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Insinöörityössä oli tavoitteena kehittää natiivi Android-sovellus, joka koneoppimista käyt-
täen kykenee ratkaisemaan käsinkirjoitettuja yhteenlaskuja mobiililaitteen kameralla ote-
tuista kuvista. Sovelluksen käyttämä koneoppimismalli tuli kouluttaa vapaasti saatavilla 
olevalla tietoaineistolla, ja sen tuli kyetä johtamaan oikea luokittelu syötteestä ilman merkit-
tävää viivettä. 
 
Käytetyksi koneoppimismalliksi valikoitui MobileNets-koneoppimisperheen syvä konvolutio-
naalinen mobiili ensin -neuroverkko. Koneoppimismalli valittiin sen tarvitseman suhteelli-
sen matalan laskentatehon takia, joka omalta osaltaan mahdollisti reaaliajassa tapahtuvan 
syötteen luokittelun. Neuroverkko koulutettiin tunnistamaan numerot 0–9 laajennetulla 
MNIST-tietoaineistolla ja yhteenlaskuoperaattori insinöörityötä varten käsitellyllä tietoai-
neistolla. 
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kameran syötteen reaaliajassa käyttäen samoja esiprosessointitekniikoita, joita on käytetty 
MNIST-tietoaineiston esikäsittelyssä. 
 
Insinöörityön lopputuloksena valmistui vaatimuksien mukainen Android-sovellus, jolla käyt-
täjä pystyy ratkaisemaan laitteen kameralla kuvattuja käsin kirjoitettuja yhteenlaskuja reaa-
liajassa. Sovellusta testattiin käsin kirjoitetuilla merkeillä, ja sen todettiin toimivan kohtuulli-
sella tarkkuudella. 
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1 Introduction 

Machine learning is not a recent invention, but it has peaked in popularity lately, bringing 

it to the public’s attention. Use cases to which machine learning could be applied to have 

been long known, but due to constraints in processing power and data availability, it has 

not been possible to utilize machine learning to solve these issues. In the recent years 

however, these bottlenecks have been overcome thanks to improvements in algorithms, 

hardware and the data made available. All these factors have made it possible to suc-

cessfully apply machine learning in fields such as medicine, city planning and in trans-

portation.  

Thanks to these successful applications, different entities have expressed growing inter-

est in the technology. Governments and companies alike are striving to be the front-

runners in the space which Google CEO Sundar Pichai has speculated to become more 

impactful than the Internet or more profound than electricity (1). The interest in facilitating 

machine learning and making it available outside of the research community, has brought 

forth a wide variety of tools for developers to use.  

Incorporating machine learning in mobile applications is a relatively new form of applied 

machine learning. Both leading mobile operating system developers, Google and Apple, 

have released tools to facilitate implementing machine learning on their platforms, how-

ever these are still relatively new technologies.  

The objective of this thesis was to use the tools offered by Google to combine machine 

learning with a mobile application. The implementation was done as a native Android 

application, which uses a convolutional neural network to classify hand-written charac-

ters and addition equations. The aim was to use a mobile first convolutional neural net-

work, in order to be able to run inference for multiple characters in real time without 

noticeable latency. It was intended to use a pre-existing data set of hand-written charac-

ters, as compiling a comprehensive dataset is not a simple task to undertake. 
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2 Machine learning 

Machine learning is a subfield of artificial intelligence, which aims to solve tasks that 

would be hard to program by hand, but which are possible for a machine to learn. An 

example of such task would be an autonomous vehicle steering or optical character 

recognition. Even though machine learning and artificial intelligence have been trending 

topics lately, both have been around before this millennium, a well-known example being 

IBM’s Deep Blue artificial intelligence (2). Machine learning was defined in 1959 by Ar-

thur Samuel as follows: 

Field of study that gives computers the ability to learn without being explicitly pro-
grammed. (3) 

The recent rise of machine learning can be credited partly to the increase in processing 

power as well as to the increase of data availability. There rarely seems to be enough of 

either one of the two; the more complex the algorithm, the more data it requires to be 

accurate and that much more processing power will be required to train the model. With 

the increase in data size and computing power, also the complexity of the machine learn-

ing tasks has increased. Training a deep convolutional neural network can take from 

days up to months, depending on the hardware being used. 

The machine learning field has taken strides towards solving more complex problems in 

the recent years. A comparison between Deep Blue and AlphaGo can be made to high-

light the improvements (4). Another example of the improvement in the field are the re-

sults of the yearly ImageNet Large Scale Visual Recognition Challenge (ILSVRC), which 

includes 1.4 million images from 1000 different categories. One of the challenges is the 

image classification task where the winning algorithm’s classification error rate has de-

creased from 0.28 to 0.023 between 2010 and 2017. It should be noted that while the 

error rate has decreased dramatically, the 2017 ILSVRC challenge had 115 entries while 

the 2010 challenge had only 35 entries (5).  

The improvement in the ILSVRC classification task’s results can be accredited to deep 

convolutional neural networks, especially after AlexNet won the 2012 ILSVRC challenge. 

AlexNet brought down the error rate from 0.26 to 0.12, thus popularizing the use of deep 

convolutional neural networks. (6) 
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This thesis uses a retrained MobileNets convolutional neural network model. MobileNets 

is a class of CNN models, specifically designed to be used on devices with limited 

amount processing power, such as smart phones and other embedded devices. The use 

of MobileNets models facilitates fast and relatively low-cost inference performance com-

pared to, for example, a retrained InceptionV3 model. (7) 

2.1 Machine learning techniques 

Machine learning can be divided into three branches: supervised learning, unsupervised 

learning and reinforcement learning.  Supervised learning is an approach where the ma-

chine learning algorithm is provided a set of data and the expected outcome for the data. 

The given data could be for example, a set of images with their matching labels, in which 

case the algorithm tries to learn features from the images and map them to the correct 

labels and finally be able to label inputs that have not appeared in the training data. This 

is called classification and it is the algorithm that is applied in this thesis. (8) 

Another way to apply supervised learning is with regression algorithms. Instead of trying 

to predict the label for an input, regression aims to predict a value for the input based on 

its properties. In the first lecture of the Stanford University’s CS229 Machine Learning 

course Andrew Ng gives an often-used example of a regression problem, predicting the 

price of a house based on some properties such as the square meters of the property 

and number of bedrooms. (9) 

Both of the above techniques apply specific algorithms, for classification the algorithms 

include logistic regression, support vector machines and random forests. For regression 

some algorithms are linear regression, Bayesian networks and decision trees. (8) 

2.2 Image classification 

Image classification is a problem where a machine learning model is tasked to assign a 

label to an input image. As per the Stanford University’s CS231n course, image classifi-

cation is one of the core problems in computer vision. Image classification can be applied 

to general computer vision tasks like detecting objects from an image and image seg-

mentation, where an input image is segmented based on its contents. (10) 
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To input an image to a machine learning model for classification, the image needs to be 

first converted into the correct format, which is often a three-dimensional array of num-

bers. The three dimensions are width, height and depth. The depth dimension is the color 

channels, commonly red, green and blue (RGB). For example, a color image in the RGB 

color space with the spatial size of 224 x 224 would then have 224 x 224 x 3 numbers in 

the input. From the 150.000 numbers ranging between 0 and 255 the machine learning 

model would then derive the label for the input. (10) 

There are multiple different challenges in classifying objects and due to the numerous 

possible variations in the input, it would be extremely difficult to manually write all the 

rules for image classification. The challenges include variation in the perspective of which 

the object is viewed, for example from the front or back. The object could also be partly 

blocked by some other object or it could be in a different scale than expected. Other 

possible variations in the image can be for example the color space and noise in the 

image signal. (10) 

3 Data 

In order for an image classification model to perform well, it needs to learn to classify 

inputs based on the general features which make up each class. By basing the classifi-

cation on these features, the model will be able to provide correct outputs, even when 

variations such as illumination or rotation, are present in the input. For the model to be 

invariant to these differences, it needs to be provided with a wide range of training im-

ages for each class, including images with variations. During training the model will look 

at each of the provided training images and gradually adjust its perception of which de-

tails and features are commonly present in that class of images. The method of first 

gathering a training set of labelled images and then using it for training is called the data-

driven approach. (10)  

The set of data which will be used in training and testing the model is called a dataset. 

The dataset is often split into three different sets: training, validation and testing. The 

ratio between these subsets of the dataset differ, but a generally the portion of the da-

taset that is used for training should be above 50%. The validation subset is used during 

the training to evaluate how well the model is learning to generalize the features in of 

different classes. Once the training has been completed, the final accuracy of the model 
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is evaluated using the testing dataset. It is important to note that the testing subset should 

comprise only of images that the model has not seen during training in order for the 

testing results to be credible. 

Compiling a comprehensive dataset, for example a dataset of hand-written digits, can be 

an expensive, time-consuming and difficult task to complete. Considerable efforts would 

have to be put towards compiling a dataset such as the MNIST, which contains 60.000 

images of hand-written digits from approximately 250 different writers, all of which have 

been manually verified to have correct labels (11). The MNIST dataset is used in this 

thesis, because gathering such a dataset was not a feasible option in the scope of this 

thesis. 

There are multiple well-known and publicly available datasets for image recognition, per-

haps the most popular being the MNIST dataset. Examples of other datasets are the 

CIFAR-10 and CIFAR-100, both which include 60.000 labeled images of 10 and 100 

classes respectively (12). ImageNet is an image database which links image URLs to 

labels which match the contents of the images (13). The aforementioned datasets are 

commonly used for machine learning model benchmarking or for training the initial pa-

rameters of a model before distributing it for retraining. A similar thing is done with the 

MobileNets pretrained models. 

3.1 The MNIST dataset 

The MNIST dataset consists of 60.000 images of hand-written numbers distributed 

among numbers from 0-9. The dataset was made available in 1998 and it is one of the 

most used datasets used for image recognition. Nowadays the dataset is no longer chal-

lenging enough to benchmark convolutional neural networks, as over 99% accuracies 

can be achieved. The MNIST dataset has been derived from the larger National Institute 

of Standards and Technology’s (NIST) special databases 1 and 3 (11). 

The images of characters in the MNIST dataset have been preprocessed, which is why 

they could be considered unsuitable for comparison with any images encountered in the 

real world. Image 1 displays the preprocessing steps which have been applied to each 

of the images in the MNIST dataset. Because of the heavy preprocessing, a model 

trained with the MNIST dataset will not be able to correctly classify images which has 
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not been through the same preprocessing steps. The last step of the preprocessing is 

especially impactful as it converts the binary image into a grayscale image using bi-cubic 

interpolation (14). 

 

Image 1.  Required preprocessing steps to convert an image from the NIST dataset to the same format as 
the images in the MNIST dataset (14) 

This thesis applies similar preprocessing steps as displayed in the image 1, in order to 

be able to classify hand written numbers from an input image with a model trained on 

the MNIST dataset. 

3.2 Data augmentation 

Data augmentation aims to increase the variety of images in an existing dataset by cre-

ating new data from images already existing in the dataset, thus possibly improving the 

performance of the computer vision system. Andrew Ng mentions mirroring and random 

cropping as examples of commonly used augmentation techniques (15). The augmen-

tation methods should be chosen keeping the task in mind, for example using mirroring 

or rotation to augment a dataset of animals could be considered feasible, but it might not 

have the desired outcome on datasets of numbers like the MNIST. 

4 Convolutional neural networks 

Convolutional neural networks (CNNs) have been used to achieve the best results in 

image classification tasks, especially after the deep convolutional neural network 

AlexNet was introduced in 2012 (5). Even though the algorithms used for image classifi-

cation have improved significantly after 2012, using convolutions still remains one of the 

key building blocks for state-of-the art machine learning models, like the MobileNets, 

MobileNetsV2 and InceptionV3 (16, 17, 18). Even though using convolutions is currently 

the key to reaching the most accurate outputs in image classification, models like the 



10 

  

MobileNets do not implement standard convolutional layers, but instead depthwise sep-

arable convolutions (16). The use of the convolution operation remains the same how-

ever. 

A simplified visualization of a convolutional neural network’s layers is presented in image 

2. State-of-the art convolutional neural network are significantly deeper than the one pre-

sented in the image, for example the MobileNets models have 28 layers. Despite this the 

image provides a rough visualization of how a feed-forward convolutional neural network 

works.  

 

Image 2. Visualization of a CNNs layers where the input is shown on the left side and finally the output 
on the right. 

The model definition of a neural network declares how the model is constructed, all var-

iables in the definition are hyperparameters. Hyperparameters are those parameters of 

the model which the developer of the model chooses, instead of values which the net-

work adjusts during training. Both high level decisions, such as the depth and width of 

the model, and low level choices, like the stride for each applicable layer, are hyperpa-

rameters. 

4.1 The convolutional layer 

The task of the convolutional layer is to apply a predefined amount of convolution filters 

on the given input. The width of the layer is defined by the number of filters in it, Mo-

bileNet’s depthwise convolution layers are up to 1024 filters in width. Each filter on a 

convolutional layer has distinctive weights and thus each will activate on different inputs. 

For example, on the lower levels of the network the filters could have learnt to recognize 
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edges or curves while and on the higher levels the filters could be looking for cats, fea-

tures of certain characters or faces, depending on the data the network has been trained 

on. (10) 

The filters, sometimes also called a neurons or kernels, which are applied in the convo-

lutional layer are matrices, commonly considerably smaller in size than the input matrix. 

The weights of the filters are iterated throughout the model’s learning process in order to 

correctly activate on certain inputs. The output of the convolution operation is reached 

by convolving the filter over the input values and calculating the dot-product of the filter’s 

and the current location’s values. (10) 

An example of a horizontal edge detection filter is demonstrated in image 3. The filter is 

a 3x3 matrix with weights that will activate when slid on vertical edges. The input and the 

output are both 4x4 matrices, meaning that the convolution operation is done with a stride 

of 1. If stride is set to 2 then every second input position is convoluted, thus resulting in 

smaller output. In this example the filter is applied to the area outlined with red borders 

on the input and with the shown equation the output value of b6 is calculated.  

Besides stride each convolutional layer has another hyperparameter, padding. It defines 

how to pad the input on the bordering pixels, which do not necessarily have surrounding 

pixels on every side. For example, the border pixel a12 does not have any values for the 

top row of the matrix, in which case a zero-padding value can be defined so that those 

missing pixel values are padded as 0s. This way the input and the output sizes of the 

convolution will be the same with stride 1. (10)  

 

Image 3. Vertical edge detection filter applied on the area with the red borders on the input resulting in 
the value b6 in the output.  
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Convolution is followed by a detector stage. In this stage the linear output of the previous 

step is rectified using a nonlinear activation function (20, p. 335). One common activation 

function is the rectified linear unit (ReLU), which computes the function demonstrated in 

image 2. As can be easily seen from the graph all the activation passed to the ReLU 

function is simply thresholder at zero (10). 

 

Image 4. Rectified linear unit function 

4.2 Pooling 

Typically, the final stage in the convolution step is pooling. Pooling takes as inputs loca-

tions in the spatial domain and outputs summary statistics of its neighborhood. As per 

the Deep Learning book there are some different pooling functions which are max pool-

ing, pooling by average of a rectangular neighborhood and pooling by weighted average 

based on the distance from the center point. (20, p. 335-336) 

An example of the max pooling function is visualized in image 4. The input for the function 

is displayed on the left side and the output of the function is shown on the right. In the 

example demonstrated in the image the pooling filter size is 2x2 and its stride is 2. In the 

context of pooling stride has the same intent as in convolution, meaning that it controls 

over how many pixels the filter is slid across over every step. When stride is set to two 

the values in the input will not overlap. The max pooling function filters out all but the 

highest value, outputting the maximum value in the neighborhood which it is slid across. 

(21) 

Because of the pooling step small invariance in the inputs, such as noise, will be can-

celled out. If the pooling function is performed with a stride of 2 the input is down-sampled 

by a factor of two. The effect of the down-sampling is that the number of features are 



13 

  

reduced and thus the parameters for the next layer of the network are reduced, as can 

be seen from image 4. The pooling outcome abstracts away the actual location of differ-

ent activations in the input image yet keeps their location relative to other activations. 

 

Image 5. Pooling an input with a 2x2 filter 

It should be noted that pooling can be replaced by using for example a stride of 2 in the 

convolution step. This technique is used for example in the MobileNets models. (7) 

4.3 The fully connected layer 

Unlike the commonly used sparsely connected convolutional layers, the last layer or lay-

ers of a convolutional neural network are fully connected to their previous layers, hence 

the name fully connected layer. Generally, the purpose of the fully connected layer is to 

take the input from the previous convolutional layers, compute the class scores from that 

input and output the scores forward to the output layer. Because the previous convolu-

tional layer’s tasks have been to find features and objects from the input, the fully con-

nected layer’s task is to take that input and calculate which class best matches those 

activations. (21) 

The fully connected layer is fully connected to the previous layer because input from all 

of the filters in the previous layer are needed in order to compute the class scores. The 

fully connected layer does not use any hyperparameters to calculate its output, the 

weights and biases of the layer are randomized at first and then using backpropagation 

and gradient decent those values are adjusted to match the output labels for the training 

images. (21) 
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4.4 Output layer 

The layer following the fully connected layer is the output layer, the final layer in a neural 

network. This layer takes in the values calculated by the previous layer and outputs the 

final result. A commonly used classifier is the softmax classifier, used for example in 

InceptionV3 and MobileNets models, which outputs probabilities for each class in the 

training dataset. These output probabilities can be considered as the function’s confi-

dence about in which of the classes the input belongs to. (22) 

The softmax function is used to convert the class scores provided by the last fully con-

nected layer of the network to probability values between 0 and 1. The softmax function 

is used as a part of the cross-entropy loss function displayed in equation 1. The cross-

entropy loss function is used to calculate how far off the output probabilities of the net-

work are from the expected output value, the ground truth. The output of the cross-en-

tropy loss function is then applied in the gradient decent process to adjust the network’s 

weights in order to reduce the loss rate. It can be expected that in a standard classifica-

tion task the correct output probability is a one-hot vector, meaning that one of the clas-

ses’ probability value is 1 while others are 0. (22) 

H(p,q)=−∑xp(x)logq(x)     (1) 

The cross-entropy loss function. P(x) is the expected probability, q(x) the output probability (22) 

The output of the Softmax function is a vector of the same size as the layer’s input, in 

this thesis it would be a vector of size 11, 1.  

5 Training 

The process of training a machine learning model often starts from randomizing all the 

parameters in the model. All those parameters’ values then must be iteratively adjusted 

so that they will activate on certain inputs and thus the network can provide accurate 

predictions. In case of convolutional neural networks and image classifiers, the changes 

in the parameters are derived by inputting a batch of training images into the system and 
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then based on the output results, the parameters’ values are moved towards a smaller 

error rate.  

Training a convolutional neural network is a data hungry task, it is not uncommon to have 

tens of thousands of training images for the process. Due to the extent of the training 

data and the relatively small changes in the network’s parameters in each iteration, the 

training process of networks like the InceptionV3 can take weeks on industry grade hard-

ware. Transfer learning is an alternative to training a model from randomized weights, a 

pretrained model’s final layer is replaced by a new layer which is then trained from ran-

domized weights based on new training data.  

5.1 Backwards propagation 

The previous sections mentioned hyperparameters, weights for the different steps in a 

neural network that the programmer has to choose, but it did not explain how the other 

weights, such as values for the convolutional filters are decided. The filter values for the 

convolutional layer define whether the filter will activate when its input is for example a 

book or an edge. In machine learning these parameters are gradually adjusted by the 

optimization algorithm selected for training the neural network and one way to achieve 

this is to use backwards propagation. Backwards propagation means that the parame-

ters of the network are gradually adjusted to minimize the output error rate, starting from 

the end of the network towards the start, thus improving the accuracy of the network’s 

predictions. 

One way to adjust the weights of the network is to use gradient descent. Gradient de-

scent works by calculating the derivative of the network’s output function, which can be 

then used to calculate how changes in the parameters of the function relate to changes 

in the output of the function. The optimal outcome of gradient descent optimization is to 

come to the global minimum loss value of the output function, however as explained in 

the Deep Learning book it might be difficult to achieve this point. When the global mini-

mum cannot be reached, it is possible to settle for a local minimum point as close to the 

global minimum as possible. Image 5 demonstrates the minimum points of function f(x) 

at point x. Two different local minimum points can be observed on the curve. (20, p. 30-

38) 
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Image 6. Global minimum and local minima highlighted on function f(x). (20, p. 83) 

The process of optimizing the weights happens gradually over the training process of the 

network. The intended result of this process is that the weights of the whole network are 

optimized to produce the most accurate outcome with the given training data. This is the 

process of changing the kernels of the convolutional layer to be able to detect points of 

interest in the training data.  

5.2 Transfer learning 

The amount of time it takes to train a convolutional neural network depends on the 

amount of processing power to be used, the size of the dataset, class labels and espe-

cially the depth, width and other parameters of the neural network. According to You et 

al. it takes 14 days to train the RestNet-50 model on the ImageNet-1k dataset on an 

NVidia M40 GPU (23). Even though scope of the dataset covered in this thesis is con-

siderably lower than the ImageNet-1k, the example is given to highlight that training a 

complex model might not be reasonable to do with consumer grade hardware. 

Transfer learning is a method with which pretrained deep learning models can be re-

trained using another dataset. With this approach an image recognition network, such 

as Google’s InceptionV3, which has been trained on the ImageNet-1k dataset can be 

retrained to classify for example different kinds of flowers or characters with promising 

outcomes and reasonable training times even on consumer grade hardware (24). The 

reduction in the time it takes to retrain a model, compared to training a model from ran-

domized weights, is because the only a selected part of the model must be retrained. 

The lower layers, ones closer to the input, have already learnt to activate on high level 

concepts in the inputs such as edges or colors, which means that they can be applied to 
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different kinds of tasks, not just classifying the ImageNet-1k dataset, thus they do not 

have to be retrained. 

There are different ways in which transfer learning can be done. Andrew Ng mentions 

two different ways in his video about transfer learning, first option is fine tuning the net-

work’s existing weights by retraining the whole network, this approach does not require 

the weights of the network to be randomized, but instead they are fine-tuned to be more 

accurate with the new dataset. The second approach is removing the final output layer 

and replacing it with one or more layers trained with the new data. The first option is 

recommended if the new dataset is relatively large and the latter if the new dataset is 

narrow. For both of these approaches the output layer needs to be replaced and re-

trained for it to be able to classify the labels of the new dataset. Transfer learning has 

the best outcomes when the dataset has been initially trained with a dataset larger than 

the one to which the network is transferred to, however as mentioned in the video some 

improvement might be achieved through retraining a dataset. (25) 

6 MobileNets models 

MobileNets is a selection of open source computer vision models released by Google 

mid-2017. As the name suggests the MobileNets models were designed to run on de-

vices with constrained processing power such as smart phones or embedded devices 

while requiring only a relatively small amount of space. Even when running on mobile 

devices the MobileNets models can achieve low latency and satisfactory accuracy (6). 

For these reasons a MobileNets model was chosen to be used in this thesis.  

The MobileNets class includes the model definition, a Python file with which the model 

can be trained from initial weights, as well as 16 different models trained on the 

ImageNets dataset. The model checkpoints for different model definitions were released 

to allow relatively easy and fast way to make use of the MobileNets. (6) A user can 

choose the model which seems most suitable for the task, the MobileNets checkpoints 

have different number of parameters which reflect on the model’s size, accuracy and 

latency, and then retrain the model with the desired dataset. Due to the availability of the 

model definition, it is also possible to train the desired model from the beginning as well 

as to customize the architecture.  
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The two key hyperparameters for the MobileNets models are the height and width multi-

pliers. These are the only hyperparameters on which the selection of the model is based 

on, and they directly effect on the size and performance of the network. (6)  

6.1 Depthwise separable convolutions 

The MobileNets only uses one standard convolutional layer which is the first layer, all 

lower layers of the network use depthwise separable convolutions instead. Depthwise 

separable convolutions can be understood as a standard convolution factorized into two 

separate convolutions. The two convolutions are a depthwise convolution, a convolution 

which applies a filter on all input channels, and a pointwise convolution, a convolution 

with a kernel size of 1x1, which combines the outputs of the depthwise convolution. A 

standard convolution both applies a filter on all channels and then combines those into 

an output in a single step. (7) 

The use of depthwise separable convolutions allows MobileNets to perform with signifi-

cantly less latency and use less parameters compared to standard convolutions. The 3 

x 3 depthwise separable convolutions in MobileNets use 8 to 9 time less computations 

compared to standard convolutions due having fewer parameters and thus less to com-

pute. With the reduced number of parameters comes also the reduction in the model 

size, though the MobileNets models are optimized for latency, not for small size. (7) 

The computational cost of a standard convolutional layer can be calculated with the for-

mula presented in equation 2. DK is the spatial dimension, the width and height on the 

input, of the kernel. M is the number of input channels, N is the number of output chan-

nels, DF is the spatial dimension of the input. (7) 

𝐷𝐾	 · 	𝐷𝐾	 · 	𝑀	 · 	𝑁	 · 	𝐷𝐹	 · 	𝐷𝐹    (2) 

The function to calculate the cost of a standard convolution (7) 

Since the depthwise separable convolution is the factorization of the above, it can be 

broken into two parts. The computational cost for first part, the depthwise convolution, is 

presented in equation 3. The parameters here refer to the same ones as used in the 

standard convolution function, but the difference between the two is that the depthwise 
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convolution’s cost function does not involve the output channels N, because combining 

the outputs of applying the filter DK on M inputs is not done in this step. (7) 

𝐷𝐾	 · 	𝐷𝐾	 · 	𝑀	 · 	𝐷𝐹	 · 	𝐷𝐹    (3) 

The function to calculate the cost of a depthwise convolution (7) 

Creation of new features happens when the outputs of the convolutional filters are com-

bined together on a pointwise convolution layer. A pointwise convolution means applying 

a 1 x 1 filter on the input. The function to calculate the computational cost of a depthwise 

separable convolution, depthwise convolution combined with a pointwise convolution, is 

presented in equation 4. Once again, the parameters are the same as the ones used in 

the previous examples. (7) 

𝐷𝐾	 · 	𝐷𝐾	 · 	𝑀	 · 	𝐷𝐹	 · 	𝐷𝐹	 + 	𝑀	 · 	𝑁	 · 	𝐷𝐹	 · 	𝐷𝐹    (4) 

The function to calculate the cost of a depthwise convolution and a pointwise convolution com-
bined, the depthwise separable convolution. (7)  

Image 6 illustrates the difference between a standard convolution and the depthwise 

separable convolution and presented the parameters for each of them. The addition be-

tween depthwise convolution and pointwise convolution is not illustrated. 

 

Image 7. Illustrations of standard deviation and the two convolutions which make depthwise separable 
convolution, the depthwise convolution and the pointwise convolution. 

6.2 Architecture 

As per the MobileNets paper, nearly all of the computation done by the model is done in 

the pointwise convolutions. Doing most of the computation this way is made possible by 
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the highly optimized general matrix-multiplication functions, which according to the pa-

per, are one of the most optimized linear algebra algorithms. (7) The breakdown of the 

usage of computational resources can be seen in table 1. It can be seen that the Mo-

bileNets model uses nearly 95 % of the computation time in for the pointwise convolu-

tions.    

Table 1. Breakdown of the resource usage per layer type. (7) 

Layer type  Mult-adds Parameters 

Pointwise convolution 94,86 % 74,59 % 

Depthwise 3x3 convolution 3,06 % 1,06 % 

Standard 3x3 convolution 1,19 % 0,02 % 

Fully connected 0,18 % 24,33 % 

The complete MobileNets architecture is displayed in table 2 where the layers, as well 

as their input and filter sizes are shown. After each layer a batch normalization function 

and a ReLU function are applied to the output, except for the fully connected layer which 

feeds directly to the output Softmax layer (7). It can be also noticed that the MobileNets 

structure has only one pooling layer because downsampling is achieved by using a stride 

of 2 in some of the depthwise convolutional layers.  

The last depthwise convolution’s stride has been changed from the original MobileNets: 

Efficient Convolutional Neural Networks for Mobile Vision Applications paper. In the pa-

per the layer’s stride was marked as 2, which is not possible seeing that the next layer’s 

input size is the same as that layers, which means that the filter is applied with stride 1. 

This can be confirmed from the MobileNets source code on GitHub where all the convo-

lutional layers are defined and added to the _CONV_DEFS variable (26). 

Table 2. MobileNets architecture for 224 x 224 input. (7) 

Layer type / stride Filter-shape Input size 

Standard convolution / s2 3 × 3 × 3 × 32 224 × 224 × 3 

Depthwise convolution / s1 3 × 3 × 32 112 × 112 × 3 

Pointwise convolution / s1 1 × 1 × 32 × 64 112 × 112 × 3 
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Depthwise convolution / s2 3 × 3 × 64 112 × 112 × 64 

Pointwise convolution / s1 1 × 1 × 64 × 128 56 × 56 × 64 

Depthwise convolution / s1 3 × 3 × 128 56 × 56 × 128 

Pointwise convolution / s1 1 × 1 × 128 × 128 56 × 56 × 128 

Depthwise convolution / s2 3 × 3 × 128 56 × 56 × 128 

Pointwise convolution / s1 1 × 1 × 128 × 256 28 × 28 × 128 

Depthwise convolution / s1 3 × 3 × 256 28 × 28 × 256 

Pointwise convolution / s1 1 × 1 × 256 × 256 28 × 28 × 256 

Depthwise convolution / s2 3 × 3 × 256 28 × 28 × 256 

Pointwise convolution / s1 1 × 1 × 256 × 512 14 × 14 × 256 

5 × Depthwise convolution / s1, 
pointwise convolution / s1 

3 × 3 × 512                 1 × 
1 × 256 × 512 

14 × 14 × 512           14 × 
14 × 512 

Depthwise convolution / s2 3 × 3 × 512                  14 × 14 × 512 

Pointwise convolution / s1 1 × 1 × 512 × 1024 7 × 7 × 512 

Depthwise convolution / s1 3 × 3 × 1024 7 × 7 × 1024 

Pointwise convolution / s1 1 × 1 × 1024 × 1024 7 × 7 × 1024 

Average pooling / s1 7 × 7 pooling 7 × 7 × 1024 

Fully connected / s1 1024 × 1000 1 × 1 × 1024 

Softmax / s1 Classifier 1 × 1 × 1000 

 

6.3 Hyperparameters 

The selection of the correct MobileNets model depends on two hyperparameters, the 

width multiplier and the resolution multiplier. In total 16 different model checkpoints of 

MobileNets with different hyperparameter variations were released and by using the 

model definition it will be possible to train a MobileNets model with desired combination 

between these two hyperparameters. (7) 

The width multiplier is a value between 0…1. It is used in thinning the network by reduc-

ing the amount of input and output channels on each layer, which directly affects the 

number of total parameters in the network thus making it less computationally expensive 
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and smaller in size. The default value for the width multiplier is 1 and those implementa-

tions where the multiplier is < 1 are considered reduced MobileNets. The equation to 

calculate the computational cost of a reduced MobileNet is the same as presented in 

equation 4 except that input channels M and output channels N are multiplied by the 

width multiplier. The negative result of thinning the network is reduction in accuracy, as 

presented in table 4. (7) 

Table 3. Comparison between a reduced MobileNet model with 0.75 width multiplier and the 
baseline MobileNet (7) 

Width multiplier ImageNet accuracy Million parameters 

1.0 MobileNet-224 70,6 % 4,2 

0.75 MobileNet-224 68,4 % 2,6 

The second hyperparameter is the resolution multiplier, which is applied to the input im-

age of the network. Looking at the parameters in table 2, it can be noticed that the input 

resolution is 224 × 224, which means that it is an example of a baseline MobileNet, a 

MobileNet model which resolution multiplier is set to 1. By lowering the resolution multi-

plier, it will be possible to reduce the computational cost of the model and thus decrease 

the inference latency. Once again, the caveat for using a reduced MobileNet model is a 

decrease in accuracy, as can be seen in table 4. (7) 

Table 4. Comparison between a reduced MobileNet model a 0.75 width multiplier and the base-
line MobileNet (7) 

Width multiplier ImageNet accuracy Million mult-adds 

1.0 MobileNet-224 70,6 % 569 

1.0 MobileNet-128 64,4 % 186 

It should also be noted that the resolution multiplier does not affect the parameters of the 

network, which is why it does not have an impact to the size of the network either. It 

however lowers the latency of the network by reducing the amount of multiply-accumu-

late operations of the network. Function 5 presents the equation with which to calculate 

the total computational cost of the network with the hyperparameters α as the width mul-

tiplier and ρ as the resolution multiplier. (7) 
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𝐷𝐾	 · 	𝐷𝐾	 · 	α𝑀	 · 	𝜌𝐷𝐹	 · 	𝜌𝐷𝐹	 + 	α𝑀	 · 	α𝑁	 · 	𝜌𝐷𝐹	 · 	𝜌𝐷𝐹    (5) 

The function to calculate the total computational cost of the MobileNets models with hyperpa-
rameters. (7) 

6.4 Other mobile-first models 

At the time of writing this, the MobileNets class could be already considered somewhat 

outdated, as the current machine learning space is improving rapidly. MobileNets can be 

considered an important milestone because they enable the usage of deep neural net-

works in applications running on mobile and embedded devices, and it is also the first 

official mobile-first computer vision model for Tensorflow (6). While newer models have 

improved performance compared to the MobileNets, the MobileNets are still viable to 

use as is demonstrated in this thesis. 

Chinese research and development company Megvii released a paper about ShuffleNet, 

a convolutional neural network claiming to be superior to MobileNets in terms of accuracy 

and latency. The paper demonstrates improved accuracy over the baseline MobileNet 

model with reduced inference time. The ShuffleNet paper was released less than a 

month after the MobileNets paper. (16) 

After starting this thesis, a paper about MobileNetsV2 architecture was released by some 

of the same research team that were behind the original MobileNets architecture. The 

MobileNetsV2 cannot be considered as an improved version of the original MobileNets, 

as it’s architecture is considerably different than the original MobileNet’s. The Mo-

bileNetsV2 beats both ShuffleNet and MobileNetsV1 in an ImageNet performance com-

parison with both the top 1 accuracy and amount of multiplication-addition operations are 

reduced. (17) 

It should be also noted that the MobileNetsV2 paper also introduces the mobile friendly 

version of the feature detector Single Shot Detector (SSD) called SSDLite. SSDLite uses 

separable convolutions, similar to the depthwise separable convolutions explained in this 

chapter, in place of convolutional layers used in the standard SSD. The paper demon-

strates that the SSDLite is considerably more efficient than the SSD300, SSD512 and 
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YOLOv2 networks while also being the most accurate one (17). The usage of the Mo-

bileNetsV2 model with the SSDLite could be considered a great improvement to the 

techniques used in this thesis. 

7 Image preprocessing 

Feature engineering is the task of modifying the input data of a machine learning model 

to achieve better performance which could be increased accuracy, training speed, infer-

ence latency or any combination of the aforementioned. Feature engineering used to be 

a common technique to use, especially in image classification, before convolutional neu-

ral networks started to be used for the task. The test data of the MNIST dataset was 

commonly preprocessed to reach better accuracy. The MNIST database homepage lists 

multiple different machine learning methods and their preprocessing steps which have 

been applied to the MNIST dataset (11). 

Present-day neural networks do not require preprocessing to be applied to the input im-

ages in order to achieve accuracy of 99% or higher on the MNIST training set (14). In 

order, however, to be able to apply a neural network model trained on the MNIST data 

to real-life inputs, those inputs need to be preprocessed. Even though the model used in 

this thesis has learnt what an eight or a three looks like, it has learned those features 

from the MNIST training data, which is highly preprocessed. A comparison between a 

real-life input and an image from the MNIST training data can be seen in image 8. The 

model used in this thesis is not able to classify the input on the left as an eight.  

 

Image 8. On the left an image from the client camera, on the right an image from the MNIST training 
data 

Image preprocessing tasks described in this chapter are done in order to extract charac-

ters from images captured by the user’s camera and apply the same preprocessing steps 

to them as has been applied on the MNIST training data. As mentioned by Prince the 
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choices for the selected preprocessing methods can affect the outcome and the perfor-

mance of a computer vision system by at least as much as the chosen machine learning 

model (27, p. 323). The image preprocessing steps which are applied to the input are as 

follows, color-to-grayscale conversion, adaptive thresholding, smoothing, contour extrac-

tion and finally resizing using either bi-cubic or bilinear interpolation. 

7.1 Color-to-grayscale conversion 

Humans sense color through different wave lengths of light that is presented to our eyes, 

blue color is experienced by a light of 400 nm wave length while a 700 nm wave length 

is experienced as red. Color in computer systems is described with different color mod-

els, with the selection of the model depending on the system and its application, for ex-

ample the CMYK model for print and RGB model for most displays. A source image in 

this thesis is an RGB image captured with the client’s camera. (28, p. 745, 772) 

The source image is converted from RGB to grayscale to be able to apply a contour 

detection algorithm on the input. While the conversion is a requirement, it is also done to 

reduce the amount of data that needs to be processed in the subsequent steps, thus 

improving the system’s performance. While an RGB image is defined in the way that 

each of the three channels have an intensity value for each pixel, a grayscale image has 

only one channel for the pixel’s intensity values.  

Loss of information is inevitable when performing a conversion to grayscale, in this case 

the all information about the luminance of the image is lost as a result of the conversion. 

In this thesis the conversion is done with the CIE Y conversion, which simply omits all 

the chrominance channels of the source image and stores only the luminance for the 

grayscale representation. The mathematical expression for calculating the luminance is 

presented in equation 1. Other grayscale conversion techniques include Decolorize and 

Color2Gray algorithms. (29) 

𝑌 = 0.299 ∗ 𝑅 + 0.587 ∗ 𝐺 + 0.114 ∗ 𝐵    (1) 

The CIE Y is a simple conversion as it works by multiplying the values of each pixel’s 

RGB channels by a predefined weight and then adds them together to provide the lumi-
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nance value for that pixel. In a comparison between different color to grayscale conver-

sion techniques conducted by Ĉadík (2008), the CIE Y conversion, even though simplis-

tic, was rated at the same level as the Color2Gray conversion and better than multiple 

other conversion techniques (29). The multiplicands for the conversion are as defined by 

the International Telecommunication union in the BT.601 standard (30). 

7.2 Adaptive thresholding 

Thresholding is a step in the image preprocessing toolkit where an image is converted 

from grayscale to a binary image. Each pixel in an input image is analyzed and an inten-

sity value is given to the pixel, depending on the defined or calculated threshold the value 

is often set to either 0 or 255, black or white. Thresholding can be used for example to 

separate objects from their background to facilitate character extraction. (31). 

Creation of a binary image by the means of thresholding can be achieved by either 

thresholding the image with a global threshold value or by adaptive thresholding where 

a variable threshold value is calculated for each pixel. Both of these techniques use the 

same expression, the one presented in equation 2, to provide the output value. In the 

former technique the intensity value of each pixel in the input image is compared against 

a global threshold value. For example, all pixels with intensity values above the threshold 

could be set to white while all pixels with values below the threshold could be set to black, 

thus achieving a binary image as a result. Due to all pixels being compared against the 

same global value, this technique is prone to failure especially in cases where the source 

image has variable background illumination. (32)  

𝑑𝑒𝑠𝑡𝑖 = (𝑠𝑟𝑐𝑖 > 𝑇)?𝑀 ∶ 𝑂    (2) 

Threshold function for resolving output pixel value. T is the global threshold value, M is the 
maximum value assigned to the pixel if the condition is true, while 0 is the value set if the condi-
tion is false. (33, p. 136). 

Instead of using a global threshold value for all the pixels, with adaptive thresholding the 

value is recalculated for each pixel. There are different ways to calculating the threshold 

value, for example finding the mean intensity value from a predefined sized neighbor-

hood or the technique used in this thesis which is to calculate the weighted average of 

intensity values of pixels in a defined sized neighborhood surrounding the source pixel. 
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Unlike thresholding using a global value, adaptive thresholding can be successfully ap-

plied even when the source image’s background has strong illumination gradients. (33, 

p. 139) 

7.3 Median blur 

Median blur is an image smoothing technique for which the desired outcome is an image 

with reduced amount of noise or camera artifacts. As the name suggests the output im-

age will appear to be blurred, with reduced number of visible features. Median blur 

traverses through each of the input image’s pixels and replaces their intensity value with 

the mean intensity value found within the source pixel’s neighborhood. (33. p 109, 111) 

As noted by Bradski & Kaehler (33. p 110) as opposed to blurring by mean, median blur 

is not as sensitive to images that are especially noisy or images with shot noise. This is 

due to median blurring not considering outlier values caused by for example shot noise. 

Other blurring techniques include Gaussian smoothing and bilateral filtering, both of 

which are more computationally expensive than the median blur. (33. p 111, 113) 

7.4 Contour extraction 

The extraction of the characters from the user input takes place in the last step of the 

image preprocessing. Contour extraction is a task in which contours, in other words bor-

ders, are detected from an input image. In this context input image refers to an image 

depicting characters, which has been preprocessed into a single channel binary image 

which background is black and the objects on it are white, as described in the previous 

chapters. The chosen contour detection algorithm traverses through all pixels in the input 

image and classifies them as either border or background. Once the contour detection 

algorithm has finished, the contours can be extracted either by simply extracting the con-

tours by following all the pixels marked as borders or by a contour approximation method 

such as Freeman Chain Code of Eight Directions (33). 

The contour detection algorithm used in this project is the one described by Satoshi and 

Abe in the whitepaper Topological Structural Analysis of Digitized Binary Images by Bor-

der Following. The authors present an algorithm which finds contours in a binary image 
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by the means of border following. Two variations of the same algorithm are presented, 

first for extracting all borders from an image, including borders inside already found bor-

ders, hole borders. The second which is used for extracting only the outer borders. This 

thesis uses the latter variation of the algorithm as the current scope of the thesis does 

not require recognition of characters inside other characters. (34) 

The algorithm traverses through the pixels of the input image until it finds a pixel which 

satisfies the condition for either starting a new border following point or a hole border. 

Upon finding a new border following point the algorithm evaluates the pixel’s 4-neighbor 

area to find the next border point to continue to. Once the algorithm encounters a new 

border following point it starts to assign pixels following that border a sequential number 

specific for that border. Once the algorithm has encountered the end of the border it 

continues the traversing through the pixels from where it left off, stopping once the con-

dition for a new border following point or the end of the file is met. (34) 

8 The character classifier application 

As a part of this thesis an Android application, the character classifier app, was created. 

The hand-written number classifier has been implemented as a native Android applica-

tion. The application enables users to classify numbers 0-9 and the character + written 

on a white paper with pen, pencil or marker as well as characters written on a whiteboard. 

By being able to classify the characters, the application can be used to solve addition 

operations. Depending on the font used, numbers printed on paper and viewed on a 

computer screen can be also classified with reasonable accuracies. 

The implementation relies on using the OpenCV library for the input image preprocessing 

and character extraction and TensorFlow for input classification. The latency between 

capturing the input and providing a classification result depends highly on the hardware 

on which the application is run. The whole process can be run without almost any no-

ticeable latency on mid to high end devices.  

The application’s user interface includes one screen, on which the user’s device’s back-

wards facing camera feed is displayed. A screenshot of the user interface is revealed in 

image 9 where points of interest are marked with numbers. 
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Image 9. User interface of the application 

The blueish area, marked with number one, in the center of the screen is the input area. 

This is the area from which the input is extracted and classified, characters or objects 

outside of the area are not processed. The rectangle marked with number 2 is where the 

result of the input is presented. On the bottom is a row of buttons, the rightmost button 

toggles the live scanning functionality on and off. When set on, the application will con-

stantly process the feed inside the input area. The leftmost button marked with the num-

ber 4 is used to classify the currently viewed frame. 

The live processing functionality can be used without almost any noticeable latency on 

mid to high-end devices, where low end device users can choose to use the functionality 

to classify only the frame they wish.  
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9 Application architecture 

The application has three main tasks, displaying the device’s back-facing camera’s feed, 

preprocessing the input from the camera and passing the preprocessed input to the Mo-

bileNet model for inference. All of the tasks are run in parallel, and depending on the 

user’s device, possibly without any noticeable latency. 

Besides the Android software development kit, the application has two main dependen-

cies, OpenCV and TensorflowInferenceInterface. The OpenCV library is used in prepro-

cessing the device’s camera feed and the TensorflowInferenceInterface is used to load 

the machine learning model and run the inference process. 

9.1 Architecture overview 

The application functionality is mainly built around three different components, the cam-

era feed received via the Android platform’s Camera2 API, preprocessing done with 

OpenCV and finally running the inference on with the TensorflowInferenceInterface im-

plementation. Image 9 depicts the application flow as a simplified swim lane process flow 

diagram. 
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Image 10. Application process flow diagram 

All function calls outside of the Activity lane are executed in separate threads, except for 

initializing the machine learning model. Running operations like preprocessing and infer-

ence on background threads ensures that frames are not dropped, and thus the user 

experience remains smooth. This is especially important as live camera feed is the main 

focus point of the application and any latency on its refreshing rate is easily noticeable 

by the user. 

9.2 Threading  

When an application is launched, the Android operating system creates a thread called 

the main thread in which that application is executed. The main thread handles tasks 

such as drawing the user interface and dispatching events, like the touch or swipe, to 

the correct user interface widgets. Because the main thread is responsible for the user 

interface, it should not be used for running tasks such as image preprocessing, network-

ing or inference. Executing long running tasks on the main thread will block it from being 

able to draw on the user interface or propagate events. When the main thread is blocked 
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by a long running task and the user interface cannot be updated the application will ap-

pear to the user to be lagging. (35) 

In order to prevent blocking the main thread the preprocessing and inference tasks need 

to be run in background threads. A background thread is similar to the main thread, ex-

cept that it cannot be used to update the user interface, and it can be run in parallel to 

the main thread (35). Running the preprocessing and inference tasks in background 

threads will allow the main thread to keep refreshing the camera feed and listen to user 

interactions while at the same time processing the camera input. 

9.3 Camera2 API 

In order to receive the camera feed, the application uses the Android platform’s Camera2 

API which was released with Android 5.0 in 2014 (36). The Camera2 API was introduced 

to replace the deprecated Camera API and provides functionality lacking from the previ-

ous API, such as live camera preview. The usage of the Camera2 API comes with a 

caveat, which is that it can be only used on devices with Android 5.0 or greater, because 

it is not supported by the Android support library. In order to support devices running an 

Android version prior to 5.0, the application should either have to provide fallback func-

tionality with the original camera API or the Android native development kit’s native cam-

era APIs. Fallback support has not been implemented in this application and as a result 

the minimum API level of the application has been set to 21. 

To be able to receive the feed from the device’s camera the application creates a camera 

capture session, which sets up the designated camera and allocates memory buffers for 

the captured images. The initialization of the device’s camera is done asynchronously 

and provided callback methods will be called once the initialization has finalized. Upon 

successfully initializing the device’s camera the onConfigured callback method will be 

called with an instance of the CameraCaptureRequest class as an argument. With the 

received camera capture request object a capture request can then be created. (36) 

In order to receive the feed from the device’s camera, the application creates a repeating 

request. As per the Android developer documentation for the Camera2 API, the 

setRepeatingRequest function creates an endlessly repeating request for capturing im-

ages at the maximum possible rate (37). The maximum image capture rate is sufficient 
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for creating a smooth live preview of the camera feed, at least on OnePlus 3, Samsung 

Galaxy S5 and Huawei P8 lite devices. 

One of the arguments for creating the repeating request is a Handler object. A handler 

receives Message and Runnable objects from other threads and executes them on the 

thread to which it is bound to. In the implementation of this application, the handler used 

as an argument for the camera request is bound to a background thread called camera 

thread. The handler argument is used to define which thread the CaptureCallback lis-

tener should be invoked on. If the handler argument has not been provided the API will 

default to calling the listener on the main thread. It should be noted that listener is only 

used to provide a callback and some metadata about the image captured, the camera 

feed is drawn on the user interface on a TextureView by the main thread (37). In this 

application the callback is used to signal that a new frame is available and can be pre-

processed and inferenced. 

9.4 OpenCV 

The Open Source Computer Vision Library (OpenCV) is a free computer vision library 

with interfaces for C++, Python and Java and support for the Android platform. The library 

includes functionality for a variety of computer vision tasks such as image processing, 

feature detection and camera preview. Unfortunately, the official documentation for An-

droid has not been kept up to date and users have to rely on documentation created by 

the community in order to be able to include the library in their Android projects. An 

example of this is that the official documentation has instructions for setting up OpenCV 

for Android development for the Eclipse IDE, which has not been supported for Android 

development since June 2015 (38, 39).  

Even though the official OpenCV documentation for Android is mostly outdated, 

OpenCV’s general Java interface is still under active development and can be used in 

the Android environment. OpenCV was chosen to be used as the library for prepro-

cessing in this thesis because it is designed for computational efficiency and real-time 

applications, and it contains out of the box functionality for most of the required prepro-

cessing tasks. OpenCV is also relatively easy to learn, support resources can be found 

from the active community IRC channel, the comprehensive documentation and books. 
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In order to be able to execute OpenCV functionality in an Android application, the client 

device needs to either have the OpenCV Manager application installed or the application 

using the OpenCV library needs to bundle the required OpenCV library binaries into the 

application. The OpenCV manager provides all the OpenCV library binaries and thus 

enables applications on the user’s device to share those binaries. The required binaries 

are not currently bundled with the character classifier application and thus in order to use 

the application the user will have to install the OpenCV Manager. The binaries will be 

bundled into the application, should the application be released (40). 

9.5 TensorflowInferenceInterface 

Tensorflow is an open source machine learning framework developed by the Google 

Brain Team, with focus on deep neural networks. Tensorflow enables defining and train-

ing machine learning models with Python, as well as running inference. The core Ten-

sorflow is written in C++ and in order to use Tensorflow in Android the TensorflowInfer-

enceInterface needs to be used. 

The trained machine learning model is bundled with the app and it is loaded from the 

application’s asset folder with an implementation of the TensorflowInferenceInterface. 

The interface is also responsible for loading the class labels matching the model and 

running the inference. The implementation of the interface is small and functionality for 

loading the model graph, feeding input to the model and fetching the output require only 

one method call each. (41) 

An optional library for using Tensorflow on mobile is the TensorFlow Lite. TensorFlow 

Lite is optimized for mobile and embedded devices and thus would likely provide faster 

execution time than the inference interface. The library also uses a specific .tflite model 

file type and will be able to use the Android Neural Networks API for hardware acceler-

ation as well as run quantized models on CPU. An additional benefit is that the library is 

less than 300KB, meaning that it might be possible to be used with Instant apps, at least 

from the perspective of size. (42) 

For this application the inference interface was chosen over the TensorFlow Lite library, 

because the TensorFlow Lite is currently in developer preview and thus there is likely 
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less support material for it. The TensorflowInferenceInterface is also very easy to imple-

ment and at minimum only requires adding the dependency to the application’s Gradle 

build file and creating a class that implements the interface.  

10 Machine learning model 

The machine learning model used in the character classifier application is a retrained 

MobileNets model. The release of the MobileNets class came with 16 pre-trained models 

with different hyperparameters, resolutions ranging between 128 to 224 for width multi-

pliers 0.25, 0.50, 0.75 and 1.0, to allow for easy adoption of the models. Each of the 

provided models have been trained on ImageNet, meaning that the chosen model had 

to be retrained on the dataset used in this thesis. 

The decision on which pretrained model to use is made on the basis of the two hyperpa-

rameters of the MobileNets models, resolution and width multiplier. The resolution hy-

perparameter reduces the latency of inference, due to reduction in the total multiplication-

addition operations of the network, while the width multiplier reduces the width of the 

network and results in smaller networks in terms of disk space as well as increased in-

ference latency. 

As one of the goals of this thesis is to be able to run the classifier on the user’s device in 

real time, a model with low inference latency is important. The model chosen for this 

thesis has a width multiplier of 0.50 and a resolution multiplier of 128. The model has 49 

million multiplication-addition operations and 1.34 million parameters, which is less than 

10 % of the baseline model’s multiplication-addition operations and less than a third of 

its parameters. Comparison results between the models can be seen in table 5. 

Table 5. Retraining results between different MobileNets models, the inference time is measured 
on a OnePlus 3 device, training accuracy is reached with a learning rate of 0.01 and a 
training batch size of 100 images. 

Width mul-
tiplier 

Resolution 
multiplier 

Training 
steps 

Accuracy Inference time (ms) 

0.50 128 8000 96,5% 32 

1.0 224 8000 97,5% 118 
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The average inference time of over 100ms with the baseline MobileNets is easily notice-

able by the user, while the 32ms latency of the reduced model is much harder to notice. 

The inference latency is likely to increase for devices with less processing power than 

the OnePlus 3, which was used for these tests. 

10.1 Model retraining 

There are different ways to approach retraining a model, for example fine-tuning all, or 

only a part, of the model’s weights or simply removing the output layer and replacing it 

with a new layer retrained on the new data. The latter approach is taken in this thesis, 

because the approach is easier to implement and faster to experiment on with different 

hyperparameters. TensorFlow provides a retraining script which makes experimenting 

with different hyperparameters even easier (43).  

Using the provided retraining script a new Softmax top layer is added to the chosen 

model. The added layer is then trained from randomized weights with the thesis’ dataset, 

while retaining the existing weights for all other layers. The retraining process can be 

roughly split into three different steps which are choosing the hyperparameters, creating 

bottleneck files, training and finally testing the model. (42) 

Choosing the right model is the first hyperparameter in the retraining process, the com-

parisons and reasoning behind the chosen model are in the previous chapter. The re-

training script has multiple different hyperparameters which are used during to define the 

training session, such as the amount of training steps, learning rate, training, testing and 

validation batch sizes as well as testing and validation dataset sizes. (44)  

In order to be able to achieve reliable training results the model needs to be validated 

and tested on data that has not been used for training the model. This is achieved by 

dividing the original dataset into three portions, the training, validation and testing da-

tasets. The training process in this thesis uses the default ratio between these sets, 

which is 80 % for training and 10 % each for validation and testing. The data in the 

validation dataset is used to validate the model in between training steps, which allows 

the developer to notice possible problems such as overfitting early on (44). It should be 

noted that the script divides the dataset based on filenames, which is not optimal for 
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datasets like the MNIST. For MNIST the most reliable results would be received by guar-

anteeing that the testing dataset has characters by writers whose characters have not 

appeared in the training set.  

The retraining process happens in steps, where a batch of random training data is 

passed through the model and then using backward propagation the weights being re-

trained are updated. One training step is defined in two different hyperparameters, the 

training batch size and learning rate. The batch size defines how much training data is 

used in one training step, and the learning rate defines by how much the weights of the 

layer being retrained are moved towards smaller error rate (44). The values chosen for 

these two hyperparameters are the script’s default values, chosen through experiment-

ing with different values.  

The amount of training steps that are taken during the retraining process is also a hy-

perparameter. The optimal training step count can be reached by attempting to find a 

number at which the training no longer produces more accurate results. The ideal training 

step count was discovered through experimenting with values ranging from 2000 to 

24000. The results for retraining with different hyperparameters can be seen in table 6.  

Table 6. Retraining results with different hyperparameters on MobileNets_0.50_128 model. The 
testing dataset size is 8273 images. 

Training steps Learning rate Training batch size Accuracy 

2000 0.010 100 94,6% 

4000 0.010 100 95,6% 

8000 0.010 100 96,5% 

8000 0.010 50 94,2% 

8000 0.005 100 96,1% 

10000 0.010 100 96,5% 

11000 0.010 100 96,6% 

12000 0.010 100 96,9% 

16000 0.010 100 96,8% 

24000 0.010 100 96,7% 
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Based on the experiments with different hyperparameters the chosen model was trained 

on 12000 steps with 0.010 learning rate and the batch size of 100. This resulted in ac-

curacy of 96,9% for the testing set of close to 8300 images. 

10.2 Data augmentation 

The dataset used for classes 0-9 is from the MNIST dataset while the data for the + class 

is from the Competition on Recognition of Online Handwritten Mathematical Expressions 

(CROHME) dataset converted to .jpg file format by Xai Nano (45). The MNIST dataset 

was augmented by applying random rotation between from +25% to -25% to a fourth of 

the images, while the dataset for the + class was preprocessed in multiple different steps. 

Example images randomly picked from each class can be seen in image 10. 

 

Image 11. An image representing each class in the dataset from 0 on the left to the + class on the right. 

As the CROHME dataset contains images drawn on a computer in one-pixel width they 

were not suitable to use as is. This is because the client application preprocesses all 

characters in the input image the same way, which will result in an output significantly 

different from the CROHME data. To overcome this issue multiple steps of preprocessing 

is applied to the images in the + class dataset.  

First preprocessing step is to increase the stroke width of the characters. Increasing the 

stroke width is done with the scikit-image python library’s morphological filtering function 

erosion (46). The stroke width was randomly increased between 0 and 6 pixels, resulting 

in + characters with varying stroke width. The result of increased stroke width can be 

seen in image 11 where the erosion filter has been applied to the image on the left and 

the output of the preprocessing is presented on it’s right. 
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Image 12. Visualization of the preprocessing outputs for the characters in the + class. A character from 
the CROHME dataset on the left without any preprocessing, a character in the middle with in-
creased stroke width and finally an image on the right with the MNIST preprocessing. 

The images from the CROHME dataset are also preprocessed with the same prepro-

cessing steps as those applied to the user’s camera feed. As the preprocessing func-

tionality had already been implemented on the character classifier application, it was 

decided to preprocess the + class’ dataset on the OnePlus 3 device. The images were 

transferred to the assets of the application and complied with the application, which al-

lowed to easily loop through all the 5000 images, apply the preprocessing steps and 

save them to the device’s public images directory. 

The outcome of these preprocessing steps can be seen in image 11, where the rightmost 

character is one of the characters with which the model was trained on. 

The total amount of images in the dataset and their respective class distribution is shown 

in table 7. The amount of training data for the + class was reduced because the model’s 

test accuracy drastically dropped when the count was at 7000 images. The reason for 

the reduction in the test accuracy was not discovered, however the accuracy was re-

stored by under-sampling the + class’ dataset. 

Table 7. Distribution of images in the dataset between different classes. 

Class label Image count 

0 7101 

1 8100 

2 7154 

3 7407 

4 6 983 

5 6 504 

6 7 111 

7 7 560 
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8 6 966 

9 7 140 

+ 4 005 

11 Camera feed processing 

Because the machine learning model has been trained on heavily preprocessed images 

extracted from their background, all input needs to be preprocessed the same way in 

order to be able to provide accurate classification results. All of the input image prepro-

cessing is done using the OpenCV library version 3.4.0 which is available for both desk-

top and Android development (47). More accurately each processing function can be 

found from the ImgProc module’s ImgProc class while utility methods such as the bit-

mapToMat() function can be found from the Android package’s Utils class.  

All of the functionality described in this chapter is implemented in the CharacterExtractor 

class, whose responsibility, as the name implies, is to extract the input characters from 

the background. It would be understandable to consider that having all the preprocessing 

functionality bundled together would make the CharacterExtractor a huge class, but that 

is not true in this case as the OpenCV team has managed to abstract most of these 

preprocessing steps to one line of code. Having to write very little code for each of the 

preprocessing steps does not make the process of developing a preprocessing system 

such as this one trivial. 

The CharacterExtractor class has one public function, extractCharacters, which takes as 

an argument a Bitmap of type ARGB_8888 or RGB_565 depicting the source image. The 

return value of the function is an ArrayList containing the Bitmaps extracted from the 

source image. The most important steps in converting the input to the output are de-

scribed in this chapter, with some steps like type conversions are left out. 

All of the steps and their outcomes are shown in image 12. It should be noted that con-

siderations about the preprocessing steps had to be taken from the complete prepro-

cessing pipeline’s perspective, instead just applying the same preprocessing steps to the 

input as have been applied to the MNIST dataset. This is because the preprocessing 

pipeline also includes extracting the images. 
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The contour extraction step is can be prone to failure in situations where it’s input is 

noisy, or the characters do not consist of a continuous line, which are both considerations 

which need to be carefully taken into account when adjusting the preprocessing steps 

preceding contour extraction. Making the contour extraction step to work in a consistent 

manner could not be considered a trivial task, as it was one of the most challenging tasks 

in the scope of this thesis. 

Some image processing functionality has not been described in this chapter, for example 

resizing the images, even though it might play a crucial part in the pipeline. Different 

resizing algorithms are used depending on if the images are upscaled or downscaled, 

bilinear interpolation is used when upscaling and averaging when downscaling. Bilinear 

interpolation is used for because it converts the extracted characters from binary images 

to grayscale images and averaging is to downscale as it is the fastest downscaling algo-

rithm offered by OpenCV. 

The extracted images are also centered on a black 28x28 background, once again to 

follow the preprocessing done to the MNIST dataset. Functionality to calculate the border 

size required was written specifically for this thesis, while adding the borders of given 

size is a function in the OpenCV library.  

Preprocessing and extracting shown an image similar to the one as shown in image 12 

takes on average 26ms on an OnePlus3 device.  
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Image 13. The image preprocessing pipeline. The first image is the raw input from the device’s camera, 
second is the input after color space conversion and adaptive threshold, third image is the out-
put of median blurring, fourth is the blurred image with inverted pixel values which is used as 
input for the contour extraction and finally the images on the bottom are the output of the pre-
processing function. 

11.1 Color conversion to grayscale 

Images received from the device’s camera are in the RGB color space, but as the ma-

chine learning model has been trained on grayscale images the color information in the 

input is not relevant. As a result of removing the information about the input’s color the 
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amount of data required to be processed in the following steps is reduced and the per-

formance of the preprocessing process is increased. For these reasons converting the 

images from RGB color space to grayscale is done as the first step in the preprocessing 

pipeline. The conversion is done with the ImgProc class’ cvtColor() function. The function 

declaration is shown in example code 1.  

 static void cvtColor(Mat src, Mat dst, int code) 

Listing 1. ImgProc.cvtColor() function declaration (48). 

An example output of the color-to-grayscale conversion is show in image 12. The image 

on the left side is constructed from the original source bitmap which is configured in 

ARGB_8888 bitmap configuration. With the ARGB_8888 configuration each pixel is 

stored in a total of 4 Bytes, one Byte for each of the RGBA channels. On the right side 

is the source image constructed from the output of the cvtColor function, this image has 

the RGB_565 configuration in which each pixel is stored in 2 Bytes (49). 

 

Image 14. Example of color space conversion from ARGB_8888 to grayscale to RGB_565. 

11.2 Applying adaptive threshold 

Adaptive threshold is an image preprocessing task which takes as input a grayscale im-

age and converts it to a binary image. This preprocessing step is taken in order to attempt 

to reduce the amount of unnecessary information in the source image as well as to pre-

pare the input image for contour recognition. An example of the output of this step can 

be seen in image 2. Converting an image from grayscale typically causes the loss of a 

great amount of information, this is demonstrated in image 13 where all information about 

the background as well as some information about the pen is lost. In the example the 
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information that was lost was not relevant and thus the outcome can be considered a 

success. 

 

Image 15. From left to right, source image, thresholding with global threshold, adaptive thresholding with 
the ADAPTIVE_THRESH_GAUSSIAN_C algorithm. 

The adaptiveThreshold function declaration is shown in example code 2. The input Mat 

file should be an 8-bit single channel image. Similarly, as the cvtColor function described 

in the previous chapter, the adaptiveThreshold function does not return a value but in-

stead sets the output into the Mat variable passed as the second argument. The third 

parameter defines the value which is assigned to the pixels that that satisfy the thresh-

olding condition. The next parameter defines the adaptive threshold method, the options 

for this parameter are explained in more detail in the next paragraph. The rest of the 

parameters are used to define the specifics of the thresholding. (50) 

OpenCV documentation mentions that there are two different adaptive thresholding 

methods which are “ADAPTIVE_THRESH_MEAN_C” and "ADAP-

TIVE_THRESH_GAUSSIAN_C” (50). The difference between these algorithms is that 

the former uses a mean calculated intensity value of the neighboring pixels, while the 

latter calculates a weighted sum using Gaussian distribution. 

public static void adaptiveThreshold(Mat src, Mat dst, double maxValue, 
int adaptiveMethod, int thresholdType, int blockSize, double C) 

Listing 2. Function declaration of adaptiveThreshold. (50) 

Using adaptive threshold for creating a binary image is computationally more expensive 

than using a global threshold, but it can succeed where global thresholding cannot. One 

example of this is when the source image has a strong illumination gradient. A compari-

son of the output of between these two functions can be seen in image 13, where both 

thresholding functions have the same source image. In the image thresholding done with 
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the global threshold fails in both removing the unnecessary background illumination gra-

dient and storing the numbers. 

11.3 Median blurring 

Median blur is an image smoothing technique which attempts to reduce noise from an 

input image. Noise in the input image can be caused for example by a high ISO setting 

due to low lighting. The function declaration for the medianBlur function is shown in ex-

ample code 3.  Similarly, to the previously described functions, medianBlur does not 

have a return type, but sets the output into the Mat variable passed as the second argu-

ment. The third parameter is explained in more detail in the following paragraph. 

public static void medianBlur(Mat src, Mat dst, int ksize); 

Listing 3. Median blur function declaration. (47) 

Median blur works by replacing each pixel in the source Mat with the median pixel value 

in a ksize * ksize neighborhood around the center pixel. The third parameter defines the 

ksize, the size of the neighborhood.  Median blur can be run on images with more than 

one channel, however at the point of reaching to step the image has already been con-

verted to an 8-bit binary image. Image 3 shows an example output of the median blur 

function, where reduction of noise between the source and output images can be noticed. 

(33, p. 111) 

 

Image 16. Source image for the median blur function on the left, output on the right 

3.1. Contour extraction 

Following the previous preprocessing steps, the input image is sufficiently preprocessed 

for contour extraction. Contour extraction is done in order to be able to find external 



46 

  

contours of each characters in the input image, this information is then used to extract 

the characters from the input. 

The OpenCV library offers an abstracted way to extract contours from an input image, 

as the complete process requires only one line of code which is calling the ImgProc class’ 

findContours method with the required arguments. The function applies Satoshi’s and 

Abe’s contour extraction algorithm which is detailed in chapter 3. The output of the func-

tion is a list of MatOfPoint objects which are here used for finding the bounding boxes 

around each character and then extracting the contents of each bounding box. 

One of the arguments the findContours method takes is a contour retrieval mode. The 

options for the contour retrieval mode include a mode for retrieving only the external 

borders which is the modified version of the Satoshi’s and Abe’s extraction algorithm 

detailed in chapter X and it is the one used in this project as nested contour hierarchy is 

not required. Other retrieval modes include retrieving the contours in different hierarchies 

as well as a mode for retrieving all contours without defining any hierarchy for them. 

Being able to retrieve the contours in a hierarchy is useful in uses cases where there 

exist objects inside other objects and each object needs to be retrieved separately. (33, 

p. 237) 

The final argument is used to define the method in which the contours are approximated. 

As explained by Bradski and Kaehler in the book Learning OpenCV, all approximation 

methods besides the CV_CHAIN_CODE store the contours in sequences of points. (33, 

p. 236 - 238) For this project the CV_CHAIN_APPROX_SIMPLE method is chosen as it 

compresses the contour segments leaving only their ending points. The reasoning be-

hind choosing this approximation mode is that only the bounding box of each character 

is required for the characters extraction from the source image. If it was required to ex-

tract for example a 2-dimensional geometric shape without any background, then an-

other approximation method should be chosen. 

12 Performance evaluation 

As the objective of this thesis is to create an Android application which is able to correctly 

classify hand-written addition operations, the evaluation of the performance of the appli-

cation is conducted on a set of hand-written characters representing each class as well 



47 

  

as addition operations. The evaluation process starts from evaluating each character 

class separately in order to highlight issues caused by the use of the MNIST dataset. 

Further evaluation is then done on addition operations of varying length and on varying 

surfaces. 

The model’s accuracy on the testing dataset is over 96%, however this accuracy does 

not reflect the model’s accuracy on real life data. The input for the model in real life is 

not as uniform as the data in the MNIST dataset, even though the dataset consists of 

characters gathered from numerous writers, it does not cover all variations in writing 

styles, such as those resulting from cultural differences. Sometimes the writer’s hand-

writing can be so incomprehensible that they themselves will not be able to say what 

character they have written. The image preprocessing and extraction steps can provide 

suboptimal input for the model, which directly affects the model’s accuracy. 

12.1 Class evaluation 

It is important to evaluate each character class’ accuracy separately in order to be able 

to highlight differences between real world input and the training data. The biggest dif-

ferences between misclassifications of characters are due to different writing styles. The 

MNIST dataset is gathered from the hand-written samples of American Census Board 

employees and high-school students while the evaluation inputs are gathered from Finn-

ish adults (11). This causes a difference in the way some of the characters are written 

and these differences are highlighted in this chapter. 

All evaluation data in this chapter has been written by one Finnish adult with a Staedtler 

Noris 122 HB pencil on UPM Office Copy/print A4 80g sheets. Each character is classi-

fied separately from a distance 5-7cm. Images of all the characters used for the evalua-

tion can be found from the attachments 1-10. 

Results of the evaluation can be seen in table 8 and a breakdown of the results in the 

following chapter.  
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Table 8. Evaluation of each class based on 50 hand-written characters classified with the mobile 
application 

Class label Correct classification 
percentage 

Leading misclassified 
label 

0   96 % + (100 %) 

1 62 % 7 (80 %) 

2 90 % + (40 %) 

3 96 % 5 (100 %) 

4 40 % + (100 %) 

5 88 % 3 (80 %) 

6 90 % 5 (80 %) 

7 71 % + (85 %) 

8 96 % 3 (50 %) 

9 70 % 3 (66 %) 

+ 93 % 7 (100 %) 

12.2 Breakdown of evaluation results 

The average correct classification rate is 81 % between all of the classes, which cannot 

be considered an excellent result. The model’s accuracy on the testing dataset was con-

siderably higher than the accuracy it displayed in the evaluation. This difference is likely 

due to two main factors, the image preprocessing pipeline not outputting optimally pre-

processed characters and the model is not being able to adequately generalize the char-

acteristics of the classes in which it performed most poorly. The real-time performance 

of the application is similar to what was displayed here, as the workflows for both this 

evaluation and real-time classification of these are identical. 

Classes whose evaluation percentage was most affected due to differences in hand-

writing styles are 1, 7 and 9. The evaluation data included features in some characters 

which are prominent in the way some Finnish people write those characters, but which 

are absent in the training data. Examples of this are shown in image 16. Misclassified 

characters from the class 1 evaluation set are shown on the left side, each of these have 

a common feature, the notch on the top of the character. The misclassified characters 
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for class 7 all have two horizontal lines, something which does not appear often in the 

training data.  

 

Image 17. Examples of misclassified characters from classes 1, 7 and 9. 

The other main reason for misclassifications was poor performance of the machine learn-

ing model. This is the main reason for the poor evaluation performance of class 4, where 

the model classified most of the evaluation characters as +. A probable explanation for 

the misclassifications is that the 4 and + classes share some of the same features, like 

very distinctive vertical and horizontal lines. Some of the misclassified characters from 

class’ evaluation set are shown in image 17, however it is not apparent from these im-

ages why they are not classified as +. 

 

Image 18. Some of the misclassified characters for class 4. 
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12.3 Tolerance to rotation 

Tolerance to rotation in the context of this thesis refers to the model’s ability to correctly 

classify inputs, even when the input has been rotated. The model’s tolerance for rotation 

can be increased for example through data augmentation by applying rotations to a sub-

set of the training data. This technique can also be used to increase the dataset’s size 

by keeping both the original and augmented data. As explained in the data augmentation 

chapter, a subset of this thesis dataset has been augmented with random rotations, 

which is an explanation for the satisfactory rotation tolerance. 

The rotation tolerance of two classes is evaluated by applying increasing degree of clock-

wise rotation to one image from both classes and recording the model’s classification. 

The classes 3 and 6 are chosen for this evaluation, as both of them have a relatively 

high evaluation accuracy, as can be seen from table 8.  

The results for the rotation evaluation for the image of class 3 can be seen in image 18. 

Even when rotated 60 degrees clockwise, the model is still able to correctly classify the 

image with acceptable confidence. However, when increasing the rotation amount to 90 

degrees, the model will no longer be able to provide correct classification and the confi-

dence will drop considerably. In real life situations it might be expected that rotations of 

up to 45 degrees are encountered, rotations higher than that seem unlikely. 
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Image 19. Results for rotation evaluation for an image representing the number 3 

Results for rotation evaluations of the chosen image from the class 6 are shown in image 

19. Already at 45-degree rotation the first classification is incorrect, and even though the 

second classification is correct it’s confidence is so low that the results can be considered 

guesses.  

 

Image 20. Results for rotation evaluation for an image representing the number 6 
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The model’s ability to classify images which are rotated could likely be increased by 

further augmenting the dataset with rotated images. Some of the images in the dataset 

used for training the model are rotated by +/- 25 degrees. By adding images with higher 

degree of rotation to the dataset, the model could perhaps be able to perform better in 

the evaluation. 

12.4 Classifying addition equations 

In the scope of this thesis an addition equation has been defined to have any number of 

characters from classes 0-9 in any order with one or more + characters in between. All 

characters should be on a relatively similar horizontal position and have spacing between 

them. The application should then technically be able to capture and classify all inputs 

matching these criteria. 

Three example equations were captured for this evaluation, the model was able to clas-

sify all characters in each input correctly. It should be noted, that considering the results 

in table 8, choosing characters with poor evaluation rates should result in wrong classi-

fication results in this example as well. This chapter is thus more focused on the imple-

mentation’s ability to classify multiple characters from the same input on different back-

grounds with different writing tools. 

The first example is an equation written on paper with a black ballpoint pen, which can 

be seen in image 20. The color image shown above is the input for the character extrac-

tion. Even though the input is slightly shaken, and the characters are not written with 

perfect lines, the application is still able to correctly extract the characters and classify 

all of them.   

 

Image 21. Equation written on paper with a black ballpoint pen with each extracted character shown be-
low. 
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The second example is shown in image 21. The image captured with the camera con-

tains multiple challenges for the character extractor. First challenge is that the paper 

material is clearly present in the input, with close inspections this appears as small white 

strokes throughout the image. If the character extraction process would not be able to 

smooth out this noise in the image the output would be hundreds of small contours. The 

second challenge is the low amount of strength applied to the pencil by the writer, which 

appears as a relatively high number of light spots in the strokes which make up the char-

acters 2 and 0. The extraction process is able to overcome this challenge with adaptive 

thresholding, which converts these pixel values correctly. The application is able to clas-

sify all the characters from this input correctly. 

 

Image 22. Equation written on paper with a pencil. 

The third example shown is an equation written on a on a whiteboard with a green marker 

pen, as can be seen in image 22. The application was used to scan the input from an 

estimated distance of 50 cm. The input does not provide any remarkable challenges for 

the character extraction process or the classifier. It should be noted that the application 

is able to correctly classify the characters in the image even though they are not written 

in black color, because the color’s contrast to the background is used to find the edges 

contours for each character. 
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Image 23. Equation written on a whiteboard with a green marker pen. 

12.5 Problematic inputs 

There are some known issues in the current implementation of the character classifier 

application. Besides the classification issues discussed in the previous chapters, the 

character extraction functionality is not being able to work as intended when presented 

with certain inputs. Failure in correctly extracting characters from the input will most likely 

cause the classification to be incorrect. Because the character extraction is susceptible 

to failure, it increases the overall likelihood providing of great performance to decrease. 

The preprocessing functionality is not able to distinct between characters and for exam-

ple pens in the input and will process them the same way. This will cause the classifier 

to receive the extracted contours of the pen as input. In order to reduce the amount of 

unwanted input, a rectangle is drawn over the camera’s input feed to represent the area 

in which the characters will be searched. A screenshot of the application is shown in 

image 23 where the user has positioned the camera over the input so that the pencil will 

not be used in the classification process. 

 

Image 24. Screenshot of the application where the input is limited by the blue rectangle. 
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An additional issue for the character extraction are characters written close to each other. 

Due to the way the contour extraction algorithm works, characters which’ outlines are 

close to each other can be considered to consist of one contour. This will cause the 

extraction process to consider the two characters as one. The same issue will arise if the 

two characters are overlapping. An example of the issue is shown in image 24.  

 

Image 25. The input shown above provides output where the second and third character are extracted as 
one. 

13 Summary 

The goal of this thesis was to create a mobile application which applies machine learning 

to the task of solving hand-written addition equations. Also, the aim was to use mobile 

first machine learning techniques to be able to complete this task with minimal latency. 

The MNIST data set, often used for benchmarking a machine learning model’s perfor-

mance, was chosen to be used as the main source of training data for the model.   

The outcome of the thesis was an Android application that matches the specified require-

ments: it is able to process and infer the feed from the device’s camera in real time and 

use the machine learning model’s output to solve an addition equation in the camera’s 

feed. The application is able to perform the required task with relatively satisfactory ac-

curacy, it was tested on different inputs drawn with different writing instruments and on 

different backgrounds.    

The performance, in terms of latency and accuracy, of both the machine learning model 

and the application in general could be improved. Augmenting the existing dataset, for 

example with the characters used in the evaluation chapter, would be a good first step 

to start improving the accuracy of the model. 



56 

  

A way to increase both the latency and the accuracy of the implementation would be to 

use a machine learning model which is able to detect all objects in a given input image, 

such as the SSDLite. This approach eliminates the need for the most error prone feature 

engineering task contour detection, however the usage of the MNIST dataset still comes 

with the caveat of having to provide the model with preprocessed inputs for inference. 

Choosing the correct data is at least as impactful to the success of the outcome as se-

lecting the correct model is. Being able to use a pre-existing dataset might be one of the 

dividing factors between ideas that rarely see the light of day and those which are imple-

mented. Based on the findings in this thesis, working with the constraints resulting from 

using the MNIST dataset, or any other heavily preprocessed dataset, could prove to be 

more work than creating a similarly inclusive dataset. 
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