

STRESS INTENSITY FACTOR SOLUTION USING DISTRIBUTED

DISLOCATION TECHNIQUE

Bachelor’s thesis

Riihimäki, Mechanical Engineering and Production Technology

Winter, 2018

Ekaterina Gribova

ABSTRACT

Mechanical Engineering and Production Technology
Riihimäki

Author Ekaterina Gribova Year 2018
Subject Stress Intensity Factor Solution using Distributed Dislocation

Technique
Supervisor(s) Jussi Horelli, Adeyinka Abass

ABSTRACT

Nowadays, engineers are using fracture mechanics as a useful approach of
studying structures with cracks. These cracks are present in structures due
to manufacturing methods such as welding, machining and casting or due
to the actual usage. The most important parameter in this approach is the
stress intensity factor (SIF). The SIF characterizes the intensity and
distribution of the stress fields in the immediate vicinity of the crack. Once
the SIF of a given crack is known, it will be possible to predict whether the
structure is fit for service under the given static or cyclic loadings. Although
in principle, SIF of several types of crack geometries can be determined
using the Finite Element Method software. In practice, this is quite
computationally expensive because a very small mesh is needed at crack
locations. Engineers need a fast way to determine SIF to fully adopt the
fracture mechanics approach in their daily design work.

The objective of this thesis was to develop a MATLAB code that engineers
could use to determine the SIF of 2D crack geometries often encountered
in practical designs under any loading conditions using the distributed
dislocation technique (DDT). DDT is based on Bueckner’s theorem and the
method of modeling the crack as dislocations along the line. The technique
is a very efficient numerical method for the determination of the SIFs with
a high accuracy.

The MATLAB code that can be used to determine the SIF of cracks often
encountered in practice such as surface cracks near weld joints, buried
cracks in casted parts as well as inclined cracks under arbitrary loading
conditions was successfully developed in this thesis. This code can be
combined with the Finite element method software to solve large complex
structures. Future tasks are to develop the solution for more complicated
shapes of cracks, for example, branch cracks, and expand the programed
codes from a two-dimensional to three-dimensional solution of crack
problems.

Keywords Fracture mechanics, stress intensity factor, crack, distributed dislocation.
Pages 37 pages including appendices 2 pages

CONTENTS

1 INTRODUCTION ... 1

1.1 Objectives .. 1

2 THEORY .. 2

2.1 Fracture Mechanics ... 2

2.2 Stress Intensity Factors ... 5

2.3 Distributed Dislocation Technique .. 6

2.4 Numerical Solution Cauchy Kernel. ... 10

3 CODES FOR STRESS INTENSITY FACTORS ... 13

3.1 Crack in Infinite Plate .. 13

3.2 Buried Crack, Normal to Free Surface ... 16

3.3 Buried Crack, Inclined to Free Surface .. 20

3.4 Surface Breaking Crack, Normal to Free Surface of a Half-Plane 26

3.5 Surface-Breaking Slant Crack .. 29

4 CONCLUSION ... 34

REFERENCES .. 35

Appendices
Appendix 1 A Dislocation in a Half-Plane

LIST OF SYMBOLS

𝜎𝑖𝑗 Stress component

𝜏𝑖𝑗 Shear stress component

K Stress intensity factor
u displacement
E Modulus of elasticity
μ Modulus of rigidity
κ Kolosov’s constant
ν Poisson’s ratio
By Dislocation density

1

1 INTRODUCTION

To design machines and structures that are fit for service and at the same
time cost-effective has been the goal of all companies since the first
industrial revolution. In the global economy of the 21st century where
competition is more intensive, it is even more important than ever for a
design engineer to design machines and structures that are safe and cost-
effective without using ambiguous safety factors. This requires a different
approach to design. The classical method of strength calculation using
nominal stress and high safety factor is no longer suitable. Design Against
Failure (DAF) is the growing trend towards addressing this issue.

Fracture mechanics is the subject of studying structures with cracks in it.
When a crack appears in the structure, engineers always point at the so-
called stress intensity factors (SIF). The SIF stands for how intense the
stress that was applied at infinity is at a crack tip. The main goal is to know
the relation between the crack length, how the material behaves with it
and how it will propagate until a failure.

There are many ways to find a solution for SIF so for stress that can be
applied without structure failure, among them the finite element method
(FEM), the body force method and the distributed dislocation technique.
FEM is a good method to solve almost any kind of problem especially with
a proper software, but with cracks, it is quite difficult to verify the mesh
nearby the crack in order to find correct result. The body force method is
numerical method for solving stresses using superposition. It is used for
solving the stress intensity factors at crack tips and the stress
concentration factors that appear near holes.

The distributed dislocation technique is a very useful numerical method to
solve crack problems. It is based on Bueckner’s theorem and the way to
model the crack as distributed dislocations along the line.

The aim of this thesis is to present this technique in a simple to understand
manner and to program codes using software MATLAB that will help to
solve SIFs of different types of cracks.

1.1 Objectives

The objectives of this thesis were to study the distributed dislocation
technique and to program codes in MATLAB software that will calculate
the stress intensity factors for five basic types of cracks. Each code will be
explained step by step and can be repeated in other software such as
Mathcad and Maple.

2

2 THEORY

2.1 Fracture Mechanics

Design against fracture is one of the current researches around the world
in engineering study. The lack of knowledge in this area previously lead to
construction failures and lose of human lives. Nowadays, to get safer
structures, engineers need to consider two main mechanical failures:
brittle fracture and yielding. The first one can be explained as a change in
a microstructure towards more brittle, so there will be a high chance of a
construction fail due to propagation of the formed internal cracks under
the load. It is hard to estimate the failure, because crack propagates
quickly without a proper warning. As for the second one, it is easier to
predict. The vital thing to know is the stresses at each point and ensure
that the highest value needs is lower than the material yield stress. It is a
common practice to reduce the material yield stress by dividing it to a
factor of safety, which helps to escape the surplus loading of the structure.
The experiments showed that the brittle fracture strength depends not
just from material data but also from geometry. Griffth was the first one
who explained such variance between theoretical predictions and
experimental results. He assumed the existence of cracks in a material, the
sharp notches (Figure 1) of it acted like a stress concentrators. Griffth
proved mathematically that the force that allows crack to propagate may
be determined by measuring the charge in stiffness of a cracked
component with respect to crack length.

Figure 1. The state of stress at the apex

As it was told before notches of a crack act as stress concentrators in
specimen. That means there is an infinite stress at crack tips, which is
impossible. It happens if the Inglis solution of stress concentrations around
elliptical holes is used. Williams was one who wrote the series expansion

3

near the tip crack for solving the stresses when the radius of apex equals
zero:

𝜎𝑖𝑗(𝑟, 𝜃) = ∑𝑒𝑘𝑟
λk𝑓𝑘(𝜃) =

𝑘

𝑒1𝑟
λ1𝑓1(𝜃) + 𝑒2𝑟

λ2𝑓2(𝜃) + ⋯ (1)

where the constants ek, the functions fk and the exponents λk are to be
found. To solve the series of this equation for infinite stress and for r=0, λk
must be negative. If λ1 is negative and λ1 < λ2 < λ3…, the equation 1 become

𝜎𝑖𝑗(𝑟, 𝜃)~𝑒1𝑟
λ1𝑓1(𝜃) (2)

where r → 0. The Airy’s stress function (3) is the following

𝜙 = 𝑟𝜆+2[𝐴𝑐𝑜𝑠(𝜆 + 2)𝜃 + 𝐵𝑠𝑖𝑛(𝜆 + 2)𝜃 + 𝐶𝑐𝑜𝑠(𝜆𝜃) + 𝐷𝑠𝑖𝑛(𝜆𝜃)] (3)

This function applies to Timoshenko and Goodier solution for the stress
components

𝜎𝑟𝑟(𝑟, 𝜃) =
1

𝑟

𝑑𝜙

𝑑𝑟
+

1

𝑟2

𝑑2𝜙

𝑑𝜃2
 (4.1)

𝜎𝜃𝜃(𝑟, 𝜃) =
𝑑2𝜙

𝑑𝑟2
 (4.2)

𝜏𝑟𝜃(𝑟, 𝜃) = −
𝑑

𝑑𝑟
(
1

𝑟

𝑑𝜙

𝑑𝜃
) (4.3)

In order to solve the system of the equations the following boundary
conditions must be used

𝜎𝜃𝜃 = 𝜎𝑟𝜃 = 0, 𝜃 = ±𝛼 (5)

The Williams solution comes to two equations. The first one is for
symmetric load (6.1) and the second one is for antisymmetric load (6.2):

(𝜆 + 1) sin(2𝛼) + sin2(𝜆 + 1)𝛼 = 0 (6.1)

(𝜆 + 1) sin(2𝛼) − sin2(𝜆 + 1)𝛼 = 0 (6.2)

Solution for λ can be provided from equations 6.1 and 6.2 for given wedge
included angle 2α, subject to the constraint λ>-1, which is a necessary
condition for continuity of the displacements in the wedge. Not
mathematically speaking, the above equations explain the expected stress
state at an external and internal corner of finite-sized component, under
any distant load. It should be noted that represented solutions are valid
only at very small distances from the apex of the wedge. Further distance
is from the crack, the bigger influence of other boundaries is started to be.

4

The substitution of λ=-1/2 into Equations 4.1 and 4.2 gives the distribution
of stresses around the crack tip. The eigenfunctions corresponding the
eigenvalue λ=-1/2 can be found, the result is three modes of loading
(Figure 2). The first one is Mode 1, an opening mode, most commonly used
in calculations. The Mode 2 and Mode 3 are plane shear.

Figure 2. The modes of crack tip loading

Westergaard developed the solution for the most common problem with
specimen under the uniform tension with halved crack size. According to
his solution for Mode 1, the stresses near the crack tip are following

𝜎𝑥𝑥 =
𝜎0√𝜋𝑎

√2𝜋𝑟
cos

𝜃

2
(1 − sin

𝜃

2
sin

3𝜃

2
) (7.1)

𝜎𝑦𝑦 =
𝜎0√𝜋𝑎

√2𝜋𝑟
cos

𝜃

2
(1 + sin

𝜃

2
sin

3𝜃

2
) (7.2)

𝜏𝑥𝑦 =
𝜎0√𝜋𝑎

√2𝜋𝑟
sin

𝜃

2
cos

𝜃

2
cos

3𝜃

2
 (7.3)

5

Figure 3. A crack in an infinite plate (ξ(r,θ)).

The term 𝜎0√𝜋𝑎 gives the intensity of stress distribution for Mode 1. It can
be replaced by letter KI, which is called stress intensity factor (SIF). The
Westergaard analysis can be also applied for solving stress distribution for
modes 2 and 3. The SIFs KII and KIII respectively can be found for each
mode.

2.2 Stress Intensity Factors

The stress intensity factor is used to describe the stress, strain, and
displacement field near the crack tip. Engineers calculate stress intensity
factors to ensure that the structure can withstand the stresses at the crack
tip until it is reached the critical value and the crack will catastrophically
propagate. Analytical solution of stress intensity factors for very simple
cases can be found straight from Westergaard solution.

𝐾𝐼 = 𝜎𝑦𝑦
0 √𝜋𝑎 (8.1)

𝐾𝐼𝐼 = 𝜎𝑥𝑦
0 √𝜋𝑎 (8.2)

𝐾𝐼𝐼𝐼 = 𝜎𝑦𝑧
0 √𝜋𝑎 (8.3)

There are various numerical solutions for SIFs. One of them is the weight
function approach that was introduced by Bueckner. This approach is using
the opening displacement of a half-length crack and known loading. The
SIF for mode 1 in that case is following

6

𝐾𝐼 = ∫ 𝜎𝑦𝑦(𝑥′)𝐻(𝑎, 𝑥′) 𝑑𝑥 ′ (9)
+2𝑎

0

Where σyy(x) is loading along the crack line in the body without a crack due
to new loading system, x’=x+a (crack center x=0) and H(a,x’) is a weight
function (10).

𝐻(𝑎, 𝑥′) =
2𝜇

𝜅 + 1

1

𝐾𝐼

𝑑𝑢𝑦
∗ (𝑎, 𝑥′)

𝑑𝑎
 (10)

The displacement uy*, due to simple uniform tension, is

𝑢𝑦
∗ (𝑎, 𝑥′) =

𝜅 + 1

4𝜇
𝜎0√𝑥′(2𝑎 − 𝑥′) (11)

The substitution of the equation 11 to equation 10 gives KI.

𝐾𝐼 =
1

√𝜋𝑎
∫ 𝜎𝑦𝑦(𝑥′)√

𝑥′

2𝑎 − 𝑥′
𝑑𝑥 ′ (12)

+2𝑎

0

There are also other numerical methods, such as the Body Force method
and the Finite Element method. The first method is based on stress field
derived by point forces acting on an infinite body. This method is applied
mostly with simple geometries. The FEM is a numerical method that solves
partial deferential equation and approximates the results. The
disadvantages of this method are so that the mesh near the crack needs to
be resized in order to find the correct result and the FEM software cannot
read the infinite stresses near the crack tips.

The numerical method of solving crack problems that this thesis is based
on is the Distributed Dislocation Technique. This method is suitable for
short cracks of almost any geometry. The solution consists of finding the
stresses when there are no cracks, then calculating the stresses with
dislocations, and the last part is to solve the singular integral equation that
helps to find the SIFs.

2.3 Distributed Dislocation Technique

The distributed dislocation technique is based on Bueckner’s theorem. The
main idea is to consider the cracks as dislocations along the crack length.
This technique helps to solve the stresses of the cracks of various
geometries.

The principle of the distributed dislocation techniques based on the so-
called Burgers vector. This vector shows the value and direction of the field
that dislocation produces. If a plane problem is considered, there is an

7

edge dislocation, the Burgers vector in that case lies in the plane. The state
of stress depends on the Burgers vector component (bx, by).

Figure 4. The edge dislocation.

The Burgers vector is presented in Airy’s function that helps to find the
stresses at any given point with coordinates x,y:

𝜎𝑥𝑥 =
2𝜇

𝜋(𝜅 + 1)
{𝑏𝑥 [−

𝑦

𝑟4
(3𝑥2 + 𝑦2)] + 𝑏𝑦 [+

𝑥

𝑟4
(𝑥2 − 𝑦2)]} (13.1)

𝜎𝑦𝑦 =
2𝜇

𝜋(𝜅 + 1)
{𝑏𝑥 [+

𝑦

𝑟4
(𝑥2 − 𝑦2)] + 𝑏𝑦 [+

𝑥

𝑟4
(𝑥2 + 3𝑦2)]} (13.2)

𝜏𝑥𝑦 =
2𝜇

𝜋(𝜅 + 1)
{𝑏𝑥 [+

𝑥

𝑟4
(𝑥2 − 𝑦2)] + 𝑏𝑦 [+

𝑦

𝑟4
(𝑥2 − 𝑦2)]} (13.3)

𝑟2 = 𝑥2 + 𝑦2 (13.4)

Where μ is the modulus of rigidity, κ is Kolosov’s constant, which is equal
in plane stress case

𝜅 =
3 − 𝜐

1 + 𝜐
 (14)

and υ is a Poisson’s ratio.

8

Figure 5. Modeling crack using dislocations: a) an array of dislocations,
b)an array over a small element, c) the dislocation density and d)
crack opening displacement

The Figure 5(a) represents the crack as an array of dislocations. To get a
state of stress, firstly, the distribution should be considered along an
infinitesimal element (Figure 5(b)). The convenient way to express the
single dislocation is a dislocation with an infinitesimal Burgers vector
𝛿𝑏𝑦(𝜉) at point ξ. Then the stress state from the Equation 13.2 along the

line due to the single dislocation is following

𝜎̅𝑦𝑦(𝑥, 0) =
2𝜇

𝜋(𝜅 + 1)

𝛿𝑏𝑦(𝜉)

𝑥 − 𝜉
=

2𝜇

𝜋(𝜅 + 1)

𝐵𝑦(𝜉)

𝑥 − 𝜉
𝛿𝜉 (15)

If the stresses are considered due to continuous dislocation from –a to +a
along the crack length:

𝜎̅𝑦𝑦(𝑥, 0) =
2𝜇

𝜋(𝜅 + 1)
∫

𝐵𝑦(𝜉)

𝑥 − 𝜉
𝛿𝜉 (16)

+𝑎

−𝑎

where By is dislocation density, which defines how many dislocations are
in one unit volume. In that case, the dislocation density itself is

𝐵𝑦(𝜉) =
𝑑𝑏𝑦(𝜉)

𝑑𝜉
 (17)

The relationship between the dislocation density and the force that try to
separate the crack sides was established (Figure 5(d)). This force was
denoted as g(x) (18) (the identical zero is at g(-a)).

9

𝑔(𝑥) = − ∫𝐵𝑦(𝜉)𝑑𝜉

𝑥

−𝑎

 (18)

Or,

𝐵𝑦(𝜉) = −
𝑑𝑔(𝜉)

𝑑𝜉
 (19)

The main result of this equation is that By goes to infinity as it is
approaching the crack tips.
The By vector can be solved by the singular integral equation (20).

−
𝜅 + 1

2𝜇
𝜎𝑦𝑦

∞ (𝑥) =
1

𝜋
∫ 𝐵𝑦(𝜉)

1

𝑥 − 𝜉
𝛿𝜉 (20)

+𝑎

−𝑎

The term under an integral sign (x- ξ)-1 is called a simple Cauchy kernel. If
x= ξ, the result of this term will tend to infinite as well as density. Solving
this equation requires the normalization, that has a general interval [a,b]
and can be calculated by the equations 21.1 and 21.2.

2𝜉 = (𝑏 − 𝑎)𝑠 + (𝑏 + 𝑎) (21.1)
2𝑥 = (𝑏 − 𝑎)𝑡 + (𝑏 + 𝑎) (21.2)

The interval [-1,1] gives the solutions for s= ξ/a and t=x/a. The solution of
the equation 20 then gives (|t|<1) two following equations:

𝐹(𝑡) =
1

𝜋
∫ 𝐵𝑦(𝑠)

1

𝑡 − 𝑠
𝑑𝑠

+1

−1

 (22.1)

𝐹(𝑡) = −
𝜅 + 1

2𝜇
𝜎𝑦𝑦

∞ (𝑡) (22.2)

Equation 22.2 denotes the force at point t due to applied stress σyy, which
needs to be annulled by the dislocation distribution (22.1).
The Hilbert transform of By(s) (22.1) can be solved using this equation

𝐵𝑦(𝑠) = 𝜔(𝑠)𝜙𝑦(𝑠) (23)

Where φy(s) is a regular function and ω(s) is fundamental solution (24).

𝜔(𝑠) =
1

√1 − 𝑠2
 (24)

Equation 24 ensures that the distribution of By(s) at each end of the
interval varies like (1±s)-1/2, where s is measured from crack tips.

10

The most important requirement is that crack tips are closed at both ends,
so that the g(-a)=g(+a)=0. In order to satisfy this, the extra condition (25)
must be added.

∫ 𝐵𝑦(𝜉)𝑑𝜉 = ∫ 𝐵𝑦(𝑠)𝑑𝑠 = 0 (25)
+1

−1

+𝑎

−𝑎

Using analytical solution, the formulas of KI and KII can be abstract:

𝐾𝐼(±1) = ±√𝜋𝑎
2𝜇

(𝜅 + 1)
𝜙𝑦(±1) (26.1)

𝐾𝐼𝐼(±1) = ±√𝜋𝑎
2𝜇

(𝜅 + 1)
𝜙𝑥(±1) (26.2)

Where the points ±1 represents the ends of the crack after normalization.
The stresses can be solved (from 13.1, 13.2, 13.3) using the dislocation
density By.

𝜎𝑥𝑥(𝑥, 𝑦) =
2𝜇

𝜋(𝜅 + 1)
∫ 𝐵𝑦(𝜉)

𝑥 − 𝜉

𝑟4
[(𝑥 − 𝜉)2 − 𝑦2]𝑑𝜉

+𝑎

−𝑎

 (27.1)

𝜎𝑦𝑦(𝑥, 𝑦) =
2𝜇

𝜋(𝜅 + 1)
∫ 𝐵𝑦(𝜉)

𝑥 − 𝜉

𝑟4
[(𝑥 − 𝜉)2 − 3𝑦2]𝑑𝜉

+𝑎

−𝑎

+ 𝜎𝑦𝑦
∞ (𝑥) (27.2)

𝜏𝑥𝑦(𝑥, 𝑦) =
2𝜇

𝜋(𝜅 + 1)
∫ 𝐵𝑦(𝜉)

𝑦

𝑟4
[(𝑥 − 𝜉)2 − 𝑦2]𝑑𝜉 (27.3)

+𝑎

−𝑎

where r2=(x- ξ)2+y2.

2.4 Numerical Solution Cauchy Kernel.

The main challenge is to solve the singular integral equation (20) which is
impossible to get analytically, so the numerical techniques must be
employed. The one that is used in this thesis is Gauss-Chebyshev
quadrature.

The main principle of using the Gauss-Chebyshev quadrature is to solve
equation 22.1 by dividing to N-n set of equations that have the form

𝐹(𝑡𝑘) = ∑𝑊𝑖

𝜙(𝑠𝑖)

𝑡𝑘 − 𝑠𝑖

𝑁

𝑖=1

, 𝑘 = 1…𝑁 − 𝑛 (28)

11

To choose the right solution, firstly, the crack tips should be analyzed.
Depending on the singular or bounded behavior of the unknown function
By(s), the right case can be found from Table 1. The formulas for collocation
points tk, integration points si, weight function Wi and integer n can be
found from Table 2.

Table 1. The cases of end-points behavior (Hills, 41)

-1\+1 Singular Bounded

Singular I II

Bounded III IV

Table 2. Gauss-Chebyshev quadrature formulas (Hills, 41)

Case ω(s) si tk n Wi

I (1 − 𝑠2)−1 2⁄
cos (𝜋

2𝑖 − 1

2𝑁
) 𝑐𝑜𝑠 (𝜋

𝑘

𝑁
)

1 1

𝑁

II (1 − 𝑠)+1 2⁄ (1 + 𝑠)−1 2⁄
cos (𝜋

2𝑖

2𝑁 + 1
) 𝑐𝑜𝑠 (𝜋

2𝑘 − 1

2𝑁 + 1
)

0 2(1 − 𝑠𝑖)

2𝑁 + 1

III (1 − 𝑠)−1 2⁄ (1 + 𝑠)+1 2⁄
cos (𝜋

2𝑖 − 1

2𝑁 + 1
) 𝑐𝑜𝑠 (𝜋

2𝑘

2𝑁 + 1
)

0 2(1 + 𝑠𝑖)

2𝑁 + 1

IV (1 − 𝑠2)+1 2⁄
cos (𝜋

𝑖

𝑁 + 1
) 𝑐𝑜𝑠 (𝜋

2𝑘 − 1

2(𝑁 + 1)
)
-1 (1 − 𝑠𝑖

2)

𝑁 + 1

The values of the unknown function φy(s) at end points can be calculated
by formulas below. In order to solve these equations (29.1, 29.2), Table 3
should be used.

𝜙(+1) = 𝑀𝐸(+1)∑Φ𝐸(+1)𝜙(𝑠𝑖) (29.1)

𝑁

𝑖=1

𝜙(−1) = 𝑀𝐸(−1)∑Φ𝐸(−1)𝜙(𝑠𝑁+1−𝑖)

𝑁

𝑖=1

 (29.2)

The procedure that is described in Table 3 to solve different types of crack
problems uses the equations from Tables 1 and 2. Each step will be
explained and employed in programed code. The procedure for each code
step by step is presented in Figure 6.

Table 3. Krenk’s interpolation formulas for end-points (Hills, 43)

Case ME(+1) ΦE(+1) ME(-1) ΦE(-1)

I 1

𝑁
 𝑠𝑖𝑛 [

2𝑖 − 1
4𝑁

𝜋(2𝑁 − 1)]

sin [
2𝑖 − 1
4𝑁

𝜋]

1

𝑁
 𝑠𝑖𝑛 [

2𝑖 − 1
4𝑁

𝜋(2𝑁 − 1)]

sin [
2𝑖 − 1
4𝑁

𝜋]

12

II 1 𝑠𝑖𝑛 [
𝑖𝜋

2𝑁 + 1
(2𝑁 − 1)]

sin [
𝑖𝜋

2𝑁 + 1
]

2

2𝑁 + 1
 𝑐𝑜𝑡 [

2𝑖 − 1

2𝑁 + 1

𝜋

2
] 𝑠𝑖𝑛 [

2𝑖 − 1

2𝑁 + 1
𝑁𝜋]

III 2

2𝑁 + 1
 𝑐𝑜𝑡 [

2𝑖 − 1

2𝑁 + 1

𝜋

2
] 𝑠𝑖𝑛 [

2𝑖 − 1

2𝑁 + 1
𝑁𝜋]

1 𝑠𝑖𝑛 [
𝑖𝜋

2𝑁 + 1
(2𝑁 − 1)]

sin [
𝑖𝜋

2𝑁 + 1
]

IV 1
𝑐𝑜𝑡 [

𝑖

𝑁 + 1

𝜋

2
] 𝑠𝑖𝑛 [

𝑖

𝑁 + 1
𝑁𝜋]

1
𝑐𝑜𝑡 [

𝑖

𝑁 + 1

𝜋

2
] 𝑠𝑖𝑛 [

𝑖

𝑁 + 1
𝑁𝜋]

Figure 6. The procedure of writing codes

STEP 1: Determine collocation and integration points
according to the right Case

STEP 2: Determine the left hand side of the singular
integral equation

STEP 3: Create the matrix with terms from the right hand
side of the singular integral equation

STEP 4: Solve the unknown function φ(si)

STEP 5: Determine the value of the unknown function
φ(si) at the ends of the crack (φ(+1), φ(-1))

STEP 6: Solve the SIFs values for the crack tips

13

3 CODES FOR STRESS INTENSITY FACTORS

3.1 Crack in Infinite Plate

Figure 7. The crack in the Infinite Plate

The simplest problem to solve for SIF is the crack in the infinite plate
(Figure 7). The singular integral equation (20) have a form

−
𝜅 + 1

2𝜇
𝜎𝑦𝑦

∞ (𝑡𝑘) = (
1

𝑁
∑

1

𝑡𝑘 − 𝑠𝑖

𝑁

𝑖=1

)𝜙𝑦(𝑠) (30)

Both crack tips are singular, thus the Table 1 gives Case I.
According to Figure 6, the first step is to calculate the tk and si using
formulas from Table 2. The matrix for tk is for k=1..N-1 and the matrix for
si is for i=1..N.
The program for si has appearance in MATLAB:

function si=si_gen(N)% N is an input value
si=zeros(N,1); %create the matrix of N rows and 1 column
for i=1:N
 add=cos(pi*((2*i-1)/(2*N)));
 si(i,1)=si(i,1)+add; %generate values for each row using

the formula above
end
end

Figure 8. Program 1

The program for tk is

function tk = tk_gen(N)
tk=zeros(N-1,1); %create the matrix of N-1 rows and 1 column
for i=1:N-1
 add=cos(pi*i/N);

14

 tk(i,1)=tk(i,1)+add; %generate values for each row using

the formula
end
end

Figure 9. Program 2

Step 2: generate the term on the left of the singular integral equation (30).
To simplify the program the term (κ+1)/2μ was calculated with κ=2.077
(14) and μ=E/(2*(1+ν))=80769, the result was substituted to the program.

function Ftk = F_tk(sigma,a,N)
Ftk=zeros(N,1); %create the matrix of N rows and 1 column
for i=1:N-1
 add=(-0.00001905)*sigma;
 Ftk(i,1)=Ftk(i,1)+add; %generate values for each row
end
Ftk(N,1)=0; %last term is zero according to extra condition

equation(31)
end

Figure 10. Program 3

Step 3: creating the big matrix that will represent the right side of the
singular integral equation, without term φy(si). The extra condition (31)
have to be added.

𝜋

𝑁
∑𝜙𝑦(𝑠𝑖) = 0

𝑁

𝑖=1

 (31)

function fundfunc=Fund_Matrix(N)
fundfunc=zeros(N,N); %creating the matrix N by N
si=si_gen(N); %integration points
tk=tk_gen(N); %collocation points
for k=1:N-1 %rows count
 for i=1:N %column count
 add=1/N*(1/(tk(k,1)-si(i,1)));
 fundfunc(k,i)=fundfunc(k,i)+add;
 end
end
for i=1:N
 add=pi/N; %extra condition to the last row
 fundfunc(N,i)=fundfunc(N,i)+add;
end
end

Figure 11. Program 4

Step 4: Solving for φy(si).

function FI = Main_fun(sigma,a,N)
fundfunc = Fund_Matrix(N);
Ftk = F_tk(sigma,a,N);
FI = inv(fundfunc)*Ftk;

15

end

Figure 12. Program 5

Step 5: after the values of unknown function are found, the values at the
end points of the crack can be calculated. In order to do that, the Krenk
interpolation formulas should be used from Table 3 for Case I. As it can be
seen from the Table 3 there is the same formula for both ends of the crack.

function Fe = Fe_func(N)
Fe = zeros(1,N); %creating the matrix of 1 row and N column
for i=1:N
 add=(1/N)*((sin(((2*i-1)/(4*N))*pi*(2*N-

1)))/(sin(((2*i-1)/(4*N))*pi)));
 Fe(1,i)=Fe(1,i)+add;
 end
end

Figure 13. Program 6

The φ(+1) value equals

function fplus = f_plus(sigma,a,N)
Fe = Fe_func(N);
FI = Main_fun(sigma,a,N);
fplus=Fe*FI;
end

Figure 14. Program 7

The φ(-1) value equals

function fmin = f_minus(sigma,a,N)
Fe = Fe_func(N);
FI = Main_fun(sigma,a,N);

FIflip = flipud(FI); % φy(s) must be reverse according to the
equation 29.2
fmin = Fe*FIflip;
end

Figure 15. Program 8

In the final Step 6, the value of KI can be found for both ends using
equation 26.1.

function Ki = K_int(sigma,a,N)
fplus = f_plus(sigma,a,N);
Ki = sqrt(pi*a)*52498*fplus;
end

Figure 16. Program 9

function Kintm = K_intm(sigma,a,N)
fmin = f_minus(sigma,a,N);
Kintm = -sqrt(pi*a)* 52498*fmin;

16

end

Figure 17. Program 10

If the stress at infinity is equal 1MPa, the crack size is 2mm (so a=1mm)
and the number of iterations is equal to 5, the final value SIF of the crack
in an infinite plate is 1.7726. The result is very close to analytical solution
(8.1), which is equal to 1.7725.

3.2 Buried Crack, Normal to Free Surface

Figure 18. Buried Normal Crack (Hills, 46)

The cracks adjusted near the straight boundary are mostly viewed in the
engineering world. To program this type of problem, the influence function
K(x,ξ) must be calculated.

𝐾(𝑥, 𝜉) =
1

𝑥 − 𝜉
−

1

𝑥 + 𝜉
−

2𝜉

(𝑥 + 𝜉)2
+

4𝜉2

(𝑥 + 𝜉)3
 (32)

The first term is a Cauchy singular term, that was used in singular integral
equation to represent the solution of the crack in infinite plate. The regular
part of the kernel (K’), that should be used in the solution of a crack near a
straight free boundary, has a form without the Cauchy singular term. The
normalization from the equations 21.1 and 21.2 gives s=(ξ-d)/a, t=(x-d)/a,
where d is a distance from boundary till the middle of the crack.
The Gauss-Chebyshev quadrature for singular integral equation and extra
condition is following:

−
𝜅 + 1

2𝜇
𝜎𝑦𝑦

∞ (𝑡𝑘) = (
1

𝑁
∑[

1

𝑡𝑘 − 𝑠𝑖
+ 𝑎𝐾′(𝑡𝑘, 𝑠𝑖)]

𝑁

𝑖=1

)𝜙𝑦(𝑠𝑖),

𝑘 = 1…𝑁 − 1 (33.1)

17

−
𝜅 + 1

2𝜇
𝜏𝑥𝑦

∞ (𝑡𝑘) = (
1

𝑁
∑[

1

𝑡𝑘 − 𝑠𝑖
+ 𝑎𝐾′(𝑡𝑘, 𝑠𝑖)]

𝑁

𝑖=1

)𝜙𝑥(𝑠𝑖),

𝑘 = 1…𝑁 − 1 (33.2)

𝜋

𝑁
∑𝜙𝑥(𝑠𝑖) = 0,

𝜋

𝑁
∑𝜙𝑦(𝑠𝑖) = 0 (33.3)

𝑁

𝑖=1

𝑁

𝑖=1

Step 1: there is no difference in collocation and integral points. Programs
1 and 2 should be used.
Step 2: the program 3 is the same for σyy. The program 11 is for shear stress
τxy.

function Ftkt = F_tkt(tau,a,N)
Ftkt=zeros(N,1);
tk=tk_gen(N);
for i=1:N-1
 add=(-0.00001905)*tau;
 Ftkt(i,1)=Ftkt(i,1)+add;
end
Ftkt(N,1)=0;
end

Figure 19. Program 11

Step 3: in order to determine the matrix (program 12) on the right hand
side of the equations 33.1 and 33.2, the regular Kernel should be found
using formula below.

𝐾′(𝑡, 𝑠) =
1

𝑎
[−

1

𝑠 + 𝑡 +
2𝑑
𝑎

−
2 (𝑠 +

𝑑
𝑎
)

(𝑠 + 𝑡 +
2𝑑
𝑎

)
2 +

4(𝑠 +
𝑑
𝑎
)
2

(𝑠 + 𝑡 +
2𝑑
𝑎

)
3] (34)

function Infl = Infl_fun(a,d,N)
Infl = zeros(N,N); %creating N by N matrix
si = si_gen(N); %program 1
tk = tk_gen(N); %program 2
for k=1:(N-1)
 for i=1:N
 add=1/N*(1/(tk(k,1)-si(i,1))+a*(1/a*(-

1/(si(i,1)+tk(k,1)+2*(d/a))-

(2*(si(i,1)+d/a)/(si(i,1)+tk(k,1)+2*(d/a))^2)+(4*(si(i,1)+d

/a)^2)/(si(i,1)+tk(k,1)+2*(d/a))^3)));
 Infl(k,i)=Infl(k,i)+add; %each value for certain row

and column
 end
end
for i=1:N
 add=pi/N; %extra condition
 Infl(N,i)=Infl(N,i)+add;
end
end

18

Figure 20. Program 12

Step 4: there are two unknown functions φx(si) and φy(si) (33.1, 33.2). The
φy term is calculated with stress state σyy (Program 13). The φx term is for
case with τxy (Program 14).

function Fes = Fe_funcs(sigma,a,d,N)
Infl = Infl_fun(a,d,N);
Ftk = F_tks(sigma,a,N);
Fes = inv(Infl)*Ftk;
end

Figure 21. Program 13

function Fet = Fe_funct(tau,a,d,N)
Infl = Infl_fun(a,d,N);
Ftkt = F_tkt(tau,a,N);
Fet = inv(Infl)*Ftkt;
end

Figure 22. Program 14

Step 5: the Krenk’s interpolation formula for end-points is the same as in
program 6. The case of buried crack, normal to the free surface has two
values at each end-point. One is denoted for σyy and other is for τxy.
Program 15 is for φy(+1); program 16 is for φx(+1); programs 17 and 18 are
respectively for φ(-1).

function fplus = f_pluss(sigma,a,d,N)
Fe = Fe_func(N);
Fes = Fe_funcs(sigma,a,d,N);
fplus=Fe*Fes;
end

Figure 23. Program 15

function fplus = f_plust(tau,a,d,N)
Fe = Fe_func(N);
Fet = Fe_funct(tau,a,d,N);
fplus=Fe*Fet;
end

Figure 24. Program 16

function fmin = f_mins(sigma,a,d,N)
Fe = Fe_func(N);
Fes = Fe_funcs(sigma,a,d,N);
Fesflip = flipud(Fes);
fmin = Fe*Fesflip;
end

Figure 25. Program 17

function fmin = f_mint(tau,a,d,N)
Fe = Fe_func(N);

19

Fet = Fe_funct(tau,a,d,N);
Fetflip = flipud(Fet);

fmin = Fe*Fetflip;
end

Figure 26. Program 18

Step 6: calculating SIFs for each end-point and each stress state. The SIFs
for +1 point with σyy (Program 19) and with τxy (Program 20); the SIFs for
point -1 with σyy (Program 21) and with τxy (Program 22).

function Ki = K_ints(sigma,a,d,N)
fplus = f_pluss(sigma,a,d,N);
Ki = sqrt(pi*a)*52498*fplus;
end

Figure 27. Program 19

function Ki = K_intt(tau,a,d,N)
fplus = f_plust(tau,a,d,N);
Ki = sqrt(pi*a)*52498*fplus;
end

Figure 28. Program 20

function Kintm = K_intms(sigma,a,d,N)
fmin = f_mins(sigma,a,d,N);
Kintm = -sqrt(pi*a)*52498*fmin;
end

Figure 29. Program 21

function Kintm = K_intmt(tau,a,d,N)
fmin = f_mint(tau,a,d,N);
Kintm = -sqrt(pi*a)*52498*fmin;
end

Figure 30. Program 22

As an example, the substitution of sigma σyy = 1MPa, tau τxy = 1MPA, the
half crack length = 1mm, the distance = 3mm and number of iterations N
= 5 gives SIFs: for KI=1.8162 (Program 19) and KII=1.8162 (Program 20) at
the right hand side of the crack (end-point +1).

The correct solution can be checked by giving d a large number, so the
answer should be the same as the Program 9 states.

20

3.3 Buried Crack, Inclined to Free Surface

Figure 31. Buried Slant Crack (Hills, 50)

The cracks with angles have a little different approach of solving SIFs.
Firstly, it should be noted that the so-called coupling, (both shear and
opening) is taking place. That means the equation should be rewritten so
that both terms φx(si) and φy(si) are presented in the singular integral
equation.

−
𝜅 + 1

2𝜇
𝜎𝑦𝑦

∞ (𝑡𝑘)

=
1

𝑁
∑(𝜙𝑥(𝑠𝑖)𝑎𝐺𝑥𝑦𝑦̂(𝑡𝑘, 𝑠𝑖)

𝑁

𝑖=1

+ 𝜙𝑦(𝑠𝑖) [
1

𝑡𝑘 − 𝑠𝑖
+ 𝑎𝐺𝑦𝑦𝑦̂(𝑡𝑘, 𝑠𝑖)]) ,

𝑘 = 1…𝑁 − 1 (35.1)

−
𝜅 + 1

2𝜇
𝜏𝑥𝑦

∞ (𝑡𝑘)

=
1

𝑁
∑(𝜙𝑥(𝑠𝑖) [

1

𝑡𝑘 − 𝑠𝑖
+ 𝑎𝐺𝑥𝑥𝑦̂(𝑡𝑘, 𝑠𝑖)]

𝑁

𝑖=1

+ 𝜙𝑦(𝑠𝑖)𝑎𝐺𝑦𝑥𝑦̂(𝑡𝑘, 𝑠𝑖)) , 𝑘 = 1…𝑁 − 1 (35.2)

𝜋

𝑁
∑𝜙𝑦(𝑠𝑖) =

𝑁

𝑖=1

𝜋

𝑁
∑𝜙𝑥(𝑠𝑖) = 0 (35.3)

𝑁

𝑖=1

21

These equations cannot be solved separately, literally two matrixes should
be stack together where first N columns represent the values that meant
to be for φx(si) and columns from N+1 till 2N are for φy(si).

In order to solve these equations, the values of influence function G should
be found. The program 23 represent the solution of the G components, but
instead of x and se the si and tk will be substituted down below. The
formulas can be found in Appendix 1. Note that the terms that have x1 and
r1 are equal zero, because they represent the solution for the Caushy
singular term that is already presented in the equations 35.1 and 35.2. The
answer of the Program 23 will be matrix with four values. Each of these
values will be used in the programs below.

function [Glocal] = Gglobal(teta,d,x,se)
G=zeros(6,1);
A=zeros(4,6);
xg=x*cos(teta)+d;
yg=x*sin(teta);
seg=se*cos(teta)+d;
lg=se*sin(teta); %necessary replacements with values in local

coordinates (Appendix 1)
x2=xg+seg;
r2=sqrt(x2^2+(yg-lg)^2);
G(1,1)=yg*(1/r2^2+(2*x2^2)/r2^4-

(4*seg*x2)/r2^4+(4*seg^2)/r2^4+(16*seg*x2^3)/r2^6-

(16*seg^2*x2^2)/r2^6);
G(2,1)=yg*(1/r2^2-(2*x2^2)/r2^4+(12*seg*x2)/r2^4-

(4*seg^2)/r2^4-(16*seg*x2^3)/r2^6+(16*seg^2*x2^2)/r2^6);
G(3,1)=x2/r2^2-(2*seg)/r2^2-

(2*x2^3)/r2^4+(16*seg*x2^2)/r2^4-(12*seg^2*x2)/r2^4-

(16*seg*x2^4)/r2^6+(16*seg^2*x2^3)/r2^6;
G(4,1)=x2/r2^2-(2*seg)/r2^2-(2*x2^3)/r2^4-

(8*seg*x2^2)/r2^4+(12*seg^2*x2)/r2^4+(16*seg*x2^4)/r2^6-

(16*seg^2*x2^3)/r2^6;
G(5,1)=-(3*x2)/r2^2-

(2*seg)/r2^2+(2*x2^3)/r2^4+(16*seg*x2^2)/r2^4-

(12*seg^2*x2)/r2^4-(16*seg*x2^4)/r2^6+(16*seg^2*x2^3)/r2^6;
G(6,1)=yg*(1/r2^2-(2*x2^2)/r2^4-

(4*seg*x2)/r2^4+(4*seg^2)/r2^4+(16*seg*x2^3)/r2^6-

(16*seg^2*x2^2)/r2^6);
A(1,1)=(sin(teta))^2*cos(teta);
A(2,1)=-(sin(teta))^3;
A(3,1)=-sin(teta)*(cos(teta))^2;
A(4,1)=(sin(teta))^2*cos(teta);
A(1,2)=(cos(teta))^3;
A(2,2)=-sin(teta)*(cos(teta))^2;
A(3,2)=sin(teta)*(cos(teta))^2;
A(4,2)=-(sin(teta))^2*cos(teta);
A(1,3)=-cos(teta)*sin(2*teta);
A(2,3)=sin(teta)*sin(2*teta);
A(3,3)=cos(teta)*cos(2*teta);
A(4,3)=-sin(teta)*cos(2*teta);
A(1,4)=(sin(teta))^3;
A(2,4)=(sin(teta))^2*cos(teta);
A(3,4)=-((sin(teta))^2*cos(teta));
A(4,4)=-sin(teta)*(cos(teta))^2;
A(1,5)=sin(teta)*(cos(teta))^2;

22

A(2,5)=(cos(teta))^3;
A(3,5)=(sin(teta))^2*cos(teta);
A(4,5)=sin(teta)*(cos(teta))^2;
A(1,6)=-sin(teta)*sin(2*teta);
A(2,6)=-cos(teta)*sin(2*teta);
A(3,6)=sin(teta)*cos(2*teta);
A(4,6)=cos(teta)*cos(2*teta);
Glocal=A*G;
end

Figure 32. Program 23

Step 1: the programs 1 and 2 should be used for si and tk.
Step 2: the left hand sides of the equations 35.1 and 35.2 look like in
programs 3 and 11 with an addition. The transformation equations (36.1,
36.2) for stresses should be used.

𝜎𝑦𝑦̂ = 𝜎𝑥𝑥 sin2 𝜃 + 𝜎𝑦𝑦 cos2 𝜃 − 𝜏𝑥𝑦 sin 2𝜃 (36.1)

𝜏𝑥𝑦̂ = (𝜎𝑦𝑦 − 𝜎𝑥𝑥) sin 𝜃 cos 𝜃 + 𝜏𝑥𝑦 𝑐𝑜𝑠 2𝜃 (36.2)

function Ftks = F_tks(sigma1,sigma2,tau,teta,N)
Ftks=zeros(N,1);
sigma=sigma1*(sin(teta))^2+sigma2*(cos(teta))^2-

tau*sin(2*teta);
for i=1:N-1
 add=(-0.00001905)*sigma;
 Ftks(i,1)=Ftks(i,1)+add;
end
Ftks(N,1)=0;
end

Figure 33. Program 24

function Ftkt = F_tkt(sigma1,sigma2,tau,teta,N)
Ftkt=zeros(N,1);
tauxy=(sigma2-sigma1)*sin(teta)*cos(teta)+tau*cos(2*teta);
for i=1:N-1
 add=(-0.00001905)*tauxy;
 Ftkt(i,1)=Ftkt(i,1)+add;
end
Ftkt(N,1)=0;
end

Figure 34. Program 25

Step 3: the matrix on the left hand sides of the equations 35.1 and 35.2,
which needs to be defined, consists from 4 parts. Program 26 represents
rows from 1 till N and column 1 till N; Program 27 – rows from N+1 till 2N
and column 1 till N; Program 28 – rows from 1 till N and columns from N+1
till 2N; Program 29 – rows from N+1 till 2N and columns N+1 till 2N.

function GA=GA(teta,d,a,N)
tk = tk_gen(N);
si=si_gen(N);

23

GA=zeros(N,N);
for k=1:N-1

 for i=1:N
 G = Gglobal(teta,d,tk(k,1),si(i,1)); %calling the

Global matrix program, substituting tk matrix instead of x

value amd matrix si intead of se
 add=1/N*(a*G(1,1));%choosing the first value of the

matrix according to equation 35.1
 GA(k,i)=GA(k,i)+add;
 end
end
for i=1:N
 add=pi/N; %extra conditon
 GA(N,i)=GA(N,i)+add;
end
end

Figure 35. Program 26

function GB=GB(teta,d,a,N)
tk = tk_gen(N);
si=si_gen(N);
GB=zeros(N,N);
for k=1:N-1
 for i=1:N
 G = Gglobal(teta,d,tk(k,1),si(i,1));
 add=1/N*(1/(tk(k,1)-si(i,1))+a*G(2,1));
 GB(k,i)=GB(k,i)+add;
 end
end
for i=1:N
 add=pi/N;
 GB(N,i)=GB(N,i)+add;
end
end

Figure 36. Program 27

function GC=GC(teta,d,a,N)
tk = tk_gen(N);
si=si_gen(N);
GC=zeros(N,N);
for k=1:N-1
 for i=1:N
 G = Gglobal(teta,d,tk(k,1),si(i,1));
 add=1/N*(1/(tk(k,1)-si(i,1))+a*G(3,1));
 GC(k,i)=GC(k,i)+add;
 end
end
for i=1:N
 add=pi/N;
 GC(N,i)=GC(N,i)+add;
end
end

Figure 37. Program 28

function GD=GD(teta,d,a,N)
tk = tk_gen(N);
si=si_gen(N);

24

GD=zeros(N,N);
for k=1:N-1

 for i=1:N
 G = Gglobal(teta,d,tk(k,1),si(i,1));
 add=1/N*(a*G(4,1));
 GD(k,i)=GD(k,i)+add;
 end
end
for i=1:N
 add=pi/N;
 GD(N,i)=GD(N,i)+add;
end
end

Figure 38. Program 29

To get the big matrix, the stacking of programs 27-29 should be performed.

function Infl = G_Infl(teta,d,a,N)
GA1=GA(teta,d,a,N);
GB1=GB(teta,d,a,N);
GC1=GC(teta,d,a,N);
GD1=GD(teta,d,a,N);
G1=vertcat(GA1,GC1);
G2=vertcat(GB1,GD1);
Infl=horzcat(G1,G2);
end

Figure 39. Program 30

Step 4: solving for the φx(si) and φy(si).

function Fes = Fe_funcM(sigma1,sigma2,tau,teta,d,a,N)
Infl = G_Infl(teta,d,a,N);
Ftks = F_tks(sigma1,sigma2,tau,teta,N);
Ftkt = F_tkt(sigma1,sigma2,tau,teta,N);
Ftk=vertcat(Ftks,Ftkt);
Fes = Infl\Ftk;
end

Figure 40. Program 31

The solution of the program 31 gives first N values for the φx(si) and the
rest for φy(si).

Step 5: firstly, program 6 should be used. This program is used to calculate
the values for unknown function at end points. In total, there have to be
four programs: the first one is Program 32 that represents end point at +1
for φx, the Program 33 is for the same point but for φy. The third (Program
34) and fourth (Program 35) programs are for end point located at -1
respectively for φx and φy.

function fplus = f_plusx(sigma1,sigma2,tau,teta,d,a,N)
Fe = Fe_func(N);
Fes = Fe_funcM(sigma1,sigma2,tau,teta,d,a,N);
fplus=0;

25

for i=1:N
 fplus=fplus+(Fe(1,i)*Fes(i,1)); %one way to tell the

program to take only first N values from matrix with unknown

values (only for φx)
end
end

Figure 41. Program 32

function fplus = f_plusy(sigma1,sigma2,tau,teta,d,a,N)
Fe = Fe_func(N);
Fes = Fe_funcM(sigma1,sigma2,tau,teta,d,a,N);
fplus=0;
for i=N+1:2*N
 fplus=fplus+(Fe(1,i-N)*Fes(i,1)); %program takes values

only for φy
end
end

Figure 42. Program 33

function fmin = f_minx(sigma1,sigma2,tau,teta,d,a,N)
Fe = Fe_func(N);
Fes = Fe_funcM(sigma1,sigma2,tau,teta,d,a,N);
Fesx=Fes(1:N); %another way of telling the MATLAB to take

first N values

Fesxflip = flipud(Fesx); %flip the values for φx according to
equation 29.2
fmin = Fe*Fesxflip;
end

Figure 43. Program 34

function fmin = f_miny(sigma1,sigma2,tau,teta,d,a,N)
Fe = Fe_func(N);
Fes = Fe_funcM(sigma1,sigma2,tau,teta,d,a,N);

Fesy=Fes(N+1:2*N); %values for φy
Fesyflip = flipud(Fesy);
fmin = Fe*Fesyflip;
end

Figure 44. Program 35

Step 6: the SIFs should be calculated for each value of the unknown
function that was mentioned above.

function Ki = K_intpx(sigma1,sigma2,tau,teta,d,a,N)
fplus = f_plusx(sigma1,sigma2,tau,teta,d,a,N);
Ki = sqrt(pi*a)*52498*fplus;
end

Figure 45. Program 36

function Ki = K_intpy(sigma1,sigma2,tau,teta,d,a,N)
fplus = f_plusy(sigma1,sigma2,tau,teta,d,a,N);
Ki = sqrt(pi*a)*52498*fplus;
end

26

Figure 46. Program 37

function Ki = K_intmx(sigma1,sigma2,tau,teta,d,a,N)
fmin = f_minx(sigma1,sigma2,tau,teta,d,a,N);
Ki = -sqrt(pi*a)*52498*fmin;
end

Figure 47. Program 38

function Ki = K_intmy(sigma1,sigma2,tau,teta,d,a,N)
fmin = f_miny(sigma1,sigma2,tau,teta,d,a,N);
Ki = -sqrt(pi*a)*52498*fmin;
end

Figure 48. Program 39

Program 36 – KII(+1), Program 37 – KI(+1), Program 38 – KII(-1), Program 39
– KI(-1).

The results for uniform tension (sigma1=0, sigma2=1MPa, tau=0,
teta=30deg, d=3mm, a=1mm, N=5) are KI(+1)= 0.4682, KII(+1)= 0.7763, KI(-
1)= 0.4566, KII(-1)= 0.7873. These programs were checked by substituting
the large number for d and 0 for angle. The result was the same as for the
crack at infinite plate (Chapter 3.1).

3.4 Surface Breaking Crack, Normal to Free Surface of a Half-Plane

Figure 49. Normal, Surface-breaking Crack (Hills, 58)

The procedure of solving the singular integral equation and finding SIFs is
now slightly different from the previous cases. Note, that the Table 1 gives
the Case III (bonded at s=-1 and singular s=+1).

The normalized singular integral equation can be written in form

27

−
𝜅 + 1

2𝜇
𝜎𝑦𝑦

∞ (𝑡𝑘) = (
2(1 + 𝑠𝑖)

2𝑁 + 1
∑[

1

𝑡𝑘 − 𝑠𝑖
+

𝑎

2
𝐾′(𝑡𝑘, 𝑠𝑖)]

𝑁

𝑖=1

)𝜙𝑦(𝑠𝑖),

𝑘 = 1…𝑁 (37.1)

−
𝜅 + 1

2𝜇
𝜏𝑥𝑦

∞ (𝑡𝑘) = (
2(1 + 𝑠𝑖)

2𝑁 + 1
∑[

1

𝑡𝑘 − 𝑠𝑖
+

𝑎

2
𝐾′(𝑡𝑘, 𝑠𝑖)]

𝑁

𝑖=1

)𝜙𝑥(𝑠𝑖),

𝑘 = 1…𝑁 (37.2)

No extra condition is needed. K'(si, tk) is such that at the ends of the crack
it tends to infinity. After the normalization the Kernal term can be
calculated by equation 38.

𝐾′(𝑡𝑘, 𝑠𝑖) =
2

𝑎
[−

1

𝑠 + 𝑡 + 2
−

2(𝑠 + 1)

(𝑠 + 𝑡 + 2)2
+

4(𝑠 + 1)2

(𝑠 + 𝑡 + 2)3
] (38)

Step 1: calculating the integration si and collocation tk points from the
Table 2 for case III are following:

function si=si_gen(N)
si=zeros(N,1);
for i=1:N
 add=cos(pi*((2*i-1)/(2*N+1)));
 si(i,1)=si(i,1)+add;
end
end

Figure 50. Program 40

function tk = tk_gen(N)
tk=zeros(N,1);
for i=1:N
 add=cos(pi*(2*i/(2*N+1)));
 tk(i,1)=tk(i,1)+add;
end
end

Figure 51. Program 41

Step 2: programs 3 and 11 should be repeated.
Step 3: the Kernel can be calculated independently (Program 42). The left
hand sides of the equations 37.1 and 37.2 in the brackets is shown in
Program 43.

function Kern = Kernel(a,se,te)
Kern=2/a*(-1/(se+te+2)-

2*(se+1)/(se+te+2)^2+4*(se+1)^2/(se+te+2)^3);
end

Figure 52. Program 42

function Infl = Infl_fun(a,N)

28

Infl = zeros(N,N);
si = si_gen(N);
tk = tk_gen(N);
for k=1:N
 for i=1:N
 add=2*(1+si(i,1))/(2*N+1)*(1/(tk(k,1)-

si(i,1))+a/2*Kernel(a,si(i,1),tk(k,1)));
 Infl(k,i)=Infl(k,i)+add;
 end
end
end

Figure 53. Program 43

Step 4: each unknown function φx(si) and φy(si) can be solved.

function Fes = Fe_funcs(sigma,a,N)
Infl = Infl_fun(a,N);
Ftk = F_tks(sigma,N);
Fes = Infl\Ftk;
end

Figure 54. Program 44

function Fet = Fe_funct(tau,a,N)
Infl = Infl_fun(a,N);
Ftkt = F_tkt(tau,N);
Fet = Infl\Ftkt;
end

Figure 55. Program 45

Step 5: according to the Table 3 for Case 3, the Krenk interpolation formula
can be determined (Program 46).

function Fe = Fe_func_M(N)
Fe = zeros(1,N);
 for i=1:N
 add=2/(2*N+1)*(cot((2*i-1)/(2*N+1)*pi/2)*sin((2*i-

1)/(2*N+1)*N*pi));
 Fe(1,i)=Fe(1,i)+add;
 end
end

Figure 56. Program 46

The unknown function values at end point +1 are following:

function fplus = f_pluss(sigma,a,N)
Fe = Fe_func_M(N);
Fes = Fe_funcs(sigma,a,N);
fplus=Fe*Fes;
end

Figure 57. Program 47

function fplus = f_plust(tau,a,N)

29

Fe = Fe_func_M(N);
Fet = Fe_funct(tau,a,N);
fplus=Fe*Fet;
end

Figure 58. Program 48

Step 6: the SIFs are calculated according to equation 39.

𝐾I,II = √𝜋𝑎
2𝜇

𝜅 + 1
√2𝜙𝑦,𝑥(+1) (39)

function Ki = K_ints(sigma,a,N)
fplus = f_pluss(sigma,a,N);
Ki = sqrt(pi*a)*52498*sqrt(2)*fplus;
end

Figure 59. Program 49

function Ki = K_intt(tau,a,N)
fplus = f_plust(tau,a,N);
Ki = sqrt(pi*a)*52498*sqrt(2)*fplus;
end

Figure 60. Program 50

If the stress state equals 1MPa (sigma in program 49), a=1mm, N=10, the
solution is 1.9819. It can be normalized by division to σyy√(πa). The result
is 1.1181.

3.5 Surface-Breaking Slant Crack

Figure 61. Surface-Breaking Slant Crack (Hills, 62)

30

The surface-breaking slant cracks are typically appeared because of
mechanical damage, especially in brittle materials. The solution for this
problem should use the Global Influence function located in Appendix 1.
The program looks almost the same as Program 23 with the difference in
the definitions in the beginning.

function [Glocal] = Gglobal(a,teta,x,se)
G=zeros(6,1);
A=zeros(4,6);
xg=((a*(x+1))/2)*cos(teta);
yg=((a*(x+1))/2)*sin(teta);
seg=(a*(se+1)/2)*cos(teta);
lg=(a*(se+1)/2)*sin(teta);

… %the rest can be copied from the Program 24

Figure 62. Program 51

The singular integral equations should be rewritten.

−
𝜅 + 1

2𝜇
𝜎𝑦𝑦

∞ (𝑡𝑘)

=
2(1 + 𝑠𝑖)

2𝑁 + 1
∑(𝜙𝑥(𝑠𝑖)

𝑎

2
𝐺𝑥𝑦𝑦̂(𝑡𝑘, 𝑠𝑖)

𝑁

𝑖=1

+ 𝜙𝑦(𝑠𝑖) [
1

𝑡𝑘 − 𝑠𝑖
+

𝑎

2
𝐺𝑦𝑦𝑦̂(𝑡𝑘, 𝑠𝑖)]) , 𝑘 = 1…𝑁 (40.1)

−
𝜅 + 1

2𝜇
𝜏𝑥𝑦

∞ (𝑡𝑘)

=
2(1 + 𝑠𝑖)

2𝑁 + 1
∑(𝜙𝑥(𝑠𝑖) [

1

𝑡𝑘 − 𝑠𝑖
+

𝑎

2
𝐺𝑥𝑥𝑦̂(𝑡𝑘, 𝑠𝑖)]

𝑁

𝑖=1

+ 𝜙𝑦(𝑠𝑖)
𝑎

2
𝐺𝑦𝑥𝑦̂(𝑡𝑘, 𝑠𝑖)) , 𝑘 = 1…𝑁 (40.2)

Step 1: programs 40 and 41 should be repeated for this problem.
Step 2: the right hand sides of the equations (40.1, 40.2) are following:

function Ftks = F_tks(sigma1,sigma2,tau,teta,N)
Ftks=zeros(N,1);
sigma=sigma1*(sin(teta))^2+sigma2*(cos(teta))^2-

tau*sin(2*teta); %transformation equation
for i=1:N
 add=(-0.00001905)*sigma;
 Ftks(i,1)=Ftks(i,1)+add;
end
end

Figure 63. Program 52

function Ftkt = F_tkt(sigma1,sigma2,tau,teta,N)
Ftkt=zeros(N,1);

31

tauxy=(sigma2-

sigma1)*sin(teta)*cos(teta)+tau*cos(2*teta);%transformation

equation
for i=1:N
 add=(-0.00001905)*tauxy;
 Ftkt(i,1)=Ftkt(i,1)+add;
end
end

Figure 64. Program 53

Step 3: because of coupling the big matrix should be determine the same
way as in Chapter 3.3. The programs are following:

function GA=GA(teta,a,N)
tk = tk_gen(N);
si=si_gen(N);
GA=zeros(N,N);
for k=1:N
 for i=1:N
 G = Gglobal(a,teta,tk(k,1),si(i,1));
 add=(2*(1+si(i,1)))/(2*N+1)*(a/2*G(1,1));
 GA(k,i)=GA(k,i)+add;
 end
end
end

Figure 65. Program 54

function GB=GB(teta,a,N)
tk = tk_gen(N);
si=si_gen(N);
GB=zeros(N,N);
for k=1:N
 for i=1:N
 G = Gglobal(a,teta,tk(k,1),si(i,1));
 add=(2*(1+si(i,1)))/(2*N+1)*(1/(tk(k,1)-

si(i,1))+a/2*G(2,1));
 GB(k,i)=GB(k,i)+add;
 end
end
end

Figure 66. Program 55

function GC=GC(teta,a,N)
tk = tk_gen(N);
si=si_gen(N);
GC=zeros(N,N);
for k=1:N
 for i=1:N
 G = Gglobal(a,teta,tk(k,1),si(i,1));
 add=(2*(1+si(i,1)))/(2*N+1)*(1/(tk(k,1)-

si(i,1))+a/2*G(3,1));
 GC(k,i)=GC(k,i)+add;
 end
end
end

32

Figure 67. Program 56

function GD=GD(teta,a,N)
tk = tk_gen(N);
si=si_gen(N);
GD=zeros(N,N);
for k=1:N
 for i=1:N
 G = Gglobal(a,teta,tk(k,1),si(i,1));
 add=(2*(1+si(i,1)))/(2*N+1)*(a/2*G(4,1));
 GD(k,i)=GD(k,i)+add;
 end
end
end

Figure 68. Program 57

All these programed matrixes can be united into one matrix.

function Infl = G_Infl(teta,a,N)
GA1=GA(teta,a,N);
GB1=GB(teta,a,N);
GC1=GC(teta,a,N);
GD1=GD(teta,a,N);
G1=vertcat(GA1,GC1);
G2=vertcat(GB1,GD1);
Infl=horzcat(G1,G2);
end

Figure 69. Program 58

Step 4: the φx(si) and φy(si) can be easily found.

function Fes = Fe_func(sigma1,sigma2,tau,teta,a,N)
Infl = G_Infl(teta,a,N);
Ftks = F_tks(sigma1,sigma2,tau,teta,N);
Ftkt = F_tkt(sigma1,sigma2,tau,teta,N);
Ftk=vertcat(Ftks,Ftkt);
Fes = Infl\Ftk;
end

Figure 70. Program 59

Step 5: in order to find the values at end point +1, the program 46 should
be used from Chapter 3.4. The values for φx(+1) and φy(+1) can be found
using programs 60 and 61.

function fplus = f_plusx(sigma1,sigma2,tau,teta,a,N)
Fe = Fe_func_M(N);
Fes = Fe_func(sigma1,sigma2,tau,teta,a,N);
fplus=0;
for i=1:N %only first N values that are corresponding to ϕx
 fplus=fplus+(Fe(1,i)*Fes(i,1));
end
end

Figure 71. Program 60

33

function fplus = f_plusy(sigma1,sigma2,tau,teta,a,N)
Fe = Fe_func_M(N);
Fes = Fe_func(sigma1,sigma2,tau,teta,a,N);
fplus=0;
for i=N+1:2*N %only values for ϕy
 fplus=fplus+(Fe(1,i-N)*Fes(i,1));
end
end

Figure 72. Program 61

Step 6: the SIFs values (39) can be found using programs 62 and 63.

function Ki = K_ints(sigma1,sigma2,tau,teta,a,N)
fplus = f_plusx(sigma1,sigma2,tau,teta,a,N);
Ki = sqrt(pi*a)*52498*sqrt(2)*fplus;
end

Figure 73. Program 62

function Ki = K_intt(sigma1,sigma2,tau,teta,a,N)
fplus = f_plusy(sigma1,sigma2,tau,teta,a,N);
Ki = sqrt(pi*a)*52498*sqrt(2)*fplus;
end

Figure 74. Program 63

The substitution for simple uniform tension, (sigma1=0, sigma2=1MPa,
tau=0, teta=π/3, a=1mm and N=5) gives the result of KI = 0.7677. The
normalized solution is 0.4331. The results was also checked with solution
of Murakami’s work, where the answers were identical to the results from
programed codes.

34

4 CONCLUSION

In this study, the procedure for the code writing was obtained stepwise for
five basic types of cracks in 2D in order to solve the stress intensity factors.
Each code was written and explained. This work was based on the book
Solution for Crack Problems, where the authors displayed the solution of
SIFs using the distributed dislocation technique. This technique uses the
Bueckner principle, so that to get the solution the state of the stress should
be found without the crack and then the crack should be generated as
dislocations. This technique was successfully employed into MATLAB
codes.

The distributed dislocation technique can be used to obtain a solution of
structures with cracks, e.g. welding defects. When the crack is relatively
small, the stress field at the crack tips mostly depends on distant loading.
In that case, an accurate SIFs solution is required because of the high
growth rate. To be noted that the distributed dislocation technique is more
precise than the finite element method, partly because of the kernel term,
that takes care of all the far boundary conditions.

Future tasks include:

 Studying more deeply the distributed dislocation technique in 2D
and 3D;

 Studying the complicated shapes of cracks such as branch cracks
and to program the codes in MATLAB;

 Studying different 3D types of cracks and employing the solution
into programs.

35

REFERENCES

Bueckner, H.F. (1958). The propagation of cracks and the energy of elastic
deformation, Journal of Applied Mechanics 80, 1225-1230.

Griffth, A.A. (1921). The phenomena of rupture and flow in solids, London,
Philosophical Transactions of the Royal Society, 163-198.

Williams, M.L. (1952). Stress singularities resulting from various boundary conditions
in angular corners of plates in extension, Journal of Applied Mechanics 19, 526-528.

Timoshenko, S.P. and Goodier, J.N.(1970). Theory of elasticity, 3rd edition. New York:
McGraw-Hill.

Hills, D.A. (1996). Solution of Crack Problems: the Distributed Dislocation Technique.
Dordrecht: Springer-Science+Business Media.

Westergaard, H.M. (1937). Bearing pressures and cracks, Journal of Applied
Mechanics, 6, A49-A53.

Murakami, Y. (1987). Stress Intensity Factors Handbook. New York: Pergamon Press.

Attaway, S. (2013). MATLAB. A Practical Introduction to Programming and Problem
Solving, 3rd edition. Oxford: Butterworth-Heinemann.

36

Appendix 1

A Dislocation in a Half-Plane

𝐺𝑥𝑥𝑥 = 𝑦 (−
1

𝑟1
2 −

2𝑥1
2

𝑟1
4 +

1

𝑟2
2 +

2𝑥2
2

𝑟2
4 −

4𝜉𝑥2

𝑟2
4 +

4𝜉2

𝑟2
4 +

16𝜉𝑥2
3

𝑟2
6 −

16𝜉2𝑥2
2

𝑟2
6)

𝐺𝑥𝑦𝑦 = 𝑦 (−
1

𝑟1
2 +

2𝑥1
2

𝑟1
4 +

1

𝑟2
2 −

2𝑥2
2

𝑟2
4 +

12𝜉𝑥2

𝑟2
4 −

4𝜉2

𝑟2
4 −

16𝜉𝑥2
3

𝑟2
6 +

16𝜉2𝑥2
2

𝑟2
6)

𝐺𝑥𝑥𝑦 = −
𝑥1

𝑟1
2 +

2𝑥1
3

𝑟1
4 +

𝑥2

𝑟2
2 −

2𝜉

𝑟2
2 −

2𝑥2
3

𝑟2
4 +

16𝜉𝑥2
2

𝑟2
4 −

12𝜉2𝑥2

𝑟2
4 −

16𝜉𝑥2
4

𝑟2
6 +

16𝜉2𝑥2
3

𝑟2
6

𝐺𝑦𝑥𝑥 = −
𝑥1

𝑟1
2 +

2𝑥1
3

𝑟1
4 +

𝑥2

𝑟2
2 −

2𝜉

𝑟2
2 −

2𝑥2
3

𝑟2
4 −

8𝜉𝑥2
2

𝑟2
4 +

12𝜉2𝑥2

𝑟2
4 +

16𝜉𝑥2
4

𝑟2
6 −

16𝜉2𝑥2
3

𝑟2
6

𝐺𝑦𝑦𝑦 = −
3𝑥1

𝑟1
2 −

2𝑥1
3

𝑟1
4 −

3𝑥2

𝑟2
2 −

2𝜉

𝑟2
2 +

2𝑥2
3

𝑟2
4 +

16𝜉𝑥2
2

𝑟2
4 −

12𝜉2𝑥2

𝑟2
4 −

16𝜉𝑥2
4

𝑟2
6 +

16𝜉2𝑥2
3

𝑟2
6

𝐺𝑦𝑥𝑦 = 𝑦 (−
1

𝑟1
2 +

2𝑥1
2

𝑟1
4 +

1

𝑟2
2 −

2𝑥2
2

𝑟2
4 −

4𝜉𝑥2

𝑟2
4 +

4𝜉2

𝑟2
4 +

16𝜉𝑥2
3

𝑟2
6 −

16𝜉2𝑥2
2

𝑟2
6)

Where x1=x-ξ, x2=x+ξ.
The transformation of the influence function listed above

[

𝐺𝑥𝑦𝑦̂

𝐺𝑦𝑦𝑦̂

𝐺𝑥𝑥𝑦̂

𝐺𝑦𝑥𝑦̂]

= 𝐴

[

𝐺𝑥𝑥𝑥

𝐺𝑥𝑦𝑦

𝐺𝑥𝑥𝑦

𝐺𝑦𝑥𝑥

𝐺𝑦𝑦𝑦

𝐺𝑦𝑥𝑦]

Where transformation matrix A is equal

[

sin2 𝜃 cos 𝜃 cos3 𝜃 − cos 𝜃 sin 2𝜃 sin3 𝜃 sin 𝜃 cos2 𝜃 − sin 𝜃 sin 2𝜃
− sin3 𝜃 − sin 𝜃 cos2 𝜃 sin 𝜃 sin 2𝜃 sin2 𝜃 cos 𝜃 cos3 𝜃 − cos 𝜃 sin 2𝜃

− sin 𝜃 cos2 𝜃 sin 𝜃 cos2 𝜃 cos 𝜃 cos 2𝜃 − sin2 𝜃 cos 𝜃 sin2 𝜃 cos 𝜃 sin 𝜃 sin 2𝜃
sin2 𝜃 cos 𝜃 − sin2 𝜃 cos 𝜃 − sin 𝜃 cos 2𝜃 − sin 𝜃 cos2 𝜃 sin 𝜃 cos2 𝜃 cos 𝜃 cos 2𝜃]

Buried Slant crack (Chapter 3.3) replacements for x, y, ξ and η:

𝑥 = 𝑥̂𝑐𝑜𝑠𝜃 + 𝑑
𝑦 = 𝑥̂𝑠𝑖𝑛𝜃

𝜉 = 𝜉𝑐𝑜𝑠𝜃 + 𝑑

𝜂 = 𝜉𝑠𝑖𝑛𝜃

Surface Breaking Slant crack (Chapter 3.5) replacements:

𝑥 =
𝑎(𝑥̂ + 1)

2
𝑐𝑜𝑠𝜃

𝑦 =
𝑎(𝑥̂ + 1)

2
𝑠𝑖𝑛𝜃

37

𝜉 =
𝑎(𝜉 + 1)

2
𝑐𝑜𝑠𝜃

𝜂 =
𝑎(𝜉 + 1)

2
𝑠𝑖𝑛𝜃

