

Rodrigo Prodohl

Wello Wave App

Mapping out a databse of the world wave energy resources

Helsinki Metropolia University of Applied Sciences

Degree: Bachelors Degree

Degree Programme: Environmental Engineering

Thesis

Date

 Abstract

Author(s)
Title

Number of Pages
Date

Rodrigo Prodohl
Wello Wave App

31 pages + 27 appendices
22 March 2018

Degree Environmental Engineering

Degree Programme Environmental Engineering

Specialisation option Water, waste and Environmental Engineering

Instructor(s)

Veli-Matti Taavitsainen

In this thesis, the creation of a Python based interactive map of the world’s wave energy resources

is explained and presented. The application will be used by Wello Oy to generate values needed in

wave energy production in various locations across the world, and to calculate the theoretical power

of Wello’s Penguin wave energy converter.

The application is planned to be used as an easy-to-use tool to quickly and effectively measure the

power output of the Penguin wave energy converter at any given site in the world. The application

allows tailored results that are calculated by using values obtained from each potential wave energy

site. The results show the end user the wave energy at the site, and the optimal dimensions of the

wave energy converter for maximal power production and maximal return of investment.

The fundamentals of wave energy and wave energy converters are discussed, as well as the

methodology for calculating the theoretical power output of waves and calculating the levelized

cost of energy at each of these sites. All this is done in hope of making the process of finding

potential wave energy projects more efficient and effective, and thus providing a clean, renewable

and continuous energy source to the world.

Keywords wave, energy, converter, power, wello, penguin, renewable, ocean

Contents

Symbols and units 1

1 Introduction 2

2 Theory 3

2.1 Penguin 3

2.2 Wave theory 5

2.2.1 Ocean wave spectra 6

2.2.2 Significant wave height, peak period and Power 8

2.3 Levelized cost of energy 12

3 Methodology 13

3.1 Data Collection 13

3.2 Python: 14

3.3 Python packages 15

3.3.1 NumPy 15

3.3.2 Matplotlib 15

3.3.3 Basemap 16

3.3.4 Tkinter 16

3.4 Wave App Creation 16

3.4.1 Data storage method 16

3.4.2 Data retrieval 17

3.4.3 Scaling factors and Penguin model 17

3.4.4 Power Calculations 18

3.4.5 Plotting LCOE 18

3.4.6 Distribution plots 19

3.4.7 Basemap window implementation 20

3.4.8 GUI Framework 21

3.4.9 GUI windows 22

3.4.10 Data popup window 23

4 Results 24

4.1 Navigating the Wave App 25

4.2 Selecting data 26

4.2.1 Inputting data manually 26

4.2.2 Selecting points on the map 26

4.3 Data presentation 27

4.4 Exiting the Wave app 29

5 Conclusion 30

References 31

Appendices

Appendix 1. Wello Wave App source code

1

Symbols and units

g acceleration due to gravity, 9.81 (m/s²)

ρ density: Freshwater = 1000 kg/m³

 Seawater = 1027 kg/m³

α energy scale parameter for Pierson–Moskowitz spectra, 0.0081

 peak enhancement factor for JONSWAP spectra, mean = 3.3, range [1:7]

λ Froude scaling parameter, length ratio of model to full size prototype

θm mean direction of wave propagation

S(f) spectral variance density (m2 /Hz)

Δf frequency division/step

𝑚 𝑛 spectral moment, 𝑚 𝑛 = ∫ 𝑆(𝑓) 𝑓𝑛∆𝑓

𝑎 amplitude of sinusoidal wave

T period of a wave, time taken for a particle to return to its original position

f frequency, inverse of period, T (Hz)

𝑓 𝑝 the frequency at which the variance of the spectrum is at its maximum

𝐻 𝑠 significant wave height

𝐻 1

3

 average of the highest third of waves in a time series

𝐻 𝑚0 significant wave height derived from spectral moments, 4√𝑚0

𝑇 𝑝 peak period, inverse of the frequency of the maximum of 𝑆(𝑓), 𝑓𝑝

𝑇 𝑒 energy period, (𝑚−1/𝑚0)

P energy flux per metre wave crest (kW/m)

h water depth

k wave number

kW 1,000 watts, measurement of power

MW 1,000,000 Watts

2

1 Introduction

According to a UN study, 40% of the world’s population live less than 100 km from the coast,

and this value is estimated to double in size by 2025 (Percentage of total population living in

coastal areas, 2007). Greater population density and economic activates in these coastal regions

put added strain on the already dwindling energy supplies. Ocean energy provides an excellent

emergent solution to this issue; clean, continuous and localized energy at local deployment sites

offering direct energy to those who live near the coastlines and further afield.

According to the International energy agency, it is estimated that there is the potential to

develop 20,000 – 80,000 terawatt-hours (TWh) of electricity in the form of ocean energy per

year. These ocean energies come in the forms of tidal energy, marine current power, osmotic

power, ocean thermal energy and wave energy. Out of these sources, wave energy poses the

largest theoretical energy production, with an estimated 8,000-80,000 TWh/year of production.

Wave energy converters (WEC) are located along three different ocean environments: onshore,

nearshore and offshore. They are briefly discussed below:

- Onshore devices are integrated into the coastline, along natural rock faces or man-

made structures. They are close to the utility network and easy to maintain. The

tradeoff for this that captured energy is minimized due to the act of friction with the

seabed.

- Near-Shore devices are typically located in water shallow enough for them to be fixed

to the seabed, providing a stable stationary base which the oscillating device can

produce. Disadvantages are akin to Onshore devices.

- Offshore devices are located further from the coastline in deep water, fixed to the sea

bed using moorings mass. They have the highest potential energy resource.

This thesis focuses on offshore wave energy converters, specifically in relation to a rotating mass

converter. The thesis is being conducted in conjunction with Finnish company clean-tech Wello

Oy and is focusing on their Penguin wave energy converter (henceforth called ‘The Penguin’).

3

Presently, finding the potential for a WEC at a specific site is a long and taxing task. Wave

resource data such as wave heights, wave periods need to be collected to gauge energy in the

waves at a certain site along the world’s coastlines. Once the data has been procured it is

processed, filtered and put through models to give the site-specific wave resources as well as

theoretical power output of the Penguin. This process is repeated every time a new site is looked

for and currently is only done by very few employees within Wello Oy.

The aim of this thesis was to create a computer-based application which maps out the world’s

wave energy resources. The application will be based around the concept of an interactive map

of the world, allowing the user to select a point along the world’s coastlines and instantly receive

the wave resources, energy production capabilities and the theoretical power output of The

Penguin.

2 Theory

2.1 Penguin

This thesis focuses on Wello Oy’s Penguin wave energy converter (WEC). The Penguin is

categorized as a rotating mass WEC. A large rotating mass is fixed on the inside of the Penguin

and rotates around a central shaft (Figure 1). Power is led from the rotator to a 600-kW

generator using the same shaft eliminating conversion losses. The Penguin ‘rolls’ in the water

converting the movement of the waves to gyration, which is turn amplified. The asymmetrical

shape of the hull promotes this rolling motion of the device across the waves, pushing the

rotating mass and in turn producing clean energy.

Figure 1: Cross section of the Penguin wave energy converter

4

The Penguin utilizes the same components that are already used in wind turbines, meaning that

the Penguin is cost competitive compared to offshore wind energy. The Penguin brings

opportunities for local and regional employment, as manufacturing of the Penguin can be done

in most shipyards. Deployment of device is cost effective and can be achieved with small vessels

available locally. The operations and maintenance is easy; it is similar to maintaining any floating

device. Remote connection allows for continuous monitoring and adjustment of the device.

Wello has deployed their first Penguin device in 2012 in Orkney, Scotland, figures of the device

can be found in Table 1 below.

Parameter Penguin

Mass 2100 Tons

Length 43 m

Width 22 m

Draft 6.82

Generator Size 600 kW

Table 1: Penguin in numbers

Figure 2: Penguin in Orkney

5

2.2 Wave theory

To understand and access the potential wave energy resources for different sites, a knowledge

of wave theory is required. This section covers the basic principles of monochromatic waves and

the types of ocean spectra used to gauge the power output for these sites.

Monochromatic waves or regular single frequency waves provide an indication of theoretical

power of a WEC and how it operates. Regular waves are defined by their wave periods

(wavelength), amplitude (height) and surface profile. The shape of an ocean wave is often

depicted as sinusoidal waves (waves or curves which represent periodic oscillations of constant

amplitude following the sine function). Figure 3 shows this relationship.

SWL = Still water line

h = water depth

λ = wavelength

𝑎 = amplitude of a sinusoidal wave

Table 2 provides some physical definitions for sinusoidal waves based on linear theory.

 Water Depth

Parameter Deep water:

ℎ >
𝜆

2

Intermediate:

𝜆

2
> ℎ <

𝜆

20

Shallow:

ℎ <
𝜆

20

Wavelength, λ 𝑔𝑇2

2𝜋

𝑔𝑇2

2𝜋
tanh (𝑘ℎ)

𝑇√𝑔ℎ

Wave celerity

(speed), c

𝑔𝑇

2𝜋

𝑔𝑇

2𝜋
tanh (𝑘ℎ) √𝑔ℎ

Wave velocity, cg 𝑐

2

𝑐

2
(1 +

2𝑘ℎ

𝑠𝑖𝑛ℎ2𝑘ℎ
)

c

Figure 3: Linear wave theory definitions (EMEC, 2009)

6

Wave energy/unit area

𝐸 =
1

2
𝜌𝑔𝑎2 (

𝐽

𝑚2
)

Wave power/unit length

𝑃 = 𝐸𝑐𝑔 (𝑘𝑊/𝑚)

Table 2: Linear theory definitions (EMEC, 2009)

2.2.1 Ocean wave spectra

Ocean waves are formed as a result of wind acting over the surface of the water, the strength,

length and frequency of the wind will all affect the type of waves generated. These waves have

irregular wave heights and periods, caused by the irregular nature of the wind. This makes it

difficult to describe the sea surface, with a purely deterministic approach. However, properties

like average wave height, wave periods and directions vary slowly in time and space compared

to these parameters at a specific time. Using spectral density analysis, one can find the statistical

average of a wave over a specific time series. The spectral density of a wave time series is the

distribution of power into the frequency components composing the signal. We apply the

knowledge that the surface elevation of waves, at any given time, can be seen as the sum of a

large number of harmonic waves (i.e. waves with a frequency that is the multiple of the

frequency of the original waves), which have been generated by wind in different places and

times. We decompose these harmonic waves into a spectrum of frequencies over a range, i.e. a

signal. This allows for the statistical average the signal in terms of its frequency content to be

analyzed, which is its spectrum. Typical wave spectrums are produced from recording the waves

over a period of 30 minutes, albeit other time series are also used.

There are a few different spectral equations which describe the frequency composition of an

irregular water surface elevation time history. The spectra in relation to the ocean surface depict

the relationship between the frequencies of an ocean spectra and specific wave conditions, such

as: peak period, peak energy period, significant wave height etc.

There are two principle spectral forms which are commonly used to describe waves: Pierson-

Moskowitz spectrum (PM) and Joint North Sea Wave Project spectra (JONSWAP). Both the

spectrums are related as the JONSWAP spectra is an evolved version of the Pierson-Moskowitz

spectrum and a is can be used to describe both. Figure 4 demonstrated the typical shape of both

these spectra.

7

The Pierson-Moskowitz spectrum is an equation defining the one-dimensional spectral shape

over a frequency range, based on the assumption that the sea is fully developed, i.e. that the

waves have come into equilibrium with the sea. The formula for this is:

𝑆(𝑓)𝑃𝑀 =

𝛼𝑔2

(2𝜋)4

1

𝑓5
𝑒𝑥𝑝 [−

5

4
(

𝑓𝑝

𝑓
)

4

],
(1)

In the equation 1 𝑓 is the frequency, 𝑓𝑝 is the frequency period and 𝑆(𝑓)𝑃𝑀 is the Pierson-

Moskowitz spectrum (EMEC,2009).

The limitation of using this spectrum is that it only considers fully developed conditions, waves

which have the maximum size theoretically possible for wind of a specific strength and duration.

The equation does not facilitate fetch limited conditions, i.e. when wave height is limited by the

area where the waves are forming. However, Hasselmann et al. (1973), after analyzing the code

during the JONSWAP project, inferred that the wave spectrum is never fully developed. Rather,

it continues to develop through non-linear wave-to-wave interactions over long distances and

times. An extra peak enhancement factor (γ) was added to the Pierson-Moskowitz spectrum to

improve the fit for various sea states.

𝑆(𝑓)𝐽 = (
𝛼𝑔2

(2𝜋)4

1

𝑓5
𝑒𝑥𝑝 [−

5

4
(

𝑓𝑝

𝑓
)

4

]) (𝛾
𝑒𝑥𝑝[− (

(𝑓−𝑓𝑝)
2

2𝜎2𝑓𝑝
2)]

)

(2)

Figure 4: Comparison of spectral shapes (NTNU, 2008)

8

One could then infer that the JONSWAP could be used as the base formula to accommodate all

the different sea states. Therefore, JONSWAP is the spectrum which was chosen as this could be

used to describe varying sea states along the world’s coastlines.

2.2.2 Significant wave height, peak period and Power

The most common type of wave data lies in the form of significant wave height and peak period,

both of which are either computed by wave models or outputted by buoys relaying the wave

data. This proves to be the most accurate measurement to generate models for wave power for

a specific site. The data used for this study follows the same conventions.

The significant wave height (Hs) of a wave is defined as the mean height of the highest third of

the waves in a given time series. It can also be defined as four times the square root of the

zeroth-order moment of the wave spectrum (JONSWAP Equation 2).

The peak period (Tp), is the wave period with the highest energy. The analysis of the distribution

of the wave energy as a function of wave frequency (period-1) for a time-series of individual

waves is referred to as a spectral analysis. These wave periods (frequencies) follow the

JONSWAP spectrum (1), described above.

Figure 5: Wave spectra for 3 min bin time series analysis

9

Figure 5 depicts a typical wave spectrum for a given time series. This type of graph is the typical

output for wave buoys, giving the spectral density of a wave for a given time series over

frequency. One can apply the principles of the JONSWAP spectrum to find relevant information

concerning the wave during a certain period. The peak period is calculated from this spectrum

by taking the inverse of the frequency at the maximum spectral density:

𝑇𝑝 =

1

max (𝑆(𝑓))

(3)

For the case in Figure 2 the formula to calculate Tp is:

1

max (𝑆(𝑓))
=

1

0.085
= 11.6 𝑠

The power for monochromatic waves is given as the following (EMEC, 2009), H being average

wave height and T being average wave period:

𝑃𝑜𝑤𝑒𝑟 =

𝜌𝑔2𝐻2𝑇

32𝜋
 (𝑊/𝑚)

(4)

A similar approach and formula that is used to define regular waves can be implemented to

obtain the wave power in real seas. From the wave spectrum one is able to derive a single value

for peak period and significant wave height, enabling wave power to be calculated for this

spectrum. The wave power/unit length (in deep water) is defined as follows (EMEC,2009):

𝑃𝑜𝑤𝑒𝑟 =

𝜌𝑔2𝐻𝑠
2𝑇𝑒

64𝜋
 (𝑊/𝑚)

(5)

In this formula, time is given as Te or rather as the wave energy period and height is given as

significant wave height Hs, rather than average wave height as denoted in Equation 4.

 𝑇𝑒 =
𝑚−1

𝑚0
 (6)

10

Te as given by EMEC (2009) is the variance-weighted mean period of the density spectrum, mn

are the spectral moments of the frequency spectrum. The spectral moments are defined as the

area under the spectral curve, the positive moments give weight to higher frequency values. The

negative moments give the opposite, giving weight to the lower frequencies.

As stated previously, each wave spectrum describes the waves over a set period; in the case of

Figure 2, the 3-minute spectrum shows a significant wave height of 1.46 meters and peak period

as 11.76 seconds. However, to calculate power, we need to convert Tp to Te for each spectrum.

In order to do this we need to know the peak enhancement factor, γ (JONSWAP eq.1). The peak

enhancement factor is related to each specific stationary bin, allowing for power values across

multiple sea states to be calculated. DNV-GL (2008) noted that the peak enhancement factor

may be calculated by the following equations:

 𝛾 = 5 𝑓𝑜𝑟 𝑇𝑝/√𝐻𝑠 ≤ 3.6 (7.1)

 𝛾 = exp (5.75 − 1.15𝑇𝑝/√𝐻𝑠) 𝑓𝑜𝑟 3.6 < 𝑇𝑝/√𝐻𝑠 < 5 (7.2)

 𝛾 = 1 𝑓𝑜𝑟 5 ≤ 𝑇𝑝/√𝐻𝑠 (7.3)

The relation between Tp and Te is given as follows:

𝑇𝑒

𝑇𝑝
=

4.2 + 𝛾

5 + 𝛾

For WEC’s the amount of energy flux available to the device can be quantified in several ways.

The most appropriate approach for gauging the power of The Penguin, is the relationship

between the capture width of the device and wave power. Capture width is defined as the power

available to drive the wave energy converter derived from the power of the device and the wave

energy flux (EMEC, 2009).

𝐶𝑤 =

𝐷𝑒𝑣𝑖𝑐𝑒 𝑝𝑜𝑤𝑒𝑟 (𝑊)

𝑊𝑎𝑣𝑒 𝑝𝑜𝑤𝑒𝑟/𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ (𝑊/𝑚))
(𝑚)

(8)

11

Through wave tank testing of the WEC, a function has been created to calculate the capture

width of the device given a certain sea state. If the significant wave height and peak period of a

site is known one can calculate wave power and a result can be gathered for the Device power.

As is the case for most WECs, the device scale is dependent on the site. Thus, it is necessary that

the calculations for power of the device considers the optimized scale for each site. This is

dependent on the power in the site, the type of wave resources in the area and the cost or

energy for that site. WECs scale in relation to Froude’s scaling. The scaling parameters are given

in Table 3 where 𝐹𝑛is the scale in question.

Table 3: Froude’s scaling Factors (EMEC,2009)

Characteristic Froude scaling

Length 𝐹𝑛

Area 𝐹𝑛
2

Volume 𝐹𝑛
3

Mass 𝐹𝑛
3

Force 𝐹𝑛
3

Power 𝐹𝑛
3.5

Time √𝐹𝑛

Capture width 𝐹𝑛

The scaling factors are used in relation to the wave tank testing data of the current Penguin

prototype. During testing the WEC is subjected to very specific wave conditions. These tests give

us specific figures on how the WEC performs at given conditions and how this affects the device.

Specifically, how it moves along the x and z axis i.e. pitch and roll of the device. The values are

scaled using time and height scaling factors as given above. A capture width model is made from

the results of the tank testing. This model is omitted from the thesis as it is confidential. From

these relationships, given spectral data of peak period and significant wave heights, Te the power

of a site can be calculated. Once the power of the site is known, we can rearrange the capture

width model to solve for power of the device.

12

2.3 Levelized cost of energy

There are various ways of generating electricity and these incur different costs. These costs can

come from the initial investment into the energy source, the operation, its fuel and its

maintenance.

Levelized cost of energy (LCOE) is a measure of a power source which attempts to give a

comparable value for different methods of electricity generation of unequal life spans, project

size, different capital costs etc. LCOE is an economic assessment of the average total

cost produce and maintain a generating device/method during its life span divided by the total

energy output of the device/method over its lifetime. The formula for LCOE is as follows, where

It is the investment during the year t, Mt is the maintenance in the year t, Ft is the fuel

expenditures in the year t, Et is the electrical energy generated in the year t, r is the discount

rate and n is the expected lifetime of the device:

𝐿𝐶𝑂𝐸 =
∑

𝐼𝑡+𝑀𝑡+𝐹𝑡
(1+𝑟)𝑡

𝑛
𝑡=1

∑
𝐸𝑡

(1+𝑟)𝑡 𝑛
𝑡=1

 (9)

In the case of the Penguin, Ft was omitted at the device does not use any fuel to run. The energy

required to run the device is utilised for the generation of electricity from the waves.

13

3 Methodology

3.1 Data Collection

The data used for this thesis has been provided by the BMT Argoss group, specifically from their

waveclimate.com website. The data is given as a 2D scatter table (Figure 6) which shows peak

period and significant wave height for a given site as a percentage of their joint occurrence

throughout the period of collected data (typically 30 years). The size of the site which can be

selected range from grids of 50x50km, 100x100km, 200x200km and 500x500km, for this thesis,

a grid size of 100x100 km was chosen (Figure 3). This is due to time constraints on the project

itself, a 50x50km grid would have proven more accurate when mapping out the wave resources

but would have significantly increased work time.

The data had to be hand collected due to the format of the waveclimate.com site and thus was

by far the lengthiest process of the project. It should also be mentioned that the data for

Antarctica was omitted as the cold/harsh conditions would not favor WECs. An example of a

data set provided by BMT argoss is shown below. The data is from the east coast of New York,

USA:

Figure 6: Grid view of waveclimate.com

 coordinate points 40.5 N, -73 E

14

The data gives Hs and Tp as a percentage of occurrences over a 30-year period. The original data

consists of more than 70000 data points taken at 3-hourly intervals. The data was exported to a

text file (.txt) and saved in a folder containing the rest of the wave data. The reasoning behind

this is that it was the quickest way to save the data and the fastest method for the program to

read the data.

3.2 Python:

The Thesis utilizes Python programming language for all the calculations and backend of the GUI.

There are other powerful programming languages and mathematical tools which this application

could have been built on such as MATLAB, R and octave. MATLAB could have been used to form

the core basis of this project, it’s also an extremely powerful mathematical programming

language and focuses on readability. However, the commercial software license for MATLAB is

Figure 7: Wave data, coordinate points 40.5 N, -73 E

15

relatively expensive and costs of just the platform would have exceeded 6000 euros to include

all of the necessary packages to create a GUI. Octave and R are other open source software’s

which could have formed the backend of this project. However, Python was chosen due to the

level of fluency the author had with the language.

Python is a widely used programming language, created by Guido van Rossum and released in

1991. Python emphasizes code readability, using whitespace indentation to delimit code blocks.

It also uses syntax to express concepts in fewer lines of code in comparison to other languages

such as C++.

Python is heavily supported by multiple actors, supporting object-orientated, imperative and

functional programming. A large and comprehensive library with a wide range of methods make

python ideal for an array of computing scenarios. This thesis utilized a number of different

libraries or packages, the most important of which are mentioned below. All the packages have

been used under the correct licensing agreements.

3.3 Python packages

3.3.1 NumPy

NumPy is a strong package for scientific computing within Python. It contains a powerful N-

dimensional array manipulating package, ideal for use in this thesis as the main core of the

program deals with many 2 and 3 dimensional arrays (NumPy Developers, 2005).

3.3.2 Matplotlib

Matplotlib is a 2D and 3D plotting library which production quality figures in a plethora of

formats and interactive environments across multiple platforms. One can generate plots,

histograms, power spectra and scatterplots with a few lines of code. It also supports a multitude

of different styles allowing for clear data presentation, for example ggplot (a popular plotting

package for R). (Hunter et al., 2007)

16

3.3.3 Basemap

The matplotlib basemap toolkit is a library for plotting 2D data on maps in Python. It is similar in

functionality to the matlab mapping toolbox, the IDL mapping facilities, GrADS, or the Generic

Mapping Tools. PyNGL and CDAT are other libraries that provide similar capabilities in Python.

(Jeffrey Whitaker.,2016)

3.3.4 Tkinter

Tkinter is one of Python’s GUI (Graphical user Interface) packages. One of the reasons for

choosing this package over other similar packages is the solid integration it has with matplotlib

packages. Coupled with the fact that it can be used on multiple platforms makes it ideal for this

project.

3.4 Wave App Creation

The main objective of the thesis was to create a user-friendly applications (henceforth called

wave app) for calling wave data from a map and in turn a database. This section of the thesis

will focus on functions and methods to obtain the wave data, the data manipulation and the

creation of the user interface. Before the user interface of the wave app was created the

backend for manipulating data and conducting the necessary calculations was built. This would

allow for easier implementation to the GUI instead of attempting to create it once the backend

of the GUI was ready. A more detailed explanation of the backend of the wave app and the full

code can be found in the Appendix.

3.4.1 Data storage method

The wave data for each site was stored in a directory containing all the data sets for each site

with the convention of the file name being the site’s coordinate points, for example, the data

set in Figure 6 was saved as ‘40.5, -73.txt’ (figure 7). The program reads the directory and stores

the directory contents as an array of latitudes and longitudes with the name coord_list (See

Appendix 1).

17

Figure 8: Example of wave data folder

3.4.2 Data retrieval

To extract the useful information from each sites data set, the function getdata(lat,lon) was

created. Once the user has selected their desired data, it is passed through this function. The

function takes two arguments, the latitude (lat) and the longitude (lon) of the users selected

data. The users latitude and longitude input data is compared to the coordinate list array with

the function spatial.KDTree(), this function finds the closest matching coordinate points in the

coordinate list array to the users defined data. For example, for the case above if the user gave

the coordinate values of 40.456, -72.97 it would open the data in 40.5, -73.txt as these are the

closest matching points to the user’s data. After the getdata() function has selected the correct

data set it reads the content of the text file and converts it to an array. Once this is achieved the

data is manipulated and sliced to extract the Tp, Hs and percentage of occurrence matrix from

the file. Knowing both the Tp and Hs, Te can be calculated by iterating over all Hs and Tp bins

(equation 7.1 – 7.3). Finally, the function returns Tp, Hs, Te, the occurrence matrix and the file

handle of the chosen data set.

3.4.3 Scaling factors and Penguin model

A simple function was then created to equate to Froude’s scaling parameters (scale(mu)), mu in

this case is the user defined scale. The function scales mu accordingly and returns the scaled

parameters (see scaling table).

The code contains a function P3_8_CWfit(Tp,Hm,s), this is the model created the Penguin: model

3.8 and returns the capture width of the device once Tp, Hs and s (scale) are passed through it.

This section of the code remains confidential but is not necessary to explain for this thesis.

18

3.4.4 Power Calculations

The main function to calculate wave power, theoretical power of the device and other variables

is in the function: PowerGeneration(Tpi,Hsi,Tei,TpHs_array). The function allows for the global

variable SCL which is the chosen scale of the device. In python a global variable can be accessed

from any function or class within the script meaning it does not have to be passed in the original

function. This seemed the simplest method to later allow the user to select the scale of the

device at a defined site. The site data is passed through the model for the Penguin giving the

variable CW_Data (CW_Data = P3_8_CWfit(Tpi,Hsi,SCL)), which is the capture width of the

device. The power stored in the waves is then calculated using the same equation as shown

above (Equation 5), the equation in the script appears as: rho*(g**2)*(Tei)*(Hsi**2))/(64*pi),

with rho being the specific density of water and g the coefficient for gravity. The formula

calculates the power in the waves over all the Hs and Tp bins. The TpHs_array (percentage of

occurrence of each wave condition matrix) is converted to hours per year and multiplied by the

power in the waves, giving energy in the waves at each bin in kilowatt hours per year (kWh/year).

The average power in all the waves at the specified site is calculated by summing the energy in

the waves at each bin and dividing by the total hours per year to give a value of 'kW/m'.

Using the value for capture width of the device and the power in the waves we can generate the

power in the device by manipulating the formula for capture width (equation 8), giving the

desired amount of energy produced at the site per year at a given scale of the device. The

PowerGeneration() function also finds out the device power over every scale and it does this at

the end of the code section by looping over every scale from 1 to 100.

3.4.5 Plotting LCOE

As aforementioned above a calculation of great interest for energy producing technologies is

their LCOE (levelized cost of energy). The wave app should output the correct LCOE for each site,

this is achieved in the function LCOE(lat,lon). This function takes in the users latitude and

longitude data, which is used to generate results from the getdata() function and in turn

PowerGeneration function(). The function returns a plot showing the LCOE over multiple scales,

allowing the end user to select the most appropriate scale for the site. The lower the LCOE, the

better; Figure 9 gives an example data set which depicts the optimum scale of device as 13, as

this gives the lowest LCOE.

19

Figure 9: Output of LCOE function. Plot

showing scale vs LCOE

3.4.6 Distribution plots

The final functions of the calculation section of the code are two functions which take the values

calculated by the PowerGeneration() function and plots the results. Two sets of graphs are

calculated, one showing the hours of wave conditions per year at the site, the power in the

waves, power of the Penguin at the user defined scale and the capture width of the device

(Figure 10). These plots are created as surface plots as they best show the relationship between

3 sets of data. The second set of graphs shows the device power, mass and operational hours of

the device all as a function of the Penguin as different scales (Figure 11).

Figure 10 - Top Left Power chart for site. Top right yearly energy distribution of site. Bottom left Yearly Energy

Production. Bottom right yearly sea distribution.

20

Figure 11 - Scale plots: (a) scale vs power production, (b) MWh/year*Euro*scale^-3 vs scale, (c) operational hours vs

scale, and (d) right scale vs mass..

3.4.7 Basemap window implementation

The first stage of creating the graphical interface of the wave application was to obtain a method

of importing an interactive map into a Tkinter window which would allow the user to select

coordinate data by clicking on points on the map. Many different libraries were tested to achieve

this, as well as testing application program interfaces (API). Most of the initial creation of the

wave app was spent in researching and testing the most suitable platform for the wave app.

After extensive research it was deemed that the Basemap library was the most applicable, whilst

maintaining relatively easy integration into a Tkinter window. In the wave app Basemap is

initialized in its own window by a method which controls what type of map is produced, the

resolution of the map, the map color, the boundaries shown on the map and a few other ascetic

features. A drawback of the Basemap libraries is that they do not contain the country names on

the map; to counter this, a function was added to the map to include some of the country names.

Country names are read from a separate text file which contains the country names as well as

the latitude and longitude of the country. In a similar method to online maps, the initial zoom

setting (whole world view) only some of the country names are given. This was to reduce clutter

from printing all the names on one map. However, this solution is less than ideal and will be

revisited on a later version of the wave app. Figure 12 shows an image of the finished map image

21

after all the methods have been added to it. The method for the map is given as m and initialized

as m = Basemap(projection='mill', resolution = 'h') (See appendix for full details).

Figure 12: Appearance of the map after all the methods are added to it.

3.4.8 GUI Framework

After the map was established, a class was created forming the core backend of the GUI (class

GlobalWaveDataApp(tk.Tk); see Appendix 1). This class initializes the GUI window and creates

the platform on which the GUI is built upon. In this class the formatting and layout of the GUI is

implementing, adding such things as menu items which appear on every page, a title for the

wave app’s window and a set configuration of where the objects within the window will be

housed on all windows within the app. The class also initializes any new pages and gives them a

uniform configuration to allow for easy expansion of the wave app if more features are to be

added to it in the future. The rest of the GUI’s backend was created to support the

implementations of any new pages, menu items and other such functionality which may appear

in a GUI.

22

3.4.9 GUI windows

A ‘home’ page was created for informing the user what the wave app is and what to do if any

bugs are encountered in the app. The home page was to clickable buttons which serve their

respective functions:

• Agree: Takes you to the main page of the app, where the user can select data,

manipulate the map and generate results.

• Disagree: Closes the app

Figure 13: Home page of the wave app

Once the user selects the ‘Agree’ button, they are brought to the main application, which is built

upon the Basemap map shown in Figure 12 but with added functionality.

The next stage of the code was to ensure that the map would be able to handle the user clicking

on the map to select data points in the form of an ‘entry’ (a user input). As Basemap is based off

Matplotlib, the mpl.connect() method was utilized, this function reads the users inputs and

saves the x and y axis coordinate data of where the user clicked on the plot or image. The

function is also able to differentiate between different types of inputs, such as left or right

mouse clicks, double mouse clicks, scroll-wheel up/down, etc. The function was used so that in

the event of a user double clicking on anywhere on the map the function onclick(event) would

be called and pass the event data. In case of a double click the onclick(event) function stores the

points of where the user clicked on as x and y coordinates. These are converted to their

corresponding latitude and longitude values and then passed through the getdata() function,

which in turn is called by the other aforementioned functions to produce all the desired outputs.

The onclick(event) function also allows the user to right click on the map to resets the map to

23

its original view, the user can zoom in with ease using the toolbar below the map, but zooming

out proves more difficult, so this was added to increase functionality.

The second way which the user may select data is by a search option. An entry box was allocated

to the top of the window of the map page which takes in the user defined latitude and longitude.

The data is queried in the same way as the entry method. Finally, on the page another entry box

was created to enable the user to define a scale for the Penguin at the desired site. This entry

saves the user defined scale and overwrites the current global variable for scale. The final map

page can be seen on Figure 14.

Figure 14: Main wave app page

3.4.10 Data popup window

The final stage of the GUI was to give the user a method of viewing the data once the entry

function had been passed. A function for the program to open a new window, or rather popup

box was implemented into the code which would display the relevant user inputted data. The

popup displays the coordinate points where the data is retrieved from, the average wave power

in the site, the chosen scale of the device and the total power of the device per year given as

24

megawatt hours per year (Figure 15). The popup message also contains clickable buttons which

call the functions to generate the different plots which were implemented in the calculation

section of the code and finally the button labelled ‘Okay’ which closes the text box and allows

the user to continue selecting data.

Figure 15: Popup message generated once user selects data points.

4 Results

The outcome of this thesis was to create an application which would allow users to generate

wave data for the world’s coastlines via an interactive map. This was achieved as outlined above

(Methodology section). The wave app is not freely distributed as the data itself was granted by

BMT Argoss and commercial access to the data is granted on a case by case basis and incurs

heavy costs. Furthermore, some of the core functions for calculating the power in the Penguin

wave energy converter are kept as the property of Wello Oy. As such this section will go through

the wave app from the perspective of the user and will outline the steps for using the wave app.

25

4.1 Navigating the Wave App

Upon opening the wave app, the user is greeted to the home screen (Fgure 15). The home screen

acts as a warning to the user as the app is still in Alpha versions and there may be bugs with ever

revision of the app.

Figure 15: Home page of the wave app

The home screen contains two clickable buttons: Disagree and Accept. If the user selects the

‘Disagree’ button the application is terminated and all windows are closed. If the ‘Accept’ button

is selected the main page of the wave app opens. The main page is where the user can select

data and interact with the map (Figure 16).

Figure 16: Main page of the wave app showing the map

26

4.2 Selecting data

4.2.1 Inputting data manually

The first method of selecting is for the user to input their desired longitude and latitude points

manually in the boxes labelled ‘Please select latitude and longitude’. To illustrate how the user

might input coordinate data, the points for New York, USA, were used in this example (40.65, -

73.41). The user would write in the desired data points in the correct boxes and select the ‘ok’

button, prompting a popup window as shown in Figure 17. It should also be noted that in the

window there is an option to change the scale of the Penguin, this is due to varying wave

conditions found around the world, and so the optimal scale of the Penguin also varies. The user

is given the option to change the scale by writing in their desired scale and selecting the ‘ok’

button. The program defaults the scale of the device to 22 unless the user changes the scale; for

this example, the scale of the Penguin was changed to 15.

Figure 17: Output from user manually selecting coordinate data

4.2.2 Selecting points on the map

The second method of gaining access to the data is by double clicking on the map itself to

generate data from the desired data points. The initial viewing setting of the map page shows

the whole view of the world, making it somewhat cumbersome to access specific locations. To

get around this a toolbar (Figure 7) was added at the bottom of the page which allows the user

to zoom in on a selected area by clicking on the zoom icon and dragging it over the desired area.

If, however, the user wants to view the original whole world view they can right click on the map

27

which will reset the image. In this case, the user selected a point off the west coast of the United

States. Once the user double clicks on the desired area, the popup menu is instantly generated.

A scale of 25 was also selected for this site as the user wanted a larger device.

figure 18: Zoomed in view of west coast of USA

4.3 Data presentation

The popup window which is generated whenever the user has selected their data points using

either selection method allows the user to view the site-specific data which has been calculated.

The popup window in Figure 17 gives the results for the coordinate points, -40.5 N, -73 E. The

window displays the location of where the data has been taken from, the average power of the

waves in the chosen site and the power per year of the Penguin at the user defined scale (15 in

this case.) The popup window also contains buttons which gives the user the option to create

plots based on the selected grid points. The ‘Okay’ button closes the popup window and allows

the user to continue selecting data. The outputs of pressing the plotting buttons are presented

in Figure 18 and Figure 19.

28

Figure 18: Output from user selecting ‘Generate Distribution Plots’ Button

Figure 19: Output from user selecting ‘Generate Scale Plots’ Button

29

Figure 20: Output from user selecting ‘Generate LCOE Plot’ Button

It should be noted that if that is the user has the need; each of the plots can be saved and stored

to be viewed outside of the program by selecting the save icon (Figure 20). The user should then

proceed to save the image as they see fit and follow the standard convention for saving files.

4.4 Exiting the Wave app

They are then free to create plots as explained in the method above. If the user is finished using

the program, they can select the ‘x’ icon on the top right of the window to terminate the window

(as is standard with most software packages).

Save Icon

30

5 Conclusion

Previously in Wello Oy the process for gauging the power output of the Penguin wave energy

converter for different sites has been a long and repetitive process. With data procurements,

data manipulation and then finally presenting graphically in a neat manner being an arduous

process. With the alpha version of the Wello Wave App which has been created this is no longer

the case.

The Wello Wave App allows enquires about the Penguin from third parties to be processed at a

far faster rate than previous methods, allowing Wello to speed up the rate at which a proper

dialogue is formed with these parties and move forward with any perspective projects.

Furthermore, the application has been used for market research purposes to quickly gauge the

most energetic areas of a coastline allowing for the marketing team to quickly and effectively

determine a potential target group.

The thesis was a success in what it aimed to achieve and has built a solid framework for further

iterations of the app to be developed and refined. The next steps for the beta version of the

application will be to create a more attractive user interface than currently in place. Research

into different mapping methods has already been studied to form a more pleasing user

experience. Open street maps is one such option which would give a map interface similar to

Google maps. More functionality will be added to the map such as a city and country search

options as well as the option to email the graph and results directly to any desired email address.

With the help of the Wave App, hopefully more important parties will release the power that

the Penguin wave energy converter, and wave energy as a concept, can provide for them. And

hopefully the globe can get passed its over-reliance on traditional fossil fuels and invest more in

alternate energy sources.

31

References

Center for International Earth Science Information Network at Columbia University. 2007.

Percentage of total population living in coastal areas. [ONLINE]. Available at:

http://www.un.org/esa/sustdev/natlinfo/indicators/methodology_sheets/oceans_seas_coasts

/pop_coastal_areas.pdf

International Energy Agency (IEA). 2018. Ocean energy potential. [ONLINE] Available at:

https://web.archive.org/web/20150522054948/http://www.iea.org/techinitiatives/renewable

energy/ocean/

European Marine Energy Centre Ltd. 2009. Tank testing of renewable energy systems. [ONLINE]

Available at: http://user.it.uu.se/~ps/SAS-new.pdf

NTNU University. 2008. Sea state parameters and engineering wave spectra. [ONLINE] Available

at:

http://folk.ntnu.no/oivarn/hercules_ntnu/LWTcourse/partB/3seastate/3%20SEA%20STATE%2

0PARAMETERS%20AND%20ENGINEERING%20WAVE%20SPECTRA.htm

DNV-GL. 2008. Certification of Tidal and Wave Energy Converters. [ONLINE] Available at:

https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2012-04/Oss-312.pdf

Mark Lutz, O'Reilly. 2003. Python3 Tutorial: History and Philosophy of Python. [ONLINE] Available

at: https://www.python-course.eu/python3_history_and_philosophy.php

NumPy Developers. 2005-2017. NumPy. [ONLINE] Available at: http://www.numpy.org/

Hunter et al. 2018. Matplotlib: Python plotting — Matplotlib 2.1.1 documentation. [ONLINE]

Available at: https://matplotlib.org/

Jeffrey Whitaker. 2011. Matplotlib Toolkit 1.1.0 documentation. — Basemap Matplotlib Toolkit

1.1.0 documentation. [ONLINE] Available at: https://matplotlib.org/basemap/

http://www.un.org/esa/sustdev/natlinfo/indicators/methodology_sheets/oceans_seas_coasts/pop_coastal_areas.pdf
http://www.un.org/esa/sustdev/natlinfo/indicators/methodology_sheets/oceans_seas_coasts/pop_coastal_areas.pdf
https://web.archive.org/web/20150522054948/http:/www.iea.org/techinitiatives/renewableenergy/ocean/
https://web.archive.org/web/20150522054948/http:/www.iea.org/techinitiatives/renewableenergy/ocean/
http://user.it.uu.se/~ps/SAS-new.pdf
http://folk.ntnu.no/oivarn/hercules_ntnu/LWTcourse/partB/3seastate/3%20SEA%20STATE%20PARAMETERS%20AND%20ENGINEERING%20WAVE%20SPECTRA.htm
http://folk.ntnu.no/oivarn/hercules_ntnu/LWTcourse/partB/3seastate/3%20SEA%20STATE%20PARAMETERS%20AND%20ENGINEERING%20WAVE%20SPECTRA.htm
https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2012-04/Oss-312.pdf
https://www.python-course.eu/python3_history_and_philosophy.php
http://www.numpy.org/
https://matplotlib.org/
https://matplotlib.org/basemap/

Appendix 2

1 (27)

Appendix 1. Wello Wave App source code

-*- coding: utf-8 -*-

"""

Last edited Mar 20 16:06:26 2018

@author: rprod

"""

import matplotlib, os

matplotlib.use("TkAgg")

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg

import matplotlib.animation as animation

import matplotlib.pyplot as plt

from matplotlib import style

import numpy as np

import tkinter as tk

from tkinter import ttk

from scipy import spatial

from mpl_toolkits.basemap import Basemap

from numpy import genfromtxt

from math import exp, pi, sqrt

from scipy.special import erf

'''Font variables to allow for easy fpnt selection in GUI'''

LARGEST_FONT = ('Verdana',24)

LARGE_FONT = ('Verdana',18)

NORM_FONT = ('Verdana',11)

SMALL_FONT = ('Verdana',8)

'''Initialising the scale of the device'''

SCL = 22

Map_type = 'Coastline'

programName ='C_Map'

'''Sets directory to where the global wave data is stored'''

os.chdir(r"WaveData")

'''Creates an array of values for the latitudes and longitudes of the data points.

The files are in the format LAT,LON.txt. The array acts as a lookup table to query

the wave data at each specific point. The final variable coord_list, acts as a database

for querying the wave data.

Appendix 2

2 (27)

 Parameters

 listdirec : list

 Provides a list of the files in the working directory

 coord_list : NumpPy array

 Creats an array of the directory names, column 0 = latitude

 column 1 = longitude

'''

listdirec = os.listdir()

coord_list = []

for i in listdirec:

 x = i[:-4]

 z = x.split(',')

 coord_list.append(z)

coord_list = np.array(coord_list,dtype=float)

def getdata(lat,lon):

 '''Fucntion which finds the wave data from the given latitudes and longitudes

which are fed into the program by the means of an entry. The function takes in two

values latitude and longitude

 Parameters

 lat : float

 Provides the Latitude values for the user defined coordinate point

 lon : float

 Provides the Longitude values for the user defined coordinate point

 Returns

 Tpi : NumpPy array

 Array of peak period created from coordinates

 Hsi : NumpPy array

 Array of Significant wave height created from coordinates

 Tei : NumpPy array

 Array of energy period derived from significant wave height and

 peak period

Appendix 2

3 (27)

 TpHs_array :NumpPy array

 meshgrid of peak period and significant wave height

 filehandle: string

 Filename of chosen data source'''

 print('Data function')

 global coord_list

 pt = [lat,lon]

 #K-d tree finds coordinate points which most closely matches the user defined points

 distance,index = spatial.KDTree(coord_list).query(pt)

 filehandle = listdirec[index]

 print(filehandle)

 #genfromtxt opens the text file where the coordinate data is stored and creates a data array

 pt_data = genfromtxt(filehandle,delimiter=',')

 pt_array = np.nan_to_num(np.array(pt_data))

 #pt_array.shape finds the shape of the array

 y,x = pt_array.shape

 y,x = y-1,x-1 # Finds the max length of x and y, -1 to account for NAN which comes after

 Tp = pt_array[0:2,2:x]

 Hs = pt_array[2:y:,0:2]

 # Array based off the inputs from the data file

 TpHs_array = pt_array[2:y,2:x]

 Hs_low = Hs[:,0]

 Hs_high = Hs[:,1]

 #Hs_bin contains mean values of significatn wave height

 Hs_bin = (Hs_low+Hs_high)/2

 #Tp_bin contains mean values of peak period

 Tp_bin = ((Tp[0])+(Tp[1]))/2

 #Creates a new Tp and Hs array for use in the function

 [Tpi,Hsi] = np.meshgrid(Tp_bin,Hs_bin)

 inter = (Tpi/(np.sqrt(Hsi)))

 inter = np.array(inter)

Appendix 2

4 (27)

 #Store matrix shape

 x,y = inter.shape

 inter = inter.ravel()

 gamma = []

 for i in inter:

 if i <= 3.6:

 gamma.append(5)

 elif i<5 and i>3.6:

 gamma.append(exp(5.75-1.15*i))

 elif i>=5:

 gamma.append(1)

 #Gamma is made into a matrix to mimic the shape of the Hs, Tp array

 gamma = np.array(gamma)

 gamma = gamma.reshape(x,y)

 # Te calculated to use in power calculation'''

 Tei = Tpi*((4.2+gamma)/(5+gamma))

 return(Tpi,Hsi,Tei,TpHs_array,filehandle)

def scale(mu):

 '''Function for the scaling factors.

 Parameters

 mu : float

 The chosen scaling factor for the device

 Returns

 ts : float

 time scaled

 hs : float

 length scaling factor

 ps : float

 power sclaed

 cws : float

 capture width scaled'''

Appendix 2

5 (27)

 ts=mu**(.5)

 hs=mu

 ps=mu**3.5

 cws=mu

 return(ts,hs,ps,cws)

def P3_7_CWfit(Tp,Hm,s):

 '''Function based off tank testing results of The Penguin: model 3.7

the final function of this script is to give a capture width model for

each scale. We can then relate than model to a given wave distribution to generate

estimated power values for the device at each scale.

‘’’Section on code omitted’’’

 return(cw)

def P3_8_CWfit(Tp,Hm,s):

 '''Function based off tank testing results of The Penguin: model 3.8

 gives same inputs and outputs as above'''

 ts,hs,ps,cws = scale(s)

‘’’Section on code omitted’’’

 return(cw)

''' Main code to generate estimated power at each site'''

def PowerGeneration(Tpi,Hsi,Tei,TpHs_array):

 '''Function for calculating Power values based off the available

 wave resources from the select data point

 Parameters

 Tpi: array

 Peak period array pulled from data sourse

 Hsi: array

 Significant have height array pulled from data source

 Tei: array

 energy period array based off calculations between peak period

 and significant wave height

 TpHs_array:

Appendix 2

6 (27)

 Returns

 P_ave : float

 average power in waves kW/m

 EnergyperyearTot: float

 total energy per year in waves MW/m

 Energy_Peng: array

 How many MW/h of energy is produced by the device at each wave condition

 CW_Data: array

 Capture width array of device for selected wave resources

 SCL: float

 Scale

 Pricecurve: list

 vector of price curve of the device versus scaling

 TotalPowperyear: float

 Total MWh/year is produced by the device per year

 Hours: array

 Hours of each condition per year

 POW: array

 power of the device at selected point

 Op_toti: list

 operational hours per year at each scale

 Total_EPi: list

 MWh/year of device at each scale

 '''

 global SCL

 print('The scale is',SCL)

 # Axilary factor for the device (power draw)

 Aux = 0.9

 #Number of hours of condition per year

 Hours = (np.dot(TpHs_array,8760)/100)

 #Capture width model for device @ certain scale

 CW_Data = P3_8_CWfit(Tpi,Hsi,SCL)

 #Rho = specific density of water

 rho = 1.03E3

 #g = gravity

 g = 9.81

Appendix 2

7 (27)

 #Creates a power matrix for the power of the waves at a given site

 Jirr = (rho*(g**2)*(Tei)*(Hsi**2))/(64*pi)

 #array of energy per year per meter of wave resource

 Energyperyear = Jirr*Hours*1e-6

 #Total energy per year per meter of wave resource

 EnergyperyearTot = np.sum(Energyperyear)

 print(EnergyperyearTot,' MWh/m')

 sumHours = np.sum(Hours)

 P_ave = (EnergyperyearTot/sumHours)*1e3

 print(P_ave,'kW/m')

 #Power is derived from capture width x energy in waves. It takes into

 #Account the power required from the auxilary

 POW =CW_Data*Jirr*1e-3

 POW = POW*Aux

 Energy_Peng = POW*Hours*1e-3

 TotalPowperyear = np.sum(Energy_Peng)

 print(TotalPowperyear)

 #This is for calculating the price

 Price = 1

 #dictonaries to allow data to be saved across every iteration of the loop

 Total_EPi = []

 Op_toti = []

 Pricecurve = []

 '''Iterates over a range of different scales(from 1 to 100) to best determine

 what scale should be used at each site and how the changing

 of the size of the device affects the performance. Naming conventions for this

 are the same a their single scale counterparts but with the added -i at

 the end of the variable name'''

 for i in range(1,1000):

 CW_scalei = P3_8_CWfit(Tpi,Hsi,(i/10))

 Powi = (CW_scalei*Jirr*1e-3)*Aux

Appendix 2

8 (27)

 Powi[Powi<0]=0

 Energy_Pengi = Powi*Hours*1e-3

 Total_EP=np.sum(Energy_Pengi)

 Total_EPi.append(Total_EP)

 Energyperyeari= Energyperyear*CW_scalei

 #Creates a matrix of ones with the same shape as the array of energy

 onesi = Energyperyeari

 onesi[Energyperyeari>0]=1

 #Gives operational hours per year

 Op_Hi = onesi*Hours

 Op_toti.append(np.sum(Op_Hi))

 Pricecurve.append(Total_EP*Price*(i/10)**(-3))

return(P_ave,EnergyperyearTot,Total_EPi,Op_toti,Pricecurve,CW_Data,SCL,TotalPowperyear,Energyperyear,POW,Energy_Peng,H

ours)

def LCOE(lat,lon):

 '''Function to give LCOE of the device at different scale. LCOE gives

 best comparison for other energy types

 Parameters

 lat : float

 Provides the Latitude values for the user defined coordinate point

 lon : float

 Provides the Longitude values for the user defined coordinate point

 Returns

 Plot : Plot

 Returns plot of estimated LCOE results over a series of scales

 '''

 Tpi,Hsi,Tei,TpHs_array,filehandle = getdata(lat,lon)

Appendix 2

9 (27)

 P_ave,EnergyperyearTot,Total_EPi,Op_toti,Pricecurve,CW_Data,SCL,TotalPowperyear,Energyperyear,POW,Energy_Peng,Hours =

PowerGeneration(Tpi,Hsi,Tei,TpHs_array)

 scaling = []

 for i in range(1,1000):

 scaling.append(i/10)

 #Mass of the scale 1 device in tons

 mass = 0.2015

 mass_scl = []

 for i in range(0,len(scaling)):

 mass_scl.append(mass*scaling[i]**3)

 #Set price for penguin at 22 scale (as we know the price)

 P_Price = 900000

 #Life Time

 LT = 30

 #Loan rate

 Loan_rate = 0.015

 #Insurance rate/year

 In_rate = 0.015

 #Price per ton, this is based off of value for price @ 22 scale.'''

 Ton_P = P_Price/2.076360000000000e+03

 #Price at each scale in relation to mass

 P_scl = np.asarray(mass_scl)*Ton_P

 #loan per year

 Loan_y = ((np.asarray(P_scl)*Loan_rate)/(1-((1+(Loan_rate))**(-LT))))

 #Insurance per year at each scale of the device

 In_y = P_scl*In_rate

 Loan_tot = Loan_y + In_y

 #Utilisation factor is set at a constant now. However, there is

 #a correct formula as shown below which should be used when agreed upon'''

 # UF = (P_scl*Op_toti*Mt)/H_y

 #Eur_OpH = np.asarray(UF)/Op_toti

 UF = 5000

 Tot_costs = UF + Loan_tot

Appendix 2

10 (27)

 #E_pro_p is the actual LCOE at the specific scale

 E_pro_p = Tot_costs/Total_EPi

 y = E_pro_p[50:550:1]

 x = scaling[50:550:1]

 #Plots the LCOE plot, which is generated via entry

 plt.plot(x,y)

 plt.grid()

 plt.ylim(0,4000)

 plt.xticks(np.arange(5,55,10))

 plt.xlabel('Scale')

 plt.ylabel('LCOE')

 plt.title('Scale Vs LCOE',weight='bold')

 plt.show()

def DistributionPlots(lat,lon):

 '''This function takes lat and lon data and plots graphs from the power

 values, masses etc of the chosen coordinate site. The function plots

 distribution graphs at the user defined scale

 Parameters

 lat : float

 Provides the Latitude values for the user defined coordinate point

 lon : float

 Provides the Longitude values for the user defined coordinate point

 Returns

 Plot : Plot

 Returns 4 plots on a single figure. Showing wave resources at site,

 Energy of device per year, Capture width of the device, and yearly

 distribution of waves

 '''

 plt.close()

 Tpi,Hsi,Tei,TpHs_array,filehandle = getdata(lat,lon)

 P_ave,EnergyperyearTot,Total_EPi,Op_toti,Pricecurve,CW_Data,SCL,TotalPowperyear,Energyperyear,POW,Energy_Peng,Hours =

PowerGeneration(Tpi,Hsi,Tei,TpHs_array)

Appendix 2

11 (27)

 Tp_vec = Tpi[1]

 Hs_vec = Hsi[:,1]

 #Capture Width Model

 CW_Data = np.matrix(CW_Data)

 plt.subplot(2,2,1)

 #imshow plots a graph showing the correlation between Tp and Hs in relation

 #to Capture width. Visually informative way of viewing the array data. This is

 #similarly repeated below

 plt.imshow(CW_Data,interpolation='nearest',origin='lower',

 extent=[min(Tp_vec),max(Tp_vec),

 min(Hs_vec),max(Hs_vec)])

 #Capture Width Model graph

 plt.grid(color='#000000')

 plt.xlabel('Tp(s)')

 plt.ylabel('Hs(m)')

 clb=plt.colorbar()

 clb.set_label('CW [m]')

 plt.title('Capture width ratio, scale: %i' %SCL,weight='bold')

 plt.grid(which='minor',alpha=0.5)

 #Yearly Sea distribtuion

 plt.subplot(2,2,2)

 plt.imshow(Energyperyear,interpolation='nearest',origin='lower',

 extent=[int(round(min(Tp_vec))),int(round(max(Tp_vec))),

 int(round(min(Hs_vec))),int(round(max(Hs_vec)))])

 plt.xlabel('Tp(s)')

 plt.ylabel('Hs(m)')

 clb=plt.colorbar()

 clb.set_label('Yearly Energy [MWh/m]')

 plt.title('Yearly Sea distribution',weight='bold')

 #Yearly Energy Production

 plt.subplot(2,2,3)

 plt.imshow(Energy_Peng,interpolation='nearest',origin='lower',

 extent=[int(round(min(Tp_vec))),int(round(max(Tp_vec))),

 int(round(min(Hs_vec))),int(round(max(Hs_vec)))])

 plt.xlabel('Tp(s)')

 plt.ylabel('Hs(m)')

 clb=plt.colorbar()

 clb.set_label('Energy Production [MWh/m]')

Appendix 2

12 (27)

 plt.title('Yearly Energy Production: %i MWh with scale: %i' %(round(TotalPowperyear),SCL),weight='bold')

 #Hours of conditions per year

 plt.subplot(2,2,4)

 plt.imshow(Hours,interpolation='nearest',origin='lower',

 extent=[int(round(min(Tp_vec))),int(round(max(Tp_vec))),

 int(round(min(Hs_vec))),int(round(max(Hs_vec)))])

 plt.xlabel('Tp(s)')

 plt.ylabel('Hs(m)')

 clb=plt.colorbar()

 clb.set_label('Hours of conditions/year')

 plt.title('Hours of condition per year',weight='bold')

 plt.show()

def PowerChart(lat,lon):

 '''Plot a power chart showing the maxtrix of power values for the

 user defined scale

 Parameters

 lat : float

 Provides the Latitude values for the user defined coordinate point

 lon : float

 Provides the Longitude values for the user defined coordinate point

 Returns

 Plot : Plot

 Returns plot a power chart showing the maxtrix of power values for the

 user defined scale

 '''

 plt.close()

 Tpi,Hsi,Tei,TpHs_array,filehandle = getdata(lat,lon)

 P_ave,EnergyperyearTot,Total_EPi,Op_toti,Pricecurve,CW_Data,SCL,TotalPowperyear,Energyperyear,POW,Energy_Peng,Hours =

PowerGeneration(Tpi,Hsi,Tei,TpHs_array)

 Tp_vec = Tpi[1]

 Hs_vec = Hsi[:,1]

 plt.imshow(POW,interpolation='nearest',origin='lower',

 extent=[int(round(min(Tp_vec))),int(round(max(Tp_vec))),

 int(round(min(Hs_vec))),int(round(max(Hs_vec)))])

Appendix 2

13 (27)

 plt.xlabel('Tp(s)')

 plt.ylabel('Hs(m)')

 clb=plt.colorbar()

 clb.set_label('Power kW')

 plt.title('Power Chart',weight='bold')

 plt.show()

def ScalePlots(lat,lon):

 '''Plots the results of PowerGeneration function over each scale from 1 to

 100

 Parameters

 lat : float

 Provides the Latitude values for the user defined coordinate point

 lon : float

 Provides the Longitude values for the user defined coordinate point

 Returns

 Plot : Plot

 Returns 4 plots on a single figure. Showing Scale vs energy per year,

 scale vs mass of device, Scale vs price, Scale vs operaitional hours

 distribution of waves

 '''

 plt.close()

 Tpi,Hsi,Tei,TpHs_array,filehandle = getdata(lat,lon)

 P_ave,EnergyperyearTot,Total_EPi,Op_toti,Pricecurve,CW_Data,SCL,TotalPowperyear,Energyperyear,POW,Energy_Peng,Hours =

PowerGeneration(Tpi,Hsi,Tei,TpHs_array)

 scaling = []

 for i in range(1,1000):

 scaling.append(i/10)

 #Scale vs MWh

 plt.subplot(2,2,1)

 plt.plot(scaling,Total_EPi)

 plt.grid()

 plt.xticks(np.arange(0,100,10))

 plt.xlabel('Scale')

Appendix 2

14 (27)

 plt.ylabel('MWh/Year')

 plt.title('Scale Vs MWh/Year',weight='bold')

 #Scale vs Price

 plt.subplot(2,2,2)

 plt.plot(scaling,Pricecurve)

 plt.grid()

 plt.xticks(np.arange(0,100,10))

 plt.xlabel('Scale')

 plt.ylabel('MWh/year * EUR * scale$^{-3}$')

 plt.title('Scale Vs MWh/year * EUR * scale$^{-3}$ for',weight='bold')

 #Scale vs Operational Hours

 plt.subplot(2,2,3)

 plt.plot(scaling,Op_toti)

 plt.grid()

 plt.xticks(np.arange(0,100,10))

 plt.xlabel('Scale')

 plt.ylabel('Operational Hours/year')

 plt.title('Scale Vs Operational Hours/year',weight='bold')

 #Scale vs Mass

 mass = 0.195

 mass_scl = []

 for i in range(0,len(scaling)):

 mass_scl.append(mass*scaling[i]**3)

 plt.subplot(2,2,4)

 plt.plot(scaling,mass_scl)

 plt.grid()

 plt.xticks(np.arange(0,100,10))

 plt.xlabel('Scale')

 plt.ylabel('Mass (Tons)')

 plt.title('Scale Vs Mass',weight='bold')

#def City_Coords(cityname):

'''Function to hopefully allow for searchable cities'''

cityfile = open(r'C:\Users\rprod\.spyder-py3\WaveData\City_Coords.txt')

content = cityfile.readlines()

citycontent = []

for i in content:

Appendix 2

15 (27)

citycontent.append(i.split(','))

def Country_Names():

 '''Function which reads CountryCentre.txt which contains: countrycode,

 latitude, longitude and population

 Paramaters

 countrycodes: array

 array of data from CountryCentre.txt

 Returns

 lat : float

 Provides the Latitude values for the country

 lon : float

 Provides the Longitude values for the country

 countrynames: string

 Country name

 countrypop: float

 Country population

 '''

 countryfile = open(r'C:\Users\rprod\Documents\Python Scripts\Thesis\CountryCentre.txt','r')

 content = countryfile.readlines()

 #iterates over CountryCentre.txt and splits the data by commas ','

 countrycodes = []

 for i in content:

 countrycodes.append(i.split(','))

 #fromats the data to an array

 countrycodes = np.array(countrycodes)

 # lat and lon of the countries

 lat_lon = countrycodes[:,1:3]

 lat = lat_lon[:,0]

Appendix 2

16 (27)

 lon = lat_lon[:,1]

 #converts the data from strings to float

 lat = lat.astype(np.float)

 lon = lon.astype(np.float)

 #converts data to a list

 lat = lat.tolist()

 lon = lon.tolist()

 countrynames = countrycodes[:,3]

 countrypop = countrycodes[:,4]

 countrypop = countrypop.astype(np.float)

 countrylist = countrynames.tolist()

 countrynames = []

 for i in countrylist:

 countrynames.append(i.strip())

 return(lat,lon,countrynames,countrypop)

def popupmsg(msg1,msg2,msg3,lat,lon):

 '''Creates popup box based off user's inputs. The Data is printed in the

 popup box. Also gives bottons to call functions which creates plots for

 a user defined site.

 Parameters

 msg1: string

 Prints the coordinates chosen by the user

 msg2: string

 Prints the average wave power in the site (kW/m)

 msg3: string

 Prints the total amount of energy in MWh/year of the Penguin at the

 users chosen site and scale (default scale is 22)

 lat : float

 Provides the Latitude values for the user defined coordinate point

 lon : float

Appendix 2

17 (27)

 Provides the Longitude values for the user defined coordinate point

 '''

 #tk.Tk initialises a Tkinter window

 popup = tk.Tk()

 #tkraise the popup window to the front'''

 popup.tkraise()

 popup.lift()

 #wm_title sets site for popup

 popup.wm_title("Values for selected point")

 #tk.Label creates a text label for the Tkinter popup window. .pack

 #places the

 label_1 = tk.Label(popup,text=msg1,font=NORM_FONT)

 label_1.pack(pady=10, padx=10)

 label_2 = tk.Label(popup,text=msg2,font=NORM_FONT)

 label_2.pack(pady=10, padx=10)

 label_3 = tk.Label(popup,text=msg3,font=NORM_FONT)

 label_3.pack(pady=10, padx=10)

 B1 = ttk.Button(popup, text="Okay", command = popup.destroy)

 B1.pack()

 #Functions have to be initialised to call outer functions. This

 #allows for function calling from an entry within the popup menu

 def GenerateDistPlots():

 DistributionPlots(lat,lon)

 def GenerateScalePlots():

 ScalePlots(lat,lon)

 def GenerateLCOE():

 LCOE(lat,lon)

 def GeneratePowerChart():

 LCOE(lat,lon)

 #ttk.Button creates a button which the user can 'press' to generate some

 #response. In this case it generates the plotting functions based on which

 #button the user selects

Appendix 2

18 (27)

 B2 = ttk.Button(popup, text="Generate Distribution Plots", command = GenerateDistPlots)

 B2.pack()

 B3 = ttk.Button(popup, text="Generate scale plots", command = GenerateScalePlots)

 B3.pack()

 B4 = ttk.Button(popup, text="Generate LCOE plot", command = GenerateLCOE)

 B4.pack()

 B5 = ttk.Button(popup, text="Generate Power Chart", command = GeneratePowerChart)

 B5.pack()

 popup.mainloop()

def datatotext(P_ave,TotalPowperyear,filehandle,SCL):

 '''Function which converts results from the user chosen data to strings,

 to allow for easier data handling in other function.

 Parameters

 P_ave : float

 average power in waves kW/m

 TotalPowperyear: float

 Total MWh/year is produced by the device per year

 filehandle: string

 Returns the filehandle of the data source of the user defined data

 SCL:

 User defined scale of the device) (default is 22)

 Returns

 msg1: string

 Prints the coordinates chosen by the user

 msg2: string

 Prints the average wave power in the site (kW/m)

 msg3: string

 Prints the total amount of energy in MWh/year of the Penguin at the

 users chosen site and scale (default scale is 22)

 '''

 filehandle = filehandle[:-4]

 NE = filehandle.split(',')

Appendix 2

19 (27)

 N = NE[:1]

 E = NE[1:2]

 msg1 = 'The coordinates chosen are: '+str(N)+' N, '+str(E)+' E'

 msg1 = str(msg1)

 msg1 = msg1.replace("'",'')

 msg2 = 'Average power for site: ',str(P_ave) + ' kW'

 msg2 = str(msg2)

 msg2 = msg2.replace("'",'')

 msg2 = msg2.replace(",",'')

 msg3 = 'Penguin Power at scale', SCL,': ',TotalPowperyear,' MWh/year'

 msg3 = str(msg3)

 msg3 = msg3.replace("'",'')

 msg3 = msg3.replace(",",'')

 return(msg1,msg2,msg3)

def Search_latlon(lat,lon):

 '''Generates a popup window based off typed user defined coordinate data

 Parameters

 lat : float

 Provides the Latitude values for the user defined coordinate point

 lon : float

 Provides the Longitude values for the user defined coordinate point

 Returns

 msg1: string

 Prints the coordinates chosen by the user

 msg2: string

 Prints the average wave power in the site (kW/m)

 msg3: string

 Prints the total amount of energy in MWh/year of the Penguin at the

 users chosen site and scale (default scale is 22)

 lat : float

 lon : float

 '''

Appendix 2

20 (27)

 Tpi,Hsi,Tei,TpHs_array,filehandle = getdata(lat,lon)

 P_ave,EnergyperyearTot,Total_EPi,Op_toti,Pricecurve,CW_Data,SCL,TotalPowperyear,Energyperyear,POW,Energy_Peng,Hours =

PowerGeneration(Tpi,Hsi,Tei,TpHs_array)

 msg1,msg2,msg3 = datatotext(P_ave,TotalPowperyear,filehandle,SCL)

 popupmsg(msg1,msg2,msg3,lat,lon)

def onclick(event,lat,lon):

 '''Event handling of clicking on the map to generate data. When the user

 double clicks on the map it finds the closest data set to the users 'clicked'

 coordinate values. It generates a popup window of the results.

 Parameters

 event : event

 user created 'event' i.e. click on image

 Returns

 msg1: string

 Prints the coordinates chosen by the user

 msg2: string

 Prints the average wave power in the site (kW/m)

 msg3: string

 Prints the total amount of energy in MWh/year of the Penguin at the

 users chosen site and scale (default scale is 22)

 latpt : float

 Provides the Latitude values for the user defined coordinate point

 lonpt : float

 Provides the Longitude values for the user defined coordinate point

 '''

 #event.dblclick handles the doubleclick event from the user

 if event.dblclick:

 ''' Function for reading the files will have to go somewhere here'''

Appendix 2

21 (27)

 #Basemap creates a map of the world. The projection of the map is millers

 #projection (mil) and generates it in 'medium' resolution

m = Basemap(projection='mill',

resolution = 'i')

 #Takes the x and y data of the user 'clicked' point

xdata = event.xdata

ydata = event.ydata

 #Converts the x and y data to coordinate values

lonpt,latpt =xdata,ydata

lonpt,latpt =m(xdata,ydata,inverse=True)

 Tpi,Hsi,Tei,TpHs_array,filehandle = getdata(lon,lat)

P_ave,EnergyperyearTot,Total_EPi,Op_toti,Pricecurve,CW_Data,SCL,TotalPowperyear,Energyperyear,POW,Energy_Peng,Hours =

PowerGeneration(Tpi,Hsi,Tei,TpHs_array)

 msg1,msg2,msg3 = datatotext(P_ave,TotalPowperyear,filehandle,SCL)

 popupmsg(msg1,msg2,msg3,lon,lat)

 #event button 3 is right click and resets the image if the user has zoomed

 #and wishes to return to the original world view

 elif event.button == 3:

 print('resseting the image')

 plt.draw() # force re-draw

 ax.set_xlim(0.0, 40030154.742485225)

 ax.set_ylim(0.0, 29350068.807226714)

 plt.draw()

fig = plt.figure()

ax = fig.add_subplot(111)

class GlobalWaveDataApp(tk.Tk):

 '''Tkinter object which forms the core backend of the GUI'''

 def __init__(self, *args, **kwargs):

Appendix 2

22 (27)

 '''Function which initializes the GUI window and creates the platform

 on which the GUI is built upon'''

 tk.Tk.__init__(self, *args, **kwargs)

 tk.Tk.wm_title(self,"Wello Global Wave Conditions")

 #tk.Frame creates a frame for text as well as a scrollbar

 container = tk.Frame(self)

 #container.pack configures where the ojects within the window will be housed

 container.pack(side='top',fill='both',expand=True)

 #implement stretchability along rows and column

 container.grid_rowconfigure(0,weight=1)

 container.grid_columnconfigure(0,weight=1)

 #add menubar to window

 menubar = tk.Menu(container)

 filemenu = tk.Menu(menubar,tearoff=0)

 #filemenu.add_command adds menubar items

 filemenu.add_separator()

 filemenu.add_command(label='Exit',command=quit)

 menubar.add_cascade(label='File',menu=filemenu)

 #Configure the menu items onto the actual menu

 tk.Tk.config(self, menu = menubar)

 self.frames={}

 #Initialise all of the pages and all create backend for

 #easy page addition in the future

 for F in (StartPage, PageOne):

 frame = F(container,self)

 self.frames[F] = frame

 frame.grid(row=0,column=0,sticky='nsew')

 self.show_frame(StartPage)

Appendix 2

23 (27)

 #Shows the frame and brings it to the top of the GUI

 def show_frame(self,cont):

 frame =self.frames[cont]

 frame.tkraise()

class StartPage(tk.Frame):

 '''Start page of the Application. First thing the user

 views when running the script'''

 def __init__(self,parent,controller):

 tk.Frame.__init__(self,parent)

 label = tk.Label(self,text="""Alpha Wave conditions application

This application is in alpha, use at your own risk

There is no promise of warranty.

If any bugs are found please report them to: rodrigo.prodohl@wello.eu""",font=LARGE_FONT)

 label.pack(pady=10,padx=10)

 button_1 = ttk.Button(self,text="Agree",

 command=lambda:controller.show_frame(PageOne))

 button_1.pack()

 button_2 = ttk.Button(self,text="Disagree",

 command=quit)

 button_2.pack()

class PageOne(tk.Frame):

 '''Main page of the application. Where the user can view the map

 and either input data points or select a point on a map'''

 def __init__(self,parent,controller):

 tk.Frame.__init__(self,parent)

 global programName

 #Basemap () takes two arguments, projection: map type(millers projection)

Appendix 2

24 (27)

 # h(high)and resolution:

 m = Basemap(projection='mill',

 resolution = 'h')

 #.drawcountries draws coutry boarders

 m.drawcountries()

 #include a graticule grid, a reference network of labelled latitude and longitude lines.

 m.drawparallels(np.arange(-90,90,30),labels=[1,0,0,0])

 m.drawmeridians(np.arange(m.lonmin,m.lonmax+30,60),labels=[0,0,0,1])

 #fills in color of the country

 m.fillcontinents(color='coral',lake_color='aqua')

 m.drawmapboundary(fill_color='aqua')

 #calls Country_Names() function

 lat,lon,countrynames,countrypop = Country_Names()

 #converts the lat and lon values to Basemap coordinate format

 xpt,ypt = m(lon,lat)

 new_list = []

 new_xpt = []

 new_ypt = []

 #Removes country names with a population of less than 1e6. Done to

 #eliminate clutter from the map

 for i in range(len(countrypop)):

 if countrypop[i] >= 100000:

 new_list.append(countrynames[i])

 new_xpt.append(xpt[i])

 new_ypt.append(ypt[i])

 #'Writes' the remaining names to the Basmeap image

 for i in range(len(new_list)):

 plt.text(new_xpt[i],new_ypt[i],new_list[i],fontsize=8,va='center',ha='center',color='black')

 fig.tight_layout()

 #FigureCanvasTkAgg() creates a figure/canvas in Tkinter window to allow

 #for addition of graphics

 canvas = FigureCanvasTkAgg(fig,self)

 def clicking(event):

 xdata = event.xdata

Appendix 2

25 (27)

 ydata = event.ydata

 #Converts the x and y data to coordinate values

 lonpt,latpt =m(xdata,ydata,inverse=True)

 onclick(event,lonpt,latpt)

 #.mpl_connect connects with a function

 canvas.mpl_connect('button_press_event', clicking)

 #NavigationToolbar2TkAgg creates toolbar for image image manipulation

 toolbar= NavigationToolbar2TkAgg(canvas,self)

 toolbar.update()

 canvas.show()

 #.get_tk_widget() fits to canvas onto the window

 canvas.get_tk_widget().pack(side=tk.BOTTOM,fill=tk.BOTH,expand=True,anchor='s')

 scale = tk.IntVar()

 label = tk.Label(self,text='Please select scale: ',font=NORM_FONT)

 label.pack(side='left',pady=5,padx=5)

 #tk.Entry() is a entry widget which allows displaying simple text.

 entry_box = tk.Entry(self,textvariable=scale,width=10,bg='lightgreen')

 entry_box.pack(side='left',padx=10)

 def get_entry():

 '''Calls scale.get() function to read user inputted coordinate

 data'''

 global SCL

 SCL = scale.get()

 #tk.Button creates a button widget

 select_button = tk.Button(self,text='Ok',command=get_entry)

 select_button.pack(side='left')

 #tk.DoubleVar() a value holder for float variables

 lat = tk.DoubleVar()

 lon = tk.DoubleVar()

 cityname = tk.StringVar()

Appendix 2

26 (27)

 def get_latlonentry():

 latse = lat.get()

 lonse = lon.get()

 Search_latlon(latse,lonse)

 def getcityname():

 x = cityname.get()

 City_Coords(x)

 label_2 = tk.Label(self,text='Please select latitude and longitude: ',font=NORM_FONT)

 label_2.pack(side='left',pady=5,padx=5

 entry_box_2 = tk.Entry(self,textvariable=lat,width=5,bg='lightgreen')

 entry_box_2.pack(side='left',padx=5)

 label_3 = tk.Label(self,text='N',font=NORM_FONT)

 label_3.pack(side='left',pady=5,padx=1)

 entry_box_3 = tk.Entry(self,textvariable=lon,width=5,bg='lightgreen')

 entry_box_3.pack(side='left',padx=5)

 label_4 = tk.Label(self,text='E',font=NORM_FONT)

 label_4.pack(side='left',pady=5,padx=1)

 select_button_3 = tk.Button(self,text='Ok',command=get_latlonentry)

 select_button_3.pack(side='left')

label_5 = tk.Label(self,text=' Select desired city',font=NORM_FONT)

label_5.pack(side='left',pady=5,padx=1)

entry_box_4 = tk.Entry(self,textvariable=cityname,width=5,bg='lightgreen')

entry_box_4.pack(side='left',padx=5)

select_button_2 = tk.Button(self,text='Ok',command=getcityname)

select_button_2.pack(side='left')

 #calls Search_latlon() to search for coordinate data

 #Button which once pressed calls the function to search for the

Appendix 2

27 (27)

 #most relevant coordinate points from the wavedata database.

 #opens a popup of the user’s data

app = GlobalWaveDataApp()

app.geometry('1920x1080')

app.mainloop()

