

GraphQL: The API Design Revolution

Aleksi Ritsilä

 Bachelor’s Thesis

 Degree Programme in Bit

 2017

Abstract

 Date

Author(s)
Aleksi Ritsilä

Degree programme
Bit

Thesis title
GraphQL: The API Design Revolution

Number of pages
and appendix pages
31 + 2

APIs allow software to speak to each other. Currently the dominant design model is REST.
Though it is known to build long lasting APIs, it has issues that come with today’s applica-
tions, especially with the rise of mobile app consumers. Queries done with REST require
many HTTP endpoints that return fixed data structures which can easily result excess data.
Issues come also with frequent updates to the applications since knowing what individual
clients need is very difficult.

GraphQL was built by Facebook in 2012 for their mobile and web apps. It was designed
precisely for the need of more flexibility and efficiency in client, server communication. But
will it take over REST?

GraphQL has one “smart” end point that can take complex operations and return only the
data the client needs. The shape of a responses matches the shape of the queries. Thus,
GraphQL does minimize the amount of data transferred and enables easy evolution of ap-
plications.

GraphCool is an open-sourced framework for the development and deployment of server-
less GraphQL backends. With it I created a database and accessed it for purposes of my
example project. GraphCools documentation is well done and the environment is clear and
easy to work with. It provides an excellent way and place for learning GraphQL.

REST is an architectural concept where as GraphQL is a query language. REST can utilize
HTTP content-types, -methods and -caching. However, if a vast field of clients with differ-
ent needs require limited data, with inexpensive queries, GraphQLs API could be what you
are looking for. It´s not really a question of “can GraphQL do more than REST” but rather it
seems many things are just a lot easier with GraphQL.

Keywords
GraphQL API REST

Table of contents

1	 Introduction ... 1	

2	 The Context .. 2	

2.1	 API .. 2	
2.1.1	 What does an API do? .. 2	

2.1.2	 Connectivity between applications .. 3	

2.1.3	 What is a good API? .. 3	
2.2	 JSON .. 4	

3	 REST .. 5	
3.1	 Resources, Representations and Requests ... 5	

3.2	 Constraints ... 6	

3.2.1	 Client-Server ... 6	
3.2.2	 Stateless .. 6	

3.2.3	 Cacheable ... 6	
3.2.4	 Uniform Interface ... 6	

3.2.5	 Layered System .. 7	
3.2.6	 HATEOAS ... 7	

4	 GraphQL ... 8	
4.1	 History of GraphQL ... 8	
4.2	 Precise queries and results .. 9	
4.3	 Many resources with one request .. 10	

4.3.1	 Aliases ... 11	
4.3.2	 Fragmentation ... 11	
4.3.3	 Variables ... 12	
4.3.4	 Directives ... 13	

4.3.5	 Mutations ... 14	

4.4	 The type system ... 15	
4.4.1	 Object types .. 15	

4.4.2	 Scalar types ... 15	

4.4.3	 Query- and Mutation types .. 15	
4.4.4	 Subscription types ... 16	

4.4.5	 Interface and Union types ... 16	
4.4.6	 Input types ... 16	

5	 Creating- and Connecting to a GraphQL API ... 17	

5.1	 GraphCool .. 17	

5.2	 Setting up the API connection .. 17	
5.3	 Inserting data with GraphCool .. 18	
5.4	 Querying data from the GraphQL API .. 19	

6	 REST vs. GraphQL ... 23	

6.1	 Requests .. 23	

6.2	 Usage of the API .. 24	
6.3	 Developer experience .. 24	

6.4	 Caching .. 25	

6.5	 Evolution of the API .. 25	

6.6	 Which one to choose .. 26	

7	 Discussion .. 27	

7.1	 Starting point .. 27	
7.2	 Findings .. 27	

7.3	 The thesis process and own learning ... 28	

References .. 30	
Appendix 1. Traditional report structure .. 32	

Appendix 2. Zipper thesis structure .. 33	

1

1 Introduction

Application programming interfaces (API´s) ease the work of the web developers when

building applications. They allow software to speak to each other, a call is made from a cli-

ent to the server and data is given back. The dialogue is done via requests.

Most likely all of the applications you see have an API, currently most of them Represen-

tational state transfer (REST) API´s. When done well REST produces long lasting API´s

thus over the last decade it has become the standard of today. However, flexibility and

performance optimizing aren´t really in focus. Queries done with REST require many

HTTP endpoints that return fixed data structures which can easily result with excess data.

Issues come also with frequent updates to the applications since knowing what individual

clients need is very difficult. These are issues that come important with today’s applica-

tions, especially with the rise of mobile app consumers.

GraphQL, developed by Facebook in 2012, and publicly released in 2015, was designed

precisely for the need of more flexibility and efficiency in client, server communication.

GraphQL uses types and fields to describe data and schemas. Queries to API result in

precise, predictable results without anything excess. This is done by exposing only one

HTTP endpoint because of a very flexible data structure.

It is easy to see why GraphQL is quickly making name for itself as a revolutionary API

query language. Though it already has gotten a big following including Twitter, Pinterest

and Shopify to name a few, the question is if GraphQL truly is the future of API designs. Is

there perhaps a place for both REST and GraphQL, or could they even work together?

What do the experts of the field have to say, and what do I find from personal hands on

experience.

2

2 The Context

What is the context in which GraphQL works in? GraphQL is an API query language but

what exactly is an API and what makes an API good? Data is passed between the client

and the server. But what is the data exactly like?

2.1 API

API stands for Application programming interface. The “A” in API can be a piece of an ap-

plication, the whole application or a whole server, or just about any piece of software.

APIs provide an interface to stored data fitting the needs of an application allowing soft-

ware to speak to each other. This can be a websites server requesting data from another

server where the data is stored in a database. And many of the servers out there today

have some kind of an API. (Gazarov 2016).

2.1.1 What does an API do?

To get a good idea how it works we can imagine a restaurant where a customer makes an

order, a waiter delivers the order to the kitchen where the meal is made. When the meal is

ready it is given from the kitchen to the waiter and passed to the customer. The waiter

doesn´t need to understand what is going on exactly on either side of the order but it has

to be able to pass it to the kitchen in a way it can be understood there, and deliver back

the correct dish (Mulesoft 2015).

An API can be seen as the waiter in the previous metaphor. Client makes a request from

the server much like the customer does from the kitchen. Once the data is received from

the server it is given to the client by the API. This is all done with public methods and

properties. API doesn´t need to know what happens on either side of the request nor do

the server and client need to understand each other, they have their own private inner

logics outside the scope of the API (Gazarov 2016).

What are the tasks of this “waiter” in computer programming? An API is in charge of the

following: (Buna 2016)

• Controller between protected raw data services and software clients
• Parsing client’s requests
• Constructing join statements
• Structuring raw data by clients demands
• Responding with demanded formats

3

2.1.2 Connectivity between applications

Where do we see APIs in real life? A good example is a website where a person can look

for flights. When a person is looking for flights to Barcelona in December the site sends

requests to multiple airlines API´s asking for flight data for that particular destination and

time. Now the site can display all the desired flights for the person to choose from. When

the person is ready to book the flights, they can fill in the needed information right there on

the website. The information is then passed back to the API of the airline to finish the or-

der. APIs allow users to view information and complete actions located elsewhere without

leaving a website or an app they are using (Gazarov 2016).

The same connectivity between different platforms, provided by APIs, can be seen every-

where. Instagram photos can be shared on Facebook pages. Data from Facebook pages

can be displayed on other websites. Google maps with desired locations can be imple-

mented to services and applications. App and game developers can let their user’s login

with Facebook or Google accounts for social media interactions (Uzayr 2016, 1).

From a web developers side, API´s allow the usage of already built features without at-

tempting to recreate them. This increases productivity and reveals all new possibilities for

innovation (Berlind 2015). Applications can tap into features of others creating connectivity

between different platforms in a secure and controlled way. APIs open up all new busi-

ness possibilities for commercializing services and features.

2.1.3 What is a good API?

API, like its name suggests, is an interface and should be designed for developers.

Choosing a protocol for an API should be done with a best possible developer experience

in mind. Any familiarities to protocols that the developers already have should be taken

into consideration. (Doglio 2015, 2)

A good API needs good documentation. It lets the developer know how to exchange data

between software. The documentation can consist of sample requests descriptions and

snippets making the modern APIs standardised and developer friendly (Mulesoft 2015).

This will shorten the developers learning curve for a system and provide help for error

handling. The documentation should be always up to date with possible changes.

4

Handling all the traffic and performing well at the same time is key. This can be achieved

by spending resources only when and where needed. (Doglio 2015, 2) A good API should

also be easily updated and modified. How will a new version affect the existing work, que-

ries and clients, and is it backwards-compatible.

Lastly the APIs should be designed to be secure. Who will be granted the access to the

API (Authentication) and once logged in, what resources will be accessible inside the sys-

tem (Authorization). Standardizing an API also improves security by enabling good moni-

toring and management. (Mulesoft 2015) HTTPS should be a must to encrypt the data be-

tween the client and server. (Doglio 2015, 2).

2.2 JSON

JavaScript Object Notation, JSON is a standardized textual representation of data. Data

passed between a server and an application is often JSON. It has become the standard

data transfer format over past years. It only includes directly related data to the queries

and therefore is light weight. The format is also very simple, and easy to write and read

improving the developer experience. It also allows the developer to use different data

types providing additional information to the transfers. (Doglio 2015, 2)

A JSON consists of a key and a value creating a pair. The key is a string enclosed in quo-

tation marks, and it names the JSON. A value can be a string, a number, a boolen, an ob-

ject or an Array. An object is key/value pair of its own and an Array a list of values. (Smith

2015, 4)

• A key/value pair: “Key” : ”Value”
• An object: { “Key” : ”Value” }
• An array: [“value”, “value”]

5

3 REST

Representational state transfer or REST was first introduced to the world in 2000 by Roy

Fielding in his doctoral dissertation (Doglio 2015, 1). Over the past years it has become

the dominant Web service design model because of its simplicity over other designs avail-

able at the time. REST is an architectural concept aiming to help create and organize dis-

tributed systems, meaning it´s not a standard with rules written in stone, rather a style to

show how a good system behaves (Doglio 2015, 1). The architecture aims to create well

performing, transformable and long-lasting systems.

3.1 Resources, Representations and Requests

Like its name suggests REST transfers a representation of resources. The resources de-

fine the type of information transferred, and actions and services of a system. They can be

anything conceptualized, a text or an image for instance. Client sends a specific header

asking for a resource to the server. The API is responsible of finding the best representa-

tion of that resource on the server side. The resources can be represented in many forms.

The data can be represented for example as a JSON or XML file, and one resource can

have multiple representation. The client will read and parse the information and request

the most suitable form of the resource. (Doglio 2015, 1)

A resource has an identifier in a form of an URL (Doglio 2015, 1). The URLs used should

be logical and accessible by other parts of the system, as well as unique for one specific

resource. Resources also have metadata to describe them, for instance a content type.

The resources are queried with the identifier URL and a request. GET request is used for

read-only purpose queries and for more complex queries that alter the stage of the data

(create, update and delete) POST is often used (Uzayr 2016, 1).

• GET /api/resource .json
• GET /api/resource .xml

In addition to the previous verbs, PUT is used to create- and DELETE to remove a re-

source. Some actions such as searching and filtering resources aren´t done directly with

any of the requests mentioned. These complex actions are done with a “?” sign which can

be applied to all of the verbs. (Doglio 2015, 1)

• GET /api/resource ?q=[SEARCH-TERM]
• GET /api/resource ?filters=[COMMA SEPARATED LIST OF FILTERS]

6

3.2 Constraints

REST defines a system with constraints. These constraints are discussed in the next sub

chapters. By adding the following constraints one by one, on top of the last, to all compo-

nents, harmony will be reached in system interactions (Doglio 2015, 1).

3.2.1 Client-Server

This constraint describes the basic nature of APIs. Server is in charge of services, and the

request regarding its services. Client makes the requests to the server regarding its ser-

vices. This separates the frontend code, and the server side code storing and processing

the data. Allowing independent development and evolution for both. (Doglio 2015, 1)

3.2.2 Stateless

The requests coming from the client must include all information that is needed for the

server to fully understand that request. This will improve system monitoring and reliability.

It also means data won´t be stored between request which results in faster freeing of re-

sources and easier implementation. (Doglio 2015, 1)

The downside of the constraint is potential overhead of the requests. When all information

is required for the requests from the server it is easy to get excess data and cause extra

traffic.

3.2.3 Cacheable

Responses to requests should cached. All ready requested data can be fetched from

cache layer living either on the client or the server. This results in faster performance. The

downside, if the caching is designed poorly, is that the data returned can be no longer

fresh. (Doglio 2015, 1)

3.2.4 Uniform Interface

Setting a uniform interface for the components of a system will simplify interactions be-

tween the client and the server. Unique identifiers for resources should be used, and

CRUD (create, retrieve, update, delete) actions provided for the requests giving independ-

ent clients clear set of rules to follow when implementing (Doglio 2015, 1). Keeping in

7

mind that HTTP isn´t the only protocol for REST this can be done with unique HTTP paths

for each resource (/api/resource), as well as using HTTP verbs (GET, PUT, POST, DE-

LETE) for the interactions.

This constraint can have its downside to it. Uniform interface will standardize all communi-

cations even if a more suitable form would be available for a certain piece of software.

Most often when using REST and moving away from web based systems, where REST is

optimized, performance can he harmed. (Doglio 2015, 1)

3.2.5 Layered System

Separating the systems components into multiple layers can simplify the system, improve

safety and level the traffic loads. It also allows new layers to be added, and existing ones

deleted or modified without tempering with the whole system.

3.2.6 HATEOAS

HATEOAS, short for Hypermedia as the Engine of Application State is a constraint of

REST, distinguee from other network architectures. Unlike in many other architectures

with interactions guided only in the documentation or language, it allows the client to inter-

act with an application entirely through hypermedia links without prior knowledge of how to

interact with the application. HATEOAS aims to provide systems longevity and good pos-

sibilities for evolution.

HATEOAS resembles a familiar process of entering a web page. The client will have a

fixed URL, a root endpoint, to enter the application from. There they are provided with set

of links for possible first steps, a resource list. Each resource has metadata, in which there

should be a set of hypermedia links. These links tell the client what to do with that re-

source. This means all the next steps regarding that resource are there for the client. This

is how the client transitions through the application and makes possible manipulations to

the representations of resources. The metadata also includes a possibility of specifying

the content-type of a representation of a resource, if there are more than one. The client

can then choose the best suiting one for the particular use case. (Doglio 2015, 1).

The root endpoint exposes links that are used throughout the client’s transition in the sys-

tem. Not all links are accessible through every endpoint. The API only returns the links

8

needed for that particular use case. The client will still have access to everything exposed

in the root endpoint for displaying information to an end user. (Doglio 2015, 1)

HATEOAS improves the decoupling of the client and server significantly. It also allows

changes to the resources and functionalities on the server side without affecting the client.

Thus, the REST system clients can start interactions knowing only one endpoint – the

root end point and keep interacting through the evolving of the server side without compli-

cations.

4 GraphQL

GraphQL is a data query language for APIs and runtime for fulfilling those queries with

your existing data (GraphQL.org). It is a language that can be taught to a software client

application. The application can then communicate with a backend service, also speaking

GraphQL, to request data. The language is close to JSON and has operations for reading

(queries) and writing (mutations) data. The operations are strings for which the GraphQL

service can then respond in desired format, often JSON. (Buna 2016, 1)

It is a run time, a layer, written in any language for a server application to understand- and

respond to GraphQL requests. The layer defines a graph-based schema of possible data

services for the client. Backend servers speak their own languages and this layer can be

implemented on top of existing server logic allowing it to pass the GraphQL request down

the logic and get the requested data. This separates clients from servers and allows inde-

pendent evolving for both sides. (Buna 2016, 1) GraphQL can be confused as being a da-

tabase technology which it is not. It is a query language for APIs, not for databases (How-

tographql.com, Introduction).

In this chapter, using http://graphql.org/learn/ as a guide, I will demonstrate what results

different operations will get.

4.1 History of GraphQL

Designed and used by Facebook since 2012 (publicly released and open sourced in

2015) for their web- and mobile applications, GraphQL was created to solve the issues of

the times APIs, especially with over fetching. This was caused by the basic structure of

the queries, causing a series of requests with excess data. This is especially an issue with

mobile apps that are used with devices and network conditions that can´t handle huge

9

amounts of data and payloads. Today it is maintained by a vast community across the

globe consisting of both companies and individuals (Howtographql.com).

Facebook needed an API strong enough to describe all of Facebooks data-fetching and at

the same time easy to use and learn for their product developers. Facebooks mobile apps

were becoming more complex resulting in performance issues and crashing. The news

feed of theirs had been delivered as HTML and an API data version of it was seen to be

needed. Facebook tried RESTful server resources and FQL tables to solve their issues

but were frustrated with the difference of data used in apps and in server queries. They

wanted a graph of object with used models like JSON instead of resource URLs, second-

ary keys and join tables. There was also a lot of code for the server when preparing the

data and for the client to parse. (Byron 2015)

So, what did Facebook come up with to solve the issues? GraphQL has one “smart” end

point instead of multiple ones like REST has. This endpoint can take complex operations

and return only the data the client needs. (Greif 2017) Facebook wasn´t the only one look-

ing into making API interactions more efficient but once GraphQL was open-sourced

many programs such as Coursera were cancelled as they hopped on to GraphQL. (How-

tographql.com).

4.2 Precise queries and results

The communication is done with text documents in GraphQL query language. These doc-

uments contain one or multiple read or write operations. In GraphQL the read operations

are called queries and write operations mutations. The queries ask for specific fields of

objects. A field is like a function, it will return a response of a primitive value, an object or

an array of objects. With these fields, the results of a query can be narrowed to only the

data that is wanted. The server knows exactly what is asked, and the client will get back

what it expects. The fields map the properties of objects. A query starts with a root query

object, an entry point to the data. Queries are formed of selection sets that can be nested.

Each selection set is represented with curly braces, and they tell the GraphQL server what

properties to read from the field. (Buna 2016, 2)

Here a name field of a hero object is queried. The result of a query will have the same

structure as the query itself, as seen on the table 1. We don’t want to receive everything

about a hero object, only the name.

10

Query Result

{

 hero {

 name

 }

}

{

 "data": {

 "hero": {

 "name": "R2-D2"

 }

 }

}

Table 1 GraphQL Query

4.3 Many resources with one request

The queries have a possibility of sub-selections of fields. This allows the client to query re-

lated data in only one request instead of many roundtrips. It is also possible to add argu-

ments to the fields. With these arguments data can be already transformed into desired

form.

An id argument will specify a human object and a unit argument will transform the height

field into a form wanted. The sub field of friends will result only returning the names of the

friend object of the human object with id:1000.

Query Result

{

 human(id: "1000") {

 name

 height(unit: METER)

 friends {

 name

 }

 }

}

{

 "data": {

 "human": {

 "name": "Luke Skywalker",

 "height": 1.72,

 "friends": [

 {

 "name": "Han Solo"

 },

 {

 "name": "Leia Organa"

 },

 {

 "name": "C-3PO"

 },

11

 {

 "name": "R2-D2"

 }

]

 }

 }

Table 2 GraphQL Query with arguments

4.3.1 Aliases

The objet fields of of the queries results match the names of the fields in the query itself.

However for some purposes the the names the UI is using can be different from the ones

of the server. In graphQL any fields name can be customized with aliases. These aliases

should be named describtive to the particular query or by the usage purpose of the UI.

The query will still ask for the same data but the return will use the specified names in the

responses. Thus the client will not need to a work extra processing the data before using

it. Aliases also allow the same field to be asked multiple times if needed. (Buna 2016, 2)

Query Result

{

 empireHero: hero(episode: EMPIRE) {

 name

 }

 jediHero: hero(episode: JEDI) {

 name

 }

}

{

 "data": {

 "empireHero": {

 "name": "Luke Skywalker"

 },

 "jediHero": {

 "name": "R2-D2"

 }

 }

}

Table 3 GraphQL Query with aliases

4.3.2 Fragmentation

GraphQL also allows fragmentation in a query. Instead of repeating fields, for comparing

two sets of data, for example, it is possible include reusable fragment units to queries

where they are needed. Sub-components and multiple views can ask for isolated data

without duplicating the query logic.

12

Fragments can´t be used on their own since they are just partial operations. They must be

prefixed with a spread operator (three dots) to be used inside a full operation. When

GraphQL server sees the three dots followed by a name inside a query, it will look for a

fragment with the same name. The content of the fragment will be then placed in the

spread operator. The fragment has to fit in the place where it is used and thus can only be

used within the selection. (Buna 2016, 2)

Query Result

{

 leftComparison: hero(episode: EMPIRE) {

 ...comparisonFields

 }

 rightComparison: hero(episode: JEDI) {

 ...comparisonFields

 }

}

fragment comparisonFields on Character {

 name

 appearsIn

}

{

 "data": {

 "leftComparison": {

 "name": "Luke Skywalker",

 "appearsIn": [

 "NEWHOPE",

 "EMPIRE",

 "JEDI"

]

 },

 "rightComparison": {

 "name": "R2-D2",

 "appearsIn": [

 "NEWHOPE",

 "EMPIRE",

 "JEDI"

]

 }

 }

}

Table 4 GraphQL Query with fragments

4.3.3 Variables

Using variables as an input will make the GraphQL queries dynamic and reusable. By re-

placing a static value in a query with $variableName followed by its type, declaring it as an

accepted variable of the query and passing a value (variableName: value) in a separate

dictionary for transport-specific variables (usually JSON). After the variable is defined at

13

the top of the query it can be used anywhere inside that query operation (Buna 2016, 2).

Same variable names can be used in different operations but have to be unique inside

each operation (Buna 2016, 2).

The variables can be required for a query by using a “!” sign after the type ($variable-

Name: type!). Default values can be also assigned for the queries after the type declara-

tion part. If a variable is passed for the query, it will override the default one.

Query Result

query HeroNameAndFriends($episode: Episode)

{

 hero(episode: $episode) {

 name

 }

}

{

 "data": {

 "hero": {

 "name": "R2-D2"

 }

 }

}

Variables {

 "episode": "JEDI"

}

Table 5 GraphQL Query with variables

4.3.4 Directives

The GraphQL server can customize the response of query based on a directive. The re-

sponse can either include something more (@include(if: Boolean)) or skip something

(@skip(if: Boolean)) based on if the variable is true or not. This allows for the UI to have a

summarized and detailed view for example. (GrphQl.com)

Query Result

14

query Hero($episode: Episode, $withFriends:

Boolean!) {

 hero(episode: $episode) {

 name

 friends @include(if: $withFriends) {

 name

 }

 }

}

{

 "data": {

 "hero": {

 "name": "R2-D2",

 "friends": [

 {

 "name": "Luke Skywalker"

 },

 {

 "name": "Han Solo"

 },

 {

 "name": "Leia Organa"

 }

]

 }

 }

}

Variables {

 "episode": "JEDI",

 "withFriends": true

}

Table 6 GraphQL Query with directives

4.3.5 Mutations

Updating data can be done with mutations in GraphQL and fields as data inputs. The mu-

tations fields will run one after another, in series, unlike with queries. This means many

mutations can be done in a single query, and the first one is guaranteed to finish before

the one after and so on.

15

4.4 The type system

Though the results of GraphQL queries result in predictable results, a schema should be

defined. The schema explains the capabilities of the GraphQL server. It can be seen as a

contract between the client and the server defining how the client will be able to access

the data (HowtographQL.com). GraphQL has a type system to describe the data that is

possible to query. Each service defines this set of types which the queries are then exe-

cuted and validated on. (GraphQL.org, Schemas and types)

4.4.1 Object types

Object types are the core of the queries and represent what kind objects can be fetched

and what fields they have. Each of the fields can have none or more arguments which can

be required or not. If an argument is optional, it can have default value. All arguments are

passed by a name and thus have to be always named. (GraphQL.org, Schemas and

types)

4.4.2 Scalar types

In order for the fields to resolve actual data GraphQL has scalar types. Besides custom

scalar types there are following default scalar types: (GraphQL.org, Schemas and types)

• Int: A signed 32-bit integer.
• Float: A signed double-precision floating-point value.
• String: A UTF-8 character sequence.
• Boolean: true or false.
• ID: a serialized unique identifier

Values can also be set to be from a certain set of values, this can be done with an enum

type. Lists and non-null can be used outside objects, scalars, enums and declarations by

adding additional type modifiers, ! for non-null and [] for lists.

4.4.3 Query- and Mutation types

In addition to object types every GraphQL service will have a query type and can have

mutation types. These both serve as an entry point to the schema but are still just like ob-

ject types and their fields work the same. (GraphQL.org, Schemas and types)

16

4.4.4 Subscription types

Some applications can require a real-time connection to the server to get immediate infor-

mation about some events, this can be done with subscriptions in GraphQL. When an

event is subscribed by a client a steady connection is opened to the server. Whenever

that event happens data is pushed to the client from the server. This means that though

written in the same syntax as queries and mutations, subscriptions represent a stream of

data instead of a request-response-cycle. (howtographql.com, core-concepts)

4.4.5 Interface and Union types

Interfaces and unions are both abstract types used to group other types (Buna 2016, 3). If

types have common fields, interface can be used to return that group of types as a whole.

Interface will define fields that the implementation must contain and thus guarantees that

those fields are always supported in that interface. Types used will have all fields of the

interface but can also bring extra fields of their own. Inline fragments can be used to ask

for these extra fields outside of the interface. (Buna 2016, 3).

Unions can be used when types have no common fields but are still wished to be

grouped. The types have to be concrete, not other unions or fragments. Union will define

a list of different implementations. Inline fragments are used to ask for the fields of the

types represented by a union. (GraphQL.org, Schemas and types)

4.4.6 Input types

Input types look the same as object types in GraphQL schema, they just have keyword

“input” instead of “type”. Inputs allow complex objects to be passed into fields. This is use-

ful in mutations where new objects are created. The input object fields can`t have argu-

ments and they can´t be mixed with output types. (GraphQL.org, Schemas and types)

17

5 Creating- and Connecting to a GraphQL API

Following a tutorial “React & Apollo Quickstart” from graph.cool I will create a database

and access it for the purposes of my example project. The project will be a website for a

farm. The farm produces wools of different sorts as well as wood. The website should

have a page where all the different products are displayed and a detail page for each

product.

5.1 GraphCool

GraphCool is an open-sourced framework for the development and deployment of server-

less GraphQL backends. It assists the developers with its framework and uses the

GraphQL SDL syntax for easy defying and evolving of the database schema. Data can be

queried with GraphQL CRUD API safely by exposing what is wanted from the database

schema to the frontend apps through the API Gateway. (graph.cool) Once signed into,

GraphCool provides the user with the possibility to create projects in which one can create

a schema add and modify data, test queries in the playground feature, as well as excellent

documentation on all the features.

5.2 Setting up the API connection

First off, I will clone graphcools react application to get started with. In terminal: git

clone https://github.com/graphcool-examples/react-graphql.git and

move to the directory: cd react-graphql/quickstart-with-apollo. Next up

there I will need to install the graphcool CLI: npm install -g graphcool. I will create

a local file structure for the Graphcool service. This is done in the server directory:
graphcool init server.

The data models and type definitions needed for the project will be written in

types.graphql file, in the GraphQL Schema Definition Language. In addition to ID, created

at and edited at fields, my example projects product type needs a name, a description, an

image and an optional type fields:

type Product @model {

 id: ID! @isUnique

 createdAt: DateTime!

 updatedAt: DateTime!

18

 name: String!

 description: String!

 imageUrl: String!

 type: String!

}

Table 7 Product type

Since the Product type in the data model is now only local, next I should deploy the ser-

vice. It is done in the server directory, running a command: graphcool deploy. Once

the deployment is completed the service will be available from HTTP endpoints printed in

the output of the deployment command or from a graphcool info command. The

Product type is added to the data model, CRUD operations are generated and exposed by

the GraphQL API.

To connect the react application to the GraphQL API from the Graphcool service, I need

to insert the previously printed HTTP endpoint for a Simple API into “./src/index.js” file of

our React app: “const httpLink = new HttpLink({ uri: '__SIMPLE_API_ENDPOINT__' })”.

Then I will launch the app and build the dependencies. In terminal: yarn install and

yarn start.

5.3 Inserting data with GraphCool

In the GraphCool console for the project I can easily insert data for my application. Under

DATA the required fields are filled and then the object can then be saved.

Figure 1 GraphCool console view

19

5.4 Querying data from the GraphQL API

In the playground feature provided by GraphCool I can test the queries needed for the

project. The playground can be opened with a “graphcool playground” command.

Once the desired queries are formed they are added to the React application. On the files

where data is queried I will “import gql from 'graphql-tag'” and add the queries to be used.

The application has a page where all of the products (image and name) of the farm are

displayed:

const ALL_PRODUCTS_QUERY = gql`

 query AllProductsQuery {

 allProducts(orderBy: createdAt_DESC) {

 id

 name

 imageUrl

 }

 }

Table 8 All products query

And then return out the data received:

 componentWillReceiveProps(nextProps) {

 if (this.props.location.key !== nextProps.location.key) {

 this.props.allProductsQuery.refetch()

 }

 }

 render() {

 return (

 <div >

 <div className='list-container'>

 {this.props.allProductsQuery.allProducts && this.props.allProductsQuery.allProd-

ucts.map(product => (

 <Product

20

 key={product.id}

 product={product}

 refresh={() => this.props.allProductsQuery.refetch()}

 />

))}

 </div>

 {this.props.children}

 </div>

)

 }

}

Table 9 Displaying all products

Figure 2 All products browser view

The detail page for each product should receive the name, image and description of that

particular product:

const PRODUCT_QUERY = gql`

 query ProductQuery($id: ID!) {

 Product(id: $id) {

 id

 name

 imageUrl

21

 description

 }

 }

Table 10 Detail page product query

And again, we return the data received:

 render() {

 const {Product} = this.props.productQuery

 return (
 <div className='main'>
 <div className='image'
 style={{
 backgroundImage: `url(${Product.imageUrl})`,
 backgroundSize: 'cover',
 backgroundPosition: 'center',

 }}>
 <div
 className='close pointer'
 onClick={this.props.history.goBack}
 >

 </div>
 </div>
 <div>
 <div>
 <h1>{Product.name}</h1>
 <p className='text'>{Product.description}</p>
 </div>
 </div>
 </div>
)
 }
}

Table 11 Displaying detailed product info

22

Figure 3 Product detail browser view

23

6 REST vs. GraphQL

Though GraphQL is often seen as a replacement for REST that isn´t necessarily the truth,

they could be even used side by side. REST is an architectural concept where as

GraphQL is a query language. REST focuses on creating long lasting APIs while

GraphQLs strong points are in performance and flexibility. REST can utilize HTTP con-

tent-types, caching and so on, GraphQL has its own practices. REST has HATEOS which

isn´t necessarily always used anyways. (Sturgeon 2017)

6.1 Requests

Both GraphQL and REST work around the idea of a resources specified by IDs. In REST,

the identity of an object as well as the shape and size are called in the endpoint of the re-

quest while in GraphQL the identity is separate from the fetch and the format will be deter-

mined by the client. Both APIs will have a list of possible actions with separation of read

and write operations. REST has list of endpoints beginning with GET or POST whereas

GraphQL has a schema of queries and mutations. (Stubailo 2017)

HTTP verbs used by REST can be seen easier to understand for humans. GET will re-

trieve data, PATCH updates and DELETE request will delete. The verbs are quite obvious

for the consumer. One knows what they are indented for, what will happen and that they

are safe to use without even reading the documentation. GraphQL might not be as clear.

The only certain way to know what a mutation for deleting an item is called is to look it

from the documentation. API providers will have their own ways of naming operations and

keeping everything consistent even within one API isn´t guaranteed. HTTP protocol can

thus provide more consistency and predictability. The same goes for HTTP status codes,

they are both machine and human readable. Using REST, we are able to know what hap-

pens just from the HTTP status. GraphQL queries will be “OK” even if the query wouldn´t

have actually been successful. (Lauret 2017)

Using HTTP methods and responses bring limitations. REST accesses multiple endpoints

to gather data. For example, first one endpoint to fetch a user, another to get all posts of

that user and one for getting a list of followers. Often the developers are forced to heavy

customization and interpreting to keep the payloads to a minimum. The clients however

won´t have any control over the customization, unless they are given the rights to do so.

Otherwise it’s all up to the developer to provide queries and responses needed. Still the

two can be seen as completely different languages all together. Almost like asking some-

thing in English and getting an answer in Japanese. (Buna 2016)

24

GraphQLs way is the smallest possible requests, where REST will have the fullest (Stur-

geon 2017). GraphQL queries can call multiple resources, have arguments in any fields

and fetch related data according to relations creating a nested response. The shape of a

responses in GraphQL are built by the execution library to match the shape of the queries.

(Stubailo 2017)

6.2 Usage of the API

GraphQL was created out of the needs of today, especially the needs of mobile clients.

Low-powered devices transfer data with not ideal networks. The mobile clients need

power and ability to choose what data to consume. The mobile applications also evolve

rapidly and their versions can´t be controlled well. Thus, GraphQL does minimize the

amount of data transferred and enables new features to be added without removing the

old ones. (Buna 2016)

Though both REST and GraphQL are most often used for sending data back and forth

with REST it is possible to do more. Small files such as images can be sent with URL

based uploads. This however won´t be useful anything bigger such as videos, large im-

ages etc. For those use purposes dedicated services should be used which is the

GraphQL approach for all uploads. (Sturgeon 2017)

REST has a unique feature of HATEOS, allowing the users travel and explore the API

through links. GraphQL requires more documentation to be clear for the user. (Morgan

2017)

6.3 Developer experience

The developer experience is driving the user experience and thus can be seen even more

important. The language given to work with, should let the developers express the data

requirements close to the way the data is used in the actual application. This how

GraphQL was built and it´s strong type system also helps to avoid and report misuses.

(Buna 2016)

Multiple different frontend frameworks and platforms ran by client applications cause prob-

lems when building and maintaining a single API. It is difficult to meet the requirements of

them all. GraphQL can ease the process by giving each client access to just the date they

need. (howtographql.com)

25

All in all, GraphQL forces efficient queries and removes many design questions. With

GraphQL clients can write their own queries and use the language of their choice instead

of forcing the developers make custom endpoints, -representation or –APIs to solve is-

sues with different clients and their needs. (Sturgeon 2017) The declarative language for

data requirements in GraphQL is close to the way of thinking data requirement in English

easing the thought work that goes into it. (Buna 2017)

6.4 Caching

REST can easily rely on HTTP caching and avoid re-fetching the same data because it is

endpoint-based. With GraphQL the client has to handle caching. A client library such as

Relay can provide a cache system. These systems are complex and since they might not

provide information of the how long the data is valid, refreshing the cache is up to the con-

sumer. (Lauret 2017)

Though GraphQL doesn´t have globally unique identifiers such as URLs for each request,

similar identifiers can be exposed for the clients to use for caching purposes. Also as the

requests come more customized the less cache hits are likely to happen meaning REST

would be forced to go the same route of handling caching as GraphQL. (Sturgeon 2017)

6.5 Evolution of the API

Both REST and GraphQL can version and evolve but deprecations are GraphQLs strong

point. Since monitoring field usage is made easy in GraphQL, developers can track and

reach out to clients to whom new versioning’s will affect. Unlike in GraphQL where clients

are forced to specify what fields they wish to be returned, in REST knowing this is very dif-

ficult. This will result in entire new versions and the old one can´t be dropped until all of

the clients have made the switch, even if the changes only affect the usage of some of

them. (Sturgeon 2017)

Applications tend to have frequent updates with continuous deployment nowadays. REST

APIs expose the data in a manner where modifications are most likely needed whenever

design changes are done on the UI. The data needs change and more or less data might

be needed to request caused by each change done in the frontend. With GraphQL, clients

themselves specify the data requirements and backend adjustments won´t be necessary

26

when the design or data needs of the frontend change. Development and product itera-

tions can thus be extremely fast. (howtographql.com)

REST APIs tend to be created simple at first and later have query language like features.

GraphQL on the other hand will give a query language syntax and software development

kits. Same results can be achieved with REST but it is still a concept with no written rules.

(Sturgeon 2017) “With GraphQL, clients and servers are independent and they can be

changed without affecting each other” (Buna 2016).

With web applications, it is easier to control API versions by simply pushing new code.

Mobile applications are another story since versioning can´t be controlled easily at all. A

user might download an app and keep using the version installed without updating it.

GraphQL allows APIs to grow without versioning. New fields can be added without remov-

ing old ones as the graph can flexibly grow leaving paths for the for the old APIs. (Buna

2017)

6.6 Which one to choose

Which one to choose GraphQL or REST? You should consider the following questions:

(Sturgeon 2017)

• What kind of clients do you have and are they different from each other? If the ap-
plication will have a web and mobile versions, or even if it just a mobile app, the
strengths of GraphQL could be where you base your decision.

• Are your clients handling caching? And even if they are, caching will be easier with
REST.

• Do you want to give power to the client or keep them “dumb”? With GraphQL the
clients will be in charge of a lot otherwise done by the developer.

• How much you value HTTP debugging- and cache proxies? If you have already a
lot of HTTP knowledge you will benefit of it using REST.

If a REST API is following good practices the benefits of GraphQL might fall short. How-

ever, if a vast field of clients with different needs require limited data, with inexpensive

queries, GraphQLs API could be what you are looking for. That being said, in real life of

service-oriented-architectures, multiple different services with multiple APIs are often

used. Some might be REST, some GraphQL. (Sturgeon 2017)

27

7 Discussion

As stated in the beginning of this thesis the question was if GraphQL truly is the future of

API designs. After studying articles and books on the matter it is safe to say there defi-

nitely is demand for a “revolution” in the API world. GraphQL really successes to tackle

the issues of REST and meets the demands APIs have today. Still we have to remember

that it is a very new query language. This both means that it has the attraction of some-

thing new and exciting, but also that it will evolve and possibly make up for the flaws it has

at the moment. As the study bases mostly in articles, I have tried to keep the previous

points in mind staying trust worthy and objective.

7.1 Starting point

I´m not personally one to get excited straight away when something new comes out. I

don´t think that new is always better, rather the opposite. I often feel many unnecessary

changes are being made for the sake of staying on the “cutting edge” of technology. This

can cause time and money being spent on something only making things more difficult.

That being said everything evolves and that’s a good thing. It also means we have to

sometimes move away from our trusted old habits to keep things moving in the right direc-

tion.

The rise in the mobile consumer base, complex nature and constant evolution of apps in

general has created many issues and room for improvement for the APIs and the current

standard, REST. The world has changed a lot since its launch and though REST has

stand the test of time and evolved to meet many needs, now might be the time for a fresh

start. RESTs biggest problems seem to be over fetching of data slowing down apps and

the differences of many frontend applications that need work with one same API. This

makes it very obvious for a company such as Facebook to have stepped in to change

things.

7.2 Findings

After studying articles and books I feel I got a good view on the general opinions of some

experts of the field. I do consider books more trustworthy than articles but unfortunately as

the topic is still fairly fresh not many books were found on GraphQL. Luckily, I was able to

find articles written objective and questionable manner giving me trust to the points made.

There weren´t much controversy between the articles either. None of the articles claim

28

GraphQL to be magically solve all of the issues of APIs but they all are very excited about

it, listing both weaknesses and advantages that come with it. The authors were aware of

the fact that GraphQL does has a lot of “fuss” going around it and clearly made efforts try-

ing to find its flaws.

It´s not really a question of “can GraphQL do more than REST” but rather it seems many

things are just a lot easier with GraphQL. It is just build for the demand of today whereas

REST was for the past. GraphQL will evolve during the times to come but even now it

doesn´t seem to have any major short comings. The biggest issues when compared to

REST pointed out by many authors were the lack HTTP verbs, status codes etc. and

caching. But even when discussing about the previous the authors seem optimistic and

don´t see them as a major problem.

For someone, such as myself, learning API languages today GraphQL might be the way

to go. I don´t feel learning what an API is would have been any easier with REST rather

the opposite. GraphQLs language and logic were easy to understand. Like the authors of

the articles examined, I don´t think GraphQL is just a phase and will provide developers

with many interesting and helping features in the times to come.

Both query languages have back end development frameworks such as graph cool.

Which one prefers will mostly be based on what is wanted to be achieved with a frame-

work. All of them have their own strong points. After trying out graph cool, all I can say is

that their documentation is well done and the environment is clear and easy to work with.

It provides an excellent way and place for learning GraphQL.

It would appear to be that if one is a good REST API developer they most likely will be

good with GraphQL as well. I personally feel designing and developing an API is more

about the logic than the tools. If GraphQL brings new challenges or things to wonder

about they are mostly in the end something that a should be mastered which ever route a

developer chooses to take anyway. Knowing both will always be the best. Even a free-

lance developer who could ideally choose which tools, languages etc. to work with, might

end up in a situation where a framework works only, or just better, with “the other API”.

7.3 The thesis process and own learning

Looking back to the starting point I´m happy with the results of the thesis. I personally did

not have any prior experience with APIs and therefore learned a lot in the process of this

thesis. Tackling on such a big topic with a vast field of new terminology, principles and

29

logics wasn´t the easiest, especially at first. I managed to find good articles directed to

novices such as myself easing the learning process. That is something I hope I have suc-

ceeded to do as well. I hope my thesis will be readable for an It-student wanting to under-

stand APIs and GraphQL without prior knowledge.

As stated before I didn´t find many books on GraphQL as they yet to exist still. REST and

APIs in general had more available. Luckily, with all the excitement around it, a lot of arti-

cles had been already written about GraphQL, many comparing it with REST. These arti-

cles provided knowledge and perspective not letting me feel it was only my opinions I had

to base my study on. I gathered points that were the most mentioned throughout the

study, as well as personally interesting or important factors.

I can´t say that I have become a master of GraphQL just yet. I however got a good under-

standing of APIs and the differences of REST and GraphQL. I also feel I now know what

is expected from a good API today, what the factors are that bring challenges and how

they can be overcome. It has to be pointed that for myself to form a strong opinion about

the subject, I would need more hands-on experience with APIs. I am however very excited

to put everything learned into practice continuing to get better.

Though my thesis won´t necessarily be the most exciting to a API guru, I am confident it

will help new developers to get the hang of things API and GraphQL. As my initial ques-

tion for the thesis was: “is GraphQL truly the future of API designs”, I have still slightly torn

feelings if I did succeed or not answering the question. As things often are not black and

white, the same applies here, there is no absolute answer. It is not a case where no one

had tried to revolutionize the API designs since REST become the standard. REST just

has been more or less without equal match, until GraphQL. It says a lot that many other

companies looking into making API interactions more efficient cancelled their efforts and

hopped on to GraphQL once it was made public. Nothing changes over night and REST

will still be used for a long time, that I´m sure of. That being said there is no questioning

that GraphQL is revolutionary and with someone such as Facebook behind it will be inter-

esting to see where all things API are heading. If you ask me, where ever that might be

GraphQL is currently leading the way.

30

References

Berlind, D. 2015. What Are APIs and How Do They Work. URL: https://www.programma-

bleweb.com/api-university/what-are-apis-and-how-do-they-work Accessed 2 September

2017.

Buna, S. 2016. Learning GraphQL and Relay. Birmingham, UK.

Buna, S. 2017. REST APIs are REST-in-Peace APIs. Long Live GraphQL. URL:

https://medium.freecodecamp.org/rest-apis-are-rest-in-peace-apis-long-live-graphql-

d412e559d8e4 Accessed 27 September 2017

Byron, L. 2015. GraphQL: A data query language. URL: https://code.face-

book.com/posts/1691455094417024/graphql-a-data-query-language/ Accessed 18 No-

vember 2017.

Doglio, F. 2015. Pro REST API Development with Node.js. La Paz, Canelones, Uruguay.

Gazarov, P. 2016. What is an API? In English, please. URL: https://medium.freeco-

decamp.org/what-is-an-api-in-english-please-b880a3214a82 Accessed 2 September

2017.

Greif, S. 2017. So what’s this GraphQL thing I keep hearing about? URL: https://me-

dium.freecodecamp.org/so-whats-this-graphql-thing-i-keep-hearing-about-baf4d36c20cf.

Accessed 30 September 2017.

Howtographql.com. Basics Tutorial – Introduction. URL: https://www.how-

tographql.com/basics/0-introduction/ Accessed: 31 January 2018

Lauret, A. 2017. ...And GraphQL for all? A few things to think about before blindly dump-

ing REST for GraphQL. URL: https://apihandyman.io/and-graphql-for-all-a-few-things-to-

think-about-before-blindly-dumping-rest-for-graphql/ Accessed 4 January 2018

Morgan, A. 2017. GraphQL vs REST: Things to Consider. URL: https://www.in-

foq.com/news/2017/07/graphql-vs-rest Accessed 26 November 2017

Mulesoft. 2015. What is an API. URL: https://www.mulesoft.com/resources/api/what-is-

an-api Accessed 7 September 2017.

31

Smith, B. 2015. Beginning JSON.

Stubailo, S. 2017. GraphQL vs. REST. URL: https://dev-blog.apollodata.com/graphql-vs-

rest-5d425123e34b Accessed 22 November 2017

Sturgeon, P. 2017. GraphQL vs REST: Overview. URL: https://philstur-

geon.uk/api/2017/01/24/graphql-vs-rest-overview/ Accessed 20 November 2017

Uzayr, S. 2016. Learning WordPress REST API.

WebConcepts 2014. REST API concepts and examples URL:

https://www.youtube.com/watch?v=7YcW25PHnAA. Accessed 26 August 2017.

Wikipedia. 2017. Application programming interface. URL: https://en.wikipe-

dia.org/wiki/Application_programming_interface. Accessed 25 August 2017.

Wikipedia. 2017. Representational state transfer. URL: https://en.wikipedia.org/wiki/Rep-

resentational_state_transfer. Accessed 8 September 2017.

32

Appendices

Appendix 1. Traditional report structure

Cover page, abstract, table of contents
Introduction
− general introduction
− objectives, (research) problem setting, delimitation
− concepts.
Theoretical part
− theoretical and previous practical and experiential information
− establishing a research space among earlier studies, theories and models, with ref-

erence to professional literature and other sources.
Empirical part
− target of research
− objective, problems, development task
− methodological choices1 or project plan2 with justification
− description of implementation or working methods
− data and types of analysis used1
− results1 or product2
− summary.
Discussion
− consideration of results
− trustworthiness of the research1
− ethical viewpoints
− conclusions and suggestions for development or further work
− an evaluation of the thesis process and one’s own learning.
References

Appendices
− questionnaire/interview forms and analysis results1
− the product (if possible to include in the report)2

1A research oriented thesis, including quantitative or qualitative research.
2 A product-oriented, practice-based thesis, involving a product development or planning
task, event, publication, multimedia product or the like.

33

Appendix 2. Zipper thesis structure

Cover page, abstract, table of contents
Introduction
− objectives
− delimitation
− presentation of commissioning company
− process description.
Topic A to be studied and developed
− previous research or experiential information (theoretical part)
− a description of the phenomenon as part of the target studied
− results/product and suggestions for development.
Topic B to be studied and developed
− previous research or experiential information (theoretical part)
− a description of the phenomenon as part of the target studied
− results/product and suggestions for development. [Followed by C, D… if needed.]
Discussion
− trustworthiness/usability
− summary and conclusions
− an evaluation of one’s own learning.
References
Appendices

