

Development of Magento 1.9
Extension for Briox ERP
Integration

Joel Östman

Bachelor’s Thesis

Information Technology

Vasa 2018

EXAMENSARBETE

Författare: Joel Östman

Utbildning och ort: Informationsteknik, Vasa

Inriktningsalternativ: Informationsteknik

Handledare: Kaj Wikman

Titel: Utveckling av Magento 1.9 extension för integration med Briox affärssystem

Datum: 5.4.2018 Sidantal: 44

Abstrakt

Detta examensarbete behandlar utvecklingen av en Magento extension, vars syfte är att

integrera webbutiker skapade i Magento ramverket, med affärssystemet Briox.

Extensionen ska autentiseras med affärssystemet och exekvera en exportering av alla

beställningar som gjorts under det senaste dygnet. Nya kunder som registrerats i

webbutiken ska registreras i affärssystemet tillsammans med en kundorder och faktura.

Arbetets mål var att automatisera en tidskrävande process som hittills gjorts manuellt av

anställda, samt att eliminera den mänskliga faktorn.

Extensionen utvecklades i programmeringsspråket PHP och använder sig av en RESTful

API för att etablera en kommunikation med affärssystemet. Examensarbetet behandlar i

högsta grad använda metoder, Magento ramverkets struktur och den utvecklade

extensionens kronologiska händelseförlopp och funktionalitet.

Projektet resulterade i en konfigurerbar Magento extension som gör det möjligt för en

integration mellan webbutiker och affärssystemet Briox.

Språk: engelska Nyckelord: webbutik, PHP
__

OPINNÄYTETYÖ

Tekijä: Joel Östman

Koulutus ja paikkakunta: Tietotekniikka, Vasa

Suuntautumisvaihtoehto: Tietotekniikka

Ohjaaja: Kaj Wikman

Nimike: Magento 1.9 -laajennuksen kehittäminen Briox-toiminnanohjausjärjestelmän
integroimiseksi

Päivämäärä 5.4.2018 Sivumäärä: 44

Tiivistelmä

Tämä opinnäytetyö käsittelee Magento-laajennuksen kehitystä. Laajennuksen tarkoitus

on integroida Magento-sovelluskehykselle luotuja verkkokauppoja Brioxin

toiminnanohjausjärjestelmään. Laajennus täytyy autentisoida

toiminnanohjausjärjestelmän avulla ja sen on suoritettava kaikki tilaukset viimeisten 24

tunnin ajalta. Verkkokauppaan rekisteröityneet uudet asiakkaat on kirjattava

kauppajärjestelmään yhdessä tilauksen ja laskun kanssa.

Työn tavoitteena oli automatisoida aiemmin manuaalisesti suoritettu aikaa vievä

prosessi, sekä lisäksi poistaa inhimillisten virheiden mahdollisuus.

Laajennus kehitettiin ohjelmointikielellä PHP, ja sen viestintä

toiminnanohjausjärjestelmän kanssa tapahtuu RESTful API-sovelluksen avulla.

Opinnäytetyössä käsitellään käytettyjä menetelmiä, Magento-sovelluskehyksen

rakennetta, kehitetyn laajennuksen toiminnollisuutta sekä sen kronologista

tapahtumakulkua.

Projektin tuloksena on konfiguroitava Magento-laajennus, joka mahdollistaa

integroinnin verkkokauppojen ja Briox-toiminnanohjausjärjestelmän välillä

Kieli: englanti Avainsanat: verkkokauppa, PHP

BACHELOR’S THESIS

Author: Joel Östman

Degree Programme: Information Technology, Vaasa

Specialization: Information Technology

Supervisor: Kaj Wikman

Title: Development of Magento 1.9 Extension for Briox ERP Integration

Date: April 5, 2018 Number of pages: 44

Abstract

This Bachelor Thesis reviews the development of a Magento extension, for an integration

between a Magento Ecommerce store and the Briox ERP-system. The extensions should

authenticate with the ERP-system and execute an export of all orders made during the

last day. All newly registered customers in the online store should be registered in the

ERP-system along with a sales order and a customer invoice.

The goals of the project are to automate a time consuming process which has been

manually performed to date, and eliminate the human factor. The extension was

developed by use of the PHP programming language and by the use of a RESTful API it

establishes a communication with the ERP-system. The Bachelor Thesis examines

methods used, the Magento framework structure and the chronological workflow and

functionality of the developed extension.

The project resulted in a configurable Magento extension which makes an integration

between Ecommerce stores and the Briox ERP-system possible.

Language: English Key words: PHP, Ecommerce Store

Table of Content

1 Introduction ... 1

1.1 Employer ... 1

1.2 Task .. 1

1.3 Purpose .. 2

1.4 Requirements ... 2

2 Tools and methods ... 2

2.1 Programming Concepts.. 3

2.1.1 PHP .. 3

2.1.2 PHP CURL library ... 4

2.1.3 Object Oriented Programming (OOP) .. 4

2.1.4 Model-View-Controller Architecture (MVC) ... 5

2.1.5 JSON and XML data .. 6

2.1.6 Application Programming Interface (API ... 8

2.1.7 RESTful API .. 9

2.2 Magento Framework ... 9

2.2.1 Magento Architecture (Model-View-Controller) ... 9

2.2.2 Magento Directory Structure ... 10

2.2.3 Custom Module Directory Structure ... 11

2.3 Installation ... 12

2.3.1 Setup Components ... 13

2.3.2 Setup Resources .. 13

2.3.3 Installer Scripts ... 14

2.3.4 Upgrade Scripts ... 16

2.4 Briox ERP-system .. 17

2.4.1 Briox RESTful API ... 17

3 Implementation ... 19

3.1 Configuration .. 20

3.1.1 Config.xml .. 20

3.1.2 Adminhtml.xml .. 21

3.1.3 System.xml .. 22

3.2 Install Script .. 25

3.2.1 Creating the database table .. 25

3.2.2 Adding custom attributes .. 26

3.3 Authentication .. 27

3.3.1 Authentication Token ... 27

3.3.2 Retrieving the Access Token .. 28

3.4 Initiation ... 30

3.4.1 Token refresh ... 30

3.4.2 Collecting all orders ... 30

3.4.3 Check for customer in Briox ... 32

3.4.4 Creating the Customer .. 33

3.4.5 Preparing and posting the Customer .. 34

3.4.6 Creating the Salesorder and Invoice ... 34

3.4.7 Preparing and posting the Salesorder .. 35

3.4.8 Preparing and posting the Invoice ... 37

3.5 CURL Requests ... 40

3.5.2 Refreshing the Tokens .. 41

3.5.3 Checking for customer in Briox ... 41

3.5.4 Creating a new customer in Briox .. 42

3.5.5 Creating a new Salesorder/Invoice ... 42

3.6 Testing ... 42

4 Results and Discussion .. 43

4.1 Results ... 43

4.2 Future Work .. 43

4.3 Discussion .. 44

5 Bibliography .. 45

Table of Figures

Figure 1: PHP Function example .. 3

Figure 2: MVC components relationship .. 6

Figure 3: JSON cars object .. 6

Figure 4: XML cars object ... 7

Figure 5: API communication .. 8

Figure 6: Magento CodePool Structure .. 10

Figure 7: Magento Custom Module folder hierarchy .. 11

Figure 8: Connect Form Layout ... 23

Figure 9: Configuration Form Layout ... 24

Figure 10: Generating the Authentication Token ... 27

Figure 11: Authenticating in the Admin Backend .. 28

Figure 12: Authentication workflow ... 29

Figure 13: Main function workflow ... 30

Figure 14: The CURL Class and its Method ... 40

Glossary

API ”Application Programming Interface”, a collection of function

which allows a programmer to access application data.

Array A collection of ”things” arranged in a particular way.

Backend A part of an application accessible only by authorized personnel.

Class A template definition of a “category” and its properties and

behavior.

Client A computer or program, which presents the user with data.

Cronjob A scheduled and recurring task.

ERP “Enterprice Rescource Planning”, a software handling business

processes and management.

Framework An already developed computer program base for easier and faster

development.

Frontend The part of an application the user interacts with.

GUI “Graphical User Interface”, the visual composition of a computer

program.

HTTP “Hypertext Transfer Protocol”, the underlying protocol used by the

internet.

Instance A creation of a class object, capturing all the properties and

behaviors of the class.

Interface A part of a software that handles inputs and outputs.

JSON “Javascript Object Notation”, a text-based language format used for

sharing data.

Module A component of a computer program that contains one or more

routine.

OOP “Object Oriented Programming”, a programming design pattern

which makes use of classes.

PHP “Hypertext Preprocessor”, a server-side language developed for web

development.

SQL “Structured Query Language”, a standardized language used for

manipulating a database.

Script A list of code commands executed by a program.

Server A computer that stores all data and waits for a request from the

client.

Token A long string constructed of random characters and used as a key.

Variable A named piece of computer memory used to store values.

XML “Extensible Markup Language”, a language designed to store and

transmit data.

 1

1 Introduction

This report describes the development process of a Magento Extensions, which integrates a

Magento Ecommerce store with the Briox ERP-System. The report will describe the methods

and tools used to accomplish the integration and will pay attention to the structure of the

Magento Framework and give the reader an understanding of the process with an in-depth

explanation of the chronological workflow regarding the export of orders. Note that every

word written in italic font is explained in the glossary.

1.1 Employer

Webcore is an organization in Sulva, Mustasaari. They provide their customers with smart

and efficient communication solutions. Webcore offer systems for websites, e-commerce,

analysis, marketing, CRM, customer service and office cloud-services. Webcore is the

founder and developer of the region famous site Findit.fi.

Webcore provides their customers with online stores, developed using the Magento

Framework. Webcore recently started collaborating with the new ERP-system provider,

Briox.

1.2 Task

The task of this project is to automate the transaction of orders and customer details from

the Webcore Ecommerce Store to their Briox cloud-based ERP system account. The

developed Magento Module should run once a day and transfer the orders made during the

last 24 hours. This reoccurring transfer will be executed by a cronjob, set up on the server.

Currently Webcore staff do the data transfer manually. The goals of the software are to

eliminate the human factor, and save precious time for the company.

 2

1.3 Purpose

The purpose of this project is to eliminate human errors that might occur during the transfer,

such as spelling errors, accidentally missed orders and duplications in the ERP-system. The

software will likewise save precious time for the company and let the employees focus on

tasks that are more important.

1.4 Requirements

The project was requested with e few specific details and requirements to achieve. These

requirements are necessary for the process to be as automatic as possible.

Requirements:

 Run every 24h (Adjustable)

 Add custom attributes to registered customers and product in the online store

 Automatic Token Refresh

 Check if customer exists in Briox

 Create customer if it does not already exist

 Create Salesorder

 Create Invoice

2 Tools and methods

This chapter will demonstrate the tools and methods used to develop the Magento extension,

and to satisfy the requirements. The chapter will educate the reader about the programming

languages, design patterns and the Magento framework. The last section will discuss the

Briox ERP-system and how the RESTful API works.

 3

2.1 Programming Concepts

Computer programming have been around since the first computer. Since then it has evolved

into a broad spectrum. Numerous languages, design patterns and paradigms have been

featured along the way. There are currently too many components to demonstrate in one

report. Therefore, this section will be demonstrating and analyzing the programming

fundamentals of the Magento framework.

2.1.1 PHP

PHP (Hypertext Preprocessor) is an open source scripting language used by the Magento

framework. The programming language is most suitable for web development and can be

embedded into HTML. The PHP syntax is based of Java, C and Pearl with a set of unique

functions implemented. The language itself is easy to learn and allows developers to write

code and dynamic webpages rapidly [1] [2]. Below is an example of a basic PHP function:

Figure 1: PHP Function example

 4

2.1.2 PHP CURL library

PHP Client URL library (CURL) is a library created by Daniel Stenberg. It allows for the

connection and communication between server with numerous protocol types. The library

currently supports https, http, ftp, telnet, file, gopher, dict and ldap protocol types. It is often

used for REST API communication due to the support of HTTP POST, HTTP GET, HTTP

PUT and HTTP DELETE actions. [2]

Example of a function performing a CURL request:

<?php

 // create the curl resource

 $curl = curl_init();

 // configures the URL

 curl_setopt($curl, CURLOPT_URL, "api.com");

 // setreturn the transfer as a string

 curl_setopt($curl, CURLOPT_RETURNTRANSFER, 1);

 // executes the request and stores response in output variable

 $output = curl_exec($curl);

 // closes the curl resource to free up system resources

 curl_close($curl);

?>

2.1.3 Object Oriented Programming (OOP)

Object Oriented Programming is a programming design pattern. The software uses classes

to define objects. Classes contains the data and functionality of the object, for example, a

Car object has a class that contain the data variables of the car (brand, model, color etc.) and

the methods that provides functionality (drive, turn, reverse etc.). Objects are able to interact

with each other, for example, a Human object can interact with a Car object and make the

car drive.

OOP allows classes to inherit behavior from another class. For example, a Vehicle class may

inherit the Car class and other classes, such as Boat, Bikes etc. In the Java programming

language the Vehicle class would become a so called superclass. Each class is allowed to

 5

have only one superclass while each superclass is likely to have an unlimited amount of

subclasses. Many consider this an effective way to reuse code in the software.

The advantage of using OOP techniques is that they allow programmers to create modules

that can remain unchanged while a new type of object is introduced. This makes the software

more manageable and easier to modify. The most commonly used OOP languages are Java,

C++, C#, Python, PHP, Ruby, Perl and Objective-C. [3]

2.1.4 Model-View-Controller Architecture (MVC)

Model-View-Controller is a software architecture, by other words the structure of the

system. Its main purpose is to separate the application logic from the user interface. It

accomplishes this by separating the software into three parts: the Model, the View, and the

Controller.

The View is the part of the software presented to the user. It handles the design and renders

data from the model into a form or something else suitable for the user interface. A more,

common name for the view is GUI or Graphical User Interface.

The Model contains the applications business logic and represents the “knowledge” of the

software. It is responsible for maintaining the applications data integrity. If the software is

connected to a database, all the manipulations and SQL-queries are executed in the model.

The Controller is the connection between the View and the Model. It handles user input,

calls model objects, and returns the desired response to the view.

The essence of a MVC application is a stand-alone Model. Which in theory means the

applications should be functional without a View/Controller. This result in the Model not

being aware of the View/Controller and all the communication are directed through the

Models API. This separation enables multiple Views/Controllers to communicate with the

Model without changing the core functionality of the logic. The concept of a stand-alone

model causes a few problems to occur. How is the user able to get the latest data if the model

is unable to send it to the View?

The answer is by notifications. Due to the Model not being aware of the View/Controller it

is not able to send the latest data. Instead, it transmits a notification regarding a changed

state. The Model is unaware if anyone is listening to the notification but it will transmits

 6

anyway. A listener is set up in the View/Controller to recognize a change in the Model and

to make a call to fetch the latest data. [4] [5]

The following figure illustrates the separation logic:

Figure 2: MVC components relationship

2.1.5 JSON and XML data

Javascript Object Notation, or JSON, is a syntax for exchanging and storing data. JSON data

is a Javascript object converted into plain, lightweight text that can easily be stored or shared

through a network connection. The data receiver can easily be parsed to a Javascript object.

JSON is frequently used for client/server communications in web and mobile applications.

[6] Below is an example of a JSON object including cars:

Figure 3: JSON cars object

 7

Extensible Markup Language, or XML, was designed to store and transmit data. It is not as

lightweight as JSON, which makes the data slower to process and transmit [7]. It is similar

to HTML, with its brackets notations, and rather simple to read and understand, although

JSON is often referred to as more straightforward. Below you can find the same cars object

in XML format:

Figure 4: XML cars object

JSON and XML is often debated and compared. Both languages has its pros and cons and in

the end, it is all up to user preference. [8] Below is a side-by-side comparison of the two:

Javascript Object Notation Extensible Markup Language

Simple to read/write More difficult to read/write

Easy to learn Easy to learn

Data-oriented Document-oriented

No capability to display data Capability to display data

Supports arrays Does not support arrays

Less secure More secure

Supports text and numbers Supports test, numbers, images, charts

, graphs etc.

Table 1: JSON vs XML [8]

 8

2.1.6 Application Programming Interface (API

An API (Application Programming Interface) in an interface allowing two software’s to

communicate. The most common communication is between clients and servers. The API

interface, usually installed on the server-side, serves as a middle hand between

communications. The API works as a security layer between the client and the server

restricts the client from accessing the server directly.

In today’s market, there are numerous types of APIs active and available. Programming

languages, such as Java, uses interfaces (APIs) within classes that let objects talk to one

another. APIs a used all over the web, letting users communicate with servers through

websites and mobile applications. Every time a user logs in to an application using Facebook,

an API handles the request, validates the credentials and returns the profile or an error

message, e.g. “wrong password or username”. An API consists of hardcoded methods which

returns requested data or stores data in the server database. An API can be coded in multiple

different language and is not tied to a specific client language, so every type of client is able

to use the API. [9]

The most widely used Web APIs are Simple Object Access Protocol (SOAP) and Remote

Procedure Call (RPC) and Representational State Transfer (REST), which according to

Shana Pearlman [9], might be the most discussed API in the modern age. The following

figure illustrates the communication:

Figure 5: API communication

 9

2.1.7 RESTful API

During the last few years, REST has evolved into a predominant Web Service design model

[10]. It was first introduced in 2000 by Roy Fielding’s academic dissertation, “Architectural

Styles and the Design of Network-based Software Architecture”, at the University of

California.

The functionality of a REST API is rather simple. It uses explicit HTTP methods for

communication. The API supports both XML and JSON and is set up to handle four different

operations, depending on the protocol type.

The following example uses a Customer database for clarity:

1. GET: To retrieve a customer from the database.

2. POST: To create/add a new customer in the database

3. PUT: To edit/update an existing customer in the database

4. DELETE: To delete a customer from the database

The requests are sent by the client, to a specific URI and is received by the corresponding

API method, which handles the database communication and executes the operations. The

method return the response to the client who is unaware of what happened beyond the call.

[10]

2.2 Magento Framework

Magento is an open-source, web application framework for E-commerce, developed in PHP.

The framework was originally developed by an organization called Varen, Inc. The first

version of the framework was released on March 31, 2008. Today Magento is the leading

platform for open commerce innovation [11]. This section will illustrate the underlying

structure of the Magento Framework and how a custom module can be implemented into the

framework.

2.2.1 Magento Architecture (Model-View-Controller)

Model-View-Controller (MVC) is a software architecture designed to separate the

applications user interface, data access and business logic. There are generally two types

of MVC architectures: convention based and configuration based. Using the convention

 10

based architecture, it is necessary to follow the core system instructions. While using the

configuration based architecture, instructions are set up in a configuration file. Magento

modules are configuration based.

The Magento Modules instructions are stored in a config.xml file, under the modules etc

directory. The file acts like a map of the module, and tells the framework where to find all

the components necessary for the module to work.

2.2.2 Magento Directory Structure

The object-oriented PHP framework is constructed by individual Modules. These Modules

consists of files grouped together based on functionality. It differs from the typical PHP

Model-View-Controller (MVC) application, where all the Controllers are collected in one

folder, all the Models in another, etc.

All the Modules are divided into three different code pools, core, community and local.

The core folder holds all the Modules distributed by Magento and handles all the core

functionality of the Framework.

The community folder holds all the Modules distributed by a third-party organization, such

as installed extensions for expanded functionality.

The local folder holds all the Modules developed locally by an organization, such as the

development of the ERP integration. [12]

All the Magento Modules are located under the “app” folder. As seen in the figure below:

Figure 6: Magento CodePool Structure

 11

2.2.3 Custom Module Directory Structure

The custom module developed was located under the local folder. Magento initiates

the core folder first, the community folder second and the local folder last. By following this

order, the framework prevents custom modules, in the developing stage, to interfere with the

core modules necessary to run the framework flawlessly. By other word, a non-functioning

custom module will not affect the core modules in a negative way.

In Magento, every Module is structured in the same manner, as seen in the figure below:

Figure 7: Magento Custom Module folder hierarchy

The Module namespace is the top level of the hierarchy. Regarding Magento development,

the module namespace should refer to the founding organization, in this case Webcore. The

unique namespace prevents name collisions between modules.

The Module identifier is the name of the module. The name should describe its purpose and

functionality. For example, if the module handles payments the corresponding name should

be Payments.

The Module itself consists of six different folders, Block, controllers, etc, Helper, Model

and sql. This folder structure is a Magento standard and helps the framework recognize the

different module components.

The Block is Magentos view. It is responsible for the rendering of content.

The controllers processes user input, by other words URLs. When an object in the online

store is pressed, a request to the corresponding controller is sent, and the controller returns

the correct view for the user. For example, a customer clicks on a product to get more in

 12

depth information about the product, the controller processes the request and finds the

correct View based on the URL.

The etc directory consists of configuration XML files for the modules. The configuration

files act sort of like a map over the module, it tells the framework about every component,

router, observer action, etc. [13]

The three main configuration files:

 adminhtml.xml: An optional file, which manages the backend Menu control and

ACL (access control list). New system configuration tabs for the custom modules

must be implemented in this file.

 config.xml: An obligatory file, which manages all the base configuration for the

module. The file informs the framework about the modules structure and how to

access components such as blocks, helpers, models, observers, layout files, etc.

 system.xml: An optional file, containing all configurations inserted into the backend

configuration page, and defines all form-input fields, and its data.

The Helper directory contain files used adding new classes and overriding functions in the

Module. Modifying Magento core files is not recommended, that is where helpers come in

handy. Helpers are often used for translation but usually not necessary for a Module to work.

The Model is, according to Alan Storm, one of the most crucial Module components. The

model contains the objects of data and handles the business logic of the Module and is often

used for manipulating databases or sending API requests to distant servers.

The sql directory contain the setup files, which are executed on installation. A more in-depth

explanation of these files will be presented in the next section. [14] [15]

2.3 Installation

This section will discuss the setup of the module. For example, how the Magento Framework

finds the location of relevant files in the module and how the module is installed and updated.

 13

2.3.1 Setup Components

As previously mentioned, the config.xml file is located in the modules etc directory. The

XML file contains the configuration of the module; by other words it represents a map of the

module and all of its components. Every component needs to be declared in the config.xml

file, otherwise the framework will not know about their existence.

On the next page is an example declaration of a Model, Resource Model and a Database

Table. Note that every name in bold-italic font is unique to every Module and chosen by the

developer.

<models>

 <modulename>

 <class>Namespace_ModuleName_Model</class>

 <resourceModel>modulename_mysql4</resourceModel>

 </modulename>

 <modulename_mysql4>

 <class>Namespace_ModuleName_Model_Mysql4</class>

 <entities>

 <entityname>

 <table>table_name</table>

 </entityname>

 </entities>

 </modulename_mysql4>

</models>

Other components such as, controllers, Helpers, Blocks and Observers are declared in the

same manner. [14]

2.3.2 Setup Resources

Magento uses Setup Resources to keep the development and production database in sync. It

is a system that uses versioned resource migration scripts.

The Setup Resource must be declared in the config.xml file to let the framework know that

that the module has an installer script.

 14

Below is an example of the setup declaration. Note that every name in bold-italic font is

unique to every Module and chosen by the developer:

<global>

 <resources>

 <Modulename_setup>

 <setup>

 <module>Namespace_Modulename</module>

 <class>Namespace_Modulename_Model_Resource_Setup</class>

 </setup>

 </Modulename_setup>

 </resources>

</global>
As seen in the example above the Setup Resource Class is located under the following path:

Namespace\Modulename\Model\Resource\Setup.php

The class must be declared in the Setup.php file for the module to work, and it should extend

the “Mage_Core_Model_Resource_Setup” class. [16]

Below in an example of the empty, declared class:

class Namespace_Modulename_Model_Resource_Setup

extends Mage_Core_Model_Resource_Setup {

 // code here ..

}

2.3.3 Installer Scripts

When the Module is installed and activated for the first time an installer script is executed

on initial page refresh. The file containing the installer script is located under the following

folder path:

\local\namespace\modulename\sql\modulename_setup\

and the file should be named in the following manner:

mysql4-install-0.1.0.php

 15

The name is defined by a Magento standard naming convention to assist the framework

identifying the install script. The version number must correspond to the version number set

in the config.xml file for a successful installation.

The installer script consists of PHP/SQL code performing a specific task, needed for the

module to work properly, for example creating a table in the database or adding an attribute

for a customer/product.

Example of an install script creating a table for “cars” in the database:

// creates an object instantiated from the Setup class

$installer = $this;

// starts the setup and opens the database connection

$installer->startSetup();

// executes the SQL query

$installer->run("

 CREATE TABLE `{$installer->getTable('namespace/modulename')}` (

 `cars_id` int(11) NOT NULL auto_increment,

 `brand` text,

 `model` text,

 `yearmodel` int(4),

 `timestamp` timestamp NOT NULL default CURRENT_TIMESTAMP,

 PRIMARY KEY (`cars_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

 INSERT INTO `{$installer->getTable('namespace/modulename')}` VALUES

(1,'Audi','A8',2008,'2018-03-09 14:12:30');

");

// ends the setup and terminates the database connection

$installer->endSetup();

The install script is only executed once during installation and to add new features to the

module or alter database tables an upgrade script must be executed. [16]

 16

2.3.4 Upgrade Scripts

Once the installer script has been executed, it cannot be initialized again, but if you need to

alter the module structure after installation Magento’s Setup Resources supports running

scripts to upgrade the module.

Upgrade scripts and installer scripts possess multiple similarities. They are located in the

same folder, but named slightly differently. Below is a name example of an upgrade script

for the previously described installer script:

mysql4-upgrade-0.1.0-0.1.1.php

The name informs the framework that it contains SQL queries, that it is an upgrade script

and the change in versions (version 0.1.0 to 0.1.1). To execute the upgrade script the module

version must be changed in the config.xml file. I this case from 0.1.0 to 0.1.1.

An example of an upgrade script making the “cars” brand column obligatory:

// creates an object instantiated from the Setup class

$installer = $this;

// starts the setup and opens the database connection

$installer->startSetup();

// executes the SQL query

$installer->getConnection()

 ->changeColumn($installer->getTable('namespace/modulename'),

'brand', 'brand', array(

 'nullable' => false,

 'comment' => 'this is the car brand'

)

);

// ends the setup and terminates the database connection

$installer->endSetup();

For the upgrade script to execute, the version number declared in the config.xml must be

altered to the corresponding version number of the upgrade script. [16]

 17

2.4 Briox ERP-system

Briox offers a web-based ERP-system for organizations, associations, accounting bureaus

and schools. Due to the software being web-based, it is accessible from any device with a

steady internet connection and it stores data on its servers. [17]

Briox is a highly flexible ERP-system offering numerous sofwares such as:

 Accounting

 Billing

 Order

 Scanner/Archive

 Connected Documents

 Time Reporting

 CRM

 Purchase Order

2.4.1 Briox RESTful API

Briox provides a REST API for their customers, used for pushing and fetching data from the

database. By using the API the developer can manipulate accounts, cost centers, customers,

customer invoices, financial year, journals, linked documents, opening balance, payments,

projects, sales orders, suppliers and tokens. The API documentation can be found at the

following address:

https://apidoc-fi.briox.services/#/

The Briox API communicates with JSON data. It uses GET, POST, PUT and DELETE

requests to alter the database.

https://apidoc-fi.briox.services/#/

 18

To create an invoice for a customer, briox must receive a JSON object with the following

structure:

{

 "customerinvoice": {

 "customerid": "11",

 "invoicedate": "2017-10-19",

 "paymentdate": "2017-10-19",

 "deliverydate": "2017-10-19",

 "admfee": "2234",

 "shipping": "2234",

 "orderno": "1",

 "paymentterm": "PF",

 "shippingmethod": "N",

 "shippingcondition": "CIP",

 "yourreference": "Benny Jackson",

 "ourreference": "Benny Jackson",

 "costcenter": "CC",

 "project": "1",

 "invoicetext": "A special customer invoice description",

 "customer_address": [

 {

 "addressline1": "Albertinkatu 36 B",

 "addressline2": "Albertinkatu 36 B",

 "zip": "00180",

 "city": "Helsinki",

 "country": "Finland",

 "county": "null"

 }

],

 "customer_deladdress": [

 {

 "name": "John Doe",

 "addressline1": "Albertinkatu 36 B",

 "addressline2": "Albertinkatu 36 B",

 "zip": "00180",

 "city": "Helsinki",

 "country": "Finland",

 "county": "null"

 }

 19

],

 "invoice_rows": [

 {

 "itemno": "30",

 "description": "Order description",

 "unit": "h",

 "amount": "221",

 "price": "333",

 "discount": {

 "value": "0",

 "type": "1"

 },

 "account": "3000",

 "costcenter": "string",

 "project": "21"

 }

]

 }

}

If the object differs or some of the keys are missing a value, the API returns an error message

and no database manipulation is executed. To create another “form”, for example sales order

or invoice, a JSON object containing different key values are posted to the API. [18]

3 Implementation

This chapter will be illustrating the implementation of the Module. It will explain the

installation, the authentication process, how the different methods work independently and

with each other, and the modules chronological workflow from execution to termination. It

gives the reader a good understanding of how the extension works. Every code section will

not be identical to the extensions source code due to copyright reasons, but still represent the

same functionality.

 20

3.1 Configuration

The module configuration files are located in the etc folder, according to the Magento

standards. The folder consists of three different configuration files, config.xml,

adminhtml.xml and system.xml. These three files have different tasks regarding the

configuration. One of them configures the structure of the module, while the other two

configures the backend GUI for dynamic admin configurations.

3.1.1 Config.xml

This file is the most important file for a module to work. The Magento Framework uses this

file to establish all the numerous module components. The file is an XML file declaring the

version number of the module and the location of every component, such as model,

resources, observers etc.

An example of the observers declared in the config file:

<events>

 <admin_system_config_changed_section_brxintegration_connect>

 <observers>

 <brxintegration>

 <type>singleton</type>

 <class>brxintegration/observer</class>

 <method>handle_adminSystemConfigChangedConnect</method>

 </brxintegration>

 </observers>

 </admin_system_config_changed_section_brxintegration_connect>

 <admin_system_config_changed_section_brxintegration_settings>

 <observers>

 <brxintegration>

 <type>singleton</type>

 <class>brxintegration/observer</class>

 <method>handle_adminSystemConfigChangedSettings</method>

 </brxintegration>

 </observers>

 </admin_system_config_changed_section_brxintegration_settings>

</events>

As seen above, there are two types of observers active in the module. They are triggered

when a new configuration is saved in the admin backend panel. The first one is used when

 21

authenticating and the latter one is used for the custom variables. The class brackets specify

where the observer class is located and the method specifies which method to be executed

when the configuration is saved.

3.1.2 Adminhtml.xml

The Adminhtml file configures the tabs in the left side bar in the admin backend panel. The

module uses two different tab views, one for authorization and one for configuration.

Below is a copy of the Adminhtml.xml content:

<?xml version="1.0"?>

<config>

 <acl>

 <resources>

 <admin>

 <children>

 <system>

 <children>

 <config>

 <children>

 <brxintegration_connect>

 <title>BrxIntegration Connect Section</title>

 <sort_order>1</sort_order>

 </brxintegration_connect>

 <brxintegration_settings>

 <title>BrxIntegration Settings Section</title>

 <sort_order>2</sort_order>

 </brxintegration_settings>

 </children>

 </config>

 </children>

 </system>

 </children>

 </admin>

 </resources>

 </acl>

</config>

 22

The different tabs are divided inside two separate brackets, “brxintegration_connect” and

“brxintegration_settings”.

The Authorization form, called “brxintegration_connect”, requests an authentication token

and the Briox account ID.

The Configuration form, called “brxintegration_settings”, requests organization-specific

configuration, dynamic variables that varies between organizations. For example, the

company reference, shipping methods, payment terms and sales accounts.

3.1.3 System.xml

The System.xml file structures the layout of the different forms, by the use of XML data. It

declares the sections and the labels of the different tabs.

Below is an example of a “Connect” tab declaration

<?xml version="1.0"?>

<sections>

 <brxintegration_connect>

 <label>Connect</label> <!-- The tab label -->

 <tab>brxintegration</tab>

 <frontend_type>text</frontend_type>

 <sort_order>1</sort_order> <!-- the sort order -->

 <show_in_default>1</show_in_default>

 <show_in_website>1</show_in_website>

 <show_in_store>1</show_in_store>

 <groups>

 <!-- configuration of form fields -->

 </groups>

 </brxintegration_connect>

</sections>

Inside the “groups” brackets, the structure of the form is declared. The declaration consists

of a section selector, a heading for the section, the sort order its field. The fields acts as rows

in the form and are produced by similar code as the section. Each row has a selector name,

a label, a sort order and a frontend type. The frontend type declares what type of input to be

used, whether it is a dropdown list, an image upload or a regular text input.

 23

Below is an example of the authentication form:

<section_one translate="label"> <!-- Section Selector -->

 <label>Connect</label> <!-- Form Heading -->

 <sort_order>1</sort_order>

 <show_in_default>1</show_in_default>

 <show_in_website>1</show_in_website>

 <show_in_store>1</show_in_store>

 <fields>

 <account_id> <!-- Field Selector -->

 <label>Account ID</label> <!-- Field Heading -->

 <frontend_type>text</frontend_type> <!-- Input Type -->

 <sort_order>1</sort_order>

 <show_in_default>1</show_in_default>

 <show_in_website>1</show_in_website>

 <show_in_store>1</show_in_store>

 </account_id>

 <auth_token> <!-- Field Selector -->

 <label>Authentication Token</label> <!-- Field Heading -->

 <frontend_type>text</frontend_type> <!-- Input Type -->

 <sort_order>2</sort_order>

 <show_in_default>1</show_in_default>

 <show_in_website>1</show_in_website>

 <show_in_store>1</show_in_store>>

 </auth_token>

 </fields>

</section_one>

The code example results in the following layout:

Figure 8: Connect Form Layout

 24

The configuration form is rendered by the same XML-file and constructed by using the same

methods as the authentication form. It is used for configuring the extension with

organization-specific data.

Figure 9: Configuration Form Layout

The organization is able to configure which orders to be exported, the sales account, payment

terms and the IDs of the shipping methods configured in the ERP-system. When the form is

saved, the data gets stored in the XML-file and can then be used by the extension.

Without this configuration, the ERP-system would not be able to recognize which sales

account the customer belongs to, or what shipping method the customer has chosen.

 25

3.2 Install Script

For the module to work as requested it needs to store the API tokens in a database protected

by the server, and all the registered customers must have a synchronized customer number

attribute declared in both Briox and Magento. Briox already sets an increasing customer

number for every new customer so the most logical way is to add a new custom attribute for

every registered customer in Magento, containing the Briox customer number. To achieve

this an install script was used.

3.2.1 Creating the database table

The easiest and most logical way to store the API Tokens was by inserting them into a

database table, protected by the server. The table is produced by the install script on initial

activation. The script uses a combination of PHP and SQL language to create the table.

Example of install script creating a new database table for storing the tokens:

// initializes the setup

$installer = $this;

$installer->startSetup();

// executes the SQL command

$installer->run("

 CREATE TABLE `{$installer->getTable('modulename/tablename')}` (

 `id` int NOT NULL auto_increment,

 `client_id` varchar(10),

 `access_token` varchar(50),

 `expire_date` datetime,

 `refresh_token`varchar(50),

 `timestamp` timestamp NOT NULL default CURRENT_TIMESTAMP,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

// closes the installer

$installer->endSetup();

 26

3.2.2 Adding custom attributes

For the module to operate properly, every registered customer needs a custom attribute for

his or her corresponding ID in Briox. The attribute is added through the install script.

Example of script for adding a new attribute briox_custno:

// initializes the installer

$installer = $this;

$installer->startSetup();

// creates an instance to the setup class

$setup = new Mage_Eav_Model_Entity_Setup('core_setup');

// adds the new attribute description

$setup->addAttribute("customer", "briox_custno", array(

 "type" => "text",

 "backend" => "",

 "label" => "Briox custno",

 "input" => "text",

 "source" => "",

 "visible" => true,

 "required" => false,

 "default" => "",

 "frontend" => "",

 "unique" => true,

 "note" => "Briox customer number"

));

//specifiec where to be used

$forms = array(

 'adminhtml_customer',

 'customer_account_edit'

);

// gets instance of the new attribute

$attribute = Mage::getSingleton('eav/config')->getAttribute('customer',

'briox_custno');

// sets the data

 27

$attribute->setData('used_in_forms', $forms);

// saves the attribute

$attribute->save();

// suspends the installer

$installer->endSetup();

The attribute is empty for every customer already registered and has to be manually

transferred. Although every time a customer makes a purchase the values get synchronized,

regardless if the customer is already registered in Briox or not.

3.3 Authentication

After the installation of the module, the administrator has to authenticate the Ecommerce

store with the Briox ERP-system. The authentication process for the integration is achieved

both manually, and programmatically by the following steps.

3.3.1 Authentication Token

The first step of the authentication is generating and manually transferring the

Authentication Token from the backend of Briox to the Modules configuration panel. The

token is generated by navigating to the “Lägg till licens/program”-tab in the dashboard,

opening up the setting for a user and scrolling down to the bottom of the settings form.

Located at the bottom is a closed row called “Applikationers token” and by clicking the

heading the consumer is presented with a tokens panel. By clicking the “Generera token”

button the consumer is presented with the generated token.

The following figure is a snippet of the panel with the button highlighted.

Figure 10: Generating the Authentication Token

 28

The token is revealed to the left of the button and it will be valid until the REST API in a

request receives it for exchange of the Access Token.

The token and account ID is copied and transferred into the Module configuration in the

Magento Backend (System > Configuration > Briox Connect > Connect).

Figure 11: Authenticating in the Admin Backend

3.3.2 Retrieving the Access Token

By clicking the “Spara configuration” button, an observer is detecting a change in the

Authentication form. The observer calls the initial method of the authentication class. The

method retrieves the tokens from the form and sends them as parameters to a method called

getTokensBriox.

The Observer function:

// the observer function

public function handle_adminSystemConfigChangedConnect(){

 // instantiating the authentication

 Mage::getModel('brxintegration/auth')->authenticate();

}

 29

The authentication function:

public function authenticate(){

 // retrieve the Authentication Token

 $this->_authtoken =

Mage::getStoreConfig('brxintegration_connect/section_one/auth_token');

 // retrieve the Account ID

 $this->_accountid =

Mage::getStoreConfig('brxintegration_connect/section_one/account_id');

 // calling the prepare function

 $this->getTokensBriox($this->_authtoken, $this->_accountid);

}

The getTokensBriox-method prepares the CURL request by establishing the URL, the

header and body. The authentication token and account ID is passed as the body object. After

the preparation, the method instantiates the curlExecute-method in the CURL class to

perform the communication and stores the retuning object, including the tokens and expire

date, in an array. The array is parsed and every value is stored into unique variables, which

gets be stored in the database table created by the installer script. Depending on the outcome

of the insertion, a success or error message is presented to the user in the backend.

Figure 12: Authentication workflow

 30

3.4 Initiation

The first and main function in the chain of events is called exportOrders. It organizes the

workflow of the software in a chronological order. It starts of by validating the tokens, and

refreshes them if necessary. After the validation, it fetches the orders from a method inside

the same class and loops trough every order. For every loop, it calls a method to check if the

customer exists, and calls another method to create a new customer in Briox if necessary.

When the customer is reviewed, it calls a method to create a sales order and invoice to be

posted. On termination, it saves a timestamp in the database that is used for the next

execution

The next few sections will explain the process in more detail.

Figure 13: Main function workflow

3.4.1 Token refresh

The main function starts by calling a function to check expire dates of the tokens stored in

the database. If the expire date is within 24 hours the function returns a false statement and

the main function does a maneuver to refresh the tokens, by calling a method in the CURL

class that sends a refresh token call to the REST API.

3.4.2 Collecting all orders

The next step for the export is fetching all the orders, placed since the last execution, from

the web shop. The main function calls a method called getOrders, implemented to store data

 31

of all orders into an array. The orders are collected from the sales/order model using the

getCollection-method. The method supports attribute filter such as “created at” and “status”.

The filters are applied to get the last unexported orders with a status of complete. The orders

are stored into an object called “order”, and the orders products are retrieved with the

getItemsCollection-method within the order class. The relevant data is then stored in a

multidimensional associative array to minimize the size of the object to process.

The following snippet illustrates the array called “order_data”:

$order_data[0] = array(

 "name" => $order->getBillingAddress()->getName(),

 "customerid" => $this->getCustomerId($customer_email),

 "phone" => $order->getBillingAddress()->getTelephone(),

 "email" => $customer_email,

 "vatnbr" => $order->getCustomerTaxvat(),

 "currency" => $order->getOrderCurrencyCode(),

 "deliveryname" => $order->getShippingAddress()->getName(),

 "deliveryphone" => $order->getShippingAddress()->getTelephone(),

 "customerref" => $order->getCustomerName(),

 "invoicediscount" => number_format($order->getDiscountAmount(),2),

 "shippingcharge" => number_format($order->getShippingAmount(),2),

 "billingadress" => $order->getBillingAddress()->getStreetFull(),

 "billingZIP" => $order->getBillingAddress()->getPostcode(),

 "billingcity" => $order->getBillingAddress()->getCity(),

 "billingcountry" => $order->getBillingAddress()->getCountryId(),

 "shippingname" => $order->getShippingAddress()->getName(),

 "shippingadress" => $order->getShippingAddress()->getStreetFull(),

 "shippingZIP" => $order->getShippingAddress()->getPostcode(),

 "shippingcity" => $order->getShippingAddress()->getCity(),

 "shippingcountry" => $order->getShippingAddress()->getCountryId(),

 "orderdate" => $order->getCreatedAt(),

 "amount " => $this->getQtyOrdered($order),

 "price " => number_format($order->getGrandTotal(),2),

 "shippingmethod" => $order->getShippingMethod(),

 "billingAddressname " => $order->getBillingAddress()->getName(),

 "shippingAddressname " => $order->getShippingAddress()->getName(),

 "items" => array(

 0 => array(

 32

 'product_name' => $item->getName(),

 'product_id' => $item->product_id,

 'briox_id' => $brioxId,

 'ean' => $ean,

 'unit' => $unit,

 'product_sku' =>$productSku,

 'quantity_ordered' => round($item->qty_ordered),

 'discount_amount' => $item->discount_amount,

 'discount_percent' => $item->discount_percent,

 'base_price' => $item->base_price,

 'base_price_incl_tax' => $item->base_price_incl_tax,

 'tax_percent' => $item->tax_percent,

 'tax_amount' => $item->tax_amount,

 'free_shipping' => $item->free_shipping,

),

),

);

The “customerid”, “amount”, “briox_id”, “ean”, “unit” and “product_sku” are the only

variables not accessible through the order or item instance. These variables are retrieved by

custom functions, or from different classes. The “items” array is only declared inside the

“order_data” array and filled from a separate foreach-function after the declaration. The

function return the “order_data” array.

3.4.3 Check for customer in Briox

Before any data export can occur, the module needs to know if the customer already exists

in Briox, or if it should be created. This action is needed to prevent duplicates of customers

in the Briox database.

The main function loops through every individual order in the “order_data” array and calls

a method inside the CURL-class to check if the customer exists. The method needs an email

address as an in-parameter and sends a GET-request to Briox API with the email address as

a parameter. If the email address is found in the customer register, Briox responds with the

customer JSON object. Otherwise, it responds with an empty object including an error

message.

 33

The method returns the JSON object and the main function performs a check to decide if the

customer exists based on the object data.

The following code snippet is an example of the condition:

<?php

$customerEmail = $order["email"];

$curlInstance = Mage::getModel('brxintegration/curl');

$custno = $instance->checkCustomerBriox($customeremail);

if($custno === false){

 //Customer does not exist and needs to be added

 $customerInstance = Mage::getModel('brxintegration/customer');

 $order['custno'] = $customerInstance->postCustomer($order);

}

else{

 //Customer exists, add custno to order

 $order['custno'] = $custno;

}

Scenario 1, the customer does exists:

If the customer already exists in the Briox database, the JSON object is not empty. The main

function adds the Briox customer number (custno) to the active order array before advancing.

Scenario 2, the customer does NOT exists:

If the customer does not exists in the Briox database, the JSON object is empty. If the object

is empty, the if-condition is true and the code inside the scope is executed. The customer is

created by calling the postCustomer-method of the Customer-class. The method return the

Briox customer number, which is added to the active order array before advancing.

3.4.4 Creating the Customer

If the active customer is not found in the Briox database, the returned customer number will

be null, and the Customer-class will get instantiated. The class handle the process of creating

the customer in Briox by using its own methods and the CURL-class for the API

communication.

 34

3.4.5 Preparing and posting the Customer

The Customer-class makes use of two major methods to operate, postCustomer and

setCustomer. A third minor method is used to set the custom attribute called “Briox custno”

to the number assigned to the new customer in Briox.

The postCustomer-method handles the chronological order of the process. It receives the

order object as a parameter and passes it along to the setCustomer-method. The method

creates and assigns values to a JSON object, which in turn will be posted to the Briox API.

The object is filled with data from the order and data configured by the user in the admin

configuration panel and retrieved from a class called Settings, such as sales account,

references etc.

After the customer object is set, it is passed as a parameter to a method called addCustomer

in the CURL-class.

3.4.6 Creating the Salesorder and Invoice

When the active order contains the Briox “custno”, a salesorder and an invoice can be created

for the corresponding customer. The salesorder and invoice is set up by different classes and

initialized by a call to the corresponding POST-methods, postSalesorder and postInvoice.

The methods returns true if the object was successfully posted to Briox and false if an error

occurred.

<?php

$salesorderInstance = Mage::getModel('brxintegration/salesorder');

if(!$salesorderInstance->postSalesorder($order)){

}

$invoiceInstance = Mage::getModel('brxintegration/invoice');

if(!$invoiceInstance->postInvoice($order)){

}

 35

3.4.7 Preparing and posting the Salesorder

When posting a sales order, Briox is configured to receive a JSON object called “salesorder”.

The sales order is prepared and posted from a class called Salesorder,

The Salesorder-class consists of two method, postSalesorder and setSalesorder. The

postSalesorder-method is called upon initialization and handles the chronological workflow

of the process. It receives the order and stores it in a variable. To set the format of the sales

order, it calls the setSalesorder-method. It finishes off by calling the

addSalesorderInvoice-method in the CURL-class, and passes the prepared sales order,

along with a “salesorder” string.

The example of the postSalesorder method:

public function postSalesorder($order){

$this->_order = $order;

$this->setSalesorder();

$curlInstance = Mage::getModel('brxintegration/curl');

if($curlInstance->addSalesorderInvoice($this->_new_salesorder,

"salesorder")){

 return true;

 }

 else{

 return false;

 }

}

The setSalesorder-method has one duty, to fill the JSON object with data. It is initialized

by the postSalesorder method and starts by gathering the variables (“ourreference”,

“salesaccount”, “shippingmethod, “paymentterms”) configured in the admin backend panel,

from the Settings class.

Example of code retrieving payment terms configured in the backend:

$settingsInstance = Mage::getSingleton('brxintegration/settings');

$paymentterms = $settingsInstance->getPaymenttermsSettingsConfig();

 36

After all the user-configured settings are retrieved, the method fills a class-member array

with the variables and values from the order:

The sales order array:

 $this->_new_salesorder = array(

 'salesorder' => array(

 'id' => '',

 'customerid' => $this->_order['custno'],

 'orderdate' => $this->_order['orderdate'],

 'deliverydate' => '2017-12-10',

 'admfee' => '0',

 'shipping' => $this->_order['shippingcharge'],

 'orderno' => '11',

 'paymentterm' => $paymentterms, //backend config

 'shippingmethod' => $shippingmethod,

 'shippingcondition' => 'DDU',

 'yourreference' => $this->_order['name'],

 'ourreference' => $ourreference,

 'costcenter' => '',

 'project' => '',

 'ordertext' => '',

 'customer_address' => array(

 'addressline1' => $this->_order['billingadress'],

 'addressline2' => '',

 'zip' => $this->_order['billingZIP'],

 'city' => $this->_order['billingcity'],

 'country' => $this->_order['billingcountry'],

 'county' => 'null',

),

 'customer_deladdress' => array(

 'name' => $this->_order['name'],

 'addressline1' => $this->_order['shippingadress'],

 'addressline2' => '',

 'zip' => $this->_order['shippingZIP'],

 'city' => $this->_order['shippingcity'],

 'country' => $this->_order['country'],

 'county' => 'null',

),

 'order_rows' => array(),

 37

),

);

$orderItems = $this->_order['items'];

 for ($i=0; $i < count($orderItems) ; $i++) {

 $this->_new_salesorder['salesorder']['order_rows'][] = array(

 'itemno' => $orderItems[$i]['product_id'],

 'description' => $orderItems[$i]['product_name'],

 'unit' => 'kpl',

 'amount' => $orderItems[$i]['quantity_ordered'],

 'price' => $orderItems[$i]['base_price_incl_tax'],

 'discount' => array(

 'value' => $orderItems[$i]['discount_amount'],

 'type' => '0',

),

 'account' => $salesaccount,

 'costcenter' => '2000',

 'project' => '',

);

}

3.4.8 Preparing and posting the Invoice

The sales order and invoice object format expected by the Briox API are nearly identical.

Therefore, the classes preparing and posting the data are similar.

Just as the Salesorder-class, the Invoice-class consists of two methods, postInvoice and

setInvoice. The postInvoice-method is called upon initialization and handles the workflow

of the action. It receives the order and stores it in a variable. To set the format of the invoice,

it calls the setInvoice-method. It finishes off by calling the addSalesorderInvoice-method

in the CURL-class, and passes the prepared invoice, along with a “customerinvoice” string.

 38

The postInvoice method:

public function postInvoice($order){

$this->_order = $order;

$this->setInvoice();

$curlInstance = Mage::getModel('brxintegration/curl');

if($curlInstance->addSalesorderInvoice($this->_new_salesorder,

"customerinvoice")){

 return true;

 }

 else{

 return false;

 }

}

Just as the setSalesorder-method, the setInvoice-method has one task, to fill the JSON

object with data. It is initialized by the postInvoice-method and starts by gathering the

variables (“ourreference”, “salesaccount”, “shippingmethod, “paymentterms”) configured in

the admin backend panel, from the Settings-class.

Example of code retrieving payment terms configured in the backend:

$settingsInstance = Mage::getSingleton('brxintegration/settings');

$paymentterms = $settingsInstance->getPaymenttermsSettingsConfig();

After all the user-configured settings are retrieved, the method fills a class-member array

with the variables and values from the order:

The customer invoice array:

 $this->_new_invoice = array(

 'customerinvoice' => array(

 'customerid' => $this->_order['custno'],

 'invoicedate' => $this->_order['orderdate'],

 'deliverydate' => '2017-12-10',

 'admfee' => '0',

 'shipping' => $this->_order['shippingcharge'],

 'orderno' => '1',

 39

 'paymentterm' => $paymentterms, //backend config

 'shippingmethod' => $shippingmethod,

 'shippingcondition' => 'DDU',

 'yourreference' => $this->_order['name'],

 'ourreference' => $ourreference,

 'costcenter' => '',

 'invoicetext' => '',

 'customer_address' => array(

 'addressline1' => $this->_order['billingadress'],

 'addressline2' => '',

 'zip' => $this->_order['billingZIP'],

 'city' => $this->_order['billingcity'],

 'country' => $this->_order['billingcountry'],

 'county' => 'null',

),

 'customer_deladdress' => array(

 'name' => $this->_order['name'],

 'addressline1' => $this->_order['shippingadress'],

 'addressline2' => '',

 'zip' => $this->_order['shippingZIP'],

 'city' => $this->_order['shippingcity'],

 'country' => $this->_order['country'],

 'county' => 'null',

),

 'invoice_rows' => array(),

),

);

$orderItems = $this->_order['items'];

 for ($i=0; $i < count($orderItems) ; $i++) {

 $this->_new_invoice ['customerinvoice']['invoice_rows'][] = array(

 'itemno' => $orderItems[$i]['product_id'],

 'description' => $orderItems[$i]['product_name'],

 'unit' => 'kpl',

 'amount' => $orderItems[$i]['quantity_ordered'],

 'price' => $orderItems[$i]['base_price_incl_tax'],

 'discount' => array(

 'value' => $orderItems[$i]['discount_amount'],

 'type' => '0',

 40

),

 'account' => $salesaccount,

 'costcenter' => '2000',

);

}

3.5 CURL Requests

Every API call is prepared and executed from the same model class called CURL. The class

consists of five methods: refreshTokens, checkCustomerBriox, addCustomer,

addSalesorderInvoice and curlExecute. The first four methods mentioned is preparing the

API request in its own unique manner, and the last one sends the requests. When the four

methods have prepared the message header, message body and URL, they call the execution

method and passes the prepared variables as parameters. The executing method return the

API response.

The following figure demonstrates the functionality within the curl class:

Figure 14: The CURL Class and its Method

 41

3.5.1 Executing the HTTP request

CurlExecute gets called by every method within the scope of the CURL-class and is the

only method which initiates contact with the Briox API. This allows for reuse of code in an

effective way. The method uses three in-parameters to produce the call: Header, URL and

body.

The header is needed for authentication purposes and consists of content-type, and the access

token. The URL is used for directing the call to the right API method; this will change

depending on the action. The body is the content of the request and is not an obligatory

parameter. The method establishes the type of call by checking if a body-object was included

as a parameter. If the body object is received, the method performs a POST-request to the

server. If the body object is not received, the method performs a GET-request. By performing

this check, there is no need for separate methods specified for each request. The method

returns the response upon termination.

3.5.2 Refreshing the Tokens

RefreshTokens is fired by the main function when the checkExpireDate method returns

false. The method retrieves the access token and refresh token from the database and stores

them in a header-array. The header is passed as a parameter to the curlExecute-method,

along with the URL. The return JSON object is parsed and the new tokens and expire date

is stored in the database for later use. The method returns true or false, depending on the

success of the refresh.

3.5.3 Checking for customer in Briox

When each order is being processed the module has to check if the customer is already

registered in the Briox database. The check is performed by a method called

checkCustomerBriox. The main function passes the active customers email address along

as a parameter for the prepare method. The method adds the email address to the end of the

URL string before calling the execution method. If the customer is found, the API returns

the full customer data object, which is returned to the prepare method through the execution

method. The prepare method parses the object and returns the Briox “custno” value.

 42

3.5.4 Creating a new customer in Briox

The creation of a new customer in Briox is prepared by a method called addCustomer. The

method receives a customer object as a parameter, which is stored in a body-variable. Before

calling the curlExecute-method, it sets up the header-array, which contains the content-type

of the message, and the access token. A url-variable is filled with the URL to the desired API

method. The return value from curlExecute is stored in an array and the customer number,

assigned by Briox, is parsed out and returned to the Customer-class.

3.5.5 Creating a new Salesorder/Invoice

A new sales order and an invoice is initiated and prepared by the same method, called

addSalesorderInvoice. The method receives two parameters, one containing the JSON

object to be posted, and a string defining what type of object (salesorder or customerinvoice).

The type of object is set in the method instantiating the class. The preparation is similar to

the addCustomer-method . The sales order or invoice is stored in a body variable and the

header-array is filled with the content-type and access token. The url-variable is assigned

with a URL-string and the url in-parameter is appended to the end of the string to complete

the URL. When the preparation is complete, the method calls the curlExecute-method to

communicate with Briox. The method returns true or false upon termination, depending on

the success.

3.6 Testing

The module was developed on a Webcore.fi test store located on a development-server,

accessible through the internal network. It was tested during all stages of development, by

pushing to, and retrieving data from a Briox developer account. When the results were

satisfying the test site was overwritten by copy of the real online store, including all the latest

orders. The extension was installed successfully and the custom attributes and database

tables were created without errors.

To test the extension, the orders that were registered during the last four days were exported

with satisfying results. No data differed from the test site and the actual online store.

 43

4 Results and Discussion

This section will analyze the results, suggest future work and evaluate the final product. The

product is working but there can still be various functions implemented to make the process

more dynamic.

4.1 Results

The project resulted in an integration between an Ecommerce store created with the Magento

Framework, and an ERP-system called Briox. The integration is made possible with an

extension for the online store, and uses a RESTful API service to communicate with the

ERP-system.

The extension was requested by an organization called Webcore, and will primarily be used

on their own online store, although it might be presented to customers in the near future. The

extension was requested to automate the registration of customers, and creation of sales

orders and invoices in the ERP-system. Previously the process was done manually, which

resulted in time consumption and human typos.

Due to the Briox API being fairly new and still very much in development, a frequent email

communication was maintained with the Briox support team. The teams implemented a few

requested methods to the API, such as the possibility to GET a customer based on their email

address. The team is still working on a few requested methods. Until these methods are

implemented, the module has its restrictions.

The next step is to install the module on the real online shop and test it by exporting orders

to the Briox developer account and analyze the data to find and eliminate bugs. Webcore

will start using the extension as soon as all the precautionary tests are performed.

4.2 Future Work

Regarding future work, there are still many utilities that could be implemented to make the

extension work even better. Just like every computer program receiving constant updates,

the extension could always be updated to make it better, and it is rather difficult to conclude

that it will ever be a 100 percent finished.

 44

The extension is tested with Klarna, Bambora and invoiced payment methods, but it is rather

difficult to know if it works with other methods activated, due to them probably being coded

and structured differently. More tests are needed to determine the flexibility.

As for the admin configuration, various different settings could be implemented to make the

extension fit every organization’s needs. For example an organization selling product might

have different demands than an organization selling services.

The supported shipment methods in the admin configuration panel could be coded

dynamically to show all the active methods without revealing empty slots. This would

require a custom html layout and a much broader competence about the Magento

Framework.

4.3 Discussion

During the development I had rather free hands to develop the extension, and I chose a more

stand-alone approach to make the extension more comprehensible to a person who is not that

familiar with Magento development. To elaborate on my decision, the module could have

made more use of Magento components, such as Helpers, Blocks etc. But this requires a

much broader competence of the Magento Framework and to someone who is not that

informed it might be confusing and look like magic.

The project has been educational but quite time consuming. Mostly because the Magento

Framework was rather unknown to me before the project started, and it is an immense and

complicated framework. The first few weeks were consumed by just learning the properties

of the framework and custom module development.

During the process, I have also gotten familiar with the Briox ERP-system and all of its

components and acquired a better understanding of how ERP-systems work and how it is

implemented in the organization.

Before the project started my PHP knowledge was satisfying but not on the highest level.

Although during the development, I often asked myself if the code I wrote was efficient?

However, after a bit of research, testing and about 1000 lines of code I believe that I have

reached a higher level of understanding PHP patterns, libraries and code efficiency.

https://www.powerthesaurus.org/comprehensible/synonyms

 45

5 Bibliography

[1] PHP, ”FAQ: PHP,” 2018. [Online]. Available:
http://php.net/manual/en/faq.general.php. [Accessed 26 February 2018].

[2] PHP, ”cURL,” PHP, 2018. [Online]. Available:
http://php.net/manual/en/curl.examples.php. [Accessed 15 March 2018].

[3] Oracle, ”Object-Oriented Programming Concepts: Oracle,” 2017. [Online].
Available: https://docs.oracle.com/javase/tutorial/java/concepts/. [Accessed 1
March 2018].

[4] Bob och JW01, ”What is mvc really: Stackexchange,” 2012. [Online]. Available:
https://softwareengineering.stackexchange.com/questions/127624/what-is-
mvc-really. [Accessed 20 February 2018].

[5] Y. Trivedi, ”Detailing the layout & flow of magento mvc architecture,” 2014.
[Online]. Available: https://www.mconnectmedia.com/blog/understanding-
magento-module-structure-and-code-execution/. [Accessed 20 February 2018].

[6] w3schools, ”JSON Intro: w3schools,” 2018. [Online]. Available:
https://www.w3schools.com/js/js_json_intro.asp. [Accessed 24 February
2018].

[7] N. Nurseitov, M. Paulson, R. Reynolds och C. Izurieta, ”Montana State
University,” 2009. [Online]. Available:
https://www.cs.montana.edu/izurieta/pubs/caine2009.pdf. [Accessed 25
Fenruary 2018].

[8] Java T Point, ”Json vs XML: Java T Point,” 2018. [Online]. Available:
https://www.javatpoint.com/json-vs-xml. [Accessed 25 February 2018].

[9] S. Pearlman, ”What are APIs and how do APIs work?: MuleSoft,” 2016. [Online].
Available: https://blogs.mulesoft.com/biz/tech-ramblings-biz/what-are-apis-
how-do-apis-work/. [Accessed 4 March 2018].

[10] A. Rodriguez, ”RESTful Web services: The basics: IBM,” 2015. [Online].
Available: https://www.ibm.com/developerworks/library/ws-
restful/index.html. [Accessed 4 March 2018].

[11] Magento, "About," 2018. [Online]. Available: https://magento.com/about.
[Accessed 20 February 2018].

[12] Moose, ”Why does Magento have 3 code pools?: Stckexchange,” 2017. [Online].
Available: https://magento.stackexchange.com/questions/11908/why-does-
magento-have-3-code-pools. [Accessed 6 March 2018].

 46

[13] Ian, ”Magento Model vs Block vs Controller etc: Stackoverflow,” 2013. [Online].
Available: https://stackoverflow.com/questions/14283920/magento-model-
vs-block-vs-controller-etc. [Accessed 5 March 2018].

[14] A. Strom, ”Magento for Developers: Part 1—Introduction to Magento: Magento,”
2018. [Online]. Available:
http://devdocs.magento.com/guides/m1x/magefordev/mage-for-dev-1.html.
[Accessed 26 February 2018].

[15] F. Khattak, ”How to Create a Magento 1.9 Custom Module: Magentician,” 2017.
[Online]. Available: https://magenticians.com/create-magento-custom-
module/. [Accessed 3 March 2018].

[16] A. Storm, ”Magento for Developers Part 6 Magento Setup Resources: Magento,”
2018. [Online]. Available:
http://devdocs.magento.com/guides/m1x/magefordev/mage-for-dev-6.html.
[Accessed 10 March 2018].

[17] Briox, ”Briox,” 2018. [Online]. Available: http://briox.fi/sv. [Accessed 24
February 2018].

[18] Briox, ”API docs: BRiox,” 2018. [Online]. Available: https://apidoc-
fi.briox.services/#/. [Accessed 02 March 2018].

[19] A. Storm, ”Magento,” 2018. [Online]. Available:
https://alanstorm.com/category/magento/. [Accessed 22 February 2018].

[20] A. Storm, ”Magento Models an ORM Basics: Alan Storm,” 2009. [Online].
Available: https://alanstorm.com/magento_models_orm/. [Accessed 13 March
2018].

