

Timo Kurkinen

Testing automation to increase product quality

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Thesis

10 April 2018

 Abstract

Author
Title

Number of Pages
Date

Timo Kurkinen
Testing automation to increase product quality

32 pages
10 April 2018

Degree Bachelor of Engineering

Degree Programme Information and Communication Technology

Professional Major Communication Networks and Applications

Instructors

Pekka Kinnunen, CTO
Markku Nuutinen, Principal Lecturer

The purpose of the thesis was to create almost fully automated testing environment, so the
company could free up man power for more productive working areas. The company had
two test engineers who manually tested the application and it takes time from them to actu-
ally develop the application.

The plan was to get to know different testing frameworks that were the most compatible for
the company’s application. The application was coded with Ember, thus the key point was
to find JavaScript based framework while also doing research about Python and Java. After
that the plan was to code different kinds of tests for the application and thus more bugs can
be found earlier and faster.

The outcome of the thesis was that the testing automation was running in the company and
it covers as many parts of the code as possible. The company was also wiser about auto-
mated testing and the testers were closer to become full-time developers.

The results were fine considering how much time there was to write tests. While also doing
manual testing and developing at the same time, there was still much learnt about testing
automation and different frameworks and it is now on a right track.

Keywords JavaScript, Testing, Ember, QUnit, Software development

Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Timo Kurkinen
Tuotteen laadun parantaminen testauksen automatisoinnin
avulla

32 sivua
10.4.2018

Tutkinto Insinööri (AMK)

Tutkinto-ohjelma Tieto- ja viestintätekniikka

Ammatillinen pääaine Tietoverkot ja sovellukset

Ohjaajat

CTO Pekka Kinnunen
Yliopettaja Markku Nuutinen

Insinöörityön tarkoituksena oli luoda lähes täysin automatisoitu testausympäristö, sillä
asiakasyrityksessä oli kaksi testaajaa, jotka hoitivat manuaalisesti kaikki testit. Tavoitteena
oli saada enemmän työntekijöitä ohjelmoimaan, sillä koodareita oli viisi, joista kaksi hoiti
myös testausta.

Työssä tutustuttiin erilaisiin testauskehikkoihin, jotka sopivat parhaiten yrityksen
sovellukselle. Sovellus ohjelmoitiin Emberillä, joten tärkeintä oli löytää JavaScriptille sopivin
kehikko, mutta samalla perehdyttiin myös Pythonin ja Javan tarjontaan. Tämän jälkeen
kirjoitettiin erilaisia, mahdollisimman kattavia testejä, jotka käyvät mahdollisimman suurta
osaa koodista läpi. Tämän ansiosta virheitä saattaa löytyä enemmän ja niitä pystyy helpom-
min korjaamaan.

Insinöörityön lopputuloksena testauksen automatisointi saatiin pitkälle yrityksessä ja testit
kävivät läpi suurinta osaa koodista. Yritys oli myös tässä vaiheessa viisaampi testauksen
automatisoinnin saralla, ja testaajat toimivat yhä enemmän sovelluksen kehittämisen
parissa.

Tulokset olivat hyviä ottaen huomioon, kuinka paljon aikaa oli kirjoittaa testejä. Myös sama-
naikaisesti tapahtuvat manuaalinen testaaminen ja kehittäminen huomioiden testauksen au-
tomatisoinnista opittiin paljon lisää ja se on nyt oikealla tiellä.

Avainsanat JavaScript, Testaus, Ember, QUnit, Ohjelmistokehitys

Contents

List of Abbreviations

1 Introduction 1

1.1 About company 1

1.2 Structure of thesis 2

2 Theory 2

2.1 Evolution of programming and testing 2

2.2 Importance of product quality 4

2.3 Profitability of test automation 5

2.4 Different testing techniques and classifications 7

2.4.1 Acceptance tests 9

2.4.2 Integration tests 10

2.4.3 Unit tests 10

2.5 About testing frameworks 11

2.6 Different options for different purposes 11

3 Choosing framework 12

3.1 Criteria for choosing framework 13

3.2 JavaScript testing frameworks 14

3.2.1 QUnit 14

3.2.2 Mocha 15

3.2.3 Jasmine 15

3.3 Limiting the top two 16

4 Implementation of framework 17

4.1 Setting up the framework 18

4.1.1 Tools 18

4.1.2 Management process with tools 20

4.1.3 Installation of QUnit 21

4.2 Getting started with integration tests 22

4.3 Impressing with acceptance tests 27

4.4 Finetuning with unit tests 28

4.5 Summary of testing classifications 31

5 Conclusions 31

References 33

List of Abbreviations

SaaS – Software as a Service

API – Application Programming Interface

GUI – Graphical User Interface

AD – Anno Domini

QA – Quality Assurance

ISTQB - International Software Testing Qualifications Board

UAT – User acceptance testing

BAT – Business acceptance testing

CMD – Command Prompt

CLI – Command language interpreter

URL - Uniform Resource Locator

BDD – Behaviour-driven development

HTML – Hypertext Markup Language

NPM - Node Package Manager

DOM - Document Object Model

EECS - Electrical Engineering and Computer Science

1

1 Introduction

The purpose of this thesis is to plan and create an automated testing environment using

different testing frameworks and comparing them. The idea is to promote the company’s

two test engineers to be almost full-time developers. The reason there is an ”almost”, is

that manual tests are still needed because the application requires new features weekly

to keep the customers happy and acquire more of them. There will be more about the

company and application in the next subchapter.

The company has been planning to automate the testing for a long time and to keep

focusing more on developing the application. There has been some small tests that are

already automated but they are actually never used. Now is the perfect time to plan, do

research and develop these tests as final thesis.

1.1 About company

The company is Movenium Oy which is part of Visma Software Oy. It is a SaaS company

which was founded in 2005. At the end of 2016, Visma Software Oy bought the company

and now it is merging into an even bigger corporation. Movenium has two offices; one in

Finland and the other in Sweden. There are around 20 employees in Finland and five in

Sweden.

Movenium has developed an application for all contractors for managing construction

sites. In the old times, everything was done with papers for example adding worktime or

adding user to a worksite. The application is a smart tool to store all data into cloud and

contractors no longer need to fill out hundreds of papers. It is also easier for accounting

companys to get all the data through integrations. In addition, the application also inclu-

des taxman reporting, which fetches automatically all the information about worker from

”Tilaajavastuu”.

2

1.2 Structure of thesis

This thesis has five chapters. First chapter gives information about company and intro-

duction of the thesis. Second chapter is about the theory of computer programming, tes-

ting and automated testing. It includes a brief overview about the evolution of computer

programming and why has testing become so important. There is also information about

different testing classifications and frameworks. Third chapter is the planning phase,

which includes ratings of different testing frameworks and choosing what could be the

best for this specific application. There is also comparison of different frameworks from

other useful coding languages and limiting the options to two of the best. Fourth chapter

is about implementing the framework to the service and actually making these tests with

examples. It also includes the tools used in the process and summary table of the results.

Final chapter includes analysis of test results and what was done and learnt during these

months.

2 Theory

In the course of time, there has been many occasions where it is proven that an individual

human being can make a lot of mistakes. There is not a perfect human, who manages

to do all kinds of things accurately and conveniently. That is why engineers and develo-

pers of different times began to do research about programming and tried various tests

to get to know the the behaviour of machines and what they are capable of.

2.1 Evolution of programming and testing

The very first programming observation was over 1200 years AD, when an inventor cal-

led Al-Jazari introduced first versions of automaton. Automaton is basically a self-opera-

ting machine that could do a very simple movement like waving a hand or turning head.

The word comes from Greek and can be translated as ”acting of one’s own will”. This

simple but revolutionary observation inspired many programmers and inventors in the

future to take this way of thinking much further.

In the 19th century, computer programming took huge steps forward as in early years of

the century a device called ”Jacquard loom” was invented that could produce entirely

3

different weaves by changing the program. However the real breakthrough was in 1843

when the first algorithm was published that could calculate a sequence of Bernoulli num-

bers. In the later years of the century, machines were able to store data in machine-

readable form and in 1940s a first version of electronic computer was declared. The

developing of this series of inventions continues to this date.

At the same time as machines grew bigger and more complicated and consisted of much

more code and mistakes, testing became more and more important. Back in the days

programming wasn’t so easy and people were not educated as much as they are today.

Testing has always been around and its meaning has increased; people have become

more aware of the failures of programs. People have been testing programs for a pretty

long time and it started to become general in 1940s; at the same time the first electronic

computer was developed. The testing was done in small development teams and the

key point then was to create small projects because in that way more testing could be

done before releasing them. In the very first years of computing, the programs were not

planned to work on many different platforms and that made testing less important be-

cause users’ computers were pretty similar. (1)

Automating these tests became more general in 1990s when the most ambitious deve-

lopers began to think about the opportunities of computer testing itself. The first automa-

tion tests were burned in diskettes which were sold by these developers. There were lots

of them and each one included a certain test. But the fun didn’t last very long because

that became a big problem later on due to the all time growing knowledge of computer

programming. As mentioned earlier, the first testing efforts were quite simple because

the programs were so similar and at that time, automated tests could have worked very

well. But in the modern era of programming, the problem became visible with automated

tests and it was that every time a developer changed the program, the automated test

should have changed also. Since it was automated, it ran the same algorithm and failed

the test. Later on became many different testing frameworks that were able to test spe-

cific coding languages and were much easier to use by writing test scripts instead of

using diskettes. (2)

4

2.2 Importance of product quality

Quality of software is very important nowadays when there is so much competition bet-

ween companys. Who has got the best application or best tools to work with, will usually

get customers easier. Although there are many more other areas, like marketing and

selling a product, those areas become much easier, when there is a steady, well-prog-

rammed and functional product.

Figure 1. Software Quality Process (3)

In the Figure 1 is listed the main features of software quality process. It all begins with

requirement analysis. At this part, company’s QA team gathers documents and full ana-

lysis from the product owner and customers, what needs to be done and dealt with. (3)

Test planning is more architectural. Planning is probably the most important part of the

process because a good plan is half of the job done. It includes the choosing and imple-

menting of the right testing framework and thinking about the parts of the software that

needs the automation and are important for the quality. At this phase, the outcome is a

test plan and also the estimated time to make tests. (3)

5

In addition to the planning part, the team has to design the tests and at this phase the

test engineer has to think about different testing techniques such as black box and white

box testing to create test cases. If there is a need to make test scripts, it is also decided

at this phase and how many lines of code does the test script use and how to design the

code itself to be clear to modify and read. According to Doug Hoffman, ”a good test case

design is neither too simple nor too complex” (4, p.41).

Code coverage means basically how many lines of code is the test covering. If a line has

never been executed, it usually tells that the script didn't catch any bugs lurking in it. This

type of coverage is usually called ’statement coverage’.” (5). A good general example of

code coverage is that when a person is cleaning the house but forgets to clean the toilet

for example, the toilet is still dirty and uncovered, so the same thing goes with coding

and not testing all code.

When requirement analysis is done, and plan and design phase is in a good track, the

next phase is to setup the environment. Installing the needed tools and frameworks and

getting to know how they work and what they can do, is the main goal here.

Now that the installation succeeded and tester knows the basic features of the testing

framework and potentially has some clue how to write tests with it; he can now begin to

execute the tests. This phase may take a lot of time when framework is not maybe so

familiar and the tester may have to do a lot of research how to test different kinds of

fields. In addition, the knowledge of the application’s features and code has to be recog-

nized. Outcome of this phase are execution of test cases and defect reports (3)

The last part of the process is to be confident that the tests are doing what they should

do and afterwards presenting it to the product owner. The tester also has to analyze the

results and finetune the code if needed to cover the code as much as possible. (6, p. 6;

3)

2.3 Profitability of test automation

”Testing has become the most popular verification and validation method in industry. To meet the

market demands of producing high quality systems at low costs, testing should become more

efficient and faster.” (7) There has been many analyses of why companys should automate

testing and what the profit is doing so.

6

Figure 2. The V-Model [8]

The V-Model is a good illustration of how automated testing reduces errors in product

and thus makes the product more profitable. It also frees up test engineers for more

productive working areas due to the reduction in manual testing.

At the lowest level in V-Model is the coding itself and that has to be done before moving

on to the actual tests. While going up the V-Model, upcomes unit tests at the lowest level

and plan for them. The profitability in testing units is to reduce potential bugs and issues

right away.

Following up are the integrations tests and plans to be able to test the relationships bet-

ween these units. The profitability is to ensure that the working units are also working

together like they are meant to be.

Lastly there are acceptance tests at the top of the V-Model and the profitability to test

the application as a whole is to ensure that it is working in a live environment and it is

doing what the customer wants it to do. (9)

7

When the tester doesn't have to do these steps manually, time is saved and thus also

money. From the company’s view this is naturally a great thing financially. On the other

hand, from the tester's view it is also a good thing because there is no need to run the

same tests all over again and in that way some errors can go through without noticing

them. When the testing scripts have been written properly, tester can also take a break

from manual testing in certain cases.

2.4 Different testing techniques and classifications

There are many efficient testing techniques and classifications which should be noted

before jumping into the testing automation world.

Figure 3. Testing classifications

In Figure 3, the importance of three layers of testing are classified in a pyramid. First

comes the manual and GUI tests which are basically user level testing manually and

testing different features – usually the most imporant ones - of the product, to be confi-

dent that they are working well. Next comes the acceptance tests to test the product as

a whole to meet the customers’ demands which are gathered in requirement analysis.

And at the bottom layer are unit and component tests to test the functional part of the

8

product; does every function work properly, does every field allow correct values and

does the page give error.

Testing combines techniques that focus on five different dimensions:

• Tester: Who does the testing. User testing is focused on testing by mem-
bers of the target market and also the tester must be able to test it like a
normal user.

• Coverage: What gets tested. For example in integration tests it’s the com-
ponents and in unit tests it’s the functions and other units.

• Potential problems: Why you are testing.

• Activities: How you test.

• Evaluation: How to tell whether the test passed or failed. (7, chapter 3
lesson 48)

These are the main questions to think when considering testing techniques. Testing

tasks are often assigned on one dimension but the tester must be able to use all five

dimensions. For example, company may want the tester to do function testing and it tells

that every function must be tested. Following the dimensions, the tester has to think who

shall do the testing, why should it be done and how, and whether the test passed or

failed. By keeping these dimensions in mind, the tester is more capable of doing better

choices and thus the quality of product increases.

There are few different types of testing that can and should be automated:

• Functional: operations perform as expected

• Regression: behaviour of the system has not changed

• Exception: goal is to make errors in system

• Stress: putting the product in its absolute limits

• Performance: testing that the performance rates doesn’t drop and the pro-
duct fills its requirements

• Load: determining the bullet points where software upgrade is needed (10)

The higher focus is on functional and regression testing which will be explained in the

next chapter.

9

2.4.1 Acceptance tests

Acceptance test, often referred as smoke test is a test suite which goal is to check the

basic functionality of the build. If the build fails the test, it is declared so unstable that it

is not worth testing. (7, lesson 176) Typically, when for example a new release is done,

the tester runs the acceptance test and if it fails, the developers correct the bugs and the

smoke test is run again. When the test goes through without errors, the company can

either release the update or continue to the next phase of testing.

The ISTQB defines acceptance as ”formal testing with respect to user needs, require-

ments, and business processes conducted to determine whether a system satisfies the

acceptance criteria and to enable the user, customers or other authorized entity to de-

termine whether or not to accept the system”. (11). This means basically that the require-

ment analysis is fulfilled and user can use the product without problems.

There are two categories of acceptance testing:

• User acceptance testing

• Business acceptance testing (12, p.450)

User acceptance testing or UAT is conducted by the customers for them to accept the

product so it fulfills their needs. The actual testing part is done either with third party

company or by the customer itself but it is not very usual. Business acceptance testing

or BAT is done in the company that developed the product and usually test engineers or

developers do the acceptance tests before it is passed to the UAT. The development

team executes test cases from the client’s contract, which includes the acceptance cri-

teria.

Acceptance criteria is needed in any contractual agreement. The key point is to think

about what criteria must the system meet in order to be acceptable. It consists of many

quality attributes and the most important ones are:

• Functional correctness and Completeness: Does the product do what it
supposed to do?

• Accuracy: will it give correct results?

• Data integrity: does the value of data remain unchanged when operations
are done in later time?

• Usability: how easy it is to use?

10

• Performance: how good remains the performance of product when code
is changed? (12, p. 452-455)

2.4.2 Integration tests

Integration testing, also known as feature or function integration testing is defined as

testing different components and several functions of the system to see how they work

together. (7, lesson 50) According to EECS, there are three different approaches of in-

tegration testing; based on: functional decomposition, call graphs or paths.

Functional decomposition includes that the product is created in a functional hierarchy

and the problem is broken up into functions. It has the following strategies to do these

tests:

- Top-down: first the functions that are closer to user interface and more important

are tested

- Bottom-up: the exact opposite of top-down; the testing begins from the bottom

level functions and the functions closer to user inteface are tested last

- Sandwich: combines top-down and bottom-up strategies

- Call graph: calling relationships between functions (13)

- Big Bang: testing only after integrating all modules (14, p. 12)

Integration testing can also be considered as a process check. If integration test fails or

gives a lot of errors, it gives a signal that the unit testing may be in place. And if the errors

occur in interfaces between the modules that should be working, the tester can trace the

problem to interface specifications. (14, p. 4)

2.4.3 Unit tests

As clarified at the beginning of subchapter, a unit can be a function or a method of a

class. Even the class itself can be considered as a program unit. (12, p. 51) So, the

concept of unit testing is basically testing every single function and method of the code

to be sure they return the right values. In integration testing, the principle is to test that

the functions work properly together when calling them but in unit testing the focus is

more on one function at the time.

11

2.5 About testing frameworks

Before choosing and comparing different testing frameworks that were considered in the

process, it’s good to know what a testing framework really means. It’s a set of guidelines

used for creating and designing test cases. (15) According to University of Colorado,

testing framework can also be defined as ”the set of assumptions, concepts, and practi-

ces that constitute a work platform or support for automated testing”. (16, p. 9) It includes

commands and tools for the testers to test more efficiently.

It’s almost impossible to make automated tests without a framework because it is re-

sponsible for:

- Defining the format

- Creating a mechanism to hook the application under test

- Executing the tests

- Reporting results (16 p. 9)

Without the four steps, testing automation cannot be done and today the testing fra-

meworks are so well configured that it is easy to build the automation environment

around the application.

2.6 Different options for different purposes

Each coding language requires a specific testing framework because the codes are na-

turally different and so are the libraries and tools in frameworks. It’s important for tester

to acknowdge what code should be tested and thus choosing the right framework.

The biggest and the most popular coding languages like JavaScript, Java and Python

offer many options to choose from. Especially JavaScript has testing frameworks for

every coding framework there is. For example Ember.js framework has support for QUnit

and it can be implemented with few commands, Jasmine has become very popular for

testing Angular.js applications and Jest might be the best choice for testing React.js ap-

plications. (17)

Maybe the most well-known and proven frameworks for Java are JUnit and TestNG and

those are compared in OverOps blog. (18) The most used testing framework is JUnit

12

with 62% presence in all Java projects whereas 6% is the equivalent percentage for

TestNG. There are a lot of frameworks to choose from for Java too. When in doubt,

Selenium is always a good choice to begin with as it has a support for every language.

Python, however doesn’t have so many testing frameworks but the ones that exist are

very effective and have a specific meaning to execute the tests. According to ”The Hitch-

hiker’s Guide to Python” (19), unittest and pyunit are specifically designed to do unit tests

and doctest is designed to do integration and component tests. Pytest can also be noted

as it allows also to test the application as a whole; so it is capable for acceptance testing.

3 Choosing framework

It is very important and at the same time difficult process to choose a testing framework

that fits right for the service. The development team has to think about company’s own

requirements and not necessarily choose blindly the framework that has the best re-

views. Thus the first step is to start evaluating company’s requirements. (20, p. 249) The

other approach is to start testing different kinds of frameworks and after that making the

decision which one fits the best for the service. (21, p. 10)

Figure 4. The tool selection and implementation process (20, p. 248)

There are five different test automation frameworks that should be noted, according to

IBM; test script modularity, test library architecture, keyword-driven/table-driven testing,

13

data-driven testing and hybrid test automation. (21, p. 1) In addition to the list, also be-

haviour-driven development testing is useful. (22)

These framework types were compared and investigated at the beginning chapters. Test

script modularity and test library architecture were not comprehensive enough because

they are directed for small tests, like testing a calculator. The difference between these

two are that one creates test scripts to be executed while the other uses library files to

call these scripts. (21, p. 2-5) Keyword-driven and data-driven testing are also similar to

each other. They use more components of the system to create a bigger test case. For

example the calculator example, it divides different clicking actions and returns the result.

The difference between them are that the other uses script to test while the other keeps

the test data in external files, like SQL and XML files. (21, p. 6-7; 22) Hybrid driven testing

is the combination of all the other types and it is the most used type of test automation

framework. This approach was basically what was chosen with the team in the company.

Not to mention the last type, behaviour-driven development, it basically creates a plat-

form that allows all the participants to actively test the product. (22)

Choosing the testing framework can also go wrong multiple times. The tester may be a

beginner with the product or development overall, there may be bad planning and choo-

sing the framework based on only reviews or starting the automation process in the

wrong place. That is why testing automation should be a long process and should be

planned carefully with many team members. (23) In the company, the choosing and plan-

ning process was discussed with product owner, one developer and two test engineers

while also taking advice from senior developers.

3.1 Criteria for choosing framework

There are many things that the development team should have an eye on when choosing

the best framework for the company. Besides choosing the framework specifically for the

coding language, the team has to think about what testing framework would be the

easiest to implement and fulfills the requirements. The team already knows how big the

application is, so too small or too complex frameworks should be dropped. Also what

type the application is; for example cloud-based application needs the cloud support in

the framework. (24)

14

When the team has discovered options that are the most potential frameworks for the

product, it’s good to compare their attributes and quality of test. The most important goal

is to increase the code coverage which isn’t necessarily in an adequate level when tes-

ting manually. If some framework is so suitable for the service that it covers almost every

part of the code with minor effort, then it’s an easy choice. Also one important element

is how clearly the framework gives the results and reporting. Does it have a visual repor-

ting of tests or is it only readable in CMD or some other CLI. (25)

It’s also good to be aware of wrong choices and incapability of the testing framework.

The key point to handle the automation is to avoid mistakes as much as possible. The

most usual and critical mistake would be that all tests are executed through user inter-

face. In a long run, it slows down the service which is obviously not a good thing. Also

keeping the testing and developing in different branches, so there won’t be any mismat-

ches and suddenly neither one is working. The automated testing is basically coding and

a good rule in coding is to keep the code in a readable form, so others can understand it

and it is also easier to debug. (26)

3.2 JavaScript testing frameworks

It’s time to focus on testing frameworks that are relevant for the company. There are tens

of testing frameworks aimed for JavaScript code, like QUnit, Mocha, Jasmine, Selenium,

Chai, Sinon and Jest. (17) The next sections are focusing on three of the most suitable

options for the company and at the end dropping one off to explicitly compare two of the

best.

3.2.1 QUnit

When the research began at the beginning, test engineers used the first approach of the

choosing process: discussed with the developers if they had skills or experience of tes-

ting Ember application. The first testing framework that rose up was QUnit, mainly be-

cause it is the easiest to implement and has all the testing packages built in. As a name,

it may sound like it is capable for only unit testing but in addition to that, acceptance and

integration testing are also possible. QUnit is heavily relying on jQuery which can be

seen in the commands.

15

The basic principle of QUnit is to use its effective and simple commands to do actions in

different pages. The most important ones are: visit, find, click, fillIn and assert. Basically

the testing begins with function ”test” and continues with visiting different URLs in the

service using the keyword ”visit”. When there are different text areas, checkboxes and

dropdowns in the page, the tester can find these fields from the templates of the service

and activate these fields using the ”click” and ”fillIn” actions to simulate the testing auto-

matically. Finally the ”assert” actually does the test and reports it in web browser.

3.2.2 Mocha

Mocha is also a very effective JavaScript testing framework and it was the second dis-

cussion topic with the team. It is used for unit and integration testing and it’s a good

candidate for BDD. It can also be implemented to test Ember applications but not as

easily as QUnit. Mocha is very popular for testing Angular applications as it is the most

suitable for them.

The basic principle of Mocha is to ”describe” what to test and after that using ”it” to as-

sume what the expected result is. Mocha is using Chai library to ”expect” different results

which are then compared to the tests themselves. Mocha reports the results in web

browser too but it has to be initialized at the beginning of the test and then requested at

the end. (27)

3.2.3 Jasmine

Jasmine was the third framework that could be suitable for the company. Like the other

two, it is a good and functional testing framework and also can be implemented to test

Ember application. It is very similar to Mocha as it is also aimed for BDD and has very

similar commands. The difference is that the ”expect” action doesn’t need the Chai library

to work and with Jasmine the test code and equal action can be written in one line while

in Mocha it is written separately.

Jasmine is also capable of testing Ruby and Python as it has extensions for them too. It

was previously JsUnit, a port of Java testing framework JUnit to JavaScript. The aim of

Jasmine is to be easy to read, write and implement to different kinds of JavaScript pro-

jects. (28)

16

3.3 Limiting the top two

Based on the easy implemention and discussion with the team members, QUnit was a

clear choice to be taken as one testing framework. So the other one to be also investi-

gated had to be either Mocha or Jasmine. Because of the limited time, easy implemen-

tation and positive reviews, Mocha was the second testing framework to be inspected.

The good part about these two testing frameworks is that it’s very simple to implement

from one to another. There are two ways to do this: using the Mocha-QUnit interface or

changing the keywords to match the code.

The interface option means that the tester first runs a command ”npm install mocha-

qunit-ui –save-dev” to install the interface. After that the tester loads the file using Node.js

which is a JavaScript runtime environment to execute the code in server. The command

is shortened as ”mocha –ui mocha-qunit-ui <test-file>”. Then the tester adds ”ui: qunit”

in both test file and HTML file, where the template is. Finally the test is ready to run under

Mocha. (29)

The second option is to simply convert the QUnit commands to be using Mocha com-

mands or vice versa. The key point is to know what commands do the same things in

different frameworks. For example, the most important commands in QUnit are ”module”,

”test” and ”assert”, which convert in Mocha as ”describe”, ”it” and ”expect”. Using this

option requires the tester to be very careful especially when these is a lot of testing code.

(30)

Table 1. Comparing the features of QUnit and Mocha with Ember application

 QUnit Mocha

Popularity (31) 1 157 total commits

3 630 Github stars

2 263 total commits

12 480 Github stars

Setup Easy installation with one

line and built-in support for

test helpers

A bit harder installation

with few lines and requires

libaries like Chai

Commands Simple and straightfor-

ward, like visit, find, click

Needs the Chai library for

expect action but basic

17

commands simple, like

describe and it

Reporting Clear reporting in web

browser

URL needs to be initialized

in code as well as request

to web browser, clear re-

porting

Ease-of-use Very easy to use along with

the actual code

Easy to use once the setup

is done

The basic features of the testing frameworks have been compared in the Table 1. That

will give a good abstract based on reviews and own experience where to continue with

the automated testing.

4 Implementation of framework

Based on the Table 1, research and discussion with team members, the best choice to

start with this application was QUnit. There has already been some small testing in the

company with QUnit but now it needs to be taken more seriously. As seen on the Figure

4 about the choosing and implementation process, there are first lots of testing fra-

meworks as mentioned in Section 3.2. Then there is that one tool which gets to be cho-

sen after the choosing process. Now the implementation process reverses it in a way

that there is one tool used by many people.

Figure 5. Overview of the implementation process (20, p. 284)

18

The implementation process itself is not so complex event. Once the testing team knows

the testing framework and what commands are useful, they can begin to write tests with

it. Figure 5 shows how the implementation process could be done in a medium to large

company. First the testing team declares what framework they are choosing. Then they

train other developers or team members if necessary how to use it. After that they imple-

ment the framework to the service and receive a commitment from the management

team.

In a smaller company like Movenium, the basic principle was similar but the development

team worked much closer and more together and the test engineers were more respon-

sible of the process. Due to the built-in feature with Ember and QUnit, the implementation

process was simple and it will be discovered in the next chapter.

4.1 Setting up the framework

As mentioned in the earlier sections and various references, QUnit matches very well

with Ember. Thus the implementation and installation process is presumably simple and

gives no harm. Using the knowledge of the company's developer who has done testing

a little bit already and visiting QUnit's website (32) to read full instructions, the setting up

could begin. First comes the discovering of the tools to work with, then getting to know

the process of the whole scene and lastly installing the QUnit and beginning to write

tests.

4.1.1 Tools

To be able to use any testing framework, there must be the actual code stored somew-

here. At Movenium, the service is called JetBrains PhpStorm which is a popular code

editor and it supports various coding languages, like JavaScript and PHP.

Figure 6. JetBrains PhpStorm [33]

19

All code that is included in the application that Movenium is developing is stored in PhpS-

torm and the UI is very simple and effective to use also in testing automation. After the

installation of the testing framework, various files are created to the library that will be

shown later on.

SourceTree is also playing a big part of the testing and coding process. It is a source

control system that allows to edit and peek at other developers' codes and create pull

requests for the senior developers. These pull requests are like a safety system that

allows the more experienced developers to check the quality of code before moving it

forward.

Figure 7. SourceTree [34]

The service itself looks a bit messy for users that are not so familiar with it but once the

basic features are learnt, it is quite effective system. In the next section there will be a

figure of how it looks regarding to the testing part.

Figure 8. Github [35]

Third tool or website is Github; a very well-known software development platform. It is

basically a platform to see the changes of the files other developers have coded and also

it is so widely used service so there can also be seen other people's projects and thus it

allows facility to solve own problems with the help of huge community.

Figure 9. PowerShell [36]

20

To be able to get the development environment running as well as the test server, there

has to be some terminal to begin those actions. For Microsoft, an effective tool is Win-

dows' own PowerShell which has been used constantly during the process. The whole

automated testing and coding parts begin using this tool.

4.1.2 Management process with tools

The earlier section gave some vision which tools can be useful to begin with testing

automation and these tools are also used to develop the application further and fixing

some bugs. Learning how to use these tools together was done with help of developer.

The whole process begins with opening the PowerShell as administrator and launching

the development environment using "ember serve -environment <back-end name>"

command. This command allows access to the development environment where the de-

veloper can see the code changes in GUI and also the test reporting page.

Once the environment is running, SourceTree can be launched to create testing bran-

ches.

Figure 10. Usage of SourceTree

When the right branch is selected, the testing scripts can be written in PhpStorm, which

allows to see the code specifically done for the branch in SourceTree. In that way, others

can also look up for the test scripts written in various causes, like in Figure 10. When

others pull the code tester has done from the SourceTree, they can now also use and

edit the scripts. The branch can also be pushed to Github where it is stored nicely and

the code is visually more readable there.

21

4.1.3 Installation of QUnit

The installation is quite simple and it includes few commands. After that it creates a file

to the coding platform and then the test reporting page can be launched.

The first thing to do is launching PowerShell and globally installing QUnit package. The

command is "npm install -g qunit", where npm is a package manager that is used in

JavaScript and it is also the default package manager for Node.js. (37) The "-g" stands

for global, so that the installation can be used anywhere in the system

Figure 11. Installing the QUnit into the service

After the installation is done, the tester should navigate to the file, where all codes have

been pulled. As seen in Figure 11, the navigated file path is seen in the PhpStorm's own

terminal and the tester now runs the command "qunit" to create the test files to begin

with. There can also be seen the file "tests" that are created after the command has been

run.

After that, it creates the file "tests" and few other files, some helpful for the testing and

some not so helpful. For example ”test-helpers” is a useful file because it includes the

various commands, like ”click”, ”fillIn” and ”find”. It also creates files like "index.html" and

"eslintrc.js" but those are default files and there is a low priority to alter them. Index.html

has been configured by the developer earlier and it includes the necessary links and

scripts for reporting the tests and eslintrc.js tells the framework to test Ember specifically

as it can be also used to fix linting errors.

Part of the installation is also to launch the test reporting page and check that it works.

There are two ways to launch it: using PowerShell or other terminal and running a com-

mand or visiting the right web page in browser.

22

Figure 12. The outcome of running the command

The command that has been run in the Figure 12 is "ember test --server". It opens up in

the PowerShell like that and also launches the browser to run all the tests that have been

written in the testing files. There are currently 33 passed tests from 48 total tests because

the test server has some misconfigurations that fail.

The other option is to simply open - most preferably - Chrome and navigate to the right

file in the URL. In this case it is localhost:4200/tests. When hitting enter it opens the

reporting page and more about that will be covered during the testing phase in the next

sections.

4.2 Getting started with integration tests

Usually when companys begin their automated testing, the first type of testing is accep-

tance testing. That is because it is good to test first that the application is working as it

should be. Due to the lack of experience in developing and testing, the process began

with integration testing because it felt like an easier approach. As explained in earlier

section about integration testing, it is about testing different components and how they

react with each other.

23

Figure 13. Integration test files

To begin with integration testing, there has to be some files under the "tests" file where

the testing scripts can be stored. A command to create these files is "ember generate

component-test <file-name>".

This creates a JavaScript testing file under ”tests/integration/components” file path and

it is named after the file name given with ”-test.js” suffix. In the Figure 13, the time-field

test file is in fields file because it was moved there afterwards due to organizational rea-

sons.

Figure 14. Checkbox field in application

In the application, it is important to test different fields, so that they are working properly.

These integration or component tests are more like field tests in the company. There are

many different kinds of fields in the application, like checkbox field, hour field, database

field, text field or dropdown field. In Figure 14 is an example of checkbox field as seen in

24

the application. This kind of test is very basic and a good practice to continue with more

advanced testing. Testing this field is to ensure that first the checkbox field is empty, then

the user clicks it and it is checked and when clicked again it is back unchecked.

Figure 15. Code used to test the checkbox field

When the commands and their actions are learnt, the actual coding could start. In Figure

15, the checkbox field test is coded using the commands that QUnit has. The test begins

with "test" keyword so that the testing framework knows that the test begins here. There

is also description about the test and asynchronous function with parameter ”assert”.

These are the basic features of a test. The first command of the function is ”expect” and

number three. This tells the test that it should only expect three different asserts and

gives an error if it is otherwise. After that, the code includes render statement and a file

path to the actual checkbox field in the application. This file includes the needed codes

to get the checkbox field visible in the application. The file is basically HTML code which

includes few lines for the input.

Then the input field is declared in a variable using "find" keyword to actually find the input

selector from the DOM. This constant is then used to first check that the input field is

false when no action has been triggered. Using the "click" keyword, it triggers the action

like the user is actually clicking the checkbox field in the application and then it is com-

pared using the ”assert.equal” statement that the value is changed to true. The code

includes also ”console.logs”, ”awaits” and ”blur”; console.log is used to make it easier for

tester to see the events in console, await is used in asynchronous testing to wait for the

earlier call to end and blur is used to focus out the event in application.

25

Figure 16. Test server to report the results

When the test is run in browser and the right test script is selected from the dropdown,

the outcome looks like in Figure 16. The reporting page includes many components for

example to filter, hide passed tests or disable linting. However these are not so useful in

small tests like this but in bigger tests they may be very handy. The test itself includes

three parts where is text "okay". This means that in code there were three ”assert.equals”

to check the change in checkbox field and they are now seen as passed tests. So the

checkbox field is a working component in the application. If the test had been failed, there

would be more red on the screen and report what the test expected and what was the

result. More about that on the later sections.

Figure 17. Hours field in application

Another example of component test is testing the time field in application. The working

ethic is similar to the checkbox field test, only the code looks a bit different. In Figure 17

is a picture what the hour field looks like in the application. There are simply two input

fields, one for hours and the other for minutes. The hour field should only take numbers

and it should change the one digit hours and minutes automatically to two-digit numbers.

26

So basically when user puts for example "8", it should be automatically changed to "08"

when the focus is out of the field. It should also put automatically two zeros in minutes

field when only hours field is filled.

Figure 18. Code to test the hours input

In Figure 18 is part of the test code used to test the input fields. The beginning looks

similar to the checkbox field except the field name is naturally different and also the ren-

dered file path is targeted at the hours and minutes field in the code. After that the two

input fields are found in the file which was rendered and they are in a class called

”desktop-input”. Using the ”findAll” statement, the test script tries to find all input fields

under that class.

The first ”assert.equal” compares the constant that was declared earlier to ensure that

there are two input fields: hours and minutes. Then the script tells the application to fill in

number "5" in the first element of the array. The array has both of the inputs as elements

and number "0" means the first field of the array which is the hour field. When user has

filled the hour field, "blur" is called like in checkbox field test to focus out of the field. This

part of the test now compares that the hour field gets the value "05" and minutes field

gets the value "00" as seen in Figure 17.

Figure 19. Test server results for hours input

27

The reporting page is like in the checkbox field test and it is easy to test different script

using the dropdown. The reporting page looks red, like in Figure 19 when some assert

doesn't pass. This is only to demonstrate the different look of the reporting page and the

failed test is not seen in the figure.

4.3 Impressing with acceptance tests

When some integration tests have been added to the system, it was time to move forward

for some more challenging tasks, acceptance tests. Due to the limited time and lack of

experience in developing, there is not many acceptence tests in the system yet and that

will be an important issue in the spring and summer.

Figure 20. Acceptance test files

However, the creation of files are shown in Figure 20 and it is very similar to the integra-

tion tests, except "component-test" is replaced with "acceptance-test". It also creates the

file in different file path and in this case it's "tests/acceptance". In this example, this is

how it looks when login test was created. The example of basic acceptance test can be

seen in Figure 21. The login screen has two text fields like every other login screen:

username and password and also the submit button to sign in.

Figure 21. Login test code and GUI

28

The test script begins similarly as in integration test, and this time the visiting page is

"/login". What makes acceptance testing harder than integration testing earlier is to find

the right elements from DOM. Next three lines include the selectors which can be found

for example right clicking the text field and inspecting elements. In login test, it is quite

easy because those two text fields have their own id and thus can be selected using the

"#" mark. Once the credentials have been filled correctly, user clicks the sign in button

which can also be fetched from DOM. This button doesn't have id, so the DOM has "form"

class and that includes the sign in button class which is separated using dot. These

selectors are basic jQuery code that QUnit is using.

Last function compares that the user is not anymore in the login page after the click and

also finds user's profile picture in the starting page. The reporting page looks similar to

integration test with three passed assertions.

One important aspect of the application is to add user to the service and this kind of test

could be done with acceptance testing. There was a lot of effort to automate this part of

code but the test was eventually not finished. However there was a lot of research how

it should be done. The adding of user happens by filling the needed information to the

various fields and then saving it but the problem was that the application fetches the user

information from user form and the testing script doesn’t render it on the screen automa-

tically. The solution is to use Mirage which is a library to create sort of fake fields and

then using them to render the form fields and testing it in the application environment.

The acceptance testing can begin in the near future when the usability of both Mirage

and also jQuery are learnt.

After that the adding of worktime, project and for example employer can begin and ac-

ceptance testing is further to be finished.

4.4 Finetuning with unit tests

Some unit tests were also added to the system and this was the last type of testing that

was coded. In QUnit, unit testing can be done for controllers, components, models, ser-

vices, routes and helpers. The goal was to test as many units as possible in this span of

time.

29

Figure 22. Example of creating a unit test

The basic principle to create unit tests can be seen in Figure 22. In this example, model

test is created and it creates a test file in "/tests/unit/models". If the tester wants to test

components, it is done simply by changing the word "model" to "component". The last

part of the command (--unit) tells the system to create specifically unit test.

Figure 23. Code of icon helper

At first, a helper test was coded because it seemed like a simple approach to unit testing

and good examples were found in the Internet. In Figure 23 is a code snippet of icon

helper and the point was to test that the helper is working. Helpers are used to put certain

codes outside of the other code to add functionality to them. This helper provides the

icons to be used elsewhere in the code.

30

Figure 24. Code used to write icon helper test

The helper was tested in Figure 24. It includes same basic principles as with other tes-

ting. The function ”icon” is imported from the actual helper code where it was exported

as seen in Figure 23. It is then compared that the right values of the function are equal

to the right icon value. Glyphicons are components of Bootstrap and each component

has its own glyphicon identifier.

Figure 25. Reporting page for the helper test

Reporting page shows the tests individually and reports that the tests are passed. There

are 13 assertions done for 13 icons but the code and test code show only first five of

them as well as the reporting page.

31

4.5 Summary of testing classifications

In the Table 2 is a short summary of these testing classifications and how challenging it

was to do in this application using QUnit. It includes more own opinions and experiences

that were confronted during the testing.

Table 2. Summary of QUnit testing

Classification Summary

Acceptance test took a lot of time and diffe-

rent aspects to figure out

the way to do it, maybe not

the best testing framework

for acceptence testing.

Integration test quite easy to write com-

ponent and integrations

tests, didn’t take much time

and was a good way to be-

gin with.

Unit test the most capable testing

classification for Ember ap-

plication, easy to write few

tests but need to be con-

tinued in the future.

Table shows the experiences during testing and last section will include more analysis

of the results and conclusions.

5 Conclusions

The results were good for the tests that could be done during these months. At the be-

ginning, the goal was to automate many parts of the testing and maybe do these tests

with another testing framework too. However, this goal was a bit utopistic because eve-

rything was new and there had to be much learning and research in relatively short time.

32

The goal was also to research the possibilities to automate testing in the company and

it went well because now the whole testing automation is clearer compared to the begin-

ning of the year.

The biggest problems were the acceptance tests because they required more knowledge

about different coding techniques and they are broader than integration and unit tests.

Acceptance tests are maybe the most important too and coding these tests will continue

in the near future. The research was done well and they are on a good track to be coded.

Movenium is at the moment merging even more to Visma and one requirement from

Visma is to automate testing. So the testing automation becomes more topical for Mo-

venium during spring and summer. Now that the tools and commands are researched, it

is easier to continue the process.

As an abstract of results, few test scripts were managed to be coded for each testing

classification and the whole picture of testing automation is now clearer in the company.

33

References

1 Randell, Brian. 2013. The Origins of Computer Programming. ResearchGate.
<https://www.researchgate.net/publication/3330487_The_Origins_of_Com-
puter_Programming>. 21 May 2013. Accessed 15 Jan 2018.

2 Horne, Geoff. 2014. A (Very) Brief History of Test Automation. LinkedIn.

<https://www.linkedin.com/pulse/20141007123253-16089094-a-very-brief-
history-of-test-automation/>. 8 Oct 2014. Accessed 19 Jan 2018.

3 Software Quality Process. Soigne Technologies pvt.ltd-website.
<http://www.tech-soigne.com/company/software-quality-process/>. Accessed 22
Jan 2018.

4 Hoffman, Doug.2003.A Course on Software Quality Methods. Software Quality
Methods. <http://www.testingeducation.org/course_notes/hoffman_doug/test_au-
tomation/auto8.pdf>. Accessed 23 Jan 2018.

5 Marick, Brian. How to misuse code coverage?. <http://www.exampler.com/test-
ing-com/writings/coverage.pdf>. Accessed 23 Jan 2018.

6 Tambey, Anand Avinash. End-to-end test automation – A behavior-driven and
tool-agnostic approach. Infosys. <https://www.infosys.com/it-services/validation-
solutions/white-papers/documents/end-test-automation.pdf>. Accessed 24 Jan

7 Kaner, Cem, Bach, James, Pettichord, Bret. 2002. Lessons learned in software
testing: a context-driven approach. Accessed 12 Feb 2018.

8 Software QA Testing and Health IT -A guide for beginners. QA Talk Group.
<http://qa-talk.blogspot.fi/2008/05/acceptance-testing.html>. 30 May 2008. Ac-
cessed 14 Mar 2018.

9 Powell-Morse, Andrew. 2016. V-Model: What Is It And How Do You Use It?. Air-
brake. <https://airbrake.io/blog/sdlc/v-model>. 26 Dec 2016. Accessed 15 Mar
2018.

10 AdyKalra. 2017. Quality Assurance. Github. <https://git-
hub.com/AdyKalra/QA/blob/master/README.md>. 18 Apr 2017. Accessed 19
Feb 2018.

11 ISTQB. 2010. Standard glossary of terms used in Software Testing, Version 2.1.
Accessed 20 Feb 2018.

12 Naik, Kshirasagar, Tripathy, Priyadarshi. 2008. Software Testing and Quality As-
surance: Theory and Practice. <http://aksitha.com/Software%20Tes-
ting/STQA_book.pdf>. Accessed 6 Feb 2018.

https://www.researchgate.net/publication/3330487_The_Origins_of_Computer_Programming
https://www.researchgate.net/publication/3330487_The_Origins_of_Computer_Programming
https://www.linkedin.com/pulse/20141007123253-16089094-a-very-brief-history-of-test-automation/
https://www.linkedin.com/pulse/20141007123253-16089094-a-very-brief-history-of-test-automation/
http://www.tech-soigne.com/company/software-quality-process/
http://www.testingeducation.org/course_notes/hoffman_doug/test_automation/auto8.pdf
http://www.testingeducation.org/course_notes/hoffman_doug/test_automation/auto8.pdf
http://www.exampler.com/testing-com/writings/coverage.pdf
http://www.exampler.com/testing-com/writings/coverage.pdf
https://www.infosys.com/it-services/validation-solutions/white-papers/documents/end-test-automation.pdf
https://www.infosys.com/it-services/validation-solutions/white-papers/documents/end-test-automation.pdf
http://qa-talk.blogspot.fi/2008/05/acceptance-testing.html
https://airbrake.io/blog/sdlc/v-model
https://github.com/AdyKalra/QA/blob/master/README.md
https://github.com/AdyKalra/QA/blob/master/README.md
http://aksitha.com/Software%20Testing/STQA_book.pdf
http://aksitha.com/Software%20Testing/STQA_book.pdf

34

13 EECS. 2009. Integration testing: Chapter 13.
<https://www.eecs.yorku.ca/course_archive/2009-10/W/4313/slides/14-Integrati-
onTesting.pdf>. Accessed 26 Feb 2018.

14 Galeotti, J.P, Gorla, Alessandra. 2013. Integration, System and Regression Tes-
ting. University of Saarland. <https://www.st.cs.uni-saarland.de/edu/automa-
tedtestingverification12/slides/18-IntegrationSystemRegressionTesting.pdf>. 31
Jan 2013. Accessed 26 Feb 2018.

15 Aebersold, Kirsten. What is a test framework?. Smartbear. <https://smart-
bear.com/learn/automated-testing/test-automation-frameworks/>. Accessed 20
Feb 2018.

16 Ghanakota, Gayatri. Testing frameworks. University of Colorado.
<https://www.cs.colorado.edu/~kena/classes/5828/s12/presentation-mate-
rials/ghanakotagayatri.pdf>. Accessed 21 Feb 2018.

17 Zaidman, Vitali. 2017. An overview of JavaScript Testing in 2017. A Medium Cor-
poration. <https://medium.com/powtoon-engineering/a-complete-guide-to-testing-
javascript-in-2017-a217b4cd5a2a>. 19 Apr 2017. Accessed 8 Feb 2018.

18 Zhitnitsky, Alex. 2016. JUnit vs TestNG: Which Testing Framework Should You
Choose?. OverOps. <https://blog.takipi.com/junit-vs-testng-which-testing-fra-
mework-should-you-choose/>. 7 Sep 2016. Accessed 9 Feb 2018.

19 Reitz, Kenneth. 2016. Testing your code. The Hitchhiker’s Guide to Python.
<http://docs.python-guide.org/en/latest/writing/tests/>. Accessed 9 Feb 2018.

20 Graham, Dorothy, Fewster, Mark. 1994. Software Test Automation.
<http://read.pudn.com/downloads11/ebook/44105/Software%20Test%20Automa-
tion.pdf>. Accessed 14 Feb 2018.

21 Kelly, Michael. 2003. Choosing a test automation framework: IBM.
<https://www.ibm.com/developerworks/rational/library/591-pdf.pdf>. 20 Nov 2003.
Accessed 22 Feb 2018.

22 Rajkumar. 2018. Types of Test automation Frameworks. Software Testing Mate-
rial. <https://www.softwaretestingmaterial.com/types-test-automation-fra-
meworks>. 25 Jan 2018. Accessed 23 Feb 2018.

23 Gilmore, Tom. 2015. The ”Killer Dozen” Automation Implementation Killers:
Choosing the Wrong Tool Set. Agile Testing Framework. <https://www.agiletes-
tingframework.com/the-killer-dozen-automation-implementation-killers-choosing-
the-wrong-tool-set/>. 19 Aug 2015. Accessed 23 Feb 2018.

24 McPeak, Alex. 2018. The Criteria to consider for choosing JavaScript testing fra-
meworks. DZone. <https://dzone.com/articles/the-criteria-to-consider-for-choo-
sing-javascript-testing-frameworks>. 19 Jan 2018. Accessed 23 Feb 2018.

https://www.eecs.yorku.ca/course_archive/2009-10/W/4313/slides/14-IntegrationTesting.pdf
https://www.eecs.yorku.ca/course_archive/2009-10/W/4313/slides/14-IntegrationTesting.pdf
https://www.st.cs.uni-saarland.de/edu/automatedtestingverification12/slides/18-IntegrationSystemRegressionTesting.pdf
https://www.st.cs.uni-saarland.de/edu/automatedtestingverification12/slides/18-IntegrationSystemRegressionTesting.pdf
https://smartbear.com/learn/automated-testing/test-automation-frameworks/
https://smartbear.com/learn/automated-testing/test-automation-frameworks/
https://www.cs.colorado.edu/~kena/classes/5828/s12/presentation-materials/ghanakotagayatri.pdf
https://www.cs.colorado.edu/~kena/classes/5828/s12/presentation-materials/ghanakotagayatri.pdf
https://medium.com/powtoon-engineering/a-complete-guide-to-testing-javascript-in-2017-a217b4cd5a2a
https://medium.com/powtoon-engineering/a-complete-guide-to-testing-javascript-in-2017-a217b4cd5a2a
https://blog.takipi.com/junit-vs-testng-which-testing-framework-should-you-choose/
https://blog.takipi.com/junit-vs-testng-which-testing-framework-should-you-choose/
http://docs.python-guide.org/en/latest/writing/tests/
http://read.pudn.com/downloads11/ebook/44105/Software%20Test%20Automation.pdf
http://read.pudn.com/downloads11/ebook/44105/Software%20Test%20Automation.pdf
https://www.ibm.com/developerworks/rational/library/591-pdf.pdf
https://www.softwaretestingmaterial.com/types-test-automation-frameworks
https://www.softwaretestingmaterial.com/types-test-automation-frameworks
https://www.agiletestingframework.com/the-killer-dozen-automation-implementation-killers-choosing-the-wrong-tool-set/
https://www.agiletestingframework.com/the-killer-dozen-automation-implementation-killers-choosing-the-wrong-tool-set/
https://www.agiletestingframework.com/the-killer-dozen-automation-implementation-killers-choosing-the-wrong-tool-set/
https://dzone.com/articles/the-criteria-to-consider-for-choosing-javascript-testing-frameworks
https://dzone.com/articles/the-criteria-to-consider-for-choosing-javascript-testing-frameworks

35

25 Glow Touch Technologies. 2016. How to choose the right test automation fra-
mework: <https://www.glowtouch.com/blog/testing/how-to-choose-the-right-test-
automation-framework/>. 1 Mar 2016. Accessed 24 Feb 2018.

26 Heusser, Matthew. 6 common test automation mistakes and how to avoid them.
TechBeacon. <https://techbeacon.com/software-test-automation-6-common-mis-
takes-how-avoid>. Accessed 25 Feb 2018.

27 Sarcevic, Igor. 2015. Getting started with Node.js and Mocha. Semaphore.
<https://semaphoreci.com/community/tutorials/getting-started-with-node-js-and-
mocha>. 16 Mar 2015. Accessed 1 Mar 2018.

28 Burgess, Andrew. 2011. Testing your JavaScript with Jasmine. Envato Tuts+.
<https://code.tutsplus.com/tutorials/testing-your-javascript-with-jasmine--net-
21229>. 4 Aug 2011. Accessed 2 Mar 2018.

29 Jugglinmike. 2017. An interface for Mocha that implements QUnit's API. Github:
<https://github.com/jugglinmike/mocha-qunit-ui>. 6 Sep 2017. Accessed 4 Mar
2018.

30 Bakker, Kees C. Convert QUnit test to Mocha / Chai. KeesTalksTech.
<https://keestalkstech.com/2016/08/convert-qunit-test-to-mocha-chai/>. Acces-
sed 4 Mar 2018.

31 Molsson’s blog. 2017. JavaScript unit testing tools. <http://mo.git-
hub.io/2017/06/05/javascript-unit-testing.html>. 5 Jun 2017. Accessed 5 Mar
2018.

32 QUnit website. <https://qunitjs.com/>. Accessed 7 Mar 2018.

33 JetBrains website. <https://www.jetbrains.com/phpstorm/>. Accessed 7 Mar
2018.

34 SourceTree website. <https://sourcetreeapp.com>. Accessed 8 Mar 2018.

35 Github homepage. <https://github.com>. Accessed 8 Mar 2018.

36 Microsoft docs. PowerShell. <https://docs.microsoft.com/en-us/powershell/>. Ac-
cessed 8 Mar.

37 Wikipedia. <https://en.wikipedia.org/wiki/Npm_(software)>. Accessed 9 Mar
2018.

https://www.glowtouch.com/blog/testing/how-to-choose-the-right-test-automation-framework/
https://www.glowtouch.com/blog/testing/how-to-choose-the-right-test-automation-framework/
https://techbeacon.com/software-test-automation-6-common-mistakes-how-avoid
https://techbeacon.com/software-test-automation-6-common-mistakes-how-avoid
https://semaphoreci.com/community/tutorials/getting-started-with-node-js-and-mocha
https://semaphoreci.com/community/tutorials/getting-started-with-node-js-and-mocha
https://code.tutsplus.com/tutorials/testing-your-javascript-with-jasmine--net-21229
https://code.tutsplus.com/tutorials/testing-your-javascript-with-jasmine--net-21229
https://github.com/jugglinmike/mocha-qunit-ui
https://keestalkstech.com/2016/08/convert-qunit-test-to-mocha-chai/
http://mo.github.io/2017/06/05/javascript-unit-testing.html
http://mo.github.io/2017/06/05/javascript-unit-testing.html
https://qunitjs.com/
https://www.jetbrains.com/phpstorm/
https://sourcetreeapp.com/
https://github.com/
https://docs.microsoft.com/en-us/powershell/
https://en.wikipedia.org/wiki/Npm_(software)

