Zhi Chen

HTMLS HYBRID MOBILE APPLICATION

Building mobile applications using web technologies with Ionic

Thesis

CENTRIA UNIVERSITY OF APPLIED SCIENCES
Information Technology

May 2018

¢ Centria

UNIVERSITY OF APPLIED SCIENCES

ABSTRACT
Centria University Date Author
of Applied Sciences May 2018 Zhi Chen

Degree programme
Information Technology

Name of thesis
HTML5 HYBRID MOBILE APPLICATION. Building mobile applications using web technologies
with Ionic

Instructor Pages
Kauko Kolehmainen 32+7
Superviso2

Kauko Kolehmainen

The aim of the thesis is to provide hybrid mobile application using web technologies like HTML, CSS,
JavaScript and Ionic.

Before building a mobile application, a company needs to decide what types of mobile application to
use: native, web or hybrid. Each type has its own advantages and disadvantages. Hybrid mobile appli-
cation is a good choice when the company wants to build the product in a fast and inexpensive way.

The thesis creates two simple hybrid applications with Ionic and RESTful API. The first one is a lan-
guage learning application which uses NoSQL database firebase as a back end. The second one is a
weather application which uses RESTful API from WunderGround.

Key words
Hybrid application, HTML, CSS, JavaScript, lonic, Angular, Firebase, RESTful APIL.

ABSTRACT

CONCEPT DEFINITIONS
CONTENTS
1 INTRODUCTION ..uuucoiiirinseisnicsensecssicsssssesssnssns 1
2 DIFFERENT TYPES OF MOBILE APPLICATIONS ...cucuviivinrnsecssissesssessaccsassaesssnssssssessassssssans 2
2.1 Native aPPLICALION .cccueririerinireresinicssnicsssnicsssnissssnssssssessssessssssssssssssssssssssssssssssssssessssssssssssssssssssases 3
2.2 Web aPPlICALION....uciiereriiierisieiesieicsssricsssnicsssnessssssssssnesssasss 3
2.3 Hybrid appliCationecceceienceicssnicssnicsssnicsssnecsssnsss 4
3 TECHNOLOGY STACK .iiricreisenssicssisesssicssnssssssessssssssssesssans 6
BULHTIML cacuviiitiinicnisenssecssisesssesssssssssnsssissssssesssesssssssssssssssssssssssssssssssaes 6
R 20 O TR 7
3.3 LSS tenrrrnensnnesnncsunnssnnissnessessanissstessasssstesstssatsssassssessstessatesasesseesatsssatesasssteestsssatebassstsesatsssanessasesaee 7
B4 JAVASCIIPL covvrrirnnrininicnsnicssnnicsssnicsssnisssssssssssssssssssssssossssssssssssssssssssssssssssesssssesssssossssssssssssssssssssnsssssns 8
BS ANGUIAL ccceeeriiiniiinniicnsnnicssntiesssnicsssnessssssssssssssssssssssossssssssssssssssssssssssssssesssssesssssossssssssssssssssssssnsssssns 9
BuO JOMUC cuuceneeineiireiniinnecteestecsaessaecssessssesssnssssesssnssssssssessssssssessssssssesssassssesssassssesssassssesssassssesssassssassn 10
4 CASE STUDY: CREATE A LANGUAGE LEARNING APPLICATION WITH IONIC 11
4.1 Start an LONIC ProfeCt....iieicncsricssricssrissssressssnesssssssssssssssssess 12
4.2 Add Firebase Realtime Database..........coueeveeireninensenssnensnnssnecsenssnensessssecssessssesssessssesssassssseses 14
4.3 Create 2 l0GIN PAGE......ueiciveicicricssrissssrissssrisssssessssnssssssssssssssssssesssssossns 16
4.4 Create COUISES PAZE ccccueeerrerrcsssresssssesssssesssssessssesssssesssssssssssssssssessssssssssssssssssssssssssssssssasssssasssssasssns 17
4.5 Create 1esSOM LISt PAGE....uueierveiiirrinssrinssnrinssnnissssnissssnsssssnssssssossssnsssssssssssssssssssssssssssssssssssssssasssns 20
4.6 Create 1esSON CONTENT PAE ...ceeeervuricrsnricssarissssressssnessssnssssssssssssosssssossns 22
5 CASE STUDY: CREATE A WEATHER APPLICATION WITH IONICccceveeivurcruressanenns 23
5.1 Weather Underground APL..........eiievvricnsnicssnissssnissssnsssssossssnsss 23
5.2 Build iWeather appliCAtionccoeeieiviierserinscnrinssnnisssnnsssssnsssssnessssnessssnssssssssssssssssssssssssssssssssssssns 26
0 CONCLUSION ..uucouuiciiinnsnicsnisesssecssiesssssess 30
REFERENCES......uuiotiiitiitiniisnicsninisssicssissnsssissssssssssissssssssssesssans 31
APPENDICES
GRAPHS
GRAPH 1. Comparison of different mobile applications............ccccueeevieriieiiienieiiieieeeee e 2
GRAPH 2. YouTube web application vs native applicationccceereeevieenieniiienieeieenieeieesieeeve e 4
GRAPH 3. MarketWatch hybrid application on Android and iOS (Case Studies, lonicframework, 2018)
... 5
GRAPH 4. HTML element (Angular, 2018)cc.ooiiiiiiieiieiieeieeiee ettt et e 7
GRAPH 5. CSS ruleset (Angular, 2018)ccuieiuiiiiieiieeiieiieete ettt este et e sreeteesebeesbeesnseeneeas 7
GRAPH 6. Nesting in Less and complied to CSSoooiiiiiiiieieeeeeee et 8
GRAPH 7. AnGUIAr TeMPIALE......c.eeeriiieiieiieeiietteee ettt ettt ebeesteeebeesseeenseeseeenseeneeenns 10
GRAPH 8. Visual Studio Code in MACOS.........ooiiiiiiiiieieetestet ettt 11
GRAPH 9. Cordova and Ionic installation in terminal...........ccccceecieriieiiieniieiieieceeee e 12
GRAPH 10. Create an app With Ionic CLI.........cccociiiiiiiiiiiiieieeieeeeeee et 12
GRAPH 11. Code iN PACKAZE.JSOM......eeieiieiieeiiieiieiieeteeeiteeieesite et e seaeeebeesaeeesbeesseessseenseesnseenseesnseeseennns 13

GRAPH 12. Preview login page in @ WebD DIOWSET.........cccuieiiiiriieiiieriie ettt 17

GRAPH 13, COUISES PAZE...eeeutieeirieeiiieeiieeeiieeeitteeeiteestteesteeessteeessseeessseeessseeensseessseessseessseesseeesseens 20

GRAPH 14. LeSSON LISt PAZEveeeevieniieiiieiieeite ettt et ette et e sttesteestaeeebeesaeeesbeenseessseesseesnseeseesnseeseennns 21
GRAPH 15. Preview of 1eSSON CONLENE PAZEecvievrieiieiiieeiieniieeieesiteeteesite et eseeeeteesseeeseenseesnseenseeenns 22
GRAPH 16. Preview the weather application in different platformscocceoeevenieninniniiniienne 23
GRAPH 17. Weather Underground Weather APcoooiiiiiiiiiiiiicieeeeeeee e 24
GRAPH 18. Before and after applying style rUles..........cocieiiiriieiiienieeiieicceee e 29
TABLES

TABLE 1. Different mobile platforms for native applications...........ccecveevveerierciienieeieeie e 3

1 INTRODUCTION

Over the last few years, there were some indications that hybrid is becoming popular as the preferred
way to create mobile applications, especially in the retail markets and enterprise. Hybrid applications
mix the performance and device capabilities of native development with the flexibility and simplicity of

web applications.

Here is how Hybrid applications work. Developers start by creating a native iOS or Android application
with hybrid framework. Within that application, developers embed a web view, which allows displaying
a web page within that native application. Web content is created with well-known technologies like
HTML, CSS, and JavaScript, which are much more popular than most native application languages
(Salesforce, 2016). This allows to not only use existing web technologies but also leverage a larger set
of developers to build the application. By displaying certain content and app features within a web view,
hybrid application can be updated across multiple platforms quickly and easily, without having to rede-

ploy the application to the app store.

This is a study case, in which an Asian market store wants to redesign the user interface to place more
products on the page. In traditional development, developers have to update the i0S, Android and web-
site applications separately. This not only takes more time to develop and test but also requires users to
update their applications, which is a very slow process. With a hybrid app, it is possible to easily update
the website one time and the changes are automatically reflected in the iOS and Android application

immediately.

This thesis will compare different types of mobile applications and its advantages and disadvantages.
Then it will go through the technology stack which is required to build a hybrid application. Finally,

there will be two study cases to build two simple hybrid applications using Ionic.

2 DIFFERENT TYPES OF MOBILE APPLICATIONS

There are mainly three types of mobile applications - the native application, the web application and the
hybrid application. GRAPH 1 shows the difference among those three types of mobile applications.
Native application is downloaded from the Apple Store or the Play Store written in the native language
such as objective-c, or Swift for 10S, Java for Android, C# for Windows (Salesforce, 2016). The soft-
ware lives on the real device. It has full access to the platforms APIs. Web application is a website
designed for mobile and sometimes tries to simulate the native application design but it is written in

HTML, CSS and JavaScript. (Salesforce, 2016.)

MOBILE WEB HYBRID NATIVE PURE NATIVE

4 \ ™ 4 A N\

VA

DEVICE APis

GRAPH 1. Comparison of different mobile applications

As to hybrid application, it is a combination of native application and web application. It is available in
the app stores and runs like a native application on mobile phone, while it is written in HTML, CSS and
JavaScript as a web application. It has a native layer with embedded HTML pages with basic access to
the native APIs (Salesforce, 2016). Apache Cordova is one of such platforms which provides JavaScript

APIs to access device capabilities via plugins.

2.1 Native application

Different platform like 10S, Android and Windows provide a different software development kit to cre-
ate applications (Differencebetween, 2018). These kits compile binary code which the operating system
runs. As a result, different platforms require different programming languages and tools to write. TABLE
2 lists different programming languages and development environment of different platforms. The most
popular way to get native applications is to download from an app store such as App Store or Google
Play. Mobile operating systems also provide additional methods to get the app onto the device. Once the

application has been stored on the device the user can launch it anytime without internet.

Platform Language Development environment
10S Object C, Swift Xcode

Android Java Eclipse, Netbeans
Windows C# Visual Studio

TABLE 1. Different mobile platforms for native applications

Native apps are very fast and that is because they are built for that specific platform. Native applications
are also very easily distributed into app stores whether it is the Apple Store Google Play or the Windows
Store because they all have their own language and SDKs. However, they are built for only one platform,
which means the company has to hire developers to create i0S, Android or Windows applications sep-
arately. As a result, it costs more for the company. It is not a very good idea for a startup company to

create native applications separately for each platform because of the high cost. (Salesforce, 2016.)

2.2 Web application

Today's mobile devices come with very powerful browsers with support for many HTMLS5 features,
CSS3 and advanced JavaScript (W3schools, HTML5 Browser Support, 2018). It is possible now to de-
velop very advanced web applications by using them, which brings the next category of mobile web
applications. For instance, YouTube web application not only looks very similar to its native applica-
tion, but also provides very similar functionality. GRAPH 3 is screenshots of YouTube web and native

application.

o2t alant e 0.51 C@ 7} esee0 Saunalahti 4G 051 C@ 7 mm

& youtube.com ¢ < E£RER X
O =% Q

—
=
==

A7 Jay Chou (4531
B KER) [EBE
¥ Love Confession...
RS % JVR Music
124M views - 1 year ago
HERK-ENME (B
¥ cover)

Z35)# - 11M views

1 year ago

All - Anytime -

A7 Jay Chou (455158
HRER) [ERREK

_ Love Confession] ...
RS % JVR Music
124,289,804 views

T4 RERIESIEEN
(ERSK) HFEERN
4F0FER! Cover by [Bg...
E 5 RLovehlfE

2,380,701 views

1AM ARERIESIRE
B (EESHK) HF
BERHYIFITER! Cove..
BB RLovelfE

2.3M views - 1 year ago
Mix - 14F R EHIES
TR (FRSIK)
HFERAIGFORER! .

YouTube - 50+ videos

Mix - 1AM A EHIESIEEN
(BRSNS HEBRNIT
I7EB! Coverby [BEBEFR..

EARK-ANM (AZH A -
cove’rk) oy i Jay Chou EI7x &

= e Love Confession £58
11,708,499 views OVE LOMESSION g3 English and..
Lgmwmhung‘shandfnn Vinchy LCH - 252K views
1 year ago
NN 7k Frlea (China'e annd H e s

< > M n il 1) 1)) 54 » -

Home Trending Subscriptions Activity Library

GRAPH 2. YouTube web application vs native application

Web applications are the cheapest option because it is much cheaper for employers to hire one web team
instead of 10S and Android teams together. Furthermore, web applications can be displayed on desktop
devices. However, as web applications live on web browsers, network connection is a requirement for it
to work. Also, users have to remember the URL to access web applications. Username and password are
required every time when the user opens the web application. This is not user-friendly and also brings

some security problems. (Salesforce, 2016.)

2.3 Hybrid application

Hybrid applications are in between native application and web application. They use web technologies
such as HTMLS, CSS and JavaScript to write, but are almost indistinguishable to the user from native
apps. They are installed on the home page and launched like a native app. MarketWatch is such a Hybrid
application (shown in GRAPH 4). MarketWatch delivers the latest financial news and market data. It is
now one of the most successful financial application in the market with over 300K users and 16 million

visitors per month. (Case Studies, [onicframework, 2018.)

n MarketWatch

1:59 PM

Top Stories

llllllll

Do markets really hate uncertainty? Do markets really hate uncertainty? &8
Not at all Not at all

Trading Deck: How bearish is the Trading Deck: How bearish is the
failure of this too-obvious-to-be- failure of this too-obvious-to-be-

true S&P chart pattern? true S&P chart pattern?

GRAPH 3. MarketWatch hybrid application on Android and iOS (Case Studies, lonicframework, 2018.)

Since hybrid applications use well-known HTMLS, CSS and JavaScript, company can build the mobile
application very fast and deploy in different mobile platforms. In addition, due to the popularity of hybrid
applications, there is an increasing amount of free open-source hybrid frameworks to help developers to
make the development easier and quicker. Some popular hybrid frameworks include: PhoneGap, lonic
framework, Sencha Touch 2 (Upwork, 2018). However, hybrid applications run slower and less power-

ful than native applications. They also have more bugs comparing to native applications.

3 TECHNOLOGY STACK

When a company wants to build a website from scratch, they have to think what technology stack to use.
The technology stack consists of all the programming languages, frameworks and tools used for the
development. There are two main parts of any application, which are the client end and back end. The
front end is what the user sees in the browser, while the back end focuses on servers and databases. Most
of complex websites require both front and back end development to provide full features. (WebpageFX,
2018.)

This section explains the technology stack needed to build a hybrid application with web technologies.
HTML, CSS and JavaScript are the three core web technologies. HTML structures the web, CSS styles
the web and JavaScript makes the web interactive. In modern web development, there are many frame-
works which make web development more efficient. Angular by Google and React by Facebook are the
most popular JavaScript framework for front end development in the market today. lonic is based on

React, so it is easy for an Angular developer to start with it. (Medium, 2017.)

3.1 HTML

HTML stands for Hypertext Markup Language, which is the standard markup language to create web-
sites. Web browsers use HTML to interpret text, images, videos and other content to web pages. HTML
elements are the most basic building blocks of the web, which are used as HTML tags written using
angle brackets. There are 3 main parts for element, which are opening tag, content and closing tag. The
opening tag has the name of the element wrapped with angle brackets. Besides this, it can include attrib-
utes in the angle brackets. One of the most common attribute is class. For example, <p class="comment’>
is an opening tag. The content is between an opening tag and a closing tag. The closing tag is similar as
the opening tag but it has a slash before the element name. Also, the closing tag does not have attributes.

GRAPH 5 explains one simple HTML p element. (MDN, 2018.)

Opening tag Closing tag

L

<p>My cat 1s very grumpy</p>

e
Content

Element

GRAPH 4. HTML element (MDN, 2018)

3.2 CSS

CSS stands for Cascading Style Sheets (CSS). It is a language to add style for HTML and XHTML page.
CSS can alter font, colour, displace position, font size and picture style for the HTML elements. Browser
turns HTML into a DOM when it opens an HTML file. CSS use selector to select HTML elements. CSS
properties set styles to the selected HTML elements (MDN 2018). GRAPH 5 is a simple CSS ruleset

example.

A CSS ruleset (or rule):

div P, #id:first-line|l{

background-color : red | ;

background-style : none

_, . < |
Group of selectors/ \Declarations block

GRAPH 5. CSS ruleset (MDN 2018)

3.3 Less

Less stands for Leaner Style Sheets. It is designed by Alexis Sellier and first appeared in 2009. Less is
a CSS pre-processor which extends the functionality of CSS. Less is open-source and written in JavaS-

cript. Less extends CSS with variables, nesting, mixins, operators and functions. Because Less looks just

like normal CSS and valid CSS is also valid Less code, the learning curve is very low for a web devel-
oper. What makes Less different and powerful between other CSS pre-processors is that Less can be

compiled via less.js by web browsers and run on both client and serve side. (Lesscss, 2018.)

In Less, variables are defined with @ at the beginning of assignment. Variables work like constants and
can only be defined once. For example, a developer needs to change all the red color to green. In the
traditional way, the developer has to find all the red color and set them to green one by one. With Less,
it is possible to ceate a variable and only one-time update is needed (Lesscss, 2018). Another useful
feature of Less is nesting. It can make the code more concise and readable. GRAPH 7 is an example how

nesting works.

1 #content { 1 #content {
width: 500px; width: 500px;
}
a { #content a {
color: white; color: white;
&:hover { #content a:hover ({
color: blue; color: blue;
}
#content a.selected {
&.selected { color: #£f£££00;

color: yellow }
}
1 }
5| }

GRAPH 6. Nesting in Less (left) and complied to CSS (right).

3.4 JavaScript

JavaScript (abbreviated as JS) is the most-known scripting language for web pages. HTML, CSS and
JavaScript are three core technologies of the web. JavaScript makes website interactive. JavaScript is
not Java. It has nothing to do with Java, but like Java, JavaScript is a programming language and prob-
ably one of the most popular and widely used in the world. JavaScript works inside another web browser
whether that is IE, Chrome, Safari, Firefox or Opera which has a JavaScript engine inside them. The
operating system runs the web browser. The web browser contains pages and pages contain JavaScript.

JavaScript does not have access to the file system of a computer. (MDN, 2018.)

JavaScript was only implemented the client side in the web browsers before the JavaScript run-time
environment came out. Nowadays JavaScript engines are embedded in many other types of software, as

a result JavaScript can be used on server side and even desktop and mobile applications. Node.js is such

an engine written by Ryan Dahl in 2009.1t supports Linux, macOS and Windows. A package manager
called npm was introduced for Node.js platform in 2010. It makes Node.js developers life much easier

to publish and share source code of Node.js libraries. (Node.js foundation, 2018.)

3.5 Angular

Angular is an open-source popular JavaScript framework created by Google, which helps developers
build modern applications quickly. Angular 2 was rewritten from AngularJS by the same team. Angular
offers faster initial loads. Angular works with TypeScript and ES6. More than just a framework, Angular
is actually a whole platform which comes with a collection of tools like Angular CLI, debugging and

testing tools. (Angular, 2018.)

Angular apps are modular. Modules are the way how Angular organizes the application and works with
other third-party libraries. Angular uses both JavaScript modules and Ngmudules. In JavaScript, mod-
ules are separate JavaScript files. The “import” statement is used to import JavaScript code from other
module, and the “export” statement is used to export JavaScript code to be available in other JavaScript
files. In Angular, NgModules are classed with decorator “@NgModule”. Every Angular application has
at least root NgModule. The most common properties of a NgModule are declarations, exports, imports
and providers. Declarations declare the classes belongs to the module. Exports are declarations that can
be accessed in other modules. Imports includes other modules which are imported to this module. Pro-

viders are available in the whole app. (Angular, 2018.)

Angular component controls the logic on the page and the view of the application and on click event
execution. It is a fundamental part of the application and it belongs to the controller class. Angular
creats, updates and destroys components when the user browses through the application. @Component
is used to register a component. @Component is a decorator function which contains component
metadata. CSS styles can also be connected with a component with inline styles. The template is defined
along with component, which is a HTML file that tells Angular where and how to render the component.
Template not only uses standard HTML elements, but also Angular’s template syntax like *ngFor,

(click). GRAPH 8 is the code snippet for the HTML template. (Angular, 2018.)

10

src/app/hero-list.component.html

<h2>Hero List</h2>

<p><i>Pick a hero from the list</i></p>

<li *ngFor="let hero of heroes" (click)="selectHero(hero)">
{{hero.name}}
</1li>

<app-hero-detail *nglf="selectedHero" [hero]="selectedHero"></app-hero-detail>

GRAPH 7. Angular Template (Angular, 2018)

Metadata is mainly created to extend the class’s functionality. In Typescript, this purpose is defined by
using a decorator. Selector, templateUrl and providers are the most basic properties for a component
decorator. Data binding is the connection between the model and the view. Angular supports four types
of data binding - Property Binding, Event Binding, Interpolation and Two-Way Binding. (Angular,
2018.)

3.6 Ionic

Ionic is an open-source JavaScript framework to create hybrid mobile applications. It was released based
on AngularJS and Apache Cordova. The newer version has migrated from AngularJS to Angular. Ionic
app is created mainly through the ionic CLI (command line utility). CLI makes the development very
fast and easy. lonic CLI tool can install and update Ionic, generate a new page and run server. For ex-

ample, simply typing “ionic start” will create a new project. (Ionic, 2018.)

Ionic components are a collection of UI elements that mimic the native look. Unlike in native applica-
tion, Ionic components are built with HTML, CSS and JavaScript. lonic components have different
styles for different mobile platforms. With lonic components, developer can quickly create the interface
of the application. Ionic has a set of components, including action sheets, alerts, badges, buttons, cards

and checkbox. (Ionic, 2018.)

11

4 CASE STUDY: CREATE A LANGUAGE LEARNING APPLICATION WITH IONIC

Ionic was selected for the case study, because developers can build a hybrid application very easy and
fast with it. Before coding, there are several tools which need to be installed. First tool is IDE. Visual
Studio Code is an open-source code editor owned by Microsoft. It is available in Windows, Linux and
macOS. It is lightweight but also powerful. It supports HTML, CSS, JavaScript, TypeScript and Python.
Users can install additional extensions to add more languages, themes and debuggers. GRAPH 9 is the

interface of Visual Studio.

index.html — html5up-massively

([J
EXPLORER Welcome <> index.html @
C

1
4 OPEN EDITORS 1UNSAVED DOCTYPE html:

p Welcome <html lang="en">
5 head
O < Ml <meta charset="UTF-8">
4 HTML5UP-MASSIVELY meta name="viewport" content="width=device-width, initial-scale=1.0"
? b assets <meta http-equiv="X-UA-Compatible" content="1ie=edge">
> images <title>Document</title:

head
@ <> elements.html hea
<body>

<> generic.html
<> index.html </body>
= LICENSE.txt html
= README.txt

Ln 235,Col 5 TabSize:4 UTF-8 CRLF HTML @ p

GRAPH 8. Visual Studio Code in macOS

Then Node.js is needed since Ionic is based on Node.js run-time environment. NPM is a package man-
ager for Node.js, and it is always downloaded with Node.js. First, download and install Node.js. Once it
has been installed, run “sudo npm install -g cordova ionic ” in terminal to install the latest Cordova and

Tonic CLI. GRAPH 10 is a screenshot of installation in Terminal.

12

. @ chenzhi — node « sudo — 80x24

~ — node « sudo]

Last login: Sun Jan 28 13:31:36 on ttys000

Chen:~ chenzhi$ sudo npm install -g cordova ionic

Password:

(n) : fetchMetadata: uri https://registry.

GRAPH 9. Cordova and Ionic installation in terminal

4.1 Start an Ionic project

With Ionic CLI, developer can start a new application by running one command line in terminal. Use
“ionic start myApp tabs” to create an app with tabs design (remember to replace myApp to your project

name). GRAPH 11 illustrates three basic lonic start templates by use the command “ionic start”.

Home
Friends
Events
* Close
$ ionic start myApp blank $ jonic start myApp tabs $ jonic start myApp sidemenu

GRAPH 10. Create an app with Ionic CLI

13

Also, there are some additional dependencies in the application. In general, there are two ways to install
dependencies. One is to run “npm install dependency-name” in CMD, another is to edit the package.json
file. The package.json file is core in Node.js environment. It must be valid JSON, not only JavaScript

Object literal. The scripts property is npm scripts which can run in CMD. For example, if a developer

n.n

has "clean": "ionic-app-scripts clean" in script field, type “npm run clean” in CMD will run “ionic-app-
scripts clean” script automatically. The dependencies property is where other dependencies are defined.
After updating package.json, run “npm install” to install all the dependencies for the project. The devDe-
pendencies are dependencies installed only in development environment, so they will not be installed in
the production server. GRAPH 12 is the code snippet for dependencies and devdependencies in pack-

age.json file.

"dependencies": {
"@angular/common": "4.1.2",
"@angular/compiler": "4.1.2",
"@angular/compiler—-cli": "4.1.2",
"@angular/core": "4.1.2",
"@angular/forms": "4.1.2",
"@angular/http": "4.1.2",
"@angular/platform-browser": "4.1.2",
"@angular/platform-browser-dynamic": "4.1.2",
"@ionic—-native/core": "3.10.2",
"@ionic-native/http": "74.3.0",
"@ionic-native/splash-screen": "3.10.2"
"@ionic—-native/status-bar": "3.10.2",
"@ionic/storage": "2.0.1",
"angularfire2": "~4.0.0-rc.0",
"cordova-plugin-advanced-http": "~1.5.10",
"firebase": "°4.0.0",
"ionic—-angular": "3.3.0",
"ionicons": "3.0.0",
"rxjs": "5.1.1",
"sw—toolbox": "3.6.0",
"zone.js": "0.8.11"

b

"devDependencies": {

"@ionic/app-scripts": "1.3.7",
"@ionic/cli-plugin-ionic-angular": "1.3.1",

"typescript": "2.3.3"

GRAPH 11. Code in package.json

14

4.2 Add Firebase Realtime Database

The Firebase Realtime Database is hosted in cloud. Data is stored in JSON format so data is synchro-
nized in real time. Every time when user updates database, it is automatically updated in cloud. In this
case, clients can access the same data no matter if they use iOS, Android or other JavaScript SDKs. To
have connection of firebase database, authentication must be added in the project. Add the following

code snippet to src/app/app.module.ts file:

const firebaseConfig = {
apiKey: "AlzaSyDNVca 1bhyHL -nvEs61eoTXchISLnPPI",
authDomain: "japanesecourse.firebaseapp.com",
databaseURL: "https://japanesecourse.firebaseio.com"”,
projectld: "japanesecourse",
storageBucket: "japanesecourse.appspot.com",

messagingSenderld: "400567341682"
¥

For good practice, [onic Components should not fetch or save data directly. Ionic provider is a good way
to share data. Ionic CLI provides a shortcut to generate a provider. Run “ionic generate provider firebase”
to generate a provider. This command imports Injectable and Http by default. In order to connect with
firebase, import AngularFireModule, AngularFireDatabase, FirebaseListObservable and FirebaseObjec-

tObservable at the top of the code in scr/providers/firebase/firebase.ts as shown below.

import { AngularFireModule } from 'angularfire2';
import { AngularFireDatabase, FirebaseListObservable, FirebaseObjectObservable } from 'angular-
fire2/database’;

In the same file, inject AngularFireDatabase and AngularFireModule as parameters into the constructor
of the class FirebaseProvider. Create getcourseList, getLessonListByCourseld and getWholeDb meth-

ods to get data from database. The code is shown below.

@]Injectable()
export class FirebaseProvider {

constructor(public db: AngularFireDatabase, public af: AngularFireModule) { }

getCourseList() {

return this.db.list('/courses/");

}

getLessonListByCourseld(courseld:number){
var query = this.db.database.ref('courses').equalTo(1,'id").orderByChild('lessons');
return this.db.list(query);

}

getWholeDb() {
let result = this.db.object('/courses/').subscribe(result => {
console.log('result');
console.log(result);
1)
return this.db.list('/");
}
}

15

16

Firebase provider connects the app with some basic CRUD operations. However, to have connection
with courses.json in Firebase database, a course provider is needed. Run “ionic generate provider course”

to generate course provider. Replace all the code in scr/providers/course/course.ts file as the following:

import { Injectable } from '@angular/core';
import { Http } from '@angular/http';
import 'rxjs/add/operator/map’;
@]Injectable()
export class CourseProvider {
url;
constructor(public http: Http) {
console.log('Hello CourseProvider Provider');
this.url = 'https://japanesecourse.firebaseio.com/courses.json';
}
getCourse() {
return this.http.get(this.url)

.map(res => res.json());

4.3 Create a login page

Login page shows up when user opens the application. Ionic CLI can generate login page by running
“ionic generate page login”. This command will create login folder inside of pages folder. Inside of
courses folder, login.html, login.scss, login.module.ts and login.ts are created. Replace all the code in

login.html file as in APPENDIX 1.

Ionic CLI provides a useful feature to review the app. Run “ionic serve” to see the application in a web
browser. GRAPH 13 shows the login page in FireFox. Left side shows how the application looks like in

iPhone, and right side shows how it looks like in Android phone.

17

GRAPH 12. Preview login page in a web browser

4.4 Create courses page

In the language course application, there is a page to show the list of courses. lonic cards are used to
display the list. In Ionic, cards are good way to display important information and design of cards is
cross-platform. Update src/pages/courses/courses.html to display the list with Ionic cards components

as the following code shown below.

18

<ion-header>
<ion-navbar>
<ion-title>
Courses
</ion-title>
</ion-navbar>
</ion-header>
<ion-content>
<ion-card (click)="navigate(course.id)" *ngFor="let course of courses">
<l-- -->

<ion-card-content>
<ion-card-title>
{{ course.name } }
</ion-card-title>
<p>
{{ course.description }}
</p>
</ion-card-content>
</ion-card>

</ion-content>

In the above code, {{ course.name }} and {{ course.description }} are Angular expressions written
inside double braces. Like JavaScript expressions, Angular expression can contain literals, operators,

and variables. Angular executes expressions every time when change is detected.

Controller of courses page controls how data is displayed in template. The courseProvider is injected in
CoursePage class’s constructor function to get the courses data from Firebase database. Then pass the
courses data as class CoursePage’s property, so template can have access to courses data. Update the

code in courses.ts as the following shown below:

19

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';
import { Lessons } from '../lessons/lessons';
import { CourseProvider } from './../../providers/course/course';
@Component({
selector: 'page-course’,
templateUrl: 'courses.html'
1)
export class CoursePage {
courses;
constructor(public navCtrl: NavController, public courseProvider: CourseProvider) {
}
ionViewWillEnter() {
this.courseProvider.getCourse()
.subscribe((courses => {
this.courses = courses;

console.log('this.courseList',this.courses);

$);
}

public navigate(id: number) {

this.navCtrl.push(Lessons);

j
j

After updating the courses page, run “ionic serve” to see the courses page (shown in GRAPH 14). Now
courses page has two cards on it. User can choose different level to start the course. The beginner card
has a picture of Japanese famous Fuji mountain, and the intermediate card has a picture of origami. Both

are the symbol of Japan, which is a good design for this Japanese language learning application.

20

ee0e0 12:34 PM 100% =
Courses Courses
Beginner

Beginner

Basics of the language

Basics of the language

HA@

f 8 x4 A
Home Courses Contact @ E

Home Courses Contact 0
(O)

GRAPH 13. Courses page

4.5 Create lesson list page

After user clicks a card in courses page, the application navigates to lesson list page. In the application,
Ionic lists component is used to display the list of lesson. Update src/pages/lessons/lessons.html to dis-

play the list with Ionic list components as the following code:

21

<ion-header>
<ion-navbar>
<ion-title>Lists</ion-title>
</ion-navbar>
</ion-header>
<ion-content>
<ion-list>
<button ion-item *ngFor="let item of items" (click)="itemSelected(item)">

{{ item }}
</button>
</ion-list>

</ion-content>

Angular ngFor directive is used to display each item in the lessons list in the template. In button element,
(click)="itemSelected(item)" is to call itemSelected() function when the button is clicked. Now run
“ionic serve” again to run the application in the web browser. Then go to courses page, and choose a

course to see the lesson list page shown in GRAPH 15.

eeeec = 12:34PM 100% -
& Lists < Back Lists

) Lesson 1 Let's get started
Lesson 1 Let's get started

. » Lesson 2 Introduction to the writin...
Lesson 2 Introduction to the writing system

Lesson 3 Introducing yourself
Lesson 3 Introducing yourself

Lesson 4 Getting started with kanji
Lesson 4 Getting started with kanji

Lesson 5 Japanese pronunciation
Lesson 5 Japanese pronunciation

Lesson 6 Combining kaniji
Lesson 6 Combining kanji

Lesson 7 Learning hiragana
Lesson 7 Learning hiragana

Lesson 8 Adding the consonants
Lesson 8 Adding the consonants

Lesson 9 Modifying hiragana

Lesson 9 Modifying hiragana
Lesson 10 Special sounds and exc...

Lesson 10 Special sounds and exceptions .
Lesson 11 Learning katakana

3 A
A 8 * 7 B

Home Courses Contact

Home Courses

GRAPH 14. Lesson list page

22

4.6 Create lesson content page

The content of a lesson is the core for the language learning application. Update src/pages/lesson/les-
son.html to display lesson content. Then run “ionic serve” to preview lesson content page. GRAPH 16

shows the lesson content page.

eeeer T 12:34PM 100%

< Lesson 1 Let's get started

Let's get started
Let's get started

You're about to start a truly magical
adventure. Learning Japanese, (or
‘nihongo’ in Japanese, written ‘B Z<:E")
will help you realize your dreams, and
open doors you never knew existed.

M

It's a huge challenge. Mastering the
Japanese language will take many
hours of hard work. You'll need to
learn three brand new writing systems,
a new way of thinking about sentence

S - S - SR -

N

1) E o]
Home Courses Contact

GRAPH 15. Preview of lesson content page

{ Back Lesson1 Let's ge...

Let's get started
Let's get started

You're about to start a truly magical
adventure. Learning Japanese, (or
‘nihongo’ in Japanese, written ‘H 7
a8’) will help you realize your dreams,
and open doors you never knew
existed.

ho

It’s a huge challenge. Mastering the
Japanese language will take many
hours of hard work. You’ll need to
learn three brand new writing

cvetame a naw wav nf thinkina ahniit

) =] @

Home Courses Contact

23

5 CASE STUDY: CREATE A WEATHER APPLICATION WITH IONIC

Thanks to WunderGround free weather API, making a weather application became very easy. With the
same technology stack as the language application, developing an application demo is fast (Wunder-
Ground, 2018). GRAPH 17 shows how the weather application looks like in Android, iOS and Windows
platforms (from left to right).

12:34PM

iWeather iWeather IWEATHER

6 7T
i) £

Miami, FL Miami, FL

w0
i 1

Miami, FL

7R

b3
73
5

3

1 r
N

Clear

Temp: 65.2 F (18.4 C) Temp: 65.2 F (18.4 C) 6 5 ° 2

Relative Humidity: 59%

f (i & A ® Temp: 65.2 F (18.4)

About Settings

Home About

GRAPH 16. Preview at the weather application in different platforms

5.1 Weather Underground API

Weather Underground provides reliable data, accurate forecast and global coverage weather API in 80
languages for free (Weather Underground, 2018). Documentation of Weather Underground API is avail-
able at http://api.wunderground.com/weather/api/d/docs. GRAPH 18 shows the website of Weather Un-

derground.

24

& € () apiwunderground.com/weather/api X Q search w B8 34 A

w‘ Weather + Maps &Radar v Severe Weather v Photos & Video + Community ¥ News v Climate « * p Signln

A WEATHER API DESIGNED FOR DEVELOPERS

Pricing Featured Applications ~ Documentation Forums

Reliable data, accurate forecast, & global coverage in 80 languages. About 0

CA

ey Features underMap Layers o
JSON or XML formatted @

7(:5”0(
Easy key management : ¢

. Toms Riv
Error-logging tools -
Rate-monitoring tools New Jersey

. . [s
Complete geo location service Doyer tantic C;
Autocomplete API to power geo-search

Worldwide weather stations network @

© Copvright 2018 The Weather Companv, LLC About Us - Contact - Press Releases - Terms of Service - Privacy Statement -

GRAPH 17. Weather Underground Weather API (Weather Underground, 2018)

Weather Underground API requires an API key which is free to get after signing up. API requests are
made via HTTP. HTTP messages exchange data between a server and a client. In order to get the data,
client sends a HTTP request to the server, then the server send back the answer in HTTP response. Here

is an example HTTP request URL: http://api.wundeground.com/api/9cc8101e058bc2fa/condi-

tions/q/FL/Miami.json.The following code uses Node.js to make HTTP request.

var http = require("http");
var options = {
"method": "GET",
"hostname": "api.wunderground.com",
"port": null,
"path": "/api/9cc8101e058bc2fa/conditions/q/FL/Miami.json",
"headers": {

"content-length": "0"

}
¥
var req = http.request(options, function (res) {
var chunks = [];
res.on("data", function (chunk) {
chunks.push(chunk);
$);
res.on("end", function () {
var body = Buffer.concat(chunks);
console.log(body.toString());
$)i
$)i
req.end();

25

AJAX stands for Asynchronous JavaScript And XML, which is used in JavaScript to make HTTP. In

order to make a HTTP request, an instance of XMLHttpRequest object needs to be created. After the

ready state has been changed, process the data get from the server. Use following JavaScript code to

make HTTP request using AJAX. APPENDIX 2 shows the HTTP response example from Wunder-

ground. (MDN, AJAX, 2018.)

26

var xhr = new XMLHttpRequest();
xhr.addEventListener("readystatechange", function () {
if (this.readyState === this. DONE) {
console.log(this.responseText);
}

$);
xhr.open("GET", "http://api.wunderground.com/api/9cc8101e058bc2fa/conditions/q/FL/Miami.json");

xhr.send();

5.2 Build iWeather application

There are three pages in the application — Home, About and Setting. Home page is the main page to
show the weather forecast. In the about page, there is basic information about the application. Type

“ionic start iWeather tabs” to create iWeather project with built-in tabs template.

Provider is the place where to fetch data from Weather Underground API and connect with iWeather
application. First, use “ionic generate provider weather” to generate a weather provider. Then copy and

paste the following code shown below to weather.ts:

import { Injectable } from '@angular/core';
import { Http } from '@angular/http';
import 'rxjs/add/operator/map’;
@]Injectable()
export class WeatherProvider {
apiKey ='9c¢c8101e058bc2fa’;
constructor(public http: Http) {
this.url = 'http://api.wunderground.com/api/'+this.apiKey+'/conditions/q';
}
getWeather(city, state) {
return this.http.get(this.url+'/+state+'/"+city+'.json')

.map(res => res.json());

27

Home page is the most important part in the application because it is where to place the main content.
Use “ionic generate page home” to generate a home page. There are two parts: the header and the content.
In the header, iWeather is displayed as a title. In the content, the city, weather image, weather, temper-

ature and other weather data are displayed. Copy and paste the code in APPENDIX 3 into home.html.

The home.html gives template layer. The file home.ts controls how data shown shows in template. As it
is an Angular component, component needs to be imported from Angular core library. Use @Component
decorator before the HomePage class and pass an object with selector and templateUrl information. In
the HomePage class, give a type for weather, city and state. Then pass NavController and WeatherPro-

vider as constructor’s arguments. Replace the following code at the top of the file home.ts:

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';
import { WeatherProvider } from '../../providers/weather/weather';
@Component({
selector: "'page-home’,
templateUrl: 'Thome.html'
1)
export class HomePage {
weather: any;
location: {
city: string,
state: string

}

constructor(public navCtrl: NavController, private weatherProvider: WeatherProvider) {
}
b

Every Ionic component can have lifecycle events, which are triggered during various stages of naviga-
tion (Ioinic, Lifecycle events, 2018). Weather data is needed before the home page is loaded, so call the

method getWeather from weatherProvider inside ionViewWillEnter event.

Finally, home page is ready in the application, but it still lacks some CSS styles. To make the application

look more beautiful, put style rules in app.scss to apply globally. In app.scss file, style rules are not just

28

for one single component but the entire application. Also, it can be used to import other Sass files as an
entry point in the project. Replace the code shown below to app.scss to give the application some CSS

styles. Then run “ionic serve” to preview the application (shown in GRAPH 19).

.home{
background:color($colors, primary);
color:color($colors, light);
margin-top:30px;

¥

.toolbar-title{
text-align: center;

}

.tabs-md .tab-button-icon{
color:#ccc;

¥

temp{
font-size:90px;
text-align: center;
font-weight: normal,

¥

Jlocation,.icon, .desc{
text-align: center;

}

.icon img{
width:100px;

¥

Jlocation{
font-size:40px;

¥

.desc{

font-size:30px;

iWeather

Miami, FL
e

Partly Cloudy
72.1°

Temp: 72.1 F (22.3 C)
Relative Humidity: 64%

Dewpoint: 59 F (15 C)

Visibility: 10.0

Heat Index: NA

Settings

GRAPH 18. Before and after applying style rules

29

iWeather

Miami, FL

‘Pﬁ\"’!’

Partly Cloudy

/2.1°

Temp: 72.1 F (22.3 C)

f o

About

&

Settings

30

6 CONCLUSION

It is difficult to create a mobile application from scratch. Choosing the right technologies is always
important and crucial at the stage of the planning a project. Companies need to choose which program-

ming languages, frameworks, development tools, version control tools to work with at the beginning.

There are three types of mobile applications — native, web and hybrid. Native application has the best
performance but it requires to create different application for different platforms. For example, and i0S
apps are written in Objective-C or Swift and Android applications are written in Java. As to web appli-
cation, it uses pure web technologies like HTML, CSS and JavaScript. User can access web application
by opening a web browser and entering a URL. Hybrid application is in between the native and the web
application. It uses the same web technologies as web application then wrapped into native application.
However, users can download the hybrid application from an App Store and run it offline like a native

application.

This thesis provides two study cases of developing hybrid application with Ionic. Ionic is easy to get
started with. It only requires developers to have basic knowledge of HTML, CSS and JavaScript. With
Ionic CLI, developer can easily start a project with built-in templates and components. It is a good
option to choose hybrid application if the company is short of budget because the company only needs
to build one code base and run it on every platform. Also, it is faster to build a hybrid application with

modern JavaScript framework like Ionic.

As the web technologies are developing so fast nowadays, new frameworks come out every year and
gain popularity quickly. Ionic with Angular, React Native with Reactjs and Week with Vuejs are now
popular in the market. All of them can create hybrid applications with web technologies like HTML,
CSS and JavaScript. Angular is considered to be easy to start with for developers with object-oriented
programming experience while Reactjs uses both object-oriented programming functional program-
ming. Vuejs is considered the lightest library among those three. However, it is very difficult for devel-
opers to fully understand all the new technologies when they just came out. Companies need to not only

choose the new technologies but also consider if they are stable.

31

REFERENCES

Salesforce, 2016. Native, HTMLS, or Hybrid: Understanding Your Mobile Application Development
Options. Available at:
https://developer.salesforce.com/page/Native, HTML5, or Hybrid: Understanding Your Mo-

bile Application Development Options

Differencebetween, 2018. Difference between Native and Hybrid App. Available at:

http://www.differencebetween.info/difference-between-native-and-hybrid-app

W3schools 2018. HTMLS5 Browser Support. 2018. Available at:

https://www.w3schools.com/html/html5 browsers.asp

Upwork, 2018. Should You Build a Hybrid Mobile App? Available at:
https://www.upwork.com/hiring/mobile/should-you-build-a-hybrid-mobile-app/

Case Studies, Ionicframework, 2018. Available at:

https://ionicframework.com/case-studies/MarketWatch.pdf

WebpageFX 2018, A Guide to Technology Stacks. Available at:

https://www.webpagefx.com/blog/web-design/technology-stacks-infographic/

Medium 2018, Modern Web Development & Practices. Available at:
https://medium.com/paramsingh-66174/modern-web-development-practices-64194d9a48

Getting started with HTML, MDN, 2018. Available at:
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction to HTML/Getting started

W3schools, 2018. HTML Elements. Available at:

https://www.w3schools.com/html/html elements.asp

MDN, 2018. CSS syntax. Available at:
https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction to CSS/Syntax

32

Lesscss, 2018. Less overview. Available at:

http://lesscss.org/

Node.js foundation, 2018. About The Node.js Foundation. Available at:
https://foundation.nodejs.org/about

Angular, 2018. Angular tutorial. Available at:
https://angular.io/tutorial/toh-pt1l

Ionicframework 2018. The Top Open Source Framework for Building Amazing Mobile Apps. Available
at:

https://ionicframework.com/framework

MDN, 2018. AJAX. Available at:
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX/Getting_Started

APPENDIX 1/1

HTML file for login page

<style type="text/css">
::-webkit-input-placeholder {
color: white !important;
}
:-moz-placeholder {
color: white !important;
}
:-ms-input-placeholder {
/* 1IE10+ */
color: white !important;
}
</style>
<ion-content padding class="login" style="background-im-
age:url(‘https://unsplash.it/1242/2208/?blur&gravity=east');background-repeat: no-repeat;background-
size: 100% 100%">
<ion-grid>
<ion-row>
<ion-col col-4></ion-col>
<ion-col col-4 style="margin-left: auto;margin-right: auto;display: block;">
<l-- <img src="https://Ih3.googleusercontent.com/nAsQlh-rfNOdza7ZfE3skvQw;j5XvS-
buzyIMIqlwM2ZSn020PddI1-q7twcThjE-Hr2JR1ZwnXg=w352-h352-n-o-rw"
style="width:100%;height:auto;border-radius: 100%"> -->
</ion-col>
<ion-col col-4></ion-col>
</ion-row>
</ion-grid>
<ion-list class="list-form" style="margin-top:30px;margin-bottom: 30px">
<ion-item style="padding:Opx !important; border-bottom:none !important;border-top:none;font-

size: 14px;margin-top:10px;background:none;border-bottom: 1px solid white;box-shadow:none;">

APPENDIX 1/2

<ion-input style="color:white;border-bottom-color:white;box-shadow:none;" type="text" place-
holder="Username" [(ngModel)]="username"></ion-input>
</ion-item>
<ion-item style="padding:0px !important; font-size: 14px;margin-top:10px;background:none;bor-
der-bottom: 1px solid white;box-shadow:none;">
<ion-input style="color:white;border-bottom-color:white;box-shadow:none;" type="password"
placeholder="Password" [(ngModel)]="password"></ion-input>
</ion-item>
</ion-list>
<button style="margin-top: 15px;height: 35px;font-size: 14px;background: #10ABF4;" ion-button
block (click)="login()">Login</button>
<p style="color: red;" *nglf="!validateUser">Wrong username or password</p>

</ion-content>

HTTP response example

{

"response": {

"version":"0.1",

"termsofService":"http://www.wunderground.com/weather/api/d/terms.html",

"features": {

"conditions": 1

j
j

9

"current_observation": {

"image": {

"url":"http://icons.wxug.com/graphics/wu2/logo 130x80.png",

"title":"Weather Underground",
"link":"http://www.wunderground.com"
¥

"display location": {
"full":"Miami, FL",
"city":"Miami",

"state":"FL",
"state_name":"Florida",
"country":"US",

"country is03166":"US",
"zip":"33101",

"magic":"1",

"wmo":"99999",
"latitude":"25.78000069",
"longitude":"-80.19999695",
"elevation":"10.1"

1

"observation location": {

"full":"Frost Museum of Science WeatherSTEM, Miami, Florida",
"city":"Frost Museum of Science WeatherSTEM, Miami",

"state":"Florida",

APPENDIX 2/1

"country":"US",
"country is03166":"US",
"latitude":"25.785189",
"longitude":"-80.187874",
"elevation":"32 ft"

1

"estimated": {

¥
"station_id":"KFLMIAMI361",

"observation_time":"Last Updated on January 30, 5:29 PM EST",
"observation time rfc822":"Tue, 30 Jan 2018 17:29:27 -0500",

"observation_epoch":"1517351367",

"local time rfc822":"Tue, 30 Jan 2018 17:30:28 -0500",

"local epoch":"1517351428",

"local tz_short":"EST",

"local tz long":"America/New York",
"local tz offset":"-0500",
"weather":"Clear",

"temperature string":"65.1 F (18.4 C)",
"temp f":65.1,

"temp c":18.4,
"relative_humidity":"60%",
"wind_string":"From the NNE at 5.0 MPH",
"wind dir":"NNE",

"wind degrees":31,

"wind_mph":5.0,

"wind_gust mph":0,

"wind_kph":8.0,

"wind_gust kph":0,
"pressure_mb":"1020",
"pressure_in":"30.14",
"pressure_trend":"+",

"dewpoint_string":"51 F (11 C)"

APPENDIX 2/2

"dewpoint_f":51,

"dewpoint_c":11,

"heat index_string":"NA",
"heat index f":"NA",
"heat index c":"NA",
"windchill string":"NA",
"windchill f":"NA",
"windchill c":"NA",
"feelslike string":"65.1 F (18.4 C)",
"feelslike f":"65.1",
"feelslike c":"18.4",
"visibility mi":"10.0",
"visibility km":"16.1",

"solarradiation":"25",

"Uv":"0.0","precip_lhr string":"0.00 in (0 mm)",

"precip_lhr in":"0.00",

"precip_lhr metric":" 0",

"precip_today string":"0.00 in (0 mm)",

"precip_today in":"0.00",
"precip_today metric":"0",
"soil temp f":"73.0",
"soil moisture": "5.0",
"leaf wetness": "0.0",

n.n

"icon":"clear",

"icon_url":"http://icons.wxug.com/i/c/k/clear.gif",

"forecast_url":"http://www.wunderground.com/US/FL/Miami.html",

AMI361",

80.187874",

j
j

"nowcast":""

APPENDIX 2/3

"history_url":"http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KFLMI-

"ob_url":"http://www.wunderground.com/cgi-bin/findweather/getForecast?query=25.785189,-

APPENDIX 3/1

HTML file for home page

<ion-header>
<ion-navbar>
<ion-title>1Weather</ion-title>
</ion-navbar>

</ion-header>

<ion-content padding class="home">
<ion-grid *nglf="weather">
<ion-row>
<ion-col width-50 offset-25>
<h2 class="location">{{weather.display location.full} } </h2>
<div class="icon"></div>
<h3 class="desc">{{weather.weather} } </h3>
<h1 class="temp">{{weather.temp f}}°</h1>
</ion-col>
</ion-row>
<ion-row>
<ion-col width-100>
<ion-list>
<ion-item>
Temp: { {weather.temperature string} }
</ion-item>
<ion-item>
Relative Humidity: { {weather.relative humidity}}
</ion-item>
<ion-item>
Dewpoint: {{weather.dewpoint string} }
</ion-item>
<ion-item>

Visibility: {{weather.visibility mi}}

APPENDIX 3/1
</ion-item>
<ion-item>
Heat Index: {{weather.heat index_string}}
</ion-item>
</ion-list>
</ion-col>
</ion-row>
</ion-grid>

</ion-content>

