
Industry 4.0-ready Building Automation System

System design and commissioning for HAMK Sheet Metal Center building

Bachelor’s thesis

Degree Programme in Automation Engineering

Autumn 2017

Khoa Dang

ABSTRACT

Automation Engineering
Valkeakoski

Author Khoa Dang Year 2017

Subject Industry 4.0-ready Building Automation System

Supervisor(s) Timo Väisänen

ABSTRACT

The thesis was commissioned by the Degree Programme of
Automation Engineering and the Sheet Metal Center research unit of
Häme University of Applied Sciences for the “Healthy Digital House”
project. The empirical targets for this thesis project included the
commissioning of a programmable logic controller based system for
data acquisition from the building automation system of the Sheet Metal
Center. In addition, the system is designed to be capable of controlling
of the lighting system and communicating with the wireless indoor
environment sensor network. Finally, the targets also included
deployment of a data server system to record and supply collected
data for visualization and research purposes.

To realize the solution, theoretical concepts concerning sensors,
actuators, programmable logic controllers and industrial data
communications were reviewed in addition to concepts concerning
software engineering, including database management systems and
web application programming interfaces. The discussed theoretical
concepts were focused on a smart building automation system for
zero-energy buildings and capable of integration into the Internet of
Things and Industry 4.0

The outcome of this thesis project consisted of a Beckhoff PLC
system developed for data communication with an existing building
automation system, as well as a DALI-based lighting control system
and EnOcean-based wireless indoor sensor network ready for
implementation. In addition, a data server unit was deployed, which
utilized the InfluxDB time series database management system and a
REST API for data and web services. The data acquired from thesis
project was used to support energy optimization researches and 3D web
visualization model of Sheet Metal Center. The targets of this thesis
project were achieved, with further development planned for
implementation in the following year.

Keywords Building Automation System, IoT, DALI, EnOcean, Backend, API

Pages 33 pages including appendices 52 pages

ACKNOWLEDGEMENT

I would like to express my gratitude to my family for their relentless support in my
pursuit of education, research and happiness. Mom, dad, brother, girlfriend, I am really
lucky to have you in my life, for that I am forever grateful. Also, to the whole staffs of
HAMK for accompanying and guiding me through my bachelor degree. To my thesis
supervisor Timo Väisänen, my greatest gratitude for your trust and support in my work.
To Niina Valtaranta, thank you for putting up with my writings and my time schedule. To
Susan, thanks for all the parties, you really cared for us like family. To Katariina, Annina,
Päivi, Leena, Antti, Timo, Juha, Jan, Raine and Juhani for your efforts to my education,
my career and for all the good times. To Atte and Minh, best teammates ever.

I would like to also express my gratitude for HAMK Sheet Metal Center and Ruukki
Construction Oy for their support during my thesis work. Especially, for Kimmo Hilden
and Jarmo Havula from HAMK, Erkki Honkakoski and Jyrki Kesti from Ruukki. Without
you, there wouldn’t be this thesis, so please accept my gratitude for supporting and
encouragements to my ideas.

Finally, thank you, to my classmates and friends who made my bachelor journey at
HAMK a wonderful ride.

Khoa Dang
Valkeakoski, 21.12.2017

CONTENTS

1 INTRODUCTION ... 1

1.1 Outline of thesis .. 1

1.2 Project background ... 1

1.3 Empirical targets ... 2

2 THEORETICAL BASIS ... 2

2.1 Industry 4.0 and Internet of Things (IoT) .. 2

2.2 Sensors and actuators in automation systems ... 4

2.2.1 Sensors ... 4

2.2.2 Final Control Elements - Actuators .. 5

2.3 Programmable logic controller (PLC) .. 7

2.4 Fieldbus and data communication protocols .. 8

2.4.1 Open Systems Interconnection (OSI) model ... 8

2.4.2 Digital Addressable Lighting Interface (DALI) .. 10

2.4.3 EnOcean ... 12

2.4.4 Modbus TCP and RTU .. 13

2.4.5 TCP/IP .. 15

2.5 Data access and presentation in software engineering 17

2.5.1 Database management system ... 18

2.5.2 Application Programming Interface (API) ... 20

2.6 Building Automation System ... 23

2.6.1 Heating, Ventilation and Air Conditioning (HVAC) control system 23

2.6.2 Lighting control system and occupancy management 24

3 EMPIRICAL PROCESS .. 25

3.1 Preliminary design data collection and component selection 25

3.1.1 Preliminary design data collection .. 25

3.1.2 Component selection .. 26

3.2 Network infrastructure ... 26

3.3 PLC program .. 28

3.4 Backend deployment .. 28

4 RESULTS ... 30

5 LIMITATIONS AND EXPANSION POSSIBILITIES ... 31

6 CONCLUSION ... 31

REFERENCES .. 32

LIST OF FIGURES

 IoT platform components and communication channels (InfluxData, 2017) ... 3
 Control Valve Flow Characteristics (Inc, 2017) .. 6
 OSI seven-layer model (Cisco, 2017) ... 9
 DALI light control installation (Beckhoff Automation GmbH, n.d.) 10
 Analog 1-10V light control installation (Beckhoff Automation GmbH, n.d.) ... 11
 DALI query and response telegrams (Beckhoff Automation GmbH, 2010) 12
 EnOcean communication frames (Dang, Lupea, Multaniemi, & Tran, 2016, p. 4)

 .. 13
 Content of IPv4 header (Mackay, Wright, Park, & Reynders, 2007, p. 260) ... 16
 Write throughput comparison – InfluxDB vs MongoDB (Persen & Winslow,

2016, p. 6) ... 19
 Disk storage comparison – InfluxDB vs MongoDB (Persen & Winslow, 2016, p.

6) ... 19
 Query throughput comparison – InfluxDB vs MongoDB (Persen & Winslow,

2016, p. 7) ... 20
 API URI demonstration .. 21
 Air handling unit with air recycling PI-diagram ... 24
 Connection scheme for empirical process .. 27
 Node-RED flow for Caverion data sent from PLC in SMC 29
 Node-RED flow for displaying weather data at SMC building 29
 Node-RED dashboard display for the weather data at SMC building 30

LIST OF TABLES

Table 1. OSI model functionalities summary (Dye, McDonald, & Rufi, 2008, p. 53;
Microsoft, 2017) ... 9

Table 2. Modbus data point address ranges and functions (Mackay, Wright, Park, &
Reynders, 2007, p. 98) .. 14

Table 3. Format of Modbus message frame (Mackay, Wright, Park, & Reynders, 2007,
p. 97) 14

Table 4. Comparison of Modbus RTU/ASCII and TCP .. 15

Table 5. REST API actions and descriptions ... 22

Table 6. REST API request and response example ... 22

1

1 INTRODUCTION

1.1 Outline of thesis

This thesis is divided into six chapters as follows.

Chapter one discusses the background of the problem, the author’s
motivation for solving the problem and the targets of his empirical work.
This included the involved parties in this thesis, overview on the target
building and the current situation before this thesis was commissioned.

Chapter two reviews and discusses the theoretical aspects for the solution,
which includes the structure of an automation system, data access and
communication, the structure of the software system and building
automation systems.

Chapter three describes in detail the solution which was commissioned at
the target building, the structure of the software system solution and the
author’s reasoning for designing these solutions.

Chapter four describes the results of the commissioning process and
preliminary data collection.

Chapter five discusses current limitations, as well as near-future goals for
development continuation of this thesis in the following year.

1.2 Project background

The Sheet Metal Center building (SMC), operated by Ruukki and Sheet
Metal Center Research Unit of Häme University of Applied Sciences (from
herein referred to as HAMK), was one of the pilot case studies for the
“Healthy Digital House” (Terveellinen Digitalo) project, which involved
using building data to improve the occupancy experience of the
inhabitants, as well as optimizing the energy consumption. The heating
system of SMC was designed and implemented to be highly efficient and
to provide the best possible indoor experience. For example, the ceiling
radiant elements and the floor heating system were used for providing the
comfortable indoor environment, whereas heat recovery from operating
industrial machinery and geothermal pumps were used for energy storage
and recycling. The ventilation of the building also affected the heating
process, due to the massive doors frequent opening and closing.
Furthermore, all the indoor space of the building was equipped with
windows, for the purpose of taking advantage of natural lighting to
decrease the consumption of electricity for lighting, but simultaneously
also caused increased heat losses. Ruukki and Sheet Metal Center came to

2

the conclusion, that collecting data from the heating and air conditioning
system, as well as increasing the quantity of indoor air quality
measurements would assist in the building modeling process, thereby
supporting the energy optimization process. The data collection process
would involve recording data from the building automation system, as well
as installing more sensors to perform measurements which were not
available with the current system, e.g. temperature, air pressure, humidity
and carbon dioxide (CO2) levels in the offices and common areas.

The building’s heating and ventilation system was commissioned and is
being operated by Caverion Oy, which offers connectivity to other data
infrastructures through the OPC DA standard. Originally, a data connection
program was written by the Tampere Unit for Computer-Human
Interaction from Tampere University, and further revised by automation
students Khoa Dang and Minh Tran from HAMK. Due to the network
structure within HAMK, and the security as well as reliability requirements
of the control room computer, it was decided that the data connection
program should not be used, and the data collection task would be
conducted using a Beckhoff Industrial PC (IPC) system, which also allows
additional sensors and other functionalities, namely light control, to be
easily implemented at a later point. The Beckhoff IPC system also allows
developing additional functions without affecting the operation of the
Caverion system, therefore not compromising the current operation
process of the building.

1.3 Empirical targets

The targets of this thesis work included:

 Commissioning a Beckhoff control system for the following functions:
o Light control for Sheet Metal Center common area with

the Beckhoff IPC, for performing cost analysis of a smart
lighting control system

o Extensive indoor quality measurement systems
o Establish the connectivity to the existing building

automation system of Caverion and collect all the building
data from Caverion SCADA

 Designing and deploying an application programming interface (API)
and backend data storage system to store and provide the data for
different parties and purposes

2 THEORETICAL BASIS

2.1 Industry 4.0 and Internet of Things (IoT)

The Internet of Things (IoT) is a term, referring to the trend of enabling
connectivity for all devices, to allow more information provided for human

3

and optimization of device operation, whereas Industry 4.0 specifically
applies the IoT trend to industrial scenarios and use cases. Such advances
are possible thanks to the development of the data communication in
general, specifically the Internet and wireless technologies, as well as
increase in computational and storage capability of computers. Figure 1
describes components of an IoT platform.

 IoT platform components and communication channels
(InfluxData, 2017)

In figure 1, data flows from end devices to a hub, optionally through a
gateway for standardization purposes, then stored and served for
applications. Examples of end devices are sensors, actuators,
programmable logic controllers and smart appliances like phones, tablets
computer or smart watches. In general, any electronic hardware or
software that generate data can be classified as “devices” in the IoT
architecture. Edge devices, or gateways, are devices equipped with ability
to communicate with and control end devices through different data
communication protocols, as well as condition and format the data
received from end devices for sending to the hub. The hub, usually a server
or a cluster of server computers, stores all the data as well as performs
analytics on said data, ultimately finalizing and serve the data. The client
for the final data can be end-users, other applications or services, and back
to the devices themselves. In addition to the data flow, figure 1 also depicts
the power picture of an IoT architecture. End devices and gateways often
work with a local small power supply, such as batteries, renewable energy
sources or low voltage power supplies, capable of only small data storage
and simple calculations. On the other hand, the minimum power supply
required for hubs are wall sockets and own power plant, in case of data
centers, where much larger demand for computational power must be
met.

Data collection has always been necessary in the industrial world, where
extensive analytics of end devices would lead to economic benefits such

4

as precise production planning, downtime reduction and preventive
maintenance. Data from end devices and production lines would be
integrated with the Enterprise Resource Planning (ERP) and Manufacturing
Execution System (MES) and translated into Key Performance Indicators
(KPIs) which would aid the process of optimizing the business and
production operation. With IoT, data collection expands itself to the
consumer usage, i.e. collection of data from all kinds of devices ranging
from household appliances to building management systems to increase
the performances of said devices and improve the living conditions of
human beings. Furthermore, the collection of said data goes hand-in-hand
with the deployment of Application Programming Interfaces, allowing
software developers to turn data into value-added services and further
increases the benefits of IoT.

2.2 Sensors and actuators in automation systems

This chapter discusses the components of an automation system and their
functionalities. In general, a classic automation system consists of sensors
and actuators interfacing with a Programmable Logic Controller (PLC) via
input/output cards. The PLC is responsible for automation and regulation
processes, by controlling actuators based in the data received by different
sensors. Vital information from these processes is then passed to a control
room, where a supervisory control and data acquisition (SCADA) system is
located. The SCADA system, in general, allows an operator with process
expertise to monitor and regulate the processes, as well as performs the
task of data storage and connectivity for further analytics of processes. In
the following sections, each component of an automation system is further
described.

2.2.1 Sensors

This chapter discusses the definition of a sensor, the typical challenges
associated with metrology and smart measurement systems. Metrology,
as defined by the International Bureau of Weights and Measures, “is the
science of measurement, embracing both experimental and theoretical
determinations at any level of uncertainty in any field of science and
technology” (Mesures, n.d.). In the context of this thesis, it can be
understood as applied metrology or measurement technology applied in
the field of automation engineering. Generally, in automation systems,
measurements are achieved by using sensors to measure and convert
physical phenomena signals into electrical signals, which can be read and
reacted to appropriately by the control system.

A sensor consists of a sensing element and signal conditioning
components. According to McMillan (2010), the sensing element is
responsible for the conversion of a process variable into a quantifiable
output, which can be passed on to another sensing element, a transmitter

5

or a controller input. The output signal of a sensing element is called a
measurand (McMillan, 2010, p. 10). In this case, the sensing element is
connected to the signal conditioning components, which is responsible for
converting the measurand into standardized signals or digital values, such
as 4 – 20 mA or 0 – 10 V. In the case of digital values output, the definition
of such values must be documented in the sensors datasheet. The values
can be read using a microcontroller or a control system through
communication protocols specified by the manufacturer.

Typically, the following signals are measured using a sensor, with their
respective nominative units denoted in brackets:

 Temperature (°C or K)

 Relative humidity (%)

 Pressure (Pa, bar, hPa or mmHg)

 Force (N)

 Level (m)

 Flow speed and mass flow (m/s, m3/s or l/s)

 Concentration (kg/m3, ppm, ppb)

The quality of any given measurement is often reduced due to noise,
interference and sensor self-fault. Hence, modern sensors often include
features such as multiple measurements, real-time compensation, remote
configuration and extensive embedded digital signals and information.
Also, advances in wireless communication and sensing element technology
have further evolved the sensor industry, allowing more measurements to
be made with less commissioning effort and higher measurement quality.

In a building context, usually the following measurements are conducted:
temperature, pressure, flow, volatile organic components, carbon dioxide
(CO2) and carbon monoxide (CO) concentrations. Said measurements are
essential to the functioning of a building automation system, directly
affecting the indoor environment quality and habitant experience. For
example, temperature and pressure of air and water flow are measured in
the heating and air ventilation control (HVAC) system. Gas component
measurements can be used to adjust the power of the air ventilation
system to achieve on-demand ventilation, enabling the optimal habitant
experience while saving energy when there are no habitants in the
building.

2.2.2 Final Control Elements - Actuators

This chapter discusses the definition and functionalities of the final control
elements, also known as “effectors” or “actuators”. An actuator is
responsible for converting the controller output from the control system
into physical actions, to control the process. Usually, the action is achieved
by manipulating one or multiple flows of material in the process, namely
water or air flow. The flow manipulation is typically achieved using control

6

valves, motors and pumps (Hughes, 2007, p. 275). Additionally, motors and
pumps can be connected to variable speed drives (VSD) to achieve precise
speed and/or torque control.

Control valves can be separated into five types based on their mechanical
construction: globe, gate, diaphragm, butterfly and ball valves; each with
their own application areas depending on control function, flow material
and pipe size. For example, gate valves are typically used for manual on-
off use cases, diaphragm valves are used for liquid flow manipulation and
butterfly valves are used for large pipe size (Hughes, 2007, p. 276). Another
way to classify valves is based on the characteristic curve which describes
the relationship between a valve’s opening percentage to the change in
flow through the valve (Hughes, 2007, p. 277). The valve’s opening
percentage can be changed using solenoids, hydraulic or pneumatic
actuators. Figure 2 describes different types of characteristic curves.

 Control Valve Flow Characteristics (Inc, 2017)

Motors and pumps are necessary in scenarios where speed, pressure or
position of the flow of material needs to be controlled. Quite often they
are coupled with a variable speed drive (VSD) for speed control and local
process control applications, and the whole unit is then referred to as a
“drive”. Communication between the drive and the control system is
achieved via the use of analog or digital I/O, and mostly nowadays through
fieldbuses.

7

Typically, selecting a drive requires knowledge on process mechanical
requirements: mechanical load, pressure, angular velocity, etc. After the
motor has been selected using the previously mentioned criteria, the
speed drive is then chosen based on the motor’s power requirements.

Finally, there are other types of actuator. For example, heating resistors
and lights can also be considered as actuators.

2.3 Programmable logic controller (PLC)

This chapter discusses the definition, functionalities and programming of
a programmable logic controller. A programmable logic controller, as
defined within IEC 61131-1 (2003) standard, is “digitally operating
electronic system, designed for use in an industrial environment, which
uses a programmable memory for the internal storage of user-oriented
instructions for implementing specific functions such as logic, sequencing,
timing, counting and arithmetic, to control, through digital or analogue
inputs and outputs, various types of machines or processes” (IEC, 2003).

The program on a PLC is developed using elements defined in the IEC
61131-3 standard. Data types, programming languages, program
organization units (POUs), keywords and variable type definition are some
examples of the content of the standard. Typically, a programmable logic
controller system consists of a central processing unit (CPU) and I/O cards
for interfacing with other devices, namely sensors, actuators and other
PLCs. Nowadays, both the CPU unit and the I/O cards are designed to be
modular, allowing hot-swap and a quick replacement in case of failure.

Modern PLC systems are equipped with a real-time runtime (PLC runtime),
responsible for the process logics and an operating system (OS) runtime,
usually Microsoft’s Windows Embedded, Windows 10 IoT Core or a Linux
distribution. The OS runtime is meant to perform more advanced
programming tasks, allowing high-level programming language application
to be developed and run on the controller.

On the aspect of programming languages, the PLC runtime applications
(real-time applications) are developed using languages and elements
defined in IEC 61131-3 (2013). Software and controller vendors, such as
Codesys, Beckhoff, Wago or Siemens implement their own development
tools following the standard and add their own specific applications and
brandings as part of their product portfolio. For example, applications such
as interlocking control, sequence control and motion control are
implemented on the PLC runtime. These applications require less than 20
milliseconds of cycle time, which is the time for the output to react
according to the input, often referred to as real-time capabilities.

8

On the other hand, high level applications on the OS runtime have no
language limitations, as the programmable logic controller is
fundamentally identical to any full-scale computer, although the OS
runtime lacks real-time operation capability, a necessity for process
control application. The types of application on the OS runtime may
include e.g.: machine vision, webservice or information exchange services;
implemented with C/C++, Python or JavaScript programming languages.
Such applications serve the data integration process in the enterprise
environment and does not require real-time capability.

In general, the term programmable logic controller has been understood
to represent the PLC runtime for process control. Recent technological
advances allowed the programmable logic controller to execute high level
applications, bridging the gap between a PLC programmer and a software
developer.

2.4 Fieldbus and data communication protocols

This chapter discusses fieldbuses and data communication in automation
systems. In particular, the Open Systems Interconnection seven-layer
model is described as the fundamental framework, followed by the
descriptions and use cases of different protocols for data communication
used in the empirical part of this thesis work.

2.4.1 Open Systems Interconnection (OSI) model

The OSI model provides a common basis for consistency between all types
of network communication protocols. First published by the International
Organization for Standardization (ISO) in 1984 as standard ISO 7498
(1984), the OSI model defined the seven-layer abstract model to profile
any communication protocols. The functionalities of the layers are shown
in figure 3.

9

 OSI seven-layer model (Cisco, 2017)

In general, the functionalities of OSI layers, from 1 to 7, are summarized
and listed in Table 1.

Table 1. OSI model functionalities summary (Dye, McDonald, & Rufi,
2008, p. 53; Microsoft, 2017)

Number Layer name Functionality

1 Physical Definition of how data is transmitted,
encoding of the signal and transmission
physical media (cable, wireless, etc.) and the
connection topology of devices in the network

2 Data Link Definition of nodes addressing, how data
should be encapsulated or “framed”, methods
of controlling communication traffic and error
reduction

3 Network Definition of the communication path based
on network conditions and how frames are
routed to their destination

4 Transport Definition of how data are transmitted with
least amount of errors, losses and duplication

5 Session Definition of how nodes can establish,
maintain and terminate connections;
optionally logging and security of said
connections

6 Presentation Definition of how data is formatted,
compressed and encrypted

7 Application Definition of services available to end-users
and end-devices

10

The layers are usually referred to by their number, and any given protocols
can be defined using some or all the OSI layers (Dye, McDonald, & Rufi,
2008, p. 53). The missing layers in the implementation could either indicate
a lack of implementation, or an open implementation. For example, the
Modbus protocol definition only match the application layer, lacking the
definition of the lower layers. Due to this, there exist multiple
implementations of the lower layers ranging from twisted pair cable
communication (Modbus RTU or ASCII) to TCP/IP over ethernet or internet
communication (Modbus TCP). Regardless, all implementations provide
services according to guidelines defined in the Modbus protocol.

2.4.2 Digital Addressable Lighting Interface (DALI)

Digital Addressable Lighting Interface was developed in the 1990s, based
on the IEC 60929 (2011) standard, for controlling lighting ballasts, drivers
and relays. In a DALI network, each lighting device is assigned its own
address and communication is achieved using low voltage digital signaling
on two conductors. Before DALI was developed, lighting control was
achieved using analog signals, which caused complexity in design and
inferior communication signal quality. Each DALI master (or controller) can
assume command of up to 64 addresses and 16 groups of addresses.
(Sinopoli, 2010, p. 57). Examples of DALI installation and analog control
installation are shown in figures 4 and 5.

 DALI light control installation (Beckhoff Automation GmbH,
n.d.)

11

 Analog 1-10V light control installation (Beckhoff Automation
GmbH, n.d.)

As can be seen from figures 4 and 5, using DALI allows the cabling and
functional design to be simplified significantly. The advantages of using
DALI include flexible topology, interoperability between different
manufacturers, real-time feedback of lighting values and flexible control of
individual devices or groups. Firstly, the DALI network allows almost all
types of topology, excluding only ring topology. Furthermore, the network
requires no termination resistor, no polarity requirement and allows
connection length of up to 300 meters. The DALI communication standard
is maintained by DALI working group which includes reputable
manufacturers, e.g. Siemens, Philips, Helvar, etc. therefore ensuring the
continuous development and enforcement of the protocol. On the DALI
network, the control and measurement values are repeatedly exchanged
between the host controller and the end devices. Furthermore, said values
are stored on both ends, allowing coherence and fast reaction within the
network. Finally, each end devices are freely addressable and can be
reconfigured programmatically, without physical change, allowing easy
maintenance and flexible functionality throughout the lifecycle of the
installation (Beckhoff Automation GmbH, n.d.).

The communication telegrams of the DALI network are illustrated in figure
6. Each block in the figure denotes one bit. The communication speed in
the DALI network is achieved at 1200 bits per second.

12

 DALI query and response telegrams (Beckhoff Automation
GmbH, 2010)

Each DALI device has two associated addresses: a 6-bit individual address
(address range equals 0 to 63) and 4-bit group address (address range
equals 0 to 15). Up to 16 scenes or output combinations are supported by
one DALI network. Each device can be configured to response to multiple
group requests. The commissioning process of a DALI network is started by
connecting all devices and randomizing the individual addresses of the end
devices. Following that, each device address is reassigned according to
engineering design, based on ease of programmability and grouping
functions.

Typically, in building electrification, the power distribution to end devices
is done with three-core cables (e.g. MMJ 3x1.5 cable), five-core cables are
used for three phase electrifications. In the case of DALI, the designer can
choose to use a five-core cable for both DALI communication and
electrification, or run a separated cable for DALI communication and use
the existing three-core cable for electrification. The latter method is
applicable for upgrading of existing installations, where changing the cable
would require efforts and downtime of the site. On the other hand, for
new installations the first method should be applied due to economic
reasons and maintainability.

2.4.3 EnOcean

EnOcean is innovative wireless technology based on energy-harvesting, in
other words, efficient energy exploitation of mechanical motions and
changes in the environment. After acquiring sufficient power, data is
transmitted wirelessly. Most commonly used environmental effects used
for energy harvesting are ambient lights and temperature differences.
Data is transmitted and received through radio frequencies and is
compatible with most major building automation protocols and PLC
systems. The technology is in depth explained in the international standard
ISO/IEC 14543-3-10. The protocol itself is regulated and maintained by the
EnOcean Alliance, which consists of reputable manufacturer in the building
automation field, e.g. EnOcean, Siemens, Texas Instruments, etc. Finally,
typical use cases of EnOcean technology includes wireless control and
indoor measurements. (Dang, Lupea, Multaniemi, & Tran, 2016, pp. 1,3)

13

The protocol employs the 868MHz frequency band in Europe, allowing up
to 300 meters free space communication distance and 30 meters indoor
communication distance. Due to its energy harvesting nature, the
messaging rate between devices are typically from 5 to 15 minutes per
message. Furthermore, the protocol is equipped with security mechanism
such has encryption and message counting, allowing secured usage in
sensitive environment applications. EnOcean data frames and security
mechanisms are described in figure 7.

 EnOcean communication frames (Dang, Lupea, Multaniemi,
& Tran, 2016, p. 4)

An EnOcean device is typically identified via the chip ID and the sender ID.
Chip ID is a 32-bit sequence, specific to each EnOcean device. The sender
ID consists of the Base ID and a “sub” sender ID. Said IDs are
reprogrammable, allowing faster device replacements without having to
go through the teach-in process with the master module. The ID length is
32 bits in total, although the total number of reprogrammable addresses
is only 65536 (16 bits). EnOcean devices communication is achieved by
exchanging message packets conforming to EnOcean Equipment Profiles
(EEP), which also provides the basis for programming EnOcean
applications. The commissioning process of an EnOcean installation
includes range planning and antenna placement to ensure the network
coverage for all devices. Simultaneously, the list of devices, their IDs and
profiles should be documented. After the installation of devices is done,
the programming can be conducted.

2.4.4 Modbus TCP and RTU

Modbus was developed by Modicon (Schneider Electric) and has since
become the de facto standard for multivendor device communication
(Mackay, Wright, Park, & Reynders, 2007, p. 96). The protocol defined the
message frame format between devices and the services which should be
available on slave devices. In a Modbus network, each slave device is

14

assigned an address, which can be reconfigured if necessary. With Modbus
RTU/ASCII, the slave device count is limited to 248, whereas with Modbus
TCP the slave quantity is limited by the IP address range. The data points
in each slave device is presented and classified into registers and coils, with
registers representing numerical values (e.g. setpoint and measurement
values) and coils representing binary values (e.g. alarm signals and
contacts statuses). The master then interacts with the slaves through read
and write operations on registers and coils, as the documentations of the
slave devices often provide the definition and functionality of each coil and
registers. Tables 2 and 3 describes the service (function) listing of the
Modbus protocol and the message frame format, respectively.

Table 2. Modbus data point address ranges and functions (Mackay,
Wright, Park, & Reynders, 2007, p. 98)

Data
type

Addresses Function
codes

Function descriptions

Coils 0 9998 01 Read coil status

Coils 0 9998 05 Force single coil

Coils 0 9998 15 Force multiple coils

Discrete
inputs

0 9998 02 Read single input

Input
registers

0 9998 04 Read multiple input

Holding
registers

0 9998 03 Read holding registers

Holding
registers

0 9998 06 Write holding register

Holding
registers

0 9998 16 Write holding registers

- - 07 Read exception status

- - 08 Diagnostic test

Table 3. Format of Modbus message frame (Mackay, Wright, Park, &
Reynders, 2007, p. 97)

Address field Function field Data field Error check field

1 byte 1 byte Vary 2 bytes

Devices that support Modbus ranges from field devices such as sensors,
variable speed drives to control room PLCs, SCADA and DCS systems.
Typically, PLCs and control room devices act as master and field devices
act as slaves in a Modbus network. Modbus RTU and ASCII uses physical
layer defined in EIA-232 and EIA-485 standards, which is commonly known
as twisted pair cables. Modbus TCP encapsulates the Modbus
communication frame into a TCP message and uses the TCP network,
usually Ethernet, to perform communication. A summarized comparison
of Modbus TCP and Modbus RTU/ASCII is provided in table 4.

15

Table 4. Comparison of Modbus RTU/ASCII and TCP

 Modbus RTU/ASCII Modbus TCP

Communication media Twisted pair cable Category 5/6 cable

Maximum speed 115 Kbps 57.6 Mbps with
100Mbps ethernet

Maximum length 1200 m at 9600 bps 100m

Redundancy CRC16 Handled by TCP
protocol

Concurrency Half-duplex Multiple session full-
duplex

Topology Single master
network, typically line
topology

Multiple masters
network, line or star
topology

Application notes Baud rate and parity
settings, termination
resistor at furthest
slave

TCP port and firewall
settings

The commissioning of a Modbus network consists of installation and
programming processes. The installation process should comply with
information provided in Table 4, especially the application notes. Also,
each slave device must be assigned a unique address. In the programming
process, the datasheet and manual of each device in the network should
be collected, as the register’s and coil’s map of each device should be listed
in said documentations.

In building automation, Modbus is mainly used for communication
between VSDs in air handling units or pumps, and the controller. Recently,
heat pump units and solar inverters are also supporting Modbus as their
communication method.

2.4.5 TCP/IP

Transmission Control Protocol (TCP) and Internet Protocol (IP), known
together as the Internet protocol suite or TCP/IP, is generally
acknowledged as the backbone for the Internet. The protocol suite was
developed by the Advanced Research Projects Agency (ARPA), more
commonly known nowadays as the Defense Advanced Research Projects
Agency (DARPA). The protocol suite matches layer 3 and 4 in the OSI
model, with IP acting as layer 3 and TCP acting as layer 4. (Mackay, Wright,
Park, & Reynders, 2007, pp. 257,258).

The Internet Protocol’s responsibility is the delivery of datagrams between
hosts or devices in a network. This is achieved via the use of IP addresses
for device identification and packet fragmentation, as networks might
have different packet size requirements. Currently, the most widely used
version of IP is IPv4, with plans for migration to version 6 (IPv6), due to the

16

limitation of the address pool with IPv4. Each IPv4 address is made up of
32 bits, usually denoted as four octets in their decimal presentation, e.g.
“192.168.0.69”.

To achieve the intended functionality of IP, a header of at least 20 bytes,
i.e. five 32-bit combinations, is attached to the information passed down
from the upper layers (Mackay, Wright, Park, & Reynders, 2007, p. 260).
The header content for IP version 4 (IPv4) is attached in figure 8.

 Content of IPv4 header (Mackay, Wright, Park, & Reynders,
2007, p. 260)

The fields shown in figure 8 is further explained as follows:

 Ver: indicates the protocol version. In IPv4 case, this field has the
value of “4”.

 IHL: Abbreviation for Internet Header Length. Indicates the length of
the header in 32-bit segments.

 Type of Service: Used to indicate the quality of service (QoS) of the
datagram, e.g. minimal delay, maximum throughput, maximum
reliability, minimum monetary cost.

 Total Length: contains the length of the whole datagram. Combined
with the IHL field, the host can determine the content of the
datagram. The minimum length requirement accepted by all hosts is
576 bytes.

 Identifier: Used for unique identification of datagrams. In case of
fragmentation, also used for reconstruction.

 Flags: Indicates whether a datagram could be fragmented or not.

17

 Fragment offset: indicates the position of one datagram for
reconstruction use, in the case of fragmentation.

 Time to Live (TTL): Indicates the travel distance of one datagram. The
value is decreased through each router that the datagram traversed.
On the other hand, the field enforce deletion of datagram in case of
undeliverable datagram, as a datagram will be discarded when the
TTL value reaches zero.

 Protocol: indicates the protocol used in layer 4 for one datagram.
Typical values are 6 for TCP and 17 for UDP.

 Checksum header: contains a check value for the IPv4 header.
Recalculated at every point which the datagram passed through, due
to constant changes in some parts of the header, e.g. TTL.

 Source and destination address fields: indicates the source and
destination of a datagram, represented by their IPv4 address.

 Options and padding: used for appending additional information, or
to fulfill the 20-byte length requirement.

Operating on the basis provided by IP, TCP provides the means for session
establishment between two hosts, to ensure the reliability of data
transmission. TCP allows large datasets to be transmitted partially and
reconstructed, as well as provides verifications mechanism, flow control
and socket services for multiple connections between two hosts. In
addition to TCP, User Datagram Protocol (UDP) is an alternative to data
transmission in use cases where synchronization is not required, or low
data volume is needed. Both TCP and UDP uses the “port” concept for
source – destination addressing and to achieve flow control as well as
multiple connections between two hosts. The main difference between
TCP and UDP is the reliability of data transmission. TCP headers are
significantly larger than UDP headers, therefore allowing sequencing for
large data transmission, error control mechanisms and retransmission for
guaranteed data delivery. On the other hand, the small header size allows
UDP to be used in situations such as network announcement, broadcasting
and data streaming (Mackay, Wright, Park, & Reynders, 2007, pp. 270-
272).

2.5 Data access and presentation in software engineering

This chapter provides information on the structure and abstract
components of a software system, namely, the data access layer and
presentation layer, often referred to as the backend and the frontend
respectively. Specifically, the backend and frontend for the Internet of
Things and web services use cases are discussed. The terms “data access”
and “presentation” in this section do not refer to the meaning described
in the OSI model, as these functionalities strictly belong to the application
layer in the OSI model. In general, the backend is responsible for providing
reliable data for different uses, e.g. monitoring, data collection, sharing
and visualization, whereas the frontend is responsible for efficient human-

18

machine interaction, converting machine data into human-friendly useful
indicators as well as interpreting human intent into machine directives and
data manipulation.

In comparison with the backend, the frontend involves developing
applications which are responsive, reactive and meaningful to the human
user. Examples of backend products include computer programs, mobile
applications and web applications. Within the scope of this thesis work,
only backend development is discussed and was commissioned.

2.5.1 Database management system

Usually in the context of the IoT and web development, the backend
involves the design and deployment of database systems and data
connectivity platforms, commonly known as Application Programming
Interfaces (APIs). The main challenges in backend development are
scalability and reliability requirements, as it is necessary for the backend
to store large quantity of data and handle data requests for multiple
different clients with acceptable latency while maintaining high availability
and uptime. With regards to web services, the main responsibility of the
backend is to provide continuous interaction with the frontend and ensure
synchronization between the stored data and the user interaction.
Furthermore, with regards to IoT, the backend also handles machine-to-
machine communication and decision-making functionalities to achieve
maximum machine efficiency.

Data storage is achieved via the use of database management systems,
often abbreviated as DBMS or commonly known simply as “database”. The
performance of a database system heavily depends on the computing
power and storage capability of the server computer. Modern database
systems support distributed computation solutions, i.e. deployment of
database systems in a large array of hardware, to achieve load reduction
on each server unit and ease of hardware addition in case of increased
computational requirement. In other words, this allows the server to
“scale” as the application requirements grow, while also provides higher
data availability.

Database model are unofficially classified into two categories: relational
and Not-only-SQL or NoSQL. Relational database is also known as SQL
(pronounced as “sequel”) database, as almost every relational database
solution uses the Structured Query Language (SQL) for access and
modification of data inside the database. This database model organize
data into tables, using columns to describe different attributes of one
dataset and rows to store different records of said dataset. NoSQL
database system, on the other hand, offers data storage in different forms,
e.g. key-value pair, document, graph and column.

19

The empirical work of this thesis involved processing and storing large
quantity of time series (TS) data, i.e. data associated with time values. For
example, a collection of different measurements recorded at different
timestamps is considered a time series. SQL and NoSQL database systems
could be implemented to warehouse TS data, at the cost of high latency
and disk storage, due to their general purposed nature. Recently, time
series database solutions were developed, offering higher data throughput
and lower latency as well as optimized data warehouse algorithms, leading
to lower storage requirements. Figures 9, 10 and 11 illustrates the
performance comparison between InfluxDB and MongoDB, as examples of
time series database system and NoSQL database system, respectively.

 Write throughput comparison – InfluxDB vs MongoDB
(Persen & Winslow, 2016, p. 6)

 Disk storage comparison – InfluxDB vs MongoDB (Persen &
Winslow, 2016, p. 6)

20

 Query throughput comparison – InfluxDB vs MongoDB
(Persen & Winslow, 2016, p. 7)

As can be seen from figures 9, 10 and 11, time series database system
offers superior data writing throughput and disk storage optimization,
while maintaining similar query performance. In conclusion, for the use
cases of the IoT and Industry 4.0 data collection, time series database
systems offer the most advantages compared to other database systems
and therefore is the most optimal choice.

2.5.2 Application Programming Interface (API)

The term “application programming interface” can be understood as the
platform for computer programs to interact and communicate with each
other. As examples, Microsoft provides the Windows API for software
developers to program applications which can be used on the Windows
operating system and Google provides the Maps API for developers to
build applications which needs location data. The first example
represented the APIs provided for a specific platform, in this case machines
which run the Windows operating system. The second example
demonstrated APIs provided for multiple platforms, such as mobile
operating systems and web-based systems. An API is usually associated
with a ready-made software and typically defines a set of methods,
protocols, data interpretation and access points so that software
developers can write new software that interacts with the existing
software. Consequently, an API provides encapsulation and controlled
access to the existing software, i.e. allowing the existing software to be
expanded and supportive of new software. This section discusses the
Representational State Transfer web APIs, commonly known as REST APIs
and their use case in the context of IoT and Industry 4.0. Any web services
which provide a REST API are commonly denoted as RESTful web services.

With respect to the database systems discussed in section 2.5.1, it is
necessary to develop an API so that devices and users can safely exchange
data with the database, as well as assuring control over which party can
have access to the data stored within the database. The API construction

21

can be separated into two parts, dealing with data input and output,
respectively. The main clients of the input interface are devices, whereas
the clients of the output interfaces are software developers, researchers
and other software which can take advantage of the data.

The REST model was documented by Roy Fielding in his doctoral
dissertation, as principles based on which web servers and clients could
exchange data over the Internet. Those four principles included:
identification of resources; manipulation of resources through
representations; self-descriptive messages; hypermedia as the engine of
application state. (Fielding, 2000; Wilde & Pautasso, 2011). To explain the
principles, the term “resource” is explained as the data owned by the
server, whereas the term “representation” is explained as the data
received by the client from a request sent to the server through the
“message”. The fourth principle can be understood as, the interaction
between the server and client is contained within the hypermedia, i.e. web
addresses or links. (Wilde & Pautasso, 2011, p. 37). REST API employs
hypertext transfer protocol (HTTP) as the transport service, the same
scheme with the world wide web. Links and web addresses are classified
as Uniform Resource Identifier (URI), as standardized in the RFC3986
publication of the Internet Engineering Task Force (IETF). Figure 12
demonstrates an URI for retrieving all latest measurement points from the
SMC building, provided by the API commissioned in the empirical part of
this thesis.

 API URI demonstration

Typically, the client will send a HTTP request to the server in the format of
"{𝑎𝑐𝑡𝑖𝑜𝑛} {𝑈𝑅𝐼} 𝐻𝑇𝑇𝑃 1.1", where the action could be one of those listed
in Table 5 and the URI, usually referred to as the “REST endpoint”, in similar

http://konttiserver.ddns.net/api/v1/olk/point/121_TE16

konttiserver.ddns.net

general location of
resources

/api/v1/

denotes API usage. v1
denotes the version

of the API

/olk/point/121_TE16

denotes detail on
resource, in this case

the datapoint
"121_TE16" from

"OLK"

22

format with one demonstrated in figure 11. Additional information such as
details about the client, authorization or expected response content type
can be, and very often is, embedded into the header of the request.

Table 5. REST API actions and descriptions

Action Change resource on
server

Usage

GET No Used to retrieve data from server

POST Yes Used to create new data on server

PUT Yes Used to update existing resource on
server

PATCH Yes Used to update resource on server,
partially

DELETE Yes Delete resource on server

Table 6 demonstrates a GET request sent to an API, and the response to
said request.

Table 6. REST API request and response example

Request Response

GET
konttiserver.ddns.net/api/v1/olk/point/
121_TE16

{
 "id":"121_TE16",
 "desc":"Air temperature in
room 121",
 "unit":"°C",
 "value":20.39,
 "timestamp":"2017-12-
18T14:27:53.066Z"
}

The example in table 6 is explained as an enquiry from a web client, asking
for the temperature in room 121, which is identified by the string
“121_TE16”. The API server responded with a JavaScript Object Notation
(JSON) string containing general information about the “121_TE16” point
in the “desc” and “unit” keys; the measurement value and the timestamp
at which the measurement was taken is stored in the “value” and
“timestamp” key. JSON is a widely used string-based data representation,
which allows different data structure to be represented in key – value
notations while maintaining human-readability as it can be seen in the
table 6 example. Furthermore, nowadays almost all programming
languages have their own JSON parser, allowing developers from multiple
programming paradigms to use JSON for data exchange in their
applications (Ecma International, 2017). Finally, REST APIs are released
with their own documentation, containing information on all endpoints;
methods; descriptions of request and response; authorization
requirements and limitations.

23

2.6 Building Automation System

The building automation system (BAS) is the network of sensors, actuators,
controllers and computers used in the building environment, responsible
for regulation and adjustment of the indoor environment. The
responsibility of the BAS often includes heating, ventilation, air
conditioning, lighting, alarms and access control of a property or a building.
Modern BAS also includes features such as equipment management, and
facility management, audio – visual control and video surveillance. In this
section, the HVAC control and lighting control are emphasized and
described, due to their vital necessity for building operation and energy
optimization in Finland.

2.6.1 Heating, Ventilation and Air Conditioning (HVAC) control system

The HVAC system typically consists of two sectors: heating control and
ventilation – air conditioning control. The heating system is responsible for
controlling the temperature of radiator network, domestic water network
and incoming air of the building through heat exchange or generation;
whereas the air conditioning system is responsible for maintaining the
indoor air quality by controlling the indoor air flow, air humidity and air
filter.

In Finland, the heating energy supply for one building usually comes from
a boiler unit or a district heating supply. A boiler-based system generates
heat from burning different kind of fuels, whereas a district heating system
would get the energy from local district heating network, which generates
heat from various production activities. Recently, the use of heat pumps
and solar heating systems in building heating system are increased, due to
the combined effect of price reduction, performance, long-term benefits
and energy resource scarcity. Following the heat generation section, the
heat is carried through the whole building through the radiator network.
In appendix 1, pages 11 to 14, the block diagram of the building heating
system of Sheet Metal Center, which is equipped with geothermal heat
pump and solar heating system is described.

The air conditioning system, or air handling unit (AHU), consists of the air
piping network and fan units for supplying and removing the air from the
building, with air filters for blocking small particles in the air circulation.
The air supply process involves taking air from the outdoor environment,
passed through a filter, heated up and then propagated inside the building.
On the other hand, the air removal process takes the air out passively using
pressure difference, or actively with the use of a fan unit and very often,
the exhaust air is passed through an air heat recycling unit to take
advantage of the heated air and reduce the heating costs. Figure 13
describes an air handling unit with heat recycling, in which the upper path
is the air removal process and the lower path is the air intake process. The

24

full version of figure 13, included with the control signal and functional
description (in Finnish) is included in Appendix 1, pages 30 to 32.

 Air handling unit with air recycling PI-diagram

The HVAC control system is usually equipped with schedule control for
optimal energy saving, which sometimes leads to excess energy wasting
when the building is not occupied, as well as discomfort indoor
environment when the control schedule does not meet with the current
inhabitant capacity of the building. Therefore, on-demand HVAC control is
necessary to maintain optimal indoor environment quality and energy
saving targets. To achieve this, additional measurements such as
occupancy and CO2 concentration are needed. The traditional HVAC
control system is often not equipped with such measurements, although
recent advances in sensor technology and IoT could allow addition of these
measurements, therefore making the further optimization of HVAC control
system feasible.

2.6.2 Lighting control system and occupancy management

Smart lighting control and occupancy management contributes
significantly to the energy optimization process of a building. As an
example, Pirelli Deutschland GmbH in Germany performed a renovation to
their warehouse lighting system, which involves adding occupancy control
to only turn on the lights at areas which employees are working at. The
warehouse has a floor area of 10000 square meters, where constant
lighting 24/7 was used before the renovation. Furthermore, the company
replaced conventional fluorescent lamps with LED lighting fixtures with
DALI control for higher efficiency. The electricity power requirement for
lighting reduced from 20 kW to 11.5 kW with the change from fluorescent
to LED lighting and further went down to 1.5 kW with the addition of DALI
control, directly translates into a 92.5 percent energy consumption
reduction (Beckhoff Automation GmbH, 2016).

Smart lighting control involves multiple strategies to mobilize the lighting
equipment based on real-time demands of the building occupants.

25

Sinopoli (2010) listed examples of those strategies which included
scheduling, occupancy control, daylight utilization and windows coating
usage. The first two strategies involved software solutions which can be
commission after the building construction, whereas the latter two
strategies were required to be executed during the construction planning
phase. Furthermore, light intensity control, or “dimming”, is also widely
used due to both comfortability and economic reasons (Sinopoli, 2010). A
typical industrial lighting fixture can produce up to 10000 lumens of
luminosity theoretically, whereas the illumination need for work areas are
much lower, around 500 lumens (Finnish Standards Association - SFS,
2011). In conclusion, lighting engineering and precise control is necessary
for satisfying the lighting requirement and achieving energy efficiency
simultaneously.

3 EMPIRICAL PROCESS

3.1 Preliminary design data collection and component selection

3.1.1 Preliminary design data collection

To conduct the empirical work of this thesis, the following documentation
were gathered:

 HVAC drawings of geothermal heat pump, solar heat generation,
thermal energy storage, radiant roof heating system and air
ventilation system of the SMC building. These drawings are included
in Appendix 1.

 Electrical drawings of the SMC building, including lighting and
distribution panels. The lighting system drawing is included in
Appendix 2.

 List of measurement points from Caverion system of the HVAC
control of SMC building.

 Datasheets of ABB weather station, solar inverters and datalogger

Before this thesis was commissioned, the data from HVAC control system
is only available to the building owner on an annual basis, as a report
requested from Caverion. Furthermore, even though the building was
equipped with a weather station and solar inverter system, no data was
collected to perform analysis on the performance of solar electricity
system, as well as correlation of local weather with the performance of the
HVAC system. Finally, the electricity consumption of the building could not
be precisely analyzed, as the only information available to the owners was
the monthly consumption from the electricity supplier. In general, there
was a shortage of data, therefore energy researches conducted on the
building, as well as data visualization for information purposes was limited
severely.

26

3.1.2 Component selection

The component selection was conducted based on the connectivity
requirement of existing systems, as well as operation targets of the
project. The component selection for the PLC system and the functionality
of each component were as followed:

 Beckhoff CX5130: Industrial PC with PLC runtime and Windows
Embedded Standard 7. Responsible for data communication, lighting
control and sensor communication. Used for Modbus TCP
communication with Caverion system and data communication with
the backend server.

 KL6811: Beckhoff I/O card for DALI communication. Used for lighting
control.

 KL6581 and KL6583: Beckhoff I/O card for EnOcean communication
and EnOcean antenna. Used for EnOcean sensor communications.

 KL6041: Beckhoff I/O card for RS485 communication. Used for
Modbus RTU communication.

 Schneider Electric ABL8REM24030: 24 Volt 3 Ampere power supply
module

On top of the PLC selection, the LED drivers of the current lighting system
will be changed to DALI communication model for implementation of the
smart lighting system in 2018. Also, EnOcean sensors will be added for
more precise indoor air quality monitoring.

The backend server selected was a normal workstation desktop, due to
possibility of moving the backend to cloud system. Regardless, the desktop
was equipped with more memory and a solid-state drive to ensure
performance requirement. In long term, cost analysis will be performed
to decide whether a full-fledged server system or a cloud-based system
will be used for production purposes.

3.2 Network infrastructure

The network connection was implemented based on the existing IT
infrastructure of the building. The PLC was connected to HAMK IoT
network, which was HAMK intranet with firewall rules implemented to
support IoT communication.

Figure 14 illustrates the connection scheme which was commissioned for
the thesis project.

27

 Connection scheme for empirical process

As can be seen from figure 14, there were four networks involved in this
thesis project: HAMK IoT network, HAMK Building Automation network,
HAMK Intranet and Backend network, noted as Valkeakoski campus. Their
characteristics can be briefly summarized as:

 HAMK Intranet: production local network of HAMK, does not allow
internal device communication regulation.

 HAMK IoT network: subnetwork of HAMK Intranet, allows flexible
internal communication.

 HAMK Building Automation network: subnetwork of HAMK Intranet,
for running critical infrastructure. Completely isolated from all other
subnetworks and the internet.

 Backend network: development network, separated from Intranet.
Interaction with the backend is only possible through the use of the
API.

For communication with the Caverion system, a firewall exception had to
be made, allowing a single-directional communication channel between
the system and the PLC located in IoT network on TCP port 502. The
Caverion system acted as the Modbus master device, writing all HVAC
system data to the Modbus slave on the PLC runtime.

Inside the IoT network, communication regulations were more flexible,
therefore the PLC could be connected with the ABB datalogger, which
collected data from two solar inverters and the weather station. The
Windows runtime from the PLC then aggregate the data from Caverion and
the datalogger, then send them to the backend through the API.

Ideally, the PLC could not be accessed from outside of the HAMK IoT
network. Currently, HAMK IT services configured and deployed a virtual

28

machine for remote development and troubleshooting purposes. This
virtual machine can only be accessed by the author and will be shut down
when the project is finalized.

3.3 PLC program

The PLC program consisted of two sections: PLC runtime and Windows
runtime program. The PLC runtime program was responsible for receiving
data from Caverion system and sending the data to the Windows runtime.
Firstly, the PLC needed to be configured as a Modbus TCP slave, with
mapping to PLC variables configured. In the PLC program, the registers
data from Modbus communication was mapped into a structure,
corresponded to the data point list of Caverion, for ease of later
programming and readability. At the same time, the data structure was
enabled for OPC UA access, as the Windows runtime program must be able
to read the structure.

On the Windows runtime of the PLC, NodeJS was installed in order to run
Node-RED, an IoT platform developed for data flow programming. The
connection of data flow made in Node-RED was as followed:

 Caverion data structure: read using OPC UA, published to backend at
endpoint /api/v1/olk

 ABB datalogger: read using Modbus TCP, published to backend at
endpoints /api/v1/olk_abb_weather; /api/v1/olk_abb_uno and
/api/v1/olk_abb_trio for the weather station, one-phase and three
phase inverters respectively.

The data acquisition cycle time was set to five seconds and could be as low
as two seconds. The cycle time was determined based on real performance
of the systems and proposals for smart grid and smart building standards
in Finland.

3.4 Backend deployment

The backend was deployed on a workstation desktop computer, located in
Valkeakoski campus, with the network infrastructure handled by a 4G
connection. In 2018, a decision will be reached on the new location for the
backend, either on full-scale server hardware or cloud premises.

InfluxDB was selected as the database system, due to its open source
nature and acceptable performance during the prototype phase. In the
database schema, measurement points from different buildings were
separated into different time series, even though this was not the
recommended design practice provided by InfluxData (InfluxData, n.d.).
The reason behind this design was due to incomplete API deployment, as
the current API was not implemented with separated access for different
buildings, therefore different time series was used to implement this

29

feature. Limitation and countermeasures of the current design will be
further detailed in chapter 5.

Node-RED was selected as the platform for data connection and
visualization, due to its ease of use for IoT prototyping. Firstly, REST API
requests could be treated and handled as HTTP requests, as can be seen
from figure 15 which demonstrated the data flow for data which came
from the PLC in SMC building. The data from POST request will be
extracted, parsed and inserted into the OLK time series in InfluxDB, while
a HTTP return code 201 is sent back to the PLC, which indicates a successful
request.

 Node-RED flow for Caverion data sent from PLC in SMC

Secondly, Node-RED is able to visualize data fairly easily, using the
dashboard module. Figures 16 demonstrates the visualization of data from
the ABB weather station at SMC building. The flow operation is explained
as a query made to the database for the latest weather record, then split
into different items for display on the dashboard. The dashboard interface
corresponding to the Node-RED flow in figure 16 is shown in figure 17.

 Node-RED flow for displaying weather data at SMC building

30

 Node-RED dashboard display for the weather data at SMC
building

4 RESULTS

This chapter discusses the results of the thesis project, as of December
2017. The original target of collecting HVAC system data from Caverion
control room was reached, as well as the deployment of the backend
system. In addition to the original requirement of data service for Sheet
Metal Center, the Valkeakoski Campus A-building and Hybrid Energy
Module were also connected to the backend system. Therefore, data
service of three entities are currently performed with the backend system
of this thesis project. The A-building data was used for Ward Sohier’s thesis
project “Energy Efficiency of the A building”, for the purpose of evaluating
heat loss and energy performance of said building, as well as improvement
suggestions for the building’s HVAC system.

One of the usage for data collected from SMC building is verification of
building simulation data. As building simulation could be used to test
different energy optimization measures in the design phase, it is necessary
to compare existing model in real scenario and in simulation to prove the
merit of simulation techniques. For instance, the data collected from SMC
building included the electrical consumption measurements. The collected
data from November 2017 showed that the building consumed 16287
kWh. The simulated results published in “Energy Simulation of Sheet Metal
Center with IDA ICE software” for November 2017 was 14559 kWh, which
showed a 2 kWh difference with the real data (Nguyen, 2017). The
difference was negligible, therefore with further developments and longer
period studies, the simulation accuracy will be improved along with its
merits. In addition, the data served by the backend is currently used in the
development of the 3D web visualization model of Sheet Metal Center
building.

31

5 LIMITATIONS AND EXPANSION POSSIBILITIES

Currently, the limitations of this system were as follows:

 Lack of API authorization

 Incomplete API documentation

 Load tests for the system not conducted

 Lighting control and sensor system not implemented

The development road map of 2018 for continuation of this thesis project
was specified to address said issues. Firstly, the API will be finalized during
January 2018, with proper authorization mechanisms and full
documentations. Furthermore, more buildings are planned to be
connected to the backend systems, which includes HAMK Visämaki
campus S building and Päivölä boarding school, as those are pilot cases for
projects commissioned by HAMK. Secondly, load tests will be conducted
on the backend system to determine the final deployment location for the
system which is either on commercial server hardware or cloud premises.
Finally, the lighting control and extensive sensor system will be
commissioned when the hardware is purchased. Also at this phase, the
security audition for the PLC at SMC building will be conducted in
cooperation with HAMK IT department.

6 CONCLUSION

In this thesis project, a PLC-based system was developed for the data
communication with Caverion SCADA system, as well as ready for smart
lighting control and indoor environment sensor network. In addition, a
data server system was deployed for data storage and a REST API
service was deployed for accessing stored data. The further
development of the thesis project was planned and will be implemented
in the following year.

All in all, the targets of this thesis project were achieved. The PLC system
commissioned was able to communicate with the Caverion system
and the data from the API was provided for energy researches at Sheet
Metal Center, as well as the development of 3D web visualization model
of Ruukki.

32

REFERENCES

Beckhoff Automation GmbH. (2010). Application Note DK9222-0810-0031.

Beckhoff Automation GmbH. (2016, October 14). Intelligent DALI lighting control
system for highest energy efficiency. Retrieved from
https://www.youtube.com/watch?v=pvF_gx5tHSY

Beckhoff Automation GmbH. (n.d.). DALI technical training presentation.

Cisco. (2017, December 11). An OSI model for cloud. Retrieved from
https://blogs.cisco.com/cloud/an-osi-model-for-cloud

Dang, K., Lupea, S., Multaniemi, S., & Tran, M. (2016). EnOcean report.
Valkeakoski: Häme University of Applied Sciences.

Dye, M., McDonald, R., & Rufi, A. W. (2008). Network fundamentals : CCNA
exploration companion guide. Indianapolis, Ind: Cisco Press.

Ecma International. (2017). Standard ECMA-404 - The JSON Data Interchange
Syntax.

Fielding, R. (2000). Architectural Styles and the Design of Network-based
Software Architectures. Irvine: University of California.

Finnish Standards Association - SFS. (2011, October 10). SFS-EN 12464-1 - Light
and lighting. Lighting of work places. Part 1: Indoor work places. Helsinki, Finland.

Hughes, T. (2007). Measurement and control basics. Research Triangle Park, NC:
ISA.

IEC. (2003). IEC 61131-1 Programmable Controllers - Part 1: General Information.
Geneva: IEC.

Inc, E. S. (2017, December 2). Specifying Control Valve data. Retrieved from
http://kb.eng-software.com/display/ESKB/Specifying+Control+Valve+Data

InfluxData. (2017, May). Architecting for IoT: The Need for an IoT Data Platform.

InfluxData. (n.d.). InfluxDB Version 1.4 Documentation. Retrieved December 20,
2017, from https://docs.influxdata.com/influxdb/v1.4/

Mackay, S., Wright, E., Park, J., & Reynders, D. (2007). Practical Industrial Data
Networks: Design, Installation and Troubleshooting. Oxford: Newnes.

McMillan, G. K. (2010). Essentials of Modern Measurements and Final Elements
in the Process Industry. Research Triangle Park, N.C. : ISA.

33

Mesures, B. I. (n.d.). BIPM - worldwide metrology. Retrieved from
https://www.bipm.org/en/worldwide-metrology/

Microsoft. (2017, December 11). The OSI model's seven layers defined and
functions explained. Retrieved from https://support.microsoft.com/en-
us/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained

Nguyen, N. (2017). Energy simulation of Sheet Metal Center with IDA ICE
software. Hämeen ammattikorkeakoulu. Retrieved from
http://www.theseus.fi/handle/10024/136290

Persen, T., & Winslow, R. (2016, September). Benchmarking InfluxDB vs.
MongoDB for Time-Series Data, Metrics & Management.

Sinopoli, J. (2010). Smart Building Systems for Architects, Owners, and Builders.
Amsterdam; Boston: Elsevier/Butterworth-Heinemann.

Wilde, E., & Pautasso, C. (2011). REST: From Research to Practice. New York:
Springer.

	Khoa Dang
	OLK - HVAC and automation scheme - Finnish
	Khoa Dang
	02000 valaisinluettelo
	11100
	11200

