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Abstract 

 

During the development of the Membrane Electrode Assembly in Direct Methanol Fuel Cells it is 

not unusual for the Pt and Pt-Ru particles to aggregate forming an uneven dispersion on the Proton 

Exchange Membrane. It has long been known that the aggregation occurs over time when the 

catalyst is stored and can to a large extent be dispersed again through vigorous mechanical shaking 

or sonication. This paper aims to determine the time needed in order to disperse the catalytic 

particles to a degree that is suitable for the production of MEAs in DMFC. 
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1 INTRODUCTION 

The worlds growing demand for power has been for some time a pressing problem to 

the finitely limited natural resource. Not only is humankind faced with the problem that 

conventional resources are running out but also due to the fact that all the bi-products of 

these conventional resources are changing the planet we live on [1], having already 

increased the mean European temperature by 1.3°C since pre-industrial levels [2]; this 

problem goes further than most people realise as this creates a accumulating effect 

where any climate change encourages more climate change and as such once a tipping 

point is reached the detrimental process will be self-sustaining [3,4]. 
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This very limitation has led to a hybrid solution, it can be considered that any further 

advances with the internal combustion engine is rather minute and so the efficiency of 

these engines will never improve far beyond the current 25% or so [5]. Increasing the 

engine efficiency requires a completely new engine, one in which the device would 

produce electricity on the spot with a higher efficiency. For this electrochemical cells, 

or fuel cells, are seen as a viable alternative to the problem at hand. 

Currently a large range of different fuel cells are available, each serving a different 

segment of the market, this makes the term fuel cell very broad as no single system will 

come out as being perfect for all applications. The one of current interest however is the 

DMFC. 

The DMFC operates at low-temperature and uses a dilute methanol solution as its fuel 

source; as such it is ideal for the use in small electronics where large power output is not 

necessary. However due to its high catalyst loading it is hard to develop a cost effective 

DMFC. Variations of the DMFC exist such as the Direct Ethanol Fuel Cell (DEFC) 

which uses a dilute ethanol solution as its fuel as opposed to methanol. 

However at the heart of the DMFC there is a Membrane Electrode Assembly (MEA) 

where methanol reacts with the catalyst in order to produce the electrons the 

relationship between particle size and its active surface area will define its potential to 

reach the maximum power density. 

As such the particle surface area, calculated per gram of particles, is directly linked to 

the performance of the cell. Knowing that the average particle size in the quality 

analysis is 2.8 nm the total surface area can be calculated. 

Knowing the density of platinum to be 21.4 g/cm
3

 and ruthenium to be 12.4 g/cm
3

 the 

volume per gram can be calculated. 

𝑉 =  
𝑚

𝑝
 

Where V is volume, m is mass and is density; thereby receiving an answer of 0.047 cm
3
 

or 4.7x10
-8

 m
3

 and for ruthenium 8.1x10
-8

 m
3
. As each component represents 50% of the 

solution this would give an average volume of 6.4x10
-8

 m
3
. 

Assuming the particles to be near spherical [6] the volume per particle can be calculated 

as: 

𝑉 =  
4

3
∗  𝜋 ∗  𝑟3 

Where π is taken as 3.14; the individual particle volume of one gram is 1.15x10
-26

 m
3
. 

In order to determine the number of particles in a gram the total volume is divided by 

the individual volume proving there to be 5.57x10
18

 particles. To calculate the total 

surface area of all the particles the following equation is used: 

𝐴 = 4 ∗  𝜋 ∗  𝑟2 ∗  𝑁𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 

These results in a total surface area of 137.1 m
2

 per gram. 
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2 EXPERIMENTAL SETUP 

In order to be able to screen print a catalyst onto a membrane it is necessary for the 

catalyst to be in a viscous form. In order to achieve this viscous form several 

components are added in succession. This mixture of components is referred to as the 

catalyst mixture. 

The catalyst mixture consists of two main ingredients. This is the catalyst and the 

Nafion (DuPont) solution. The anode catalyst is a HiSpec 6000 (Alfa Aesar™) 

consisting of 50% platinum black and 50% ruthenium. The cathode side is a HiSpec 

1000 (Alfa Aesar™) consisting of pure platinum black. The Nafion used is either of 5% 

or 10% concentrations (purchased from fuelcellstore.com), with the amount used during 

MEA production changed to match the concentration. 

In addition METFE powder has been added as a support material to stabilize and 

increase the power density of the cell. 

Furthermore a solvent is added to increase the volume in order to allow for easy screen 

printing. If only the catalyst, Nafion and METFE were to be screen printed there would 

not be enough liquid to cover the surface area thereby depositing all the slurry in one 

section. 

2.1 Slurry Creation 

The catalyst mixture was made in accordance to previously published research on the 

topic by the same author. 

The slurries were created by adding each component in succession into a 1 ml glass vial 

using a Mettler AE 100 scale set capable of 0.1 mg precision. All of the parts that were 

in contact with the MEA were cleaned, with ethanol, before use and let dry properly in 

order to ensure that the catalyst would not react with any leftover ethanol on the 

equipment. The slurry was then mixed in the following order: 

1. Catalyst 

2. Solvent 

3. METFE 

4. Nafion 

After mixing of the components the glass vial was inserted into a Finnsonic m03 water 

bath sonicator; the slurries were sonicated between 30 minutes and 48 hours. The 

sonicator was constantly cooled by inserting blocks of ice into the water. 

2.2 Application 

The airbrush method involves using an airbrush (Badger AirBrush model 200) with 

1.5 bars of air pressure to create a fine mist of catalyst solution that is layered onto the 

membrane. 
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A Nafion membrane is first placed on a 90°C hot glass plate giving it a clean and 

straight surface, the Nafion will also adhere to the surface of the glass making handling 

of the process easier. On top of this a polydimethylsiloxane (Atos Medical Silatos) 

sheet, with a rectangular opening in the middle, is placed. The PDMS template adheres 

lightly to the Nafion further aiding to keep the membrane in place during operation as 

well as creating a stencil formation of how the catalyst will be placed onto the 

membrane. The dimensions of the opening varies according to need however the main 

bulk of experiments have been using an opening of 3.6x21 mm, thus creating a catalyst 

area of 75.6 mm
2
. 

The surface is heated from above by an IR heater supplying ~300°C (measured using an 

IR thermometer on the surface of the heating element) at a distance of 50 cm, thus 

providing a surface temperature of 80°C as verified by a thermal imaging camera (FLIR 

i50). This IR heater is turned on only once the production is fully ready to begin and 

turned off immediately afterwards. During the spraying process the heat increases the 

water evaporation from the solvent thus creating a finer mist than would be if no IR 

heater was used. The heat also evaporates solvents used in the Nafion solution. At the 

same time the strong IR heater replaces the heat lost due to evaporation during 

production thus reducing the overall production time. 

Once the temperature of the membrane had stabilised the catalyst ink was sprayed onto 

the surface of the membrane using the airbrush. The cathode ink was sprayed first as it 

was slightly less likely to be damaged due to the relatively higher Nafion content. This 

was done by pointing the airbrush nozzle towards the membrane at an angle of around 

45° and a distance of 20 cm. Then manoeuvring the fine mist across the surface of the 

membrane, where it was visible through the PDMS. Once a layer of the mist had coated 

the membrane it was allowed to dry for 5-15 seconds when the next layer was the 

sprayed in the same manner. This was repeated 10-15 times when the position of the 

airbrush nozzle was rotated 90° clockwise to the membrane surface, this creates a more 

three dimensional structure of the particles as they are sprayed onto the surface. This 

process was repeated until all of the catalyst ink was used up. 

Once one side of the membrane was coated with the catalyst ink the IR heater was 

turned off and the PDMS template was removed. The membrane was left on the glass 

plate at 90°C to completely dry for 20 minutes. This allowed the Nafion solution to dry 

on the membrane and was then turned around to coat the other side. 

The membrane was taken of the hot plate and allowed to cool down for 10 minutes in 

order to make it easier to detach the membrane from the glass plate and turn it around 

for coating the anode side. 

Having successfully sprayed the catalyst layer onto both sides of the membrane, the 

MEA was placed in a glass container with an opening, in order to allow any solvent to 

evaporate. The container was then placed in an oven at 60°C for 24 hours ensuring that 

no solvent was left on the MEA. 

The then completed MEAs were then boiled in different concentrations of HCl (between 

0.1M to 2M) in order to remove any metallic contamination from the membrane 

followed by rigorous washing with DI water. 
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2.3 Analysis 

Analyses of the produced MEAs were done using the available laboratory microscope 

with an attached camera for taking images. The images were transferred into a custom 

program that allowed for measuring the seen particles aggregates. Repeated 

measurements were then used to create an overall analysis of the particle aggregate 

sizes and their coverage of the surface of the MEA. 

3 RESULTS 

These results have been achieved with the help of a microscope camera for capturing 

the images in order to measure the particles. 

The first tests were done by increasing the sonication time used during production of the 

catalyst slurry. 

 

Figure 1: Catalyst particle sizes measured at intervals during sonication, taken as an average of six 

measurements. 

In Figure 1 it can be seen how the particle sizes decrease over time during sonication in 

water. Taking the smallest particle size at 2.1 μm a new surface area can be calculated at 

0.2 m
2

 this is a reduction of 99.85% in surface area. Similarly after one hour of 

sonication the average anode particle size is 8.0 μm with a surface area reduction of 

99.99%. 

Further tests were done using HCl in an attempt to remove the oxidation layer from the 

particles. 
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Figure 2: Anode particle sizes measured at 100x magnification. 

This method caused varying results which cannot be seen as reliable when measuring 

the particle sizes. In an attempt to improve the accuracy software was written to 

calculate the number of particles seen in a taken picture. As nano-sized particles cannot 

be seen at 100x magnification it would stand to assume that as more particles become 

the original nano-size the overall mass of particles seen in a picture would decrease. 

 

Figure 3: Anode surface coverage area at 100x magnifications. 
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This method produced slightly more accurate results. 

4 DISCUSSION 

As was expected the particle aggregation reduced greatly over time during sonication of 

the slurry. However unexpectedly the distribution of particles greatly slowed down after 

an hour of sonication at which point only small improvements were observed. 

While the paper did not go into detail regarding the power input of the sonication this is 

a variable than can also be used to regulate the time needed for separation of the 

aggregates. However as the Nafion solution and catalyst are both sensitive to heat 

fluctuations, especially above 70°C, caution should be practiced. 

Over time the metal particles will aggregate once again and slowly deposit at the bottom 

of the flask once more. The time for this sedimentation is inversely proportionate to the 

time spent sonicating the slurry in the first place. This is important to note, as the slurry 

should ideally be used immediately in order to reduce as much as possible any 

aggregation of the particles. 
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