies involved software solutions which can be 
commission after the building construction, whereas the latter two 
strategies were required to be executed during the construction planning 
phase. Furthermore, light intensity control, or “dimming”, is also widely 
used due to both comfortability and economic reasons (Sinopoli, 2010). A 
typical industrial lighting fixture can produce up to 10000 lumens of 
luminosity theoretically, whereas the illumination need for work areas are 
much lower, around 500 lumens (Finnish Standards Association - SFS, 
2011). In conclusion, lighting engineering and precise control is necessary 
for satisfying the lighting requirement and achieving energy efficiency 
simultaneously.   

3 EMPIRICAL PROCESS 

3.1 Preliminary design data collection and component selection 

3.1.1 Preliminary design data collection 

To conduct the empirical work of this thesis, the following documentation 
were gathered:  

 HVAC drawings of geothermal heat pump, solar heat generation, 
thermal energy storage, radiant roof heating system and air 
ventilation system of the SMC building. These drawings are included 
in Appendix 1.  

 Electrical drawings of the SMC building, including lighting and 
distribution panels. The lighting system drawing is included in 
Appendix 2.  

 List of measurement points from Caverion system of the HVAC 
control of SMC building. 

 Datasheets of ABB weather station, solar inverters and datalogger 

Before this thesis was commissioned, the data from HVAC control system 
is only available to the building owner on an annual basis, as a report 
requested from Caverion. Furthermore, even though the building was 
equipped with a weather station and solar inverter system, no data was 
collected to perform analysis on the performance of solar electricity 
system, as well as correlation of local weather with the performance of the 
HVAC system. Finally, the electricity consumption of the building could not 
be precisely analyzed, as the only information available to the owners was 
the monthly consumption from the electricity supplier. In general, there 
was a shortage of data, therefore energy researches conducted on the 
building, as well as data visualization for information purposes was limited 
severely.  
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3.1.2 Component selection 

The component selection was conducted based on the connectivity 
requirement of existing systems, as well as operation targets of the 
project. The component selection for the PLC system and the functionality 
of each component were as followed:  

 Beckhoff CX5130: Industrial PC with PLC runtime and Windows 
Embedded Standard 7. Responsible for data communication, lighting 
control and sensor communication. Used for Modbus TCP 
communication with Caverion system and data communication with 
the backend server.  

 KL6811: Beckhoff I/O card for DALI communication. Used for lighting 
control.  

 KL6581 and KL6583: Beckhoff I/O card for EnOcean communication 
and EnOcean antenna. Used for EnOcean sensor communications.  

 KL6041: Beckhoff I/O card for RS485 communication. Used for 
Modbus RTU communication.  

 Schneider Electric ABL8REM24030: 24 Volt 3 Ampere power supply 
module 

On top of the PLC selection, the LED drivers of the current lighting system 
will be changed to DALI communication model for implementation of the 
smart lighting system in 2018. Also, EnOcean sensors will be added for 
more precise indoor air quality monitoring.  

The backend server selected was a normal workstation desktop, due to 
possibility of moving the backend to cloud system. Regardless, the desktop 
was equipped with more memory and a solid-state drive to ensure 
performance requirement.  In long term, cost analysis will be performed 
to decide whether a full-fledged server system or a cloud-based system 
will be used for production purposes.  

3.2 Network infrastructure 

The network connection was implemented based on the existing IT 
infrastructure of the building. The PLC was connected to HAMK IoT 
network, which was HAMK intranet with firewall rules implemented to 
support IoT communication.  

Figure 14 illustrates the connection scheme which was commissioned for 
the thesis project.  
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 Connection scheme for empirical process 

As can be seen from figure 14, there were four networks involved in this 
thesis project: HAMK IoT network, HAMK Building Automation network, 
HAMK Intranet and Backend network, noted as Valkeakoski campus. Their 
characteristics can be briefly summarized as:  
 

 HAMK Intranet: production local network of HAMK, does not allow 
internal device communication regulation.  

 HAMK IoT network: subnetwork of HAMK Intranet, allows flexible 
internal communication.  

 HAMK Building Automation network: subnetwork of HAMK Intranet, 
for running critical infrastructure. Completely isolated from all other 
subnetworks and the internet.  

 Backend network: development network, separated from Intranet. 
Interaction with the backend is only possible through the use of the 
API.  

 
For communication with the Caverion system, a firewall exception had to 
be made, allowing a single-directional communication channel between 
the system and the PLC located in IoT network on TCP port 502. The 
Caverion system acted as the Modbus master device, writing all HVAC 
system data to the Modbus slave on the PLC runtime.  
 
Inside the IoT network, communication regulations were more flexible, 
therefore the PLC could be connected with the ABB datalogger, which 
collected data from two solar inverters and the weather station. The 
Windows runtime from the PLC then aggregate the data from Caverion and 
the datalogger, then send them to the backend through the API.  
 
Ideally, the PLC could not be accessed from outside of the HAMK IoT 
network. Currently, HAMK IT services configured and deployed a virtual 
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machine for remote development and troubleshooting purposes. This 
virtual machine can only be accessed by the author and will be shut down 
when the project is finalized.  

3.3 PLC program 

The PLC program consisted of two sections: PLC runtime and Windows 
runtime program. The PLC runtime program was responsible for receiving 
data from Caverion system and sending the data to the Windows runtime. 
Firstly, the PLC needed to be configured as a Modbus TCP slave, with 
mapping to PLC variables configured. In the PLC program, the registers 
data from Modbus communication was mapped into a structure, 
corresponded to the data point list of Caverion, for ease of later 
programming and readability. At the same time, the data structure was 
enabled for OPC UA access, as the Windows runtime program must be able 
to read the structure.  
 
On the Windows runtime of the PLC, NodeJS was installed in order to run 
Node-RED, an IoT platform developed for data flow programming. The 
connection of data flow made in Node-RED was as followed:  

 Caverion data structure: read using OPC UA, published to backend at 
endpoint /api/v1/olk 

 ABB datalogger: read using Modbus TCP, published to backend at 
endpoints /api/v1/olk_abb_weather; /api/v1/olk_abb_uno and 
/api/v1/olk_abb_trio for the weather station, one-phase and three 
phase inverters respectively.  
 

The data acquisition cycle time was set to five seconds and could be as low 
as two seconds. The cycle time was determined based on real performance 
of the systems and proposals for smart grid and smart building standards 
in Finland.  

3.4 Backend deployment 

The backend was deployed on a workstation desktop computer, located in 
Valkeakoski campus, with the network infrastructure handled by a 4G 
connection. In 2018, a decision will be reached on the new location for the 
backend, either on full-scale server hardware or cloud premises.  
 
InfluxDB was selected as the database system, due to its open source 
nature and acceptable performance during the prototype phase. In the 
database schema, measurement points from different buildings were 
separated into different time series, even though this was not the 
recommended design practice provided by InfluxData (InfluxData, n.d. ). 
The reason behind this design was due to incomplete API deployment, as 
the current API was not implemented with separated access for different 
buildings, therefore different time series was used to implement this 



29 
 

 
 

feature. Limitation and countermeasures of the current design will be 
further detailed in chapter 5.  
 
Node-RED was selected as the platform for data connection and 
visualization, due to its ease of use for IoT prototyping. Firstly, REST API 
requests could be treated and handled as HTTP requests, as can be seen 
from figure 15 which demonstrated the data flow for data which came 
from the PLC in SMC building. The data from POST request will be 
extracted, parsed and inserted into the OLK time series in InfluxDB, while 
a HTTP return code 201 is sent back to the PLC, which indicates a successful 
request.  
 

 

 Node-RED flow for Caverion data sent from PLC in SMC 

Secondly, Node-RED is able to visualize data fairly easily, using the 
dashboard module. Figures 16 demonstrates the visualization of data from 
the ABB weather station at SMC building. The flow operation is explained 
as a query made to the database for the latest weather record, then split 
into different items for display on the dashboard. The dashboard interface 
corresponding to the Node-RED flow in figure 16 is shown in figure 17.   
 

 
 

 Node-RED flow for displaying weather data at SMC building 
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 Node-RED dashboard display for the weather data at SMC 
building 

4 RESULTS 

This chapter discusses the results of the thesis project, as of December 
2017. The original target of collecting HVAC system data from Caverion 
control room was reached, as well as the deployment of the backend 
system. In addition to the original requirement of data service for Sheet 
Metal Center, the Valkeakoski Campus A-building and Hybrid Energy 
Module were also connected to the backend system. Therefore, data 
service of three entities are currently performed with the backend system 
of this thesis project. The A-building data was used for Ward Sohier’s thesis 
project “Energy Efficiency of the A building”, for the purpose of evaluating 
heat loss and energy performance of said building, as well as improvement 
suggestions for the building’s HVAC system.  

One of the usage for data collected from SMC building is verification of 
building simulation data. As building simulation could be used to test 
different energy optimization measures in the design phase, it is necessary 
to compare existing model in real scenario and in simulation to prove the 
merit of simulation techniques. For instance, the data collected from SMC 
building included the electrical consumption measurements. The collected 
data from November 2017 showed that the building consumed 16287 
kWh. The simulated results published in “Energy Simulation of Sheet Metal 
Center with IDA ICE software” for November 2017 was 14559 kWh, which 
showed a 2 kWh difference with the real data (Nguyen, 2017). The 
difference was negligible, therefore with further developments and longer 
period studies, the simulation accuracy will be improved along with its 
merits. In addition, the data served by the backend is currently used in the 
development of the 3D web visualization model of Sheet Metal Center 
building.  
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5 LIMITATIONS AND EXPANSION POSSIBILITIES 

Currently, the limitations of this system were as follows: 

 Lack of API authorization 

 Incomplete API documentation 

 Load tests for the system not conducted 

 Lighting control and sensor system not implemented 

The development road map of 2018 for continuation of this thesis project 
was specified to address said issues. Firstly, the API will be finalized during 
January 2018, with proper authorization mechanisms and full 
documentations. Furthermore, more buildings are planned to be 
connected to the backend systems, which includes HAMK Visämaki 
campus S building and Päivölä boarding school, as those are pilot cases for 
projects commissioned by HAMK. Secondly, load tests will be conducted 
on the backend system to determine the final deployment location for the 
system which is either on commercial server hardware or cloud premises. 
Finally, the lighting control and extensive sensor system will be 
commissioned when the hardware is purchased. Also at this phase, the 
security audition for the PLC at SMC building will be conducted in 
cooperation with HAMK IT department.  

6 CONCLUSION 

In this thesis project, a PLC-based system was developed for the data 
communication with Caverion SCADA system, as well as ready for smart 
lighting control and indoor environment sensor network. In addition, a 
data server system was deployed for data storage and a REST API 
service was deployed for accessing stored data. The further 
development of the thesis project was planned and will be implemented 
in the following year.  

All in all, the targets of this thesis project were achieved. The PLC system 
commissioned was able to communicate with the Caverion system 
and the data from the API was provided for energy researches at Sheet 
Metal Center, as well as the development of 3D web visualization model 
of Ruukki.  
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