

Wenhao Wu

React Native vs Flutter, cross-platform mobile
application frameworks

Metropolia University of Applied Sciences

Bachelor of Engineering

Information technology

Thesis

01 March 2018

 Abstract

Author
Title

Number of Pages
Date

Wenhao Wu
React Native vs Flutter, cross-platform mobile application
frameworks

28 pages
01 March 2018

Degree Bachelor of Engineering

Degree Programme Information technology

Professional Major Mobile Applications

Instructors

Kari Salo, Head of Degree Programme

Developing mobile applications for Android and iOS separately has become a burden. A
general solution that considers developing, maintaining, testing and deploying for different
platform is an important topic. This kind of solution should be able to unify the process of
mobile application development.

React Native, developed by Facebook, has been regarded as a milestone in cross-platform
SDK. A strong and active community has made React Native the most popular cross-plat-
form framework. However, after considering the pros and cons of React Native, Google has
released Flutter as their approach to unite developments. Flutter is highly optimized to adapt
mobile environment and aims at providing the final solution to developers.

This thesis studies some of the most important characteristics of React Native and Flutter.
This research experiments and investigates the differences between those characteristics
and tries to understand the reason behind them. Hopefully, React Native and Flutter will
push the cross-platform framework to a new level.

Keywords Android, iOS, React Native, Flutter

Contents

List of Abbreviations

1 Introduction 1

2 Theory background 2

2.1 React Native 2

2.1.1 Subheading 2

2.1.2 JSX 3

2.1.3 Virtual DOM 4

2.1.4 Props and State 5

2.2 Flutter 6

2.2.1 Introduction of Flutter 6

2.2.2 Dart 7

2.2.3 Widget 7

2.3 State Management 8

2.3.1 Widget 8

2.3.2 Main priciples of Redux 9

2.3.3 Redux with native state management 10

2.3.4 Redux vs Mobx 12

3 Case Study 13

3.1 Case Introduction 13

3.2 Routing 14

3.2.1 React Native Navigator 14

3.2.2 Flutter Navigator 15

3.3 Views 16

3.3.1 Modularity 16

3.3.2 Styling 17

4 Performance Comparison 19

4.1 Introduction 19

4.2 Scroll 20

4.3 Disk IO 22

5 Conclusion 24

References 1

Source code 3

List of Abbreviations

OEM Original equipment manufacturer. The original manufacturer which pro-

duce the host device.

JSX A special JavaScript syntax extension that is used in React to describe the

user interface.

DOM Document object model. A tree-structural model where each node is an

object representing a part of the document.

HTML Hypertext markup language. A standard markup language to create the

user interface of web applications.

NDK Android native development kit. A set of tools that allows developers to

program in C/C++ for Android.

LLVM A compiler framework that complies C/C++ code into native machine code

on iOS.

AOT Ahead-of-Time compilation. An act of compilation that complies high-level

programming language into native machine code.

CSS Cascading Style Sheets. A style sheet language that is used widely in web

applications.

FPS Frame per second. A number to indicate how many frames were rendered

during one second.

I/O Input and Output. Communication between internal file system and outer

data.

1

1 Introduction

Mobile applications are playing an increasingly important role in our daily lives. Since

November 2016, there is more network traffic made by mobile devices (48.19%) com-

pared to desktops/laptops (47%). [1]

To distribute to most of the users, a mobile application needs to adapt itself into two

separate platforms, namely Android and iOS. Evidently, the differences between these

two platforms are big and often require different skill sets for developing, such as

Java/Kotlin only for Android and Object-C/Swift only for iOS. Thus, developers and com-

panies often struggle at dealing with the complexity of developing cross-platform appli-

cations.

React Native, an open source cross-platform JavaScript framework, which aims at solv-

ing the above-mentioned dilemma, was introduced by Facebook on March 2015. It is

based on the React framework, which is published by Facebook a few years earlier. [2]

React framework is widely used by developers due to its simplicity and easy but also for

its effective developing process. [3]

On the other hand, Google publishes another mobile SDK named Flutter in the end of

2016. Inspired by React Native, Flutter application can also run on both platforms, thus

reducing the cost and complexity of app production across iOS and Android. Flutter is

entirely built from scratch and at the time of writing this study (Aug 2017), only Google

uses it for commercial project.

Cross-platform frameworks that are similar to React Native and Flutter, have been dis-

cussed and implemented by different companies several times before. However, none

of them are sufficient to fulfil the industrial development requirement. Despite all those

unsuccessful predecessor, React Native and Flutter, with the supports from Facebook

and Google, draw a huge number of attention and people are optimistic about their pro-

spect.

The goal of this thesis is to execute a comprehensive study on React Native and Flutter.

The fundamental concepts and characteristics for both platforms will be explained and

demonstrated. Comparisons, in terms of performance and developing process, between

2

React Native and Flutter will be covered in the thesis. Furthermore, to expose the differ-

ences between React Native and Flutter application, a fully working React Native appli-

cation will be rewritten using Flutter as a supplement.

2 Theory background

2.1 React Native

This chapter introduces the history of React Native and three main characteristics of it.

Also, the basic feature and structure of a React Native application will be discussed.

2.1.1 Subheading

After experiencing the huge success of React in web development, Facebook decided

to expand its influence toward the mobile business. React Native started as an internal

hackathon project inside of Facebook and its initial goal was to unify the development

process for iOS and Android. However, as the Framework grows significantly, React

Native Applicable can be deployed to other platforms, such as Windows, Web and Tizen,

effortlessly.

React Native has one of the strongest communities in open-source world. In fact, cur-

rently (March 2018) React Native is the third most starred project on GitHub. Not only

individual developers and Facebook are contributing to it, but also numbers of tech gi-

ants, such as Microsoft and Samsung, play important roles on developing React Native.

One of the most fascinating natures of React Native is it brings modern web techniques

to mobile, without compromising much on features and performance. Even though React

Native applications are mostly written in JavaScript and operate on JavaScript core, it

does not mean that React Native applications are hybrid or html5 applications. The us-

age of underlying native interface allows React Native application to render views and

access native hardware, such as camera and storage.

3

2.1.2 JSX

One of the easiest spot to be observed, when one studies React Native application’s

code, is the usage of JSX. JSX is a special syntax extension to JavaScript, which is used

fundamentally to describe how the UI should show. JSX will be compiled into normal

JavaScript object when the application gets compiled. A typical JSX code fragment is

illustrated by figure 1.

Figure 1. Example of JSX

In figure 1, a component that contains two buttons is constructed. Two buttons handle

different actions respectively. The function “render()” is crucial to every React compo-

nent, since the view object of the component will be returned within. Curly brackets are

used when properties of the component are required inside of the view object. Usages

of arrow function in “action1()” and “action2()” are good examples of how JSX utilizes

modern features of JavaScript.

4

Since JSX is used to describe UI, one may argue JSX is plainly another template lan-

guage, such as HTML or XAML. But this is incorrect. JSX and normal JavaScript object

are multi-convertible, which means we can write normal JavaScript expression in the

middle of JSX.

It is worth to mention that using JSX brings the benefit of preventing injection attacks.

React DOM processes any inputted value into a regular string before rendering it. There-

fore, user can never inject any scripts or commands into your application by its interface

[4].

2.1.3 Virtual DOM

One of the main reasons why React Native application can run on different platforms is

the usage of Virtual DOM. Virtual DOM allows React to manipulate a lightweight DOM

tree, that is mapped with the real DOM tree, to gain the performance boost. The workflow

of Virtual DOM is described in the figure 2 below.

Figure 2. Workflow of Virtual DOM [5].

In figure 2, relations among application, DOM and Virtual DOM are revealed. Every user

inputs to DOM, such as clicking a button, will eventually trigger events to application,

which then decides the structure of Virtual DOM. The application will also run diffing

algorithm periodically for updating the Real DOM effectively.

5

In React, whenever a JSX element needs to be rendered, its corresponding virtual DOM

object will get updated at the same time. Before updating, React will take a snapshot of

the current Virtual DOM tree. Therefore, after updating, React can compare the updated

DOM tree with the previous snapshot to find the exact parts which need to be re-rendered

in the true DOM tree. This procedure requires a set of algorithms and it is called “diffing”

in the React world.

In addition to the effective “diffing” algorithm, React puts a lot of effort into batching DOM-

read/write operations. After finding the minimum number of steps to update the Virtual

DOM, React executes all those steps in one event loop without touching the Real DOM.

And only after the event loop get finished, React will repaint the Real DOM. Thus, there

should be exactly one time when the Real DOM needed to be painted [6].

Combining “diffing” and finding out which nodes in the view tree need to be updated, the

whole process is called reconciliation. Naturally, in React reconciliation and rendering

are two separate phases. Thus, React and React Native can use their own renders while

sharing the same reconciler, provided by React core.

2.1.4 Props and State

In React, there are two major data models, which are called Props and State. They serve

for different purposes and have distinct construction. Most observably, Props are set

externally, and State is used only within the component’s life cycle. However, they both

are plain JavaScript objects and have direct impact on triggering render updates.

Since Props is set externally by components’ parent, Props’ key function is to be used

as parameters to customize the component when they are created. In other words, Props

are the configuration of a component. It may be blank if it matches the needs but once it

is set, it can never be changed. This nature is called immutable.

On the other hand, State could only be initialized within the component when it gets

mounted. Also, one can assign a new value to component’s state whenever it suits. It is

a common practice that every user’s input should have a corresponding impact to com-

ponent’s State. In a complex interactive React application, component’s State often get

passed as Props of its children components. Such as below:

6

<ChildComponent name={this.state.childsName} />

In most cases, a stateless component is easy to be tested and re-used. That is the rea-

son why developers tend to convert parent component’s state into child’s component’s

Props.

2.2 Flutter

Similar to the previous chapter, we will discuss some of the important aspects of Flutter.

The goal here is to understand the basic principle of a Flutter framework and its devel-

opment cycle.

2.2.1 Introduction of Flutter

Flutter is a cross-platform framework that aims at developing high-performance mobile

applications. Flutter is publicly released at 2016 by Google. Not only can Flutter applica-

tions run on Android and iOS, but also Fuschia, Google’s next generation operating sys-

tem, chooses Flutter as its application-level framework.

Flutter is unique. Rather than utilizing web views or relying on the device’s OEM widgets,

Flutter renders every view components using its own high-performance rendering en-

gine. This nature provides possibility to build applications that are as high-performance

as native applications can be. Architecture wise, the engine’s C/C++ code is compiled

with Android’s NDK and LLVM on iOS respectively, and any Dart code is AOT-compiled

into native code during compilation [13].

Flutter supports stateful hot-reload while developing, which is considered as a major fac-

tor to boost development cycle. Stateful hot-reload is essentially implemented by inject-

ing updated source code into the running Dart VM without changing the inner structure

of the application, thus all transitions and actions of the application will be preserved after

hot-reloading [14].

7

2.2.2 Dart

In Flutter, all applications are written with Dart. Dart is a programming language that is

developed and maintained by Google. It is widely used inside of Google and it has been

proved to have the capability to develop massive web applications, such as AdWords.

Dart was originally developed as a replacement and successor of JavaScript. Thus, it

implements most of the important characteristics of JavaScript’s next standard (ES7),

such as keywords “async” and “await”. However, in order to attract developers that are

not familiar with JavaScript, Dart has a Java-like syntax.

Akin to other systems that utilize reactive views, Flutter application refreshes the view

tree on every new frame. This behaviour leads to a drawback that many objects, which

may live for only one frame, will be created. Dart, as a modern programming language,

is optimized to handle this scenario in memory level with the help of “Generational Gar-

bage Collection” [7].

2.2.3 Widget

Widgets are the most important elements in a Flutter application. Widgets need to be

attractive and reasonable because user see and feel them directly. Widgets do not only

control and affect how the views behave, but also handle and respond to the user’s ac-

tion. Thus, it is crucial that Widgets need to perform fast, including rendering and ani-

mating.

Instead of reusing the OEM widgets, just as what React Native does, Flutter team de-

cides to provide its own widgets This means Flutter, as a platform, gets to decide when

and how the widgets are rendered. In a way, Flutter moves the widgets and the renderer

from system level into the application itself, which allows them to be more customizable

and extensible [8]. However, having the widgets and renderer within the application

makes the size of application larger.

There are two major types of Widgets in Flutter, which are Stateless Widget and Stateful

Widget. Table 1 below is to describe the differences between them.

8

 Dynamic
Composition

Itself immutable Sub State object
mutable

Stateless Widget False True false

Stateful Widget True True True

Table 1. Comparison between widgets

Table 1 illustrates the main differences between stateful and stateless widget in Flutter.

Stateful widget comes with a corresponding object that represents the state. State is

considered as the presenting layer of the widget’s inner structure. In plain word, state

describes how widget responds to user’s interactions, such as changing the widget’s

layout. Relatively, Stateless widget is a plain widget that does not respond to user’s re-

action. This design pattern allows the widget itself maintain immutable, thus preventing

the framework re-renders the widget’s view often.

2.3 State Management

Since React tends to be a framework which only focuses on constructing views, devel-

opers long to see helpful libraries to complete the development cycle. Redux, a library

aims at helping application to maintenance its state, is beloved and recommended by

the majority of the community. Due to the popularity, Flutter’s official team also imple-

ments and maintains a Redux-like package for Flutter developers.

2.3.1 Widget

At the time when React was created, Facebook had a series of discussion of how an

application should be structured. After investigating and considering the obstacles of de-

veloping an interactive application, unidirectional data flow, as one of the best practices,

was summarized and introduced.

Traditional design pattern, such as MVC (Model-View-Controller) or MVP (Model-View-

Presenter), encourages developer to decouple the business logic as an independent

layer in order to increase components’ reusability. However, not before long, program-

mers notice that soon their independent layer will hold dependencies of different views

and models. Having a heavy independent layer certainly does not increase efficiency.

9

That’s where unidirectional data flow shines. Figure 3 illustrates the structures of MVC

and Flux.

Figure 3. MVC vs Flux

By observing figure 3, distinctions between MVC and Flux are enormous. MVC allows

views directly communicate with both controllers and models. This nature can break the

consistency of data and raise confusion. On the contrary, Flux is an action driven archi-

tecture that honours unidirectional data flow. Each part of the architecture has and only

has one input and output. Flux is implemented by Facebook aims at demonstrating how

unidirectional data flow can be beneficial to applications.

2.3.2 Main priciples of Redux

One of the biggest difference between Redux and Flux is the concept of reducers. Re-

ducers are pure functions that emit the previous state of the application with the desire

action, and then output the next application state. Reducers could be described as the

following equation:

𝑓(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) = 𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒

10

On the contrary of manipulating or altering the existing state, Reducers produce a new

state based on the input action. This provides two major benefits:

1. State remains immutable and become universal across all components (Single

source of truth).

2. Reducer is functional and context-irrelevant, which means with the same input,

there is always the same output.

These two factors make the debug process much easier and more pleasant.

Moreover, since the only way to change the state is to dispatch an action, state is pre-

dictable. It assures asynchronous events, such as network request or database IO,

would never impact the states nor views directly. Also, because an action is just a pure

object, it can be always stably recorded, serialized, stored or even replayed.

2.3.3 Redux with native state management

As discussed in the previous chapter, components in React Native use props and state

as their own data management mechanism, and Flutter’s stateful widgets delegate this

process to an isolated state class. However, neither React Native nor Flutter’s approach

could manage state beyond one component or widget. Redux, as an application level

state management, has a delicate way to inject states into components/widgets.

11

Figure 4. Simplified Redux in React Native

In figure 4, a simplified redux component in React Native is declared. The component

“ShopItem” is connected to the application state by calling the “connect()” function with

the corresponding parameters. The function “mapStateToProps()” takes the application

state as parameter and return the first item of the state’s item list. Another function

“mapDispatchToProps” returns a function, which dispatch an action to delete item.

In React Native, State of the application will eventually be mapped into component’s

props. We established previously that no interaction could directly affect the store. Thus,

we need to have a function which can turn the current state into an object, whose keys

will then be passed on as the props of the component. Furthermore, a similar function,

which produces props for mapping view’s input to dispatcher, is used to dispatch action

when user acts. After having these two functions inside of a component, Redux can at-

tach the component into its cycle by utilizing the connect function.

12

Flutter, similarly, needs to have its widgets connected to the cycle of Redux in order to

keep the state synchronized. Instead of having isolated functions for doing so, the con-

nector component of Redux exists as a widget in Flutter. Thus, the store connectors act

as wrappers, which contain the actual widget and providing either the part of the Redux’s

state for view building, or call-backs that trigger the action’s dispatching.

2.3.4 Redux vs Mobx

Although Redux was chosen as the main design pattern for state management in our

case study, there are other popular derivation of the Flux architecture that are developed

and maintained by the community. Mobx is one of them.

The most noticeable difference in Mobx when comparing to Redux, is the mutability of

the state. As mentioned above, instead of altering the existing state, in Redux, the re-

ducers will generate a new state whenever receiving an action. In Mobx, components

can easily be notified and directly react to state’s changes. Thus, there is no need to

have pure functions, such as reducers, acting as the middleware. In another word, state

in Mobx is evolved when needed and components subscribe and trigger the evolvement

of state.

Mobx, with the help of the built-in decorators, such as “@observable” or “@action”, can

be terser and tidier than Redux when developing. However, the ease and freedom of

Mobx does act as a two-edged sword for developers. The lack of restriction on declaring

multiple state is a plain violation of the principle “Single Source of Truth”.

Moreover, since components directly observe the changes of the model, actions can be

no longer a pure JavaScript object. Therefore, the possibilities of recording, serializing,

storing and replaying action is gone. All above mentioned aspects raises the complexity

for debugging.

In conclusion, compares to Redux, Mobx enable one to kickstart the projects with fewer

code and cleaner architecture. Its flat learning curve allows itself to be easily merged into

the Object-Oriented Programming environment. Nevertheless, the freedom of construct-

ing multiple state is a significant drawback. Strongly relying on Mobx’ s internal mecha-

nism to manage state could bring chaos and difficulties when the application grows.

13

3 Case Study

3.1 Case Introduction

In order to demonstrate the pros and cons of developing in React Native and Flutter, an

open-source React Native application is rewritten on Flutter entirely as a case study. In

this section, details of implementations for both platform will be discussed and compared.

As a case study, the chosen application must be straightforward and well structured.

Since React Native has a more prosperous community, such an open-source application

is more accessible on React Native. Thus, the case study will be written in Flutter by

referencing its React Native version.

The application contains in total four pages:

1. Home page for movie:

This page is used as a starting point of the application. In this page we fetch data

about the most popular movies, as well as the currently playing movies, from the

server. User can navigate to the detail page of the movie by clicking its relevant

item.

2. Home page for TV show:

This page contains data about the most popular TV shows. It has a similar struc-

ture compares to the first page. Additionally, this page and the home page are

two children of the same bottom navigation tab bar.

3. Detail page:

This page is the page for presenting detail information of a single movie/TV show

item. To construct the view, it requires an item ID to be used to fetch the data

from server.

4. Search page / List page:

The main functionality of this page is to list the search result of certain filter. It

could be navigated from the main page by clicking the search button or directly

the desired filter button.

14

3.2 Routing

Routing is one of most important specs to adjudge the structure of the application. By

designing the route paths, developers could decouple the whole application into parts

and clarify the logics of navigating behind it.

3.2.1 React Native Navigator

As for React Native framework, one of the core and major feature missing is a fully mod-

ernized and native experience navigation [9]. Fortunately, the community has produced

and chosen a popular open-source library called “React Native Navigation (RNN)” to help

developers.

In order to make RNN functional, all screen-components need to be registered as a rout-

ing-path at the application’s entry point. Since Redux was chosen as our first-class state

management, Store of the app states need to be passed as a register parameter.

This is beneficial for Redux to turn navigating into dispatching an action, thus navigating

could be recorded and replayed for debugging whenever needed. Below figure 5 con-

tains the code snippet for registering component as routing paths.

Figure 5. Registration of route path

In figure 5, all 4 screens are registered as standalone components in RNN. The “regis-

terComponent()” function takes at least two parameter:

15

1. A string label, which will be used as an identifier of the component,

2. A function that returns the registered component.

Passing the store and provider of redux is necessary to emerge navigation into applica-

tion’s state management. As for directing within the component, methods, such as

“showModal()” or “push()”, that belongs to RNN are utilized. Every screen-components

will receive an object called “navigator” after the registration mentioned above.

3.2.2 Flutter Navigator

Not surprisingly, In Flutter, Navigator exists as a standalone widget that controls a set of

children elements with a stack discipline [10]. Full-screen widgets that user can navigate

to are called “Route”, and these “Route” widgets is managed by Navigator. Since Navi-

gator functions as a stack, it is possible to push route into Navigator, and Navigator can

pop route out and display it whenever needed.

Figure 6. Pushing route directly into navigator widget

In figure 6, a basic action of pushing a widget to the navigator stack is demonstrated.

The “push()” method requires two parameters: 1). Context of the current widget. 2). A

route which indicates the next widget that is navigated to. It is common to construct the

route explicitly within the push function.

Navigator, as an object, could be directly constructed by giving the current context of the

widget. However, in most of the development case, using the navigator provided by the

top-level container widget, such as “MaterialApp” or “WidgetApp”, could be a wiser idea.

One of the biggest gain of using container's navigator is the possibility to register multiple

routes at the entry point of the application. Code snippet above demonstrates how we

start a material app with predefined route paths.

16

3.3 Views

3.3.1 Modularity

Both React Native and Flutter application respect the design of modularity. Meaning in-

stead of writing apps page by page, developers need to decouple pages into components

and then assemble them according to the needs. Using the layout inspector, one can

easily observe how a page is constructed by numbers of components.

Figure 7. Layout inspector

17

Figure 7 indicates the usage of system layout inspector. Using inspector allows user to

observe how the current page is constructed. It is observable that this example home

page contains four main sections:

1. Toolbar that contains the switch of drawer.

2. Poster of the current most popular movie.

3. A horizontal list with all popular movies

4. Selections of search keywords.

It is worth mentioning that modularity also indicates reusability. A typical example is the

usage of the card component in our case study. Card component is a low-level and

stateless component/widget, which is self-constraint. In another word, it ensures that with

the exact same input, the component will always be rendered in an identical format. To

keep its nature of context-irrelevant, the styles need to be implemented and applied in-

side of the component.

Flutter takes the principle of modularity into another level. Not only the view component

itself is a widget, every styling and rules that can be applied onto views are also widgets.

Furthermore, because Flutter renders on screen directly despite of the OEM widgets,

Flutter can decouple the UI toolkit from the OS. This attribute ensures the user experi-

ence and expectation are predictable and inherently stable. For example, Flutter appli-

cation, which has a native iOS 11 beta look and feel, can stably function on a 7-years-

old Android device.

3.3.2 Styling

React Native and Flutter holds different opinions regarding what styling essentially is

and how it should be applied to views. There are historical and perspective reasons

standing behind these differences. In below, we will briefly explain from which spec these

distinctions come from and what problem they solve.

Not surprisingly, React, as a base framework of React Native, has a strong impact on

how React Native applications are organized and developed. From the perspective of

web and the influence of Cascading Style Sheet (CSS), styling is treated as primitive

rules that can be applied on top of view components. However, this doesn’t mean React

Native application can directly use existing CSS files. A special parser class (StyleSheet)

18

is created as a factory in order to generate CSS-like object, which can be furtherly ap-

plied onto view components.

On the other hand, Flutter establishes and executes resolutely the principle that widget

is the one and only superclass for everything, hence stylings should be constructed and

treated equally in comparison to view components. Rather than applying rules onto

views, in Flutter, it is more common to build stylings and views together. A typical exam-

ple could be found from the constructor of the Text widget. The constructor takes more

than one parameters, which includes what to display (a string) as well as how it displays

(a style object). Above code snippet reveals how it functions.

Figure 8. React Native Styling

19

Figure 9. Flutter Styling

Figure 8 and figure 9 together demonstrate how a red text is constructed respectively in

React Native and Flutter. In React Native, style object is declared outer from the actual

view component. When certain style rule is required, the view object should reference

the rule from the separate style object. In Flutter, just as any other named parameter, a

style object is provided for the “style” named parameter when styling is necessary.

4 Performance Comparison

4.1 Introduction

As stated in previous chapters, there are numerous differences in the implementations

of Flutter and React Native. Thus, the performance of an identical scenario could vary

significantly. Technically, Flutter, due to its bottom-to-top architecture, is more efficient

and less resource-demanding. However, React Native has a more prosperous commu-

nity. For example, mature libraries that are heavily involved in our case study, such as

Redux, are developed originally for React. In all, it is unlikely to present an objective

conclusion regarding performance without discussing case by case.

20

In order to measure the performance, some concepts need to be introduced. Frame per

second (FPS), as one of the most straightforward factors to be observed, has been used

widely as a standard unit to describe the fluentness of an application. One frame means

one static picture of the current window. Any minor changes of the current frame will

result to producing another new frame. By recording the number of rendered frames in

each second on certain device, one can easily compare the performance of two different

applications.

The goal of this section is to demonstrate an imperfect comparison of the performance

between Flutter and React Native application. Two most-seen scenarios of mobile appli-

cation are chosen as test cases for a more convincing result. All the testing and compar-

isons will be held on one Android device (Oneplus A3003) for monitoring the frame rate.

4.2 Scroll

Vertical Scrollable list is a typical view in all mobile applications. It is so common that

both native Android and iOS provide a special set of view collections (“RecyclerView”

and “UICollectionView”) to focus on optimizing the performance. Scrolling, as a simple

action, requires instant feedback, animation and pre-render.

On March 2017, React Native officially deprecated “ListView” and introduced the new

“FlatList” as the primary component for constructing scrollable list. The new FlatList is

designed to optimize the memory usage as well as providing modern features, such as

Pull to Refresh, though simplified API. Flutter, on the other hand, has not iterated its list

widget often. “ListView” is built as a special child widget of the Custom “ScrollView” for

displaying a set of data in linear order.

To decrease the impact of other factors, extremely simplified example is written using

only framework’s component/widget. The example essentially consists a vertical scroll

list with 1000 items. Each item contains an image and two lines of text. Below figure

reveals some of the most important figures regarding performance.

21

Figure 10. FPS monitor on device

Figure 11. FPS tracking for scrolling

From both figure 10 and figure 11, one can easily notice that both Flutter and React

Native do excellent job regarding to scrolling. The average fps while scrolling has been

over 60 all along. However, FPS in UI thread does not fully reveal the performance for

React Native. As stated in the previous chapter, majority of the React Native application

runs in JavaScript thread. The bigger issue lays at how FlatList in React Native optimize

22

the memory usage. In order to economize memory space, for a dense list with many

items, Flat list only renders certain item at once. For certain scenario, such as over speed

scrolling, blank blocks will be rendered as placeholders and the fps in JavaScript thread

drops significantly. On the other hand, Flutter’s fps is quite stable. Through those pikes

from the graph indicates handling user input and rendering animation together is re-

source-demanding.

4.3 Disk I/O

Another critical factor regarding to performance is the speed of input and output (I/O).

File exchanges internally within the host device can be measured as the speed of disk

IO. It is a common scenario for mobile application to communicate with the host device

for storing data.

Most of the system file operation are handled by a library called “react-native-fs” in React

Native. This library grants access to the native filesystem for React Native application.

Moreover, it provides simplified API for reading and writing file asynchronously. A similar

plugin can be found in Flutter’s community by the name “path_provider”. Both libraries

utilize the native optimization of the host’s device filesystem.

23

Figure 12. Core logic of measuring disk I/O speed

Figure 12 reveals the core idea of how the measurement proceed:

1. Start time counter.

2. Asynchronously opening a file whenever this function is triggered.

3. Write one sentence into the previously opened file.

4. Stop the time counter after writing went successfully.

5. Put the recorded time into the list of previously recorded time

6. Calculate the average time for each epoch.

24

Figure 13. Char of Flutter(blue) and React Native(red) file writing consume time

As presented in the figure 13, React Native has advantage on both the average time

(straight line) and single time (dots) consuming. This shall be essentially credited to the

native optimization process that is done by the “react-native-fs” library. In fact, regarding

to the actual writing speed, React Native ’s performance is as good as a native applica-

tion can reach. Another interesting spot to observe is both Flutter and React Native use

relatively long time to perform the first writing. A naive assumption would be initializing

the instance of the native file I/O is a precondition to perform high speed communica-

tions.

5 Conclusion

The purpose of this thesis is to establish a comprehensive study between React Native

and Flutter. During the research, theory foundation of both platforms, as well as the main

characteristics, were discussed and introduced. In order to compare the process of de-

velopment, a successful open-source React Native showcase is re-written in Flutter. Nu-

merous test concerning performance of the application were carried out and analysed.

Nevertheless, due to the limitation of time and resources, not every aspect of the plat-

forms is discussed detailly. For instance, render process, which both React Native and

Flutter have put great effort into optimization, has not been deliberated. Furthermore,

comparisons between native and cross-platform applications are not mentioned exhaust-

ively.

25

React Native, with its pioneering work, has actively impacted the followers to certain

extend. Pathbreaking concepts from React, such as one-directional dataflow and JSX,

are well adopted and digested in React Native. With its strong community, React Native

is no doubt the best choice to start a cross-platform application from scratch.

Flutter has a bright future. Sophisticated design from React Native are well preserved

with Flutter’s own evolvement. The consistency and tidiness in syntax and SDK level

does bring joy to developers. Rendering widgets through a dedicate engine boosts the

performance and eliminates pollutions from the OEMs.

To conclude, both React Native and Flutter have greatly proven the value of cross-plat-

form mobile application framework. The efficiency and convenience regarding to devel-

opment can surely boost the speed of pushing the product to the market. Producing a

high quality and beautiful application for all mobile platforms has never been this easy

before. As a trade-off, certain performance loss, when comparing to native application,

is reasonably acknowledged and allowed.

References

1. Desktop vs Mobile vs Tablet Market Share Worldwide

URL: http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet.

Accessed July 13, 2017

2. A JavaScript Library for Building User Interfaces [Online]

URL: https://facebook.github.io/React/.

Accessed February 5, 2017

3. ReactJS: An Open Source JavaScript Library for Front-end Development

URL:https://reactjs.org/

Accessed July 13, 2017

4. Introduction JSX

URL:https://facebook.github.io/react/docs/introducing-jsx.html

Accessed July 15, 2017

5. How Virtual-DOM and diffing works in React

URL:https://medium.com/@gethylgeorge/how-virtual-dom-and-diffing-works-in-

react-6fc805f9f84e

Accessed July 15, 2017

6. Virtual DOM in ReactJS

URL:https://hackernoon.com/virtual-dom-in-reactjs-43a3fdb1d130

Accessed July 15, 2017

7. Allocation Profile

URL:https://dart-lang.github.io/observatory/allocation-profile.html

Accessed September 03, 2017

8. What’s Revolutionary about Flutter

URL:https://hackernoon.com/whats-revolutionary-about-flutter-946915b09514

Accessed September 03, 2017

9. Official documentation of React Native Navigation

URL:https://wix.github.io/react-native-navigation/#/

Accessed November 03, 2017

10. Official documentation of Flutter Navigator

URL:https://docs.flutter.io/flutter/widgets/Navigator-class.html

Accessed November 03, 2017

11. Official React bindings for Redux

http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://facebook.github.io/React/
https://reactjs.org/
https://facebook.github.io/react/docs/introducing-jsx.html
https://medium.com/@gethylgeorge/how-virtual-dom-and-diffing-works-in-react-6fc805f9f84e
https://medium.com/@gethylgeorge/how-virtual-dom-and-diffing-works-in-react-6fc805f9f84e
https://hackernoon.com/virtual-dom-in-reactjs-43a3fdb1d130
https://dart-lang.github.io/observatory/allocation-profile.html
https://hackernoon.com/whats-revolutionary-about-flutter-946915b09514
https://wix.github.io/react-native-navigation/#/
https://docs.flutter.io/flutter/widgets/Navigator-class.html

URL:https://github.com/reactjs/react-redux

Accessed December 03, 2017

12. Flutter + Redux = Fludex

URL:https://github.com/hemanthrajv/fludex

Accessed December 03, 2017

13. Flutter FAQ

URL:https://github.com/hemanthrajv/fludex

Accessed March 03, 2018

https://github.com/reactjs/react-redux
https://github.com/hemanthrajv/fludex
https://github.com/hemanthrajv/fludex

Source code

1. Flutter app for case study

URL:https://github.com/WenhaoWu/flutter_movie

Accessed December 03, 2017

2. React Native app for case study

URL:https://github.com/junedomingo/movieapp

Accessed December 03, 2017

3. Scroll FPS Comparison

URL: https://github.com/WenhaoWu/Scroll

Accessed February 03, 2018

4. Disk IO Comparison

URL:https://github.com/WenhaoWu/DiskIO

Accessed February 03, 2018

https://github.com/WenhaoWu/flutter_movie
https://github.com/junedomingo/movieapp
https://github.com/WenhaoWu/Scroll
https://github.com/WenhaoWu/DiskIO

