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The purpose of this thesis was to research the effectiveness of using exoskeletons in 

robot-assisted therapy for gait restoration in people with spinal cord injury (SCI). 

The research for this thesis was carried out in a form of a literature review to address 

the effectiveness of exoskeletons in improving walking speed and walking distance 

compared to other physiotherapeutic approaches. The theoretical content of the thesis 

includes background on spinal cord injuries with anatomy of the spinal cord, modali-

ties used in rehabilitation of gait in population with spinal cord injuries and a presen-

tation of different exoskeletons that are used in robot-assisted gait rehabilitation. 

 

The search for full and freely available articles was made using four different data-

bases: Medline/Pubmed, Cochrane Library, Ebsco Host and Science Direct. Four dif-

ferent articles were found but only three of them were assessed further after applying 

the PEDro scale. All studies used the same type of exoskeleton (Lokomat) and com-

pared it to other approaches. 

 

Robot-assisted gait rehabilitation was found not to be any more effective compared 

to other modes of physiotherapy, such as treadmill-based training with manual assis-

tance, treadmill-based training with stimulation, overground training with stimula-

tion, and strength training. It appears that conventional gait training on a treadmill 

and muscle strength training yield better results in walking speed and distance, and 

overground locomotor training shows greater improvements in functional walking 

capacity than treadmill-based training. 
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1  INTRODUCTION 

Spinal cord injury (SCI) is a debilitating condition that affects many aspects of a per-

son’s life, including the ability to walk. For those with incomplete spinal cord injury 

or low complete spinal cord injury who have a potential to walk again there are dif-

ferent modes of physiotherapy that are used in gait rehabilitation (Harvey 2008). One 

of them is robot-assisted rehabilitation that uses different exoskeletons for restoration 

of motor function. Gait training is a form of motor learning, and therefore has to be 

intense, repetitive, well structured, task- and context-specific in order to enhance mo-

tor recovery and potentially restore motor function (Koceska & Koceski 2013). 

 

Robotics for healthcare is an emerging field and it is expected to grow in the future. 

It can replace the physical effort of a therapist, allowing for more intensive repetitive 

motions and delivery of therapy at a reasonable cost, as well as accurately measure 

the force and movement patters during motor recovery (Diaz et al. 2011). 

 

Nowadays several different exoskeleton systems are used in rehabilitation centres 

and many are being developed and undergoing testing. They focus on providing 

missing movements and sensing, safer environments, and environments that make 

regaining movement-related function easier and faster. They aim to provide dexter-

ity, natural mobility and even sense of touch to missing or paralyzed limbs (Dellon & 

Matsuoka 2007, 30). 
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2 SPINAL CORD INJURY 

 

Spinal cord injury (SCI) is damage to the spinal cord that results in partial or com-

plete motor or sensory loss. Most often it is a consequence of a trauma, such as a mo-

tor vehicle accident or fall, sport injuries or work-related injuries, but it can also re-

sult from illness, infection or congenital defect. A typical person with a spinal cord 

injury is a male aged between 15 and 25 years (Harvey 2008, 3). Every year, around 

the world, between 250,000 and 500,000 people suffer a spinal cord injury. Males are 

most at risk in young adulthood (20-29 years) and older age (70+). Females are most 

at risk in adolescence (15-19) and older age (60+). Studies report male-to-female ra-

tios of at least 2:1 among adults, sometimes much higher (Website of World health 

organisation, 2017). About 5% of spinal cord injuries occur in children as a result of 

a road trauma or fall from height, and they sustain a complete spinal cord injury 

more often than adults (Grundy & Swain 2002, 1). In Finland, the estimated number 

of people with a traumatic spinal cord injury is 3000 (Website of Käypä hoito, 2014). 

 

Injury can happen at any level of the spinal cord. Over 55% of injuries affect the cer-

vical spine which results in tetraplegia (also called quadriplegia) where trunk and all 

four limbs are affected. The rest of the injuries affect thoracic, lumbar or sacral spine 

in similar proportions and result in paraplegia where only the lower limbs and trunk 

to some degree are affected. The most common level of spinal cord injury is C5, fol-

lowed by C4, C6 and T12 (Harvey 2008, 3). 

2.1 Anatomy of the spinal cord 

Spinal cord is a long, thin bundle of nerves that passes from the base of the brain 

(brainstem) to the lumbar region of the vertebral column. It typically terminates be-

tween levels T12 and L2. Together with the brain it forms the central nervous system 

(CNS). The spinal cord is protected by the surrounding vertebrae, vertebral liga-

ments, connective tissue coverings, and cerebrospinal fluid (Tortora & Derrickson 

2011, 492-493). 
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The spinal cord appears to be segmented the same way as the spine because the 31 

pairs of the spinal nerves emerge from intervertebral foramina. The number of nerve 

pairs that exit the spinal cord corresponds to the number of vertebrae in the spine 

segments, except for the cervical segments. There are 8 pairs of cervical nerves (C1-

C8), 12 pairs of thoracic nerves (T1-T12), 5 pairs of lumbar nerves (L1-L5), 5 pairs 

of sacral nerves (S1-S5) and 1 pair of coccygeal nerves (Co1) (Tortora & Derrickson 

2011, 494-498). 

 

Figure 1. Anatomy of the spinal cord (Netter 2014, 161). 
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Each corresponding nerve root exits the spine in a specific pattern and this pattern 

differs between the cervical and the thoracic/lumbar regions.  The spinal nerves exit 

the cervical spine above their corresponding vertebral body level.  For example, the 

C7 nerve root exits above C7 through the C6-C7 neural foramen. C8 exits in between 

T1 and C7, since there is no C8 vertebral body level.  This orientation is reversed in 

the thoracic and lumbar spine. The thoracic and lumbar spinal nerve roots exit below 

their corresponding vertebral body level. For example the L3 nerve root exits below 

L3 through the L3-L4 foramen (Tortora & Derrickson 2011, 500).  

 

Each spinal nerve is connected to a segment of the cord by a posterior and an anterior 

root and their rootlets. The posterior (dorsal) root and rootlets contain only sensory 

axons which conduct nerve impulses from sensory receptors in the skin, muscles and 

internal organs into the CNS. The anterior (ventral) root and rootlets contain axons of 

motor neurons, which conduct nerve impulses from the CNS to muscles and glands 

(Tortora & Derrickson 2011, 494-498). 

 

 

Figure 2. Structure of the spinal cord (Website of Back pain guide, 2017). 

 

The spinal cord conveys electrical impulses between different parts of the body and 

the brain, and together with its associated spinal nerves controls some of our most 

rapid reactions (reflexes) to environmental change. Any damage to the spinal cord 

may, therefore, cause permanent changes in strength, sensation and other body func-
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tions (e.g. bladder and bowel control, sexual function) below the site of the injury 

(Bromley 2006, 13). 

 

Spinal cord has an ability to repair itself to a certain degree, even after a spinal cord 

injury. That is due to the neural plasticity, the capacity of neurons and their axons to 

regenerate in order to restore neuronal function and recovery. This means that motor, 

sensory and autonomic functions can spontaneously recover to various extends re-

gardless of the level of the injury or whether the injury was complete or incomplete 

(Onifer et al. 2011). However, the degree of functional recovery depends on the 

amount of spared neurons, location of the lesion, and activity during the rehabilita-

tion. It has been shown that rehabilitative training, especially treadmill locomotor 

training has large effects on cellular and molecular function involved in plasticity 

and can promote plasticity to a great extent (Fouad et al. 2011). 

2.2 Classification of spinal cord injuries 

Neurological damage of the spinal cord can involve transection of the spinal cord or 

it can be secondary to vascular and pathogenic events such as inflammation, oedema 

and changes to the blood-spinal cord barrier. In the latter case the spinal cord remains 

intact. Depending on the extent of the damage to the cord, all or just some neural 

messages will be transmitted across the site of the lesion. Thus the injury can be 

complete or incomplete (partial). In incomplete injuries there is a highly variable 

preservation of motor and sensory pathways below the level of injury, therefore some 

persons may have only slight movement or sensation whereas others can walk almost 

normally. Incomplete injury is more common following cervical, lumbar or sacral 

injuries than thoracic injuries, and it is more common nowadays due to improvement 

of emergency on-site management and acute management (Harvey 2008, 4). 

 

Severity of spinal cord injury is classified based on ASIA (American Spinal Injury 

Association) Impairment Scale (AIS). This is a five point ordinal clinician-

administered scale that identifies the sensory and motor levels indicative of the high-

est spinal level demonstrating “unimpaired” function. Preservation of function in the 

sacral segments (S4-S5) is a key for determining the AIS grade. Manual muscle test-
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ing of ten key muscle groups for motor levels, and pin prick and light touch testing 

for sensory levels are administered to help determine the AIS grade (Stokes & Stack 

2012, 57-58). AIS grades are presented in the Table 1 (Kirshblum et al. 2011, 543). 

 

Table 1. AIS grade system. 

 

A  Complete No motor or sensory function is preserved in the sacral 

segments S4-S5. 

B  Sensory incomplete Sensory but not motor function is preserved below the 

neurological level and includes the sacral segments S4-

S5 AND no motor function is preserved more than 

three levels below the motor level on either side of the 

body. 

C  Motor incomplete Motor incomplete. Motor function is preserved below 

the neurological level and more than half of key mus-

cle functions below the single neurological level of in-

jury have a muscle grade less than 3. 

D Motor incomplete Motor function is preserved below the neurological 

level and at least half of key muscle functions below 

the neurological level of injury have a muscle grade of 

3 or greater. 

E Normal If sensation and motor function are graded as normal in 

all segments, and the patient had prior deficits, then the 

AIS grade is E. Someone without an initial SCI does 

not receive an AIS grade 

 

2.3 Gait ability in spinal cord injuries 

The main consequences of an SCI are, among others, inability to walk, impaired 

walking, and disability resulting from paralysis of the muscles in the lower limbs. 

Many people with a SCI will wonder whether they will be able to walk again. In 

therapy setting, a mutual understanding of what is walking is needed both for the cli-

ent and the therapist: whether walking means merely moving from point A to point B 
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or does walking imply symmetrical and coordinated movements that resemble those 

before the patient’s injury; is the goal household ambulation or to some degree com-

munity ambulation; does walking allow physical assistance and use of assistive aids 

or is it independent (Behrman, Druin, Bowden & Harkema 2009). 

  

According to Whittle (2007, 48), “normal” walking (ambulation) is a method of lo-

comotion that involves the use of the two legs, alternately, to provide both support 

and propulsion, where at least one foot is in contact with the ground at all times. Gait 

is the manner or style of walking rather than the walking process itself, but it will be 

used in this thesis synonymously with the term walking. Whittle then continues that 

in order for a person to walk, the locomotor system must be able to accomplish four 

things without apparent difficulty and with modest energy consumption. These are: 

each leg has to support the body weight without collapsing, balance (static or dy-

namic) must be maintained during single leg stance, the swinging leg must be able to 

move to a position where it can take over the supporting role, and lastly, sufficient 

power is needed for necessary limb and upper body movements. In pathological gait 

these requirements can be met by compensating with abnormal movements, which 

are usually more energy consumptive, or by the use of walking aids such as canes, 

crutches or orthoses. If even one of these four requirements cannot be met, the sub-

ject is unable to walk (Whittle 2007, 101). 

 

A good prognostic indicator for ambulation is a preserved sacral sensation for pain 

and temperature which indicates sparing in the spinothalamic tracts. Without spi-

nothalamic tract sparing, the likelihood of ambulation decreases to approximately 

10% - 33% (Behrman et al. 2009, 381). Approximately 50% of people with spinal 

cord injury walk. Children generally attain a higher level of upright mobility than 

adults which might be due to biomechanical advantages of being a child or extensive 

support provided by schools, parents and therapists. However, neurological status is 

the strongest predictor of capability to walk. People with tetraplegia and total paraly-

sis of lower extremities (ASIA A or B) cannot walk. They can stand with frames, tilt 

tables or standing wheelchairs for the therapeutic benefit of being upright and 

weight-bearing through lower extremities (Harvey 2008, 107). 
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People with thoracic paraplegia and total paralysis of lower extremities (ASIA A or 

B) usually stand for exercise, although they can ambulate with walking aids on level 

ground if they have good upper limb strength and extensive orthotic support. Bilat-

eral knee–ankle–foot orthoses (KAFO) and different types of hip–knee–ankle–foot 

orthoses (HKAFO) are used together with elbow crutches or frame. They enable ei-

ther a reciprocal or jumping gait pattern. However, their gait is slow and energy-

consuming. Walking aids also limit use of hands during walking for tasks such as 

cooking and carrying bags (Harvey 2008, 107-118). 

 

Most people with motor incomplete lesions (ASIA C, D or E) and lumbosacral para-

plegia can walk for at least limited distances. People with ASIA lower extremity mo-

tor scores less than 20/50 generally use wheelchairs as their primary form of mobil-

ity. They may walk around the home or for the purposes of therapeutic exercise, us-

ing orthoses and aids. People with ASIA lower extremity motor scores more than 

20/50 generally attain the capacity for community ambulation and are capable of 

walking at reasonable speeds. People with incomplete tetraplegia who are dependent 

on walking aids generally require more strength in their lower extremities than those 

with paraplegia in order to adequately compensate for their upper limb weakness. 

The situation with incomplete lesions is more complex because some muscles are 

paralysed and others are not. Thus people with incomplete lower limb paralysis de-

velop compensatory movements during gait, e.g. “hip hiking” or circumduction of 

the entire leg in paralysed dorsiflexor muscles; hyperextension of knees in paralysed 

quadriceps muscles etc. They, too, require orthoses and splints (Harvey 2008, 107-

128). 

 

People tend to choose the most practical, fast, efficient and functional way of moving 

about in the community. Where the environment is accessible for wheelchairs, a 

wheelchair is an efficient form of transport. However, in areas with mountainous ter-

rain without wheelchair accessibility walking may be the only option for mobility. 

There are many benefits to regaining ambulatory function after SCI. Weight bearing 

helps prevent osteopenia that often accompanies acute SCI, standing and walking 

may decrease spasticity, incidence of pressure ulcer formation, urinary tract infec-

tions, and it may have positive impact on bladder and bowel regulation. Walking also 

has psychological impact on the individual with SCI and improves quality of life, 
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such as sleep, fatigue management and general well-being (Behrman et al. 2009, 

381). 

2.4 Gait rehabilitation in spinal cord injuries 

According to Koceska & Koceski (2013, 1), the goal of gait therapy is to “re-train the 

nervous system, to re-build muscle strength, to improve balance and to re-train 

kinematics in order to reduce the stresses applied to bones and muscles”. Further-

more, gait training is a form of motor learning, and it has to be intense, repetitive, 

well structured, task- and context-specific in order to enhance motor recovery and 

potentially restore motor function. Repetitive practice strengthens neural connections 

involved in a motor task through reinforcement learning (Koceska & Koceski 2013, 

1-2). Gait training needs to involve stepping and walking in an upright and weight 

bearing position (Harvey 2008, 149).  

 

There are three different modalities of gait rehabilitation: conventional gait training, 

partial bodyweight support (PBWS) treadmill gait rehabilitation with manual assis-

tance, and robot-assisted gait rehabilitation. Several factors should be considered be-

fore commencing conventional gait training in people with SCI, such as individual’s 

motor control, range of motion (ROM), muscle tone, sensation, functional abilities, 

posture, skin integrity, and autonomic function (Behrman et al. 2009, 382). 

 

Conventional gait training includes strengthening and endurance training of muscles 

under voluntary control. Training is specific, tailored to the individual and usually 

involves practising of one single movement at time. To compensate for deficits of 

paralysed or weakened muscles, therapists use different orthoses, braces and assistive 

devices for support. Training typically begins in parallel bars. The parallel bars allow 

the patients to support themselves with their upper body strength, and gradually put 

more weight on their legs as they regain the ability to walk. For safety reasons, a 

harness can be used. Later, rehabilitation progresses to walking with assistive de-

vices, e.g. walking frame, rollator, crutches (Koceska & Koceski 2013, Behrman et 

al. 2009, 384). 
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Partial bodyweight support (PBWS) treadmill gait rehabilitation uses a suspension 

system (harness) to provide proper upright posture, balance and safety. Usually two 

or three physiotherapists manually assist the moving of the patient’s legs during 

training and therefore coordinate the walking. The BWS reduces the demands on 

muscles which may enable the patient to focus more on improving coordination of 

movements while gradually increasing muscle strength. As the patient progresses, 

the bodyweight support can be gradually decreased, which challenges the patient to 

maintain more balance and postural control (Koceska & Koceski 2013, 2). 

 

Robot-assisted gait rehabilitation is a fairly new mode of gait rehabilitation that uses 

different types of robots to assist in gait training. It is a general assumption that with 

further technological development robotics will play an important role in therapeutic 

activities within rehabilitation treatment. More on robot-assisted gait rehabilitation is 

presented in the next chapter. 

3 ROBOT-ASSISTED GAIT REHABILITATION 

 

Traditional gait rehabilitation therapies often require several therapists together to 

manually assist the legs and torso during gait training. This type of training is labour-

intense and exhaustive, so it cannot be carried out for a long period of time. There-

fore it may limit the full potential of the treatment. It also presents a high economic 

burden to a healthcare system. Robotic rehabilitation can provide consistent and effi-

cient therapy by replacing the physical effort of a therapist, allowing more intensive 

repetitive motions with fever therapists on-site and thus lowering the costs of a ther-

apy. Furthermore, robotic rehabilitation can accurately measure and track patient’s 

motor recovery over the rehabilitation course (Diaz et al. 2011).  

 

The key principle behind robotic therapy is that repetitive proprioceptive input from 

the limbs stimulates neuroplasticity in the brain and spinal cord, which in turn re-

stores the mobility of the limbs. There is a greater activation over the sensorimotor 

cortical regions S1 and S2 as well as cerebellar region after body weight supported 
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treadmill training (BWSTT) in people with SCI. This implies that BWSTT may 

augment supraspinal plasticity in brain regions that are related to locomotion (Win-

chester et al. 2005). 

3.1 Exoskeletons  

Robotic devices used in robot-assisted rehabilitation are also termed “wearable ro-

bots” or “exoskeletons” because they are in certain way attached to the human body. 

More precisely, an exoskeleton is a mechanical structure with joints and links corre-

sponding to those in the human body. Generally, an exoskeleton can be attached to 

upper limbs, lower limbs or to the whole body (Sale et al. 2012).  Mobile or portable 

exoskeletons require batteries and a control system usually in a user-worn backpack 

(Lajeunesse et al. 2015). 

 

Although exoskeletons have been used in gait rehabilitation only for the last two 

decades, the concept of an exoskeleton as a “mobility assistant” was introduced al-

ready in 1883 by prof. H. Wangenstein (Pons 2008: 5). Almost a century after, in 

1968, the researchers of University of Wisconsin started to develop a full lower limb 

exoskeleton, designed to assist paraplegics with complete upper limb capabilities to 

walk again. With that exoskeleton it was possible to walk at 50% of normal speed, 

and implement sit-to-stand and stand-to-sit transfers. In 2000, a treadmill-based exo-

skeleton Lokomat was developed in Switzerland. Lokomat has been used widely in 

rehabilitation settings over the past years. Numerous other exoskeletons were being 

developed in the 21
st
 century (Guan et al. 2016). It has to be noted that exoskeletons 

have been used in other domains than rehabilitation, for instance in defence and 

homeland security, military, industry, space, and they have played a role as service 

robots for instance in rebuilding nuclear power plants, caring for the elderly, keeping 

watch at museums and similar (Pons 2008: 11). 

3.2 Lower limb exoskeletons  

Several lower-limb exoskeletons have been developed to restore mobility of the af-

fected limbs in gait rehabilitation. They can be powered exoskeletons which require 
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batteries or electricity, passive exoskeletons which do not require electrical power 

source, and hybrid exoskeletons which are powered but use functional electrical 

stimulation (FES) of the muscles and actuators. They can be also either fixed, mean-

ing that the device is attached to a wall, a bracket or suspended from the air by a 

fixed hook and harness, or mobile, where the user and the exoskeleton move around 

freely (Website of Exoskeleton report 2017). 

 

Fixed exoskeletons are either treadmill based or foot-plate based. An example of a 

treadmill based exoskeleton is Lokomat (manufactured by Hocoma AG) which con-

sists of a robotic gait orthosis and an advanced bodyweight support system, com-

bined with a treadmill. Computer controlled motors are integrated into bilateral hip 

and knee joint of the orthosis. Lokomat is most clinically evaluated system (Diaz et 

al. 2011, 2). Other treadmill-based exoskeletons are G-EO System, KineAssist, 

ReoAmbulator, RoboGait, and Walkbot. 

 

 

Picture 1. Lokomat (picture is courtesy of Hocoma, Switzerland). 

 

Foot-plate based exoskeleton has programmable separate foot plates in which the feet 

of the patient are positioned and moved by robotic system to simulate different gait 

patterns. The patient is secured by a harness. Only one such system is in the market, 

named Gangtrainer GT 1, which is at least as effective as the manual treadmill ther-

apy but it requires less input from the therapist (Diaz et al. 2011, 4). 
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Picture 2. Gangtrainer GT 1 (picture is courtesy of Reha Stim, Germany). 

 

Mobile or portable exoskeletons are those where the user and the exoskeleton move 

over ground freely. They are attached to the patient with motorized hip and knee 

joints and the patient wears a backpack with a battery and controller. Most such exo-

skeletons require the use of crutches for balance while walking. Main difference be-

tween mobile and treadmill based exoskeletons is that mobile exoskeletons allow pa-

tients to apply natural gait training (Chen et al. 2013). Examples of mobile exoskele-

tons are ReWalk, Ekso GT, Indego, HAL, and REX. 

 

Assistance needed in exoskeletal stepping varies from minimal to moderate, but is it 

also possible to control the exoskeleton without any assistance. A powered exoskele-

ton uses different mechanisms to control walking: it can be either »user-operated via 

buttons« by pressing the buttons of the walker or it can be »user-operated via own 

shifts«, where the user shifts own weight within the exoskeleton, the exoskeleton de-

tects changes in the centre of mass over one limb and in response generates a step 

contralaterally. Another mechanism is to initiate stepping by an »external operator« 

using a control interface (Louie et al. 2015, 5). 

 

ReWalk exoskeleton is designed primary for clinical use but ReWalk personal 6.0 

model can be also used as a training tool for home use. The exoskeleton’s system 
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senses patient’s forward tilt of the upper body and thus initiates the first step. 

Repeated body shifting generates a sequence of steps which mimics a functional 

natural gait of the legs (Website of ReWalk Robotics 2017). 

 

 

Picture 3. ReWalk (picture is courtesy of ReWalk Robotics). 
 

Indego is a hip-knee powered exoskeleton which implements hybrid functional elec-

trical stimulation (FES) system to stimulate muscle activity. There are two models; 

Indego Therapy is used in rehabilitation and Indego Personal at home and in the 

community (Website of Exoskeleton Report 2017, Chen et al. 2013, 351). 

 

 

Picture 4. Indego Therapy exoskeleton (picture is courtesy of Indego). 
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Ekso GT (previously named eLEGS, Exoskeleton Lower Extremity Gait System) 

was developed in 2010 and it is the first exoskeleton approved by FDA for patients 

recovering from stroke as well as for those with SCI levels of T4-L5 and levels of 

T3-C7. In 2016 there were a little fewer than 200 Ekso GT units used worldwide 

(Website of Eksobionics 2017). 

 

 

 

Picture 5. Ekso GT, applying sit-to-stand function (picture is courtesy of EksoBio-

nics). 

 

 

HAL Lower Limb is the most widely distributed mobile medical rehabilitation exo-

skeleton.  It is a powered hip-knee wearable robot with a bio-electrical signal control 

scheme. Its control system processes data from surface electromyography (EMG) 

sensors, angle/acceleration sensors, and force sensors to estimate the necessary 

forces to assist the user’s intended actions. The use of EMG signals in HAL’s shared 

control system to help detect the user’s intent represents a type of hybrid peripheral 

neural interface (He et al. 2017, 93). 
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Picture 6. HAL Lower limb exoskeleton for medical use (picture is courtesy of Cy-

berdyne Inc.). 

 

REX is the world’s first hands-free, self-supporting, independently controlled exo-

skeleton which does not require crutches or a walking frame, thus leaving the arms 

free for upper-body exercises and activities of daily living. It can lift patients from a 

sitting position into a robot-supported standing position, walk, turn and it can be used 

in the stairs (Lajeunesse et al. 2015). Another self-balancing exoskeleton, 

ATALANTE, is designed to provide the full power needed for walking. It launched 

first clinical trials for validation of the exoskeleton’s ability to stand up, walk and sit 

down with its user safety during 2017 and is currently still being evaluated for gait 

rehabilitation (Website of Wandercraft 2017). 

 

 

Picture 7. REX (picture is courtesy of Rex Bionics). 
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In therapy setting, apart from training locomotion with an exoskeleton, other aspects 

can be trained while the patient is wearing the exoskeleton. Depending on whether 

the exoskeleton provides stability without using the forearm crutches or not, upper 

body training can be performed. Rex is one of such exoskeletons that does not re-

quire use of crutches, which enables the patient to use upper limbs freely. The com-

pany of Rex Bionics has developed an exercise program called “rexercises” to ad-

dress strength, flexibility, balance and endurance with minimal assistance from the 

therapist (Website of RexBionics, 2017). See Picture 8. 

 

 

Picture 8. Rexercises when wearing Rex Exoskeleton (photos are courtesy of Rex-

Bionics). 

3.3 Exoskeletons available for gait rehabilitation 

Treadmill-based exoskeletons weigh between 500 kg (KineAssist) and 1000 kg 

(Lokomat) and can provide maximum speed of 3.2 km/h when using the gait orthosis 

(Lokomat) (Website of HDT Global 2017, Website of Hocoma 2017). Mobile exo-

skeletons have to be lighter because they’re worn by a user. They typically weigh 

between 12 kg (e.g. Indego, PhoeniX) and 20 kg (Ekso GT) and achieve maximum 

speeds of 1.8 km/h (PhoeniX), 2.5 km/h (e.g. ReWalk) or 3.2 km/h (Ekso GT) with 

exception of H-MEX exoskeleton which can achieve max speed of 12 km/h. Speed 

depends on the user’s injury level and skills to control the exoskeleton. The price for 

mobile exoskeletons varies between the cheapest 21,000 € (Axosuit) and 105,000 € 
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(REX), with average between 60,000 € and 70,000 € (Website of Exoskeleton report 

2017). 

 

Table 2 presents powered lower limb exoskeletons that can be used in gait rehabilita-

tion of adult persons with spinal cord injuries. Most mobile exoskeletons are suitable 

for lower SCI or paraplegia because they require adequate upper body strength to use 

crutches, with exception of REX and Atalante which are self-balancing and thus can 

be used also with people with complete cervical SCI. Clinical Specialist; Sherri 

Wallis from Rex Bionics claims that: 

 

”We aren’t restricted in who can use the device based upon level of spinal injury like 

the other devices are.  Based upon our experience with patients who’ve been 

successful in REX, we have had individuals with SCI levels of injury as high as C-3 

with ventilator dependence in REX with the therapist controlling the joystick. We 

have also had individuals with locked-in syndrome successfully use REX where they 

have no movement other than their head” (REX Customer service 2017). 
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Table 2. Lower limb exoskeletons for gait rehabilitation adult patients with spinal 

cord injury. 

 

Exoskeleton’s 

name 

(producer) 

Type of 

exoskele-

ton 

Target 

SCI popu-

lation 

Use Particulari-

ties 

Availability 

and price 

ARKE 
(Bionik Labora-

tories, Canada) 

 

Mobile Lower SCI Pre-clinical 

trial phase 

Requires 

crutches 

Used in 

multiple 

clinics for 

research in 

the U.S. 

Price: 

67,200 € 

ATALANTE 
(Wandercraft, 

France) 

Mobile Complete 

SCI 

Rehabilitation 

and assistive 

device 

Self-balancing Pre-clinical 

trial phase 

Price un-

known, 

Axosuit 
(Axosuits, Ro-

mania) 

Mobile Lower SCI Rehabilitation 

(clinical use) 

Requires 

crutches 

Still under 

develop-

ment 

Price: esti-

mated to 

21,000 € 

Ekso GT 
(Ekso Bionics, 

USA) 

Mobile Complete 

and in-

complete 

SCI C7-L5 

Rehabilitation 

(clinical use) 

Requires 

crutches, FDA 

approved 

Price: 

59,000 € 

ExoAtlet 
(ExoAtlet, Rus-

sia) 

Mobile Lower SCI Rehabilita-

tion, assistive 

device 

Requires 

crutches 

Over 20 

ExoAtlets in 

circulation 

for medical 

and per-

sonal use in 

2016. 

Price: 

58,800 € 

G-EO system 
(Reha Technol-

ogy AG, Swit-

zerland) 

Fixed, foot 

plates, 

BWS 

unknown Rehabilitation 

(clinical use) 

Stair climbing 

up and down 

simulation 

 

H-MEX 
(Hyundai, South 

Korea) 

Mobile Lower SCI Rehabilitation 

(clinical use) 

Requires 

crutches, 

Speed 12km/h 

 

HAL 
(Cyberdyne, 

Japan) 

Mobile Lower SCI Rehabilitation 

(clinical use) 

Requires 

crutches, 

bio-electrical 

signal control. 

FDA 

approved. 

300 HAL 

exoskeleton

s in use in 

2016. In 

2016 the 

HAL is not 

sold but can 

be rented in 

Japan and 

Germany. 

Price 80,600 
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€. 

HANK 
(GOGOA, 

Spain) 

Mobile Lower SCI Rehabilita-

tion, assistive 

device 

Requires 

crutches 

In 2016 

around 20 

HANK 

exoskeleton

s in use. 

Price 67,200 

€. 

Indego 
(Parker Hanni-

fin, USA) 

Mobile T4 and 

below 

Rehabilita-

tion, assistive 

device 

Requires 

crutches, 

Hybrid (FES), 

FDA approved 

Price 58,800 

€ 

KineAssist 
(HDT Global, 

USA) 

Fixed, 

treadmill-

based, 

safety har-

ness 

Incomplete 

SCI 

Rehabilitation 

(clinical use) 

  

Lokomat 
(Hocoma, Swit-

zerland) 

Fixed, 

treadmill-

based, 

BWS 

unknown Rehabilitation 

(clinical use) 

 782 devices 

in 359 fa-

cilities 

worldwide. 

NX-A3 
(Guangzhou 

YiKing, China) 

Fixed, 

treadmill-

based, 

BWS 

unknown Rehabilitation 

(clinical use) 

  

PhoeniX 
(SuitX, USA) 

Mobile Lower SCI Rehabilitation 

(clinical use) 

Requires 

crutches, 

Cannot pro-

vide full assis-

tance while 

climbing 

stairs. 

Price 37,800 

€ 

ReoAmbula-

tor 
(Motorika, 

USA) 

Fixed, 

treadmill-

based, 

BWS 

unknown Rehabilitation 

(clinical use) 

  

ReWalk 
(ReWalk, USA) 

Mobile Lower SCI Rehabilitation 

(clinical use), 

personal use 

model 

Requires 

crutches, 

FDA approved 

200 units in 

use around 

the world in 

2016. 

Price 54,600 

€. 

REX 
(REX Bionics, 

New Zealand) 

Mobile C3 and 

below 

Rehabilitation 

(clinical use), 

personal use 

model 

Self-

balancing, 

Can be used in 

the stairs 

Price 

105,000 €. 

RoboGait 
(Bama Technol-

ogy, Turkey) 

Fixed, 

treadmill-

based, 

BWS 

unknown Rehabilitation 

(clinical use) 

  

Roki 
(Roki Robotics, 

Mexico) 

Mobile T4 and 

below 

Rehabilitation 

(clinical use) 

Requires 

crutches 

It can only 

be rented 

within Mex-

ico. Price 
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unknown. 

Walkbot 
(P&S Mechan-

ics, South Ko-

rea) 

Fixed, 

treadmill-

based, 

BWS 

unknown Rehabilitation 

(clinical use) 

  

 

According to Marjo Jännes-Malm (2017) from Fysioline in Finland, Lokomat is used 

in Hatanpään puistosairaala (Tampere), Laitilan Terveyskoti (Saarenvire), Tornion 

Sairaskotisäätiö, Kuntoutuskeskus Kitinkannus (Kannus), and there is one Lokomat 

for paediatric patients at Roboterapia in Vihti. At the moment there is one Indego 

exoskeleton in use in Finland at Folkhälsan in Mustasaari and Indego exoskeletons 

can be purchased from their website, fysioline.fi. Price range for purchase of Loko-

mat in Finland is between 190,000 € and 400,000 € and for Indego between 150,000 

€ and 280,000 €. 

3.4 Limitations of lower limb exoskeletons 

Most powered lower limb exoskeletons require use of a gait aid for support during 

stepping. It is generally expected that exoskeleton users will eventually progress to 

forearm crutches, which provide less stability than walking frames but are less bulky 

and thus more portable (Louie et al. 2015, 5). 

 

Physical aspects, such as size, weight, wearing the backpack, and control or move-

ment models of exoskeletons could affect comfort when used in the community. Also 

battery life and time taken to don and doff the exoskeleton can influence user’s satis-

faction (Lajeunesse et al. 2016). They may cause some adverse effects, such as skin 

irritation, pain or discomfort in the shoulder girdle, trunk and muscles of the upper 

limbs (Platz et al. 2016).  

3.5 Previous research on exoskeletons 

The use of exoskeletons in rehabilitation has been studied in relation to people with 

neurological impairments, mostly stroke and SCI. In stroke rehabilitation, there are 

several studies on upper limb exoskeletons in order to improve arm strength and co-

ordination (Chan et al. 2016, Jarrasse et al. 2014) as well as restoration of hemiplegic 
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gait in stroke patients. Preliminary findings suggest that gait training with exoskele-

tons is equivalent to traditional therapy for chronic stroke patients and it can provide 

additional benefits when combined with conventional methods in sub-acute stroke 

patients (Louie & Eng 2016). 

 

According to a literature review by Swinnen et al. (2010) there was no evidence that 

robot-assisted gait training improves walking function in persons with SCI more than 

other locomotor training strategies. Another systematic review with meta-analysis by 

Miller, Zimmermann & Herbert (2016) researched effectiveness and safety of pow-

ered mobile exoskeletons and concluded that “patients with SCI can safely ambulate 

in real-world settings at physical activity intensity conductive to prolonged use”. Fol-

lowing an exoskeleton training program, 67% of all patients in that review were able 

to ambulate with exoskeletons without additional physical assistance. However, most 

patients included in this review had a complete SCI and thus their rehabilitation 

would not result in independent walking. Additionally, the studies included in the 

review did not compare exoskeleton rehabilitation to other physiotherapeutic modali-

ties. 

 

Lower limb exoskeletons have two primary applications: they are used either as an 

assistive device to enable non-ambulatory individuals with SCI to walk, or as a reha-

bilitation tool to improve walking ability in ambulatory individuals with SCI (Louie 

et al. 2015, 1). However, up until today there is no available data to evaluate the 

effectiveness of exoskeletons used as assistive device in comparison to currently 

used orthotics (Fisahn et al. 2016). A major advantage of exoskeletons over passive 

orthoses is that they are powered and can provide coordinated and controlled joint 

movements rather than rigid knee and ankle fixation (Platz et al. 2016). 
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4 PURPOSE OF THE THESIS 

 

The purpose of this thesis is to make a literature review on the use of different exo-

skeletons in rehabilitation of gait in persons with spinal cord injury. The objective is: 

how effective are exoskeletons shown to be, based on the literature review, compared 

to other modes of gait rehabilitation. The thesis will also provide a list of exoskele-

tons for the purpose of gait rehabilitation that are currently on the market and those 

that are being developed. 

 

The thesis may aid the Well-being Enhancing Technology (WET) research group in 

SAMK in purchase of an exoskeleton that will, among others, benefit the learning 

experience of physiotherapy students and others at SAMK. 

5 RESEARCH METHOD AND PROCESS 

 

This chapter presents the overall thesis process, research method that was chosen for 

this thesis (systematic literature review) and the steps that are to be followed when 

conducting a systematic literature review. That includes an appropriate search strat-

egy, the selection of relevant studies, their quality assessment and summary. 

5.1 Thesis process 

The topic of this thesis was decided in January 2017 after contacting the Well-being 

Enhancing Technology (WET) research group in SAMK and agreeing on the topic. 

Research and collecting of literature started in February, following presentation of 

the topic at a thesis seminar. Theoretical part was being written from spring 2017 un-

til autumn 2017, and literature review done in autumn 2017. Several exoskeleton 

companies were contacted by email for additional information on their exoskeletons 

in November 2017. Gathering of information included also attendance of a webinar 

organised by one of the exoskeleton companies. Final corrections of the thesis hap-

pened in winter 2017. 
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5.2 Systematic literature review 

A systematic literature review is a review that involves a detailed and comprehensive 

plan and search strategy with the goal of reducing bias by identifying, appraising, 

and synthesizing all relevant studies on a particular topic (Uman 2011, 57).  Khan et 

al. (2003, 118-121) propose to follow five steps when conducting a systematic litera-

ture review: (1) formulation of questions for the review, (2) identification of relevant 

work, (3) quality assessment of relevant studies, (4) summarizing the evidence, and 

(5) interpretation of findings. 

 

The first step is to formulate research questions. This is commonly done by identify-

ing the key words connected to the topic, and linking the terms in different ways to 

form a search strategy, following the Population Intervention Comparison Outcome 

(PICO) model. In this model the search strategy can be organized based on the top-

ics: population (P), intervention (I), control group (C) and outcome (O). Different 

combinations of the topics can be made by connecting the terms using AND, OR and 

NOT to achieve a specific database search outcome (Sayers 2008, 136). 

 

After the search strategy has been completed, the next step is to identify relevant 

publications to be included in the literature review. This is done by applying inclu-

sion or exclusion criteria while scanning the titles or abstracts of the studies, or even 

reading the whole papers through.  Next step is a methodological quality assessment 

of the relevant studies. One of the assessment tools is the PEDro (Physiotherapy Evi-

dence Database) quality tool. The final step is to summarize the evidence collected, 

compare and interpret the results (Khan et al. 2003, 118-121). 

5.3 Search strategy 

The PICO model was followed in creating search terms, using the conjunctions 

”AND” or ”OR” between the terms: 

 

P = spinal cord injury 

I = exoskeleton / robot 
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C = conventional therapies 

O= walking / ambulation / gait / locomotion 

 

The database search was conducted on 21.9.2017. The databases searched were Med-

line/Pubmed, Cochrane Library, Ebsco Host and Science Direct. The search was un-

dertaken using the following entry terms: “spinal cord injury” AND (exoskeleton OR 

robot) AND (walking OR ambulation OR gait OR locomotion) in all four databases 

equally. The search yielded 817 results in total. After applying “humans” and “free 

full text” or “open access” filters, there were 162 search results (see Table 3).  

 

Table 3. Database search. 

 

 Medline Cochrane 

Library 

Science 

Direct 

Ebsco 

Host 

Total 

Entry terms used 166 13 422 216 817 

Humans and open ac-

cess filters applied 

50 13 26 73 162 

 

5.4 Study selection 

Figure 3 displays the study selection process and the reasons why certain studies 

were excluded at different stages. There were a total of 817 papers after applying the 

key-word search in all four databases. 
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Figure 3. Flow diagram of study selection.  
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Only studies that included population (adults, 18+) with incomplete motor or sensory 

spinal cord injury, with interventions that compared exoskeleton intervention with at 

least one other physiotherapeutic rehabilitation method for recovery of walking were 

chosen. Studies included were clinical trials or randomized control trials. Exclusion 

criteria were complete spinal cord injuries, use of exoskeleton as an assistive device, 

therefore not for gait rehabilitation, and single case studies. 

5.5 Methodological quality assessment 

All four selected studies were assessed for quality, using the PEDro tool. PEDro is 

abbreviated for Physiotherapy Evidence Database, a freely available online database 

that contains over 37,600 studies which have been assessed using the PEDro scale. 

The PEDro scale contains 11 different criteria, where each is given a point when 

clearly applicable to the study or a zero if it is not. The first criterion is not used in 

the final scoring (Website of Physiotherapy Evidence Database Free Online, 1999). 

 

Table 4. Methodological quality assessment using PEDro Scale. 

 

 Criteria  

Study 1 2 3 4 5 6 7 8 9 10 11 Score 

Noojien et al. 2009 1 1 0 0 0 0 0 0 0 1 1 3/10 

Field-Fote & Roach 2011 1 1 0 1 0 0 1 1 0 1 1 6/10 

Labruyere & Hedel 2014 1 1 0 0 0 0 1 1 1 1 1 6/10 

Lam et al. 2015 0 1 0 1 1 0 1 1 1 1 1 8/10 

 

After eliminating the score of the first criterion which is not used in the final scoring, 

two studies achieved the final score 6/10, one study achieved score 8/10 and one 

3/10. Trial reports that score ≥ 6/10 on the PEDro scale are of moderate to high 

quality (Website of Physiotherapy Evidence Database Free Online, 1999). Only stud-

ies which achieved at least score 6/10 were included in this review (three studies in 

total), therefore the study with the lowest score (trial by Noojien et al. 2009) was 

eliminated from the review.  
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Table 5: Summary of the included articles.  

 
Author, 

year of 

publication 

Aim of the 

study 

Study de-

sign 

Subjects Methods Results Limitations 

Field-Fote 

& Roach 

2011 

To com-

pare 

changes in 

walking 

speed 

and dis-

tance as-

sociated 

with 4 lo-

comotor 

training 

approaches 

Single-

blind, ran-

domized 

clinical trial. 

74 partici-

pants with 

chronic 

iSCI; in-

jury at T10 

or above, 

AIS C and 

D 

Randomized 

to four 

groups: 

1) treadmill-

based train-

ing with 

manual as-

sistance 

(TM; n=19), 

2) treadmill-

based train-

ing with 

stimulation 

(TS; n=22), 

3) over-

ground 

training 

with stimu-

lation 

(OG; n=18),  

4) treadmill-

based train-

ing with 

robotic as-

sistance 

(LR; n=15). 

All partici-

pants 

trained 5 

days per 

week for 

12 weeks 

(target was 

60 sessi-

ons). 

Walking 

speed: statis-

tically sig-

nificant im-

provement in 

OG, TS, and 

TM groups, 

but not in 

LR group. 

 

Walking dis-

tance statis-

tically sig-

nificant in 

OG and TS 

groups, but 

not TM and 

LR groups. 

 

The Lower 

Extremity 

Motor Sco-

res (LEMS) 

of partici-

pants in all 4 

training 

groups in-

creased by 

8% to 

13% after 

the interven-

tion.  

Unknown if 

training dos-

age and em-

phasis on 

training 

speed were 

optimal 

(training dos-

age was 

based on 

clinical 

judgment). 

 

Configuration 

of robot-

assisted train-

ing program 

imposes 

stepping re-

gardless of 

participant’s 

active effort. 

 

Small num-

ber of par-

ticipants in 

post follow-

up.  

Labruyere 

& Hedel 

2014 

To com-

pare robot-

assisted 

gait train-

ing 

(RAGT) 

with 

strength 

training in 

patients 

wth 

chronic 

iSCI 

Randomized 

clinical trial 

Nine par-

ticipants 

(five male, 

four fe-

male) with 

chronic 

iSCI , C4-

T11 AIS 

C and D; 

59 ± 11 

years old 

Randomized 

to 2 groups: 

group 1 

(n=5): 

received 16 

sessions of 

RAGT 

using 

Lokomat 

(45 min 

each) within 

4 weeks 

followed by 

16 sessions 

of strength 

Task-

specific 

RAGT was 

not better 

than lower 

extremity 

strength 

training. 

Maximal 

walking 

speed 

(assessed 

with 

10MWT), 

improved 

Small sample 

size, possible 

motivational 

bias, assessor 

bias. 
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training (45 

min each) 

within 4 

weeks. 

Group 2 

(n=4): 

received the 

same in 

reversed 

order. 

significantly 

more after 

strength 

training than 

after RAGT.  

Lam et al. 

2015 

To deter-

mine the 

feasibility 

and evalu-

ate the 

potential 

efficacy of 

Lokomat-

applied 

resistance 

(Loko-R) 

training on 

functional 

ambulation 

in people 

with 

chronic 

iSCI. 

Double 

blind, Ran-

domized 

control trial 

15 partici-

pants (nine 

male, six 

female) 

with 

chronic 

iSCI, C2-

T10 AIS C 

and D. 

Randomized 

to Lokomat 

applied resi-

stance aga-

inst the hip 

and knee 

Loko-R 

(test group; 

n=8) or 

Lokomat-

assisted 

BWSTT 

(control 

group; n=7); 

training for 

both groups 

45 min 

3x/week for 

3 months. 

Loko-R gro-

up had  sig-

nificantly 

better scores 

in SCI-FAP 

(decrease by 

204 points) 

than Control 

(decrease by 

18 points) at 

posttraining 

and in fol-

low-up as-

sessment. 

 

Overground 

walking 

speed (as-

sessed with 

10MWT) 

increased by 

0.10 m/s in 

both groups, 

and  

by 0.12 m/s 

in 1 mo and 

6 mo follow-

ups. Walking 

distance 

(assessed by 

6MWT) inc-

reased by 

19.6 m, by 

42.5 m at 1 

mo follow-

up, and by 

56.9 m at 6 

mo follow-

up. 

Small sample 

size 
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6 RESULTS 

 

All three studies were intervention studies that compared robot-assisted gait training 

with at least one other mode of training in subjects with incomplete spinal cord in-

jury, AIS grade C or D. All studies assessed effects of training on walking speed and 

walking distance as well as other outcome measures. 

 

The study by Field-Fote & Roach (2011) compared changes in walking speed and 

walking distance associated with four locomotor training approaches: treadmill-

based training with manual assistance (TM), treadmill-based training with stimula-

tion (TS), overground training with stimulation (OG), and treadmill-based training 

with robotic assistance (LR) which used Lokomat. Each training approach provided 

some assistance with stepping, with Lokomat set to 100% assistance to impose a ki-

nematically consistent gait pattern. The improvement in walking speed (assessed by 

10MWT) was statistically significant for the OG, TS and TM groups but not for the 

LR group. The increase in walking distance (assessed by 2 minute walking test) was 

statistically significant for the OG and TS groups but not for the TM and LR groups. 

The study showed greater improvements in functional walking capacity with over-

ground locomotor training approach than in treadmill-based training. 

 

The study by Labruyere & Hedel (2014) compared robot-assisted gait training with 

conventional strength training. Group 1 received 16 sessions of robot-assisted train-

ing using Lokomat, followed by 16 sessions of strength training. Group 2 received 

the same but in reversed order. Strength training focused on muscles of lower ex-

tremities with exercises of isotonic leg press in supine, isotonic hip adduction, abduc-

tion, flexion and extension with or without resistance. Results showed that maximal 

walking speed improved more after strength training than robot-assisted training, 

whereas overall walking performance (walking at preferred speed) did not show any 

significant difference between the two approaches. 

 

The study by Lam et al. (2015) was the only double blinded study and as such differ-

ent because it compared two interventions using Lokomat: the test group used 

Lokomat-applied resistance (Loko-R) and the control group used conventional 
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Lokomat-assisted body weight-supported treadmill training. All participants im-

proved their walking speed by 0.10 m/s post-training, by 0.12 m/s at 1 month follow-

up, and by 0.09 m/s at 6 month follow-up assessments, measured with the 10MWT. 

Both groups improved the walking distance, where 6MWT increased by 19.6 m, by 

42.5 m at 1 month follow-up, and 56.9 m at 6 month follow-up. However, there was 

no significant difference in these outcomes between the groups. Loko-R group 

showed significantly greater improvement in the Spinal Cord Injury-Functional Am-

bulation Profile (SCI-FAP) at post-training than the Control group: scores decreased 

by 204 points and in the Control group by only 18 points. Improvements were re-

tained at 1 month and 6 months follow-up. The study showed that applied resistance 

to the Lokomat is a feasible method in gait rehabilitation in people with incomplete 

SCI and may improve skilled overground walking performance. 

7 CONCLUSION 

 

According to the studies, robot-assisted gait training using Lokomat is not more effi-

cient in improving walking speed and walking distance compared to other physio-

therapeutic modalities, such as treadmill-based training with manual assistance, 

treadmill-based training with stimulation, overground training with stimulation, and 

strength training. It appears that conventional gait training on a treadmill and muscle 

strength training yield better results in walking speed and distance, and overground 

locomotor training shows greater improvements in functional walking capacity than 

treadmill-based training. However, added resistance to a regular Lokomat training is 

a feasible method and may improve patient’s overground walking performance. All 

studies have the same limitation, which is a small sample size. 
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8 DISCUSSION 

 

Having the background of working as a personal assistant to a person with a spinal 

cord injury, the author found this topic to be of her special interest. In addition to 

that, robot-assisted therapy was observed during one of the clinical placements where 

a patient with incomplete spinal cord injury was engaged in gait training using the 

Lokomat system. From own experience with spinal cord injured patients it can be 

agreed that rehabilitation of gait can be very physically demanding for physiothera-

pists and robot-assisted rehabilitation may ease the physical input from the therapists 

to a great extent.  

 

After the topic was decided, it was rather easy to find relevant publications on exo-

skeletons to become familiarized with the research area. The starting-point was the 

website Exoskeletonreport which holds extensive information on different exoskele-

ton models and points to further literature search on robotics in medicine which was 

used in the theoretical part.  

 

The search process in the literature review was demanding because it was lacking 

studies which would compare exoskeletons with other physiotherapeutic approaches. 

After many unsuccessful attempts to find more publications, the key-words were set 

to have a wider meaning which in return yielded numerous results. Those were 

scanned through manually by reading titles or abstracts. In the end, there were only 

three studies included in the review but this is in concordance with other literature 

reviews on exoskeletons which also claim that there have not been enough clinical 

trials done yet. However, only freely available articles were included in the review 

and there might have been more studies found without applying this filter. 

 

As exoskeletons are a fairly recent mode in physiotherapy, it was decided not to limit 

the criteria with year of publications and instead approve all applicable studies re-

gardless of year of publication. However, all three studies were published recently, 

that is in 2011, 2014 and 2015. Unfortunately, all three studies investigated the same 

exoskeleton (Lokomat) which was in contrast with the initial intention of this thesis. 

It was being expected to find more studies with mobile exoskeletons instead of a 
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fixed, treadmill based such as Lokomat. That was also the reason why more theory 

was devoted to fixed exoskeletons than it was intended. The initial plan was to make 

a literature review on mobile exoskeletons rather than fixed ones. 

 

The biggest limitation of this review is the small number of studies. There are only 

three studies included in the review, and one of them compared standard Lokomat 

with Lokomat-applied resistance. The latter is not an independent physiotherapeutic 

modality per se but the added resistance to the Lokomat does imply another modality 

which is resistance training and it was therefore included in the review. Small study 

number leads to another limitation, which is that the robot-assisted therapy is com-

pared to many different interventions within one study. It would be easier to draw 

conclusions on effectiveness of robot-assisted therapy if it was compared to the same 

intervention in all three studies. 

 

What needs to be done in future, are more good quality studies with larger number of 

participants that compare an exoskeleton with another therapeutic modality. There 

should also be more studies conducted which would compare a mobile exoskeleton, 

instead of a fixed one, with other therapeutic modality. Most studies so far are based 

on research whether a certain exoskeleton is a safe and feasible option in gait reha-

bilitation. 

 

Furthermore, if SAMK does purchase an exoskeleton, another possible thesis topic 

could be evaluating that particular exoskeleton for other populations than spinal cord 

injury, e.g. multiple sclerosis, stroke, cerebral palsy and other neurological condi-

tions that affect walking. Apart from physiotherapy students, the exoskeleton can be 

interesting also for engineering students and staff. 

 

All in all, this thesis can provide a deeper insight in the possibility to combine tech-

nology with conventional physiotherapy in locomotor rehabilitation. With further 

development of exoskeletons to be more user-friendly, have lower price and achieve 

better speed they may someday replace wheelchairs as a new assistive device.  
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